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Abstract 4 

It is conventional to assume that the role of the soil-structure interaction (SSI) is 5 

beneficial to the buildings under seismic loading. However, lessons learned from recent 6 

earthquakes revealed that this assumption could be misleading, and SSI may have different 7 

effects on the seismic response of different structural systems. In this study, an enhanced 8 

soil-structure numerical model is developed and verified using ABAQUS software to assess 9 

the impact of SSI on high-rise frame-core tube structures. The seismic responses of 20, 30, 10 

and 40-storey buildings constructed on soil class Ee (according to Australian Standards) under 11 

four earthquake acceleration records have been studied. The results in terms of maximum 12 

lateral deflections, foundation rocking, inter-storey drifts and storey shear forces for the rigid 13 

base and flexible base frame-core tube structures have been discussed and compared. 14 

Generally, SSI has a remarkable impact on the seismic behaviour of high-rise frame-core tube 15 

structures since it can increase the lateral deflections and inter-storey drifts and decrease 16 

storey shear forces of structures. However, It is worth noting that the seismic responses of 17 

soil-structure systems under near and far field earthquakes are considerably different. 18 
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 22 

1 Introduction 23 

Traditional structural design is based on the assumption that the structure is 24 

rigidly supported, ignoring the impacts of soil-structure interaction (SSI). This is 25 

because previous studies generally believed that considering SSI can improve the 26 

seismic performance of buildings (Veletsos and Meek 1974). Firstly, because of the 27 



flexibility of the ground, the foundation of buildings incorporating the dynamic SSI 1 

has two more degrees of freedom: horizontal movement and rotation. The increase of 2 

degrees of freedom can reduce the stiffness of soil-structure system, and then lengthen 3 

the natural period. Secondly, the foundation input motion is different from the free 4 

field motion due to the kinematic interaction and inertial interaction effects (Anand 5 

and Satish Kumar 2018). According to the response spectrum theory, the increase of 6 

the natural period and the change of the input motion can modify the seismic demand 7 

of the structure (Seed et al. 1976). In addition, when the flexible-base structure 8 

(considering the SSI) is in vibration, a considerable part of the energy is dissipated 9 

into the soil due to the radiation damping generated by wave propagation and the 10 

hysteresis damping of soil material, which makes the effective damping ratio of the 11 

structures resting on soft soils is generally greater than that of the rigidly supported 12 

structure (Wolf 1985). 13 

Because SSI lengthens the natural period and increases the damping of system, 14 

Veletsos and Meek (1974) concluded that influence of SSI seemed to be beneficial to 15 

the structural system under the act of earthquake records. Besides, provisions that 16 

allow reduction of base shear when SSI is considered can be found in many current 17 

codes (NZS1170.5, 2007; IBC, 2012; NBCC, 2010; GB 50011-2010). However, this 18 

conclusion is misleading. Horizontal movement and rotation of the foundation may 19 

amplify the lateral deformations and inter-storey drifts of the superstructure (Guin and 20 

Banerjee 1998; Tabatabaiefar 2012; Tabatabaiefar & Clifton 2016; Far 2019a), which 21 

are the most commonly used damage parameters in performance-based design 22 

(Monavari and Massumi 2012; Mohammadi et al. 2015; Samimifar et al. 2019). As a 23 

result, considering SSI can alter the performance level of buildings and is notably 24 

crucial for high-rise and slender buildings (Kramer 1996; Fatahi et al. 2011; Samali et 25 

al. 2011; Tabatabaiefar et al. 2012). 26 

Therefore, it can be observed that there are some contradictory opinions about 27 

the influence of SSI on the seismic responses of structures (Mylonakis and Gazetas 28 

2000; Far & Flint 2017). The complexity of SSI and inconclusiveness of the literature 29 

provide sufficient motivation to critically investigate the effects of SSI (Sharma et al. 30 



2018). 1 

Based on commonly used structure types in reality, it is essential to study the 2 

impacts of SSI on various kinds of structural systems to get a complete understanding 3 

of their seismic response. When subjected to seismic loading, the behaviour of any 4 

structure-soil system results from different factors, such as the input motion, type and 5 

depth of foundation, soil modulus and shear wave velocity, geometry and natural 6 

period of the superstructure (Anand and Satish Kumar 2018; Saleh et al 2018). In the 7 

past decades, many scholars have investigated the influence of SSI on moment 8 

resisting frames with low and mid-rise buildings (Tabatabaiefar et al. 2013; 9 

Tabatabaiefar and Fatahi 2014; Ghandil and Behnamfar 2017; Far 2019b; Yang et al. 10 

2020). Generally, compared with rigidly supported model, the base shear of the model 11 

considering SSI decreases whereas the lateral deformations and inter-storey drifts 12 

increase relatively, and the SSI effects is more significant with diminishing the shear 13 

wave velocity of ground soils. Therefore, ignoring SSI may lead to changes in the 14 

performance level of buildings and unsafe results of structures subjected to seismic 15 

loading. 16 

Studies in terms of high-rise buildings and frame-shear wall structures have been 17 

substantially insufficient. Han (2002) examined a 20-storey building resting on pile 18 

foundation. The influences of pile foundation displacements on the performance of 19 

high-rise buildings were studied, and the results was compared with the response of 20 

buildings founded on shallow foundation. The author found that the raft or mat 21 

foundation usually induce longer natural period and much significant displacement 22 

amplitudes in superstructures and foundations. The conventional design procedure 23 

without the influence of SSI cannot fully represent the real behaviour of high rise 24 

buildings. In the study of Galal and Naimi (2008), the influences of SSI on the 25 

seismic response of 20-storey moment resisting frames were evaluated by comparing 26 

the flexible-base model to the rigid-base model under the act of 13 different 27 

earthquake records on four types of soils. It is concluded that the fixed-base 28 

assumption cannot represent the true seismic behaviour. Besides, the author 29 

recommended that designers and researchers should pay more attention to determine 30 



whether considering SSI effects is beneficial or detrimental of a structure’s seismic 1 

response. In the research of Bilotta et al. (2015), seismic response of a 100 m 2 

high-rise building in Naples (Italy) resting on a piled raft floating foundation was 3 

evaluated. In this model, the site amplification effects and SSI were adequately 4 

considered. The results indicated that the peat layer acted as a natural damper in the 5 

system and thus, it is beneficial in the free-field seismic behaviour. In addition, the 6 

influences of inertial interaction were assessed considering soil-foundation 7 

compliance and it leads to an increase of the natural period of the system. The 8 

prolonged natural period results in further decrease of spectral acceleration. Bagheri et 9 

al. (2018) carried out numerical simulations on 15-storey and 30-storey frame 10 

structures rested on six types of pile foundations to study the seismic behaviour of the 11 

structures. The numerical results indicated that the performance level of the structures 12 

is related to the pile configuration, ground motion features and height-width ratios of 13 

the superstructures. Moreover, SSI was founded to have remarkable influences on the 14 

distribution way of the shear forces along the superstructures. Scarfone et al. (2020) 15 

investigated the impacts of SSI on a 20-storey frame-shear wall building using 3D 16 

nonlinear dynamic time history analyses. Particularly, three foundation types (shallow 17 

foundation, compensated foundation and pile foundation) were evaluated. Results 18 

showed that the increase in foundation flexibility can result in a decrease of seismic 19 

demand and a more obvious foundation rotation. Arboleda-Monsalve et al. (2020) 20 

investigated the seismic performance of 40-storey buildings considering SSI. Four 21 

scenarios of modeling and building configuration were considered: fixed-base model, 22 

model considering SSI, fixed-base model with shear walls, and model including shear 23 

walls and considering SSI. Taking into account SSI effects in the model altered the 24 

seismic demands of the high-rise buildings in regard to the inter-story drifts, storey 25 

horizontal accelerations, and seismic-induced settlements. Direct economic losses for 26 

the strong earthquakes increased 33% considering SSI effects compared with the 27 

fixed-base model. In the research of Qaftan et al. (2020), the scaling process and 28 

design of a scaled 15-storey RC frame-shear wall structure with a scale factor of 1:50 29 

are addressed. The results indicated the structure built on pile raft foundation 30 



experienced on average 30% less rocking in comparison to the structure supported by 1 

the raft foundation. 2 

From these studies in terms of moment resisting frames and frame-shear wall 3 

structures, it has been observed that the current research are mainly focusing on low 4 

and mid-rise frame structures. However, the seismic response of low-rise and 5 

high-rise structures are different. In the same way, the seismic response of frame 6 

structures is different from that of the frame-shear wall structures in which foundation 7 

rotation is significant (Sharma et al. 2018; Walsh 2018). Therefore, it is imperative to 8 

investigate the behaviour of high-rise wall-frame buildings with different 9 

superstructure geometry considering SSI. 10 

The aim of this study is to assess the seismic performance of a generally used 11 

structural system of high-rise buildings: frame-core tube structure. Firstly, a new 3D 12 

numerical soil-structure model is built and verified as a qualified model that can be 13 

used for further SSI numerical simulations. After that, seismic behaviour of high-rise 14 

frame-core tube structures founded on soft soil deposit with different heights 15 

(20-storey, 30-storey, and 40-storey) is investigated. 16 

 17 

2 Development and validation of 3D numerical model 18 

In this section, a novel and enhanced soil-structure numerical model is 19 

established in finite element software ABAQUS 6.14, and the direct method (Wolf 20 

1998) is used to accurately simulate the previous shaking table tests of a frame 21 

structure in the authors’ research group. The accuracy of the 3D numerical model is 22 

validated by comparing the results of numerical simulation and experimental shaking 23 

table tests. In the next section, this validated 3D numerical model will be employed to 24 

simulate the high-rise frame-core tube structure. 25 

 26 

2.1 Structural model 27 

The prototype of structure in shaking table tests is a 15-story frame structure 28 

founded on shallow foundation with a natural frequency of 0.384 Hz and a total mass 29 

of 953 tonnes. The aim of the scaling procedure for this test was to achieve “dynamic 30 



similarity”, where model and prototype experience homologous forces. Therefore, the 1 

methodology of Meymand (1998) was adopted. The first condition is that the shaking 2 

table test is carried out in a 1-g environment, which defines model and prototype 3 

accelerations to be equal. Secondly, a model with similar density to the prototype is 4 

desired. By defining scaling conditions for density and acceleration, a complete set of 5 

dimensionally correct scaling relations can be derived for all variables being studied. 6 

By comparing shaking table specifications and dimension and weight of scaled model 7 

considering different scaling factors, geometric scaling factor (λ) of 1:30 provides the 8 

largest achievable scale model with rational scales, maximum payload, and 9 

overturning moment which meet the facility limitations. Thus, scaling factor of 1:30 is 10 

adopted for experimental shaking table tests in this study. 11 

The scaled frame structure is made of steel, with a height of 1.5 meters and width 12 

of 0.4 meters. According to Meymand (1998), in order to achieve dynamic similarity, 13 

in addition to geometric dimensions, the natural frequency of the prototype should be 14 

scaled by λ-1/2 (5.480). Therefore, the required natural frequency of the scaled model 15 

is 2.11Hz. The scaled model was then designed and assembled. According to the Sin 16 

Sweep test, the natural vibration frequency of the constructed structural model is 17 

2.19Hz. More details about the shaking table tests can be found in Tabatabaiefar et al. 18 

(2014), Fatahi et al. (2015), Tabatabaiefar (2016) and Tabatabaiefar and Mansoury 19 

(2016). 20 

The dimension, physical and mechanical properties of the numerical frame 21 

structure model and ground soil as well as four scaled earthquake records are the same 22 

as those selected in the experimental shaking table tests. Shell elements in ABAQUS 23 

were selected to simulate the steel columns and slabs of the frame structure and solid 24 

elements were selected to simulate the foundation. The natural frequency of the 25 

numerical model is 2.21Hz, which is very close to the natural frequency of the 26 

shaking table test model (2.19Hz). Under the action of four scaled earthquake records, 27 

all structural elements adopt elastic-perfectly plastic behaviour. 28 

According to the shaking table tests, the damping ratio of the scaled frame 29 

structure is about 1.1%. Therefore, based on the structure’s first and second vibration 30 



frequencies, two damping coefficients α and β can be obtained as 2.297 and 0.0004. 1 

Fig. 1 illustrates the 3D numerical model of this scaled frame structure. 2 

 3 

Fig. 1 3D numerical model of this scaled fixed-base frame structure in ABAQUS 4 

 5 

2.2 Soil model 6 

The soil element is simulated by 3D eight-node reduced integration element 7 

C3D8R and the Mohr-Coulomb model is adopted. In ABAQUS, cohesion and of 8 

internal friction angle (the same values as used in the shaking table tests) and the 9 

tension cut off option are specified. 10 

When calculating wave propagation or seismic response in soil and rock medium, 11 

the fully nonlinear method is a common method to capture the soil nonlinearity. In 12 

this method, the nonlinear backbone curves and trial and error were used to obtain the 13 

strain-compatible values of soil damping and shear modulus. The detailed steps of this 14 

method can be found in Tabatabaiefar et al. (2013), Fatahi and Tabatabaiefar (2014) 15 

and Tabatabaiefar et al (2017). 16 

Sun et al. (1998) investigated cyclic shear strain (γc) depended shear modulus 17 

and damping ratio (ξ) of cohesive soils and provided backbone curves recommended 18 

for seismic site-response assessments. These curves, including relations between 19 

shear modulus ratio (G/Gmax) versus γc (Fig. 2) and ξ versus γc (Fig. 3) for cohesive 20 

soils, are adopted in this research. 21 



 1 

Fig. 2 Relations between G/Gmax versus γc for cohesive soils (after Sun et al., 1998) 2 

 3 

Fig. 3 Relations between ξ versus γc for cohesive soils (after Sun et al., 1998) 4 

According to the fully nonlinear method and backbone curve introduced 5 

previously, the soil strain-compatible parameters under different seismic excitation 6 

can be calculated (Table 1). The shear strain amplitude caused by each seismic record 7 

is different, thus the final values of G/Gmax and ξ change with the change of seismic 8 

records. 9 

Rayleigh damping is employed to capture the energy losses in the soil medium 10 

during seismic events. The calculation of damping coefficients α and β depends on the 11 

frequencies selected. Therefore, it is very crucial to select soil frequencies/modes 12 

(Park and Hashash 2004). This study adopts the suggestion of Park and Hashash 13 

(2004) that the selection of frequencies should partially cover the main frequency 14 

range of the input motion. The calculated Rayleigh damping parameters under 15 

different earthquakes are shown in Table 1. 16 

 17 



Table 1 Adopted strain-compatible parameters and damping parameters for the soil-frame 1 

structure system 2 

Earthquake records G/Gmax ξ Damping coefficients 

Scaled El-Centro 0.48 14.0% α=5.245 

β=0.0028 

Scaled Hachinohe 0.36 17.1% α=2.540 

β=0.0071 

Scaled Kobe 0.33 17.5% α=5.885 

β=0.0039 

Scaled Northridge 0.25 19.8% α=6.534 

β=0.0044 

 3 

2.3 Contact surface of foundation and soil 4 

Surface to surface contact is selected to simulate the interaction between the 5 

bottom surface of foundation (master surface) and the top surface of soil medium 6 

(slave surface) during seismic loading. In addition, finite sliding formulation and the 7 

surface-to-surface discretisation method are used. 8 

In numerical simulation, mechanical behaviour of the contact surfaces are 9 

divided into normal behaviour and tangential behaviour. Normal behaviour adopts 10 

hard contact which uses Lagrange Multipliers to enforce contact constraints. (Nguyen 11 

et al. 2017) In tangential behavior, penalty friction formulation is adopted and 12 

contact-pressure-dependent data is used to simulate the Mohr-Coulomb failure 13 

criterion between the contact surfaces of foundation and soil. 14 

 15 

2.4 Boundary conditions and seismic motion input method 16 

When using numerical methods to solve the dynamic soil-structure interaction 17 

problem, it is generally inevitable to extract a finite calculation area from the infinite 18 

medium. The simulation of the infinite foundation can be achieved by introducing 19 

artificial boundary condition (ABC) on boundaries of this area to ensure that 20 

boundary can efficiently absorb the scattering waves energy (Liu et al. 2006). 21 



Compared with viscous boundary, viscous-spring boundary can absorb the 1 

energy of the scattering waves on the boundary and capture the recovery ability of a 2 

semi-infinite ground without the problems of high frequency instability and low 3 

frequency drift (Gu et al. 2007). Therefore, the viscous-spring boundary is adopted. 4 

To realise the viscous-spring boundary, the general approach is to set parallel 5 

springs and dampers in one normal and two tangential directions of the boundary 6 

nodes (Gu et al. 2007) (Fig. 4). The mechanical coefficients of the springs and 7 

dampers are calculated by the property of the surrounding soil medium and the 8 

specific calculation formula is as follows: 9 

                           KBT=αT G/R, CBT=ρ cs                      (1) 10 

                           KBN=αN G/R, CBN=ρ cp                     (2) 11 

Where KBT, KBN are the stiffness coefficients of springs in tangential and normal 12 

directions, respectively; CBT, CBN are the damping coefficients of dampers in 13 

tangential and normal directions, respectively; αT , αN are modified coefficients and 14 

their value referred to the study of Liu (2006), αT=0.67, αN=1.33; R is the distance 15 

from the wave source to boundary nodes; ρ and G are the density and shear modulus 16 

of the soil deposit, respectively; cs and cp are shear wave velocity and P wave velocity 17 

of the soil deposit, respectively. 18 

 19 

Fig. 4 viscous-spring boundary 20 

When the viscous-spring boundary is used to completely absorb the scattering 21 

wave from the calculated area, the artificial boundary node is subjected to the free 22 

field motion. Thus, the problem of seismic input is transformed into the problem of 23 



free field motion acting on boundary nodes, and the free field motion can be 1 

transformed into the equivalent node force Fb acting on boundary nodes (Ma 2020). 2 

The equivalent node force Fb includes three parts: the first two parts can eliminate the 3 

impacts of viscous-spring boundary, and the third part is the stress generated by free 4 

field motion on the artificial boundary: 5 

                      Fb = (Kbub
ff + Cbvb

ff +σb
ff n) Ab                   (3) 6 

Where ub
ff = [ux νy wz]

T is free field displacement vector at artificial boundary nodes, 7 

vb
ff = [vx νy vz]

T is free field velocity vector at artificial boundary nodes, σb
ff is free 8 

field stress tensor, Kb is spring stiffness of viscous-spring boundary, Cb is damping 9 

coefficient of viscous-spring boundary. Ab is the influencing area of the boundary 10 

node, n is the cosine vector of the normal direction outside the boundaries. By 11 

referring to the method of Ma (2020) and compiling a simple program in MATLAB 12 

software, the equivalent nodal force amplitudes in the three directions of each node 13 

can be calculated, and then the amplitude file can be read into the inp file of 14 

ABAQUS, and thus the seismic equivalent nodal forces can be applied on 15 

viscous-spring boundary. After that, the seismic behaviour of the soil-structure model 16 

under four scaled earthquake acceleration records can be analysed. 17 

 18 

2.5 Validation of 3D numerical model 19 

In order to validate the numerical models introduced in this section, the results of 20 

fixed-base model (Fig. 1) and the soil-structure model (Fig. 5) under the influence of 21 

four scaled earthquake records (Northridge, Kobe, El-Centro, and Hachinohe) were 22 

studied and compared with corresponding experimental shaking table test results 23 

(Tabatabaiefar et al. 2014; Fatahi et al. 2015; Tabatabaiefar and Mansoury 2016). As 24 

mentioned above, the experimental tests and the numerical model have the same 25 

model dimensions and physical and mechanical parameters. The maximum lateral 26 

deflections (Δ) of fixed-base and flexible-base models under each earthquake records 27 

and the average values are compared in Fig. 6 and Fig. 7, respectively. 28 



 1 

Fig. 5 Numerical grid of soil-structure model in ABAQUS 2 

As observed in Fig. 6, both the fixed-base and flexible-base numerical models 3 

are accurate enough to capture the seismic response of structures under different 4 

earthquake records. The trend and the values of the seismic response in numerical 5 

simulation are in a good agreement and consistent with the experimental shaking table 6 

test results. From Fig. 7, the error of average maximum lateral deflections can be 7 

calculated and in fixed-base and flexible-base cases, the errors are only 8.8% and 8 

5.6%, respectively. 9 
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 10 

(a)                                      (b) 11 
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(c)                                      (d) 2 

Fig. 6 Numerical and experimental maximum lateral deflections of fixed-base and flexible-base 3 

models under the scaled (a) El Centro (1940) earthquake (b) Hachinohe (1968) earthquake (c) 4 

Kobe (1995) earthquake (d) Northridge (1994) earthquake. 5 
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 6 

Fig. 7 Average values of maximum lateral deflections of numerical model and experimental 7 

model. 8 

 9 

3 Overview of the high-rise building numerical model 10 

In 1972, the International Conference on Tall Buildings divided tall buildings 11 

into four categories according to height (Mukand et al. 1973): (1) 9~16 stories (up to 12 

50 meters);(2) 17~25 stories (up to 75 meters); (3) 26~40 stories (up to 100 meters); 13 

(4) more than 40 stories (super tall buildings). Thus this paper will study three typical 14 

high-rise building heights: 20 stories (60 meters), 30 stories (90 meters) and 40 stories 15 

(120 meters). The widths of the three different height structures in this study are 10 m, 16 

15 m and 20 m respectively (height-width ratio is 6), with three spans in each 17 



direction. 1 

3.1 Characteristics of the adopted high-rise structure 2 

The concrete frame-core tube structure, as a kind of commonly used high-rise 3 

building structural system, is selected in this study, the typical plan view of standard 4 

floor is shown in Fig. 8 (a). 5 

The structural sections were designed according to the relevant standards 6 

(AS3600 2018; AS1170.4 2007) in SAP2000 v 20 software. Afterwards nonlinear 7 

time history analyses under four earthquake acceleration records (Fig. 9) was 8 

performed and the inter-storey drifts were limited in life safe level (<1.5%). Grade 40 9 

concrete with characteristic compressive strength (f’c) of 40 MPa, modulus of 10 

elasticity (Ec) of 32.8 GPa and unit weight of 24.5 kN/m3 (AS3600 2018) and Grade 11 

D500N steel reinforcing bars with yielding strength (fsy) of 500 MPa (AS4671 2001) 12 

were selected. The dimensions of structural sections are shown in Table 2. 13 

Table 2 Summary of dimensions of structural beams, columns and thickness of slabs and shear 14 

walls (m) 15 

Structures Levels Columns Beams Shear walls Slabs 

20-storey 1~5 0.55×0.55 0.40×0.40 0.55 0.25 

6~10 0.50×0.50 0.40×0.40 0.50 0.25 

11~15 0.45×0.45 0.40×0.40 0.45 0.25 

16~20 0.40×0.40 0.40×0.40 0.40 0.25 

      

30-storey 1~10 0.70×0.70 0.50×0.50 0.70 0.25 

11~20 0.60×0.60 0.50×0.50 0.60 0.25 

21~30 0.50×0.50 0.50×0.50 0.50 0.25 

      

40-storey 1~10 1.00×1.00 0.50×0.80 0.80 0.25 

11~20 0.90×0.90 0.50×0.80 0.70 0.25 

21~30 0.80×0.80 0.50×0.80 0.60 0.25 

31~40 0.70×0.70 0.50×0.80 0.50 0.25 

 16 



The superstructures founded on soft clayey soil deposit (Class Ee soil according 1 

to AS1170.4 2007) and the bedrock depth is 30 meters. Geotechnical characteristics of 2 

the subsoil are summarised in Table 3 (Tabatabaiefar et al. 2014). 3 

Table 3 Geotechnical characteristics of the ground soils in this study 4 

Shear 

wave 

velocity 

(m/s) 

Unified 

classification  

(USCS) 

Gmax 

(kPa) 

Poisson’s 

ratio 

Soil 

density  

(kg/m3) 

c’  

(kPa) 

φ’  

(degree) 

Plastic 

Index 

150 CL 33,100 0.40 1470 20 12 15 

A classical compensated foundation with three basement stories overlying a 5 

1m-thick reinforced concrete base slab is adopted in this study (Fig. 8b), and the total 6 

embedment depth is 9 m. The general definition of compensated foundation is that in 7 

building design, if the foundation is deep enough so that the weight of the building is 8 

approximately equal to the total soil weight removed from the building position, the 9 

soil weight can compensate the weight of the building. If the foundation bottom 10 

pressure is exactly equal to the soil gravity stress, the additional stress of foundation 11 

bottom is zero, theoretically the foundation will not suffer any settlement and shear 12 

failure. The reason why compensated foundation is selected is that compared with 13 

piled foundation, compensated foundation can produce greater foundation rotation, so 14 

that the superstructure can experience more obvious lateral deflection. In this study, 15 

the requirements for bearing capacity and maximum settlement are satisfied (Bowles 16 

2001). For 20-, 30- and 40-storey structures, vertical settlements under gravitational 17 

(static) loads are 13.4 mm, 24.8mm and 38.8 mm, respectively. 18 
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Fig. 8 Characteristics of the adopted frame-core tube structure (a) plan view of standard floor (b) 1 

dimensions of 20-storey frame-core tube structure (c) the finite-element model 2 

3.2 Numerical analysis 3 

In soil-structure numerical model of high-rise building, shell elements S4R were 4 

employed to model shear walls and slabs, beam elements B31 were employed to 5 

model beams and columns, and solid elements C3D8R were employed to model 6 

foundation and soil medium (Fig. 8c). The contact surface properties, boundary 7 

conditions and loading methods of soil-structure numerical model are the same as 8 

those introduced in Section 2. 9 

After the numerical model is established for three soil-structure models with 10 

different heights, four bedrock earthquake ground motions (Fig. 9), including two 11 

far-filed earthquakes and two near-filed earthquakes are applied to fixed-base and 12 

flexible-base model respectively. The characteristics of the earthquake ground 13 

motions are summarised in Table 4. The strain-compatible parameters and Rayleigh 14 

damping parameters of subsoil under four earthquake acceleration records are 15 

summarised in Table 5. 16 

Table 4 Earthquake ground motions adopted in this study 17 

Earthquake Country Year 
PGA 

(g) 

Mw 

(R) 

T (s) 

Duration 
Type 

Hypocentral 

distance (km) 

Record 

type 

El Centro USA 1940 0.349 6.9 56.5 
Far 

field 
15.69 

Bedrock 

record 

Hachinohe Japan 1968 0.229 7.5 36.0 
Far 

field 
14.1 

Bedrock 

record 

Kobe Japan 1995 0.833 6.8 50.0 
Near 

field 
7.4 

Bedrock 

record 

Northridge USA 1994 0.843 6.7 30.0 
Near 

field 
9.2 

Bedrock 

record 
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Table 5 Adopted strain-compatible parameters and damping parameters for the soil-high-rise 1 

structure system 2 

Earthquake records G/Gmax ξ Damping coefficients 

El-Centro 0.57 11.1% α=0.769 

β=0.012 

Hachinohe 0.60 10.4% α=0.284 

β=0.024 

Kobe 0.35 17.0% α=1.043 

β=0.021 

Northridge 0.21 23.5% α=1.415 

β=0.029 
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(c)                                      (d) 6 

Fig. 9 Earthquake records: (a) El Centro earthquake (b) Hachinohe earthquake (c) Kobe 7 

earthquake (d) Northridge earthquake 8 
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4 Results and discussions 1 

Fig. 10, 11 and 12 show the maximum lateral deflections of three frame-core 2 

tube structures with different heights under fixed-base and flexible-base conditions. 3 

As observed, the maximum deflections of almost all cases increased, but there is a 4 

noticeable difference in the deflections between the two far field earthquakes and the 5 

two near field earthquakes. Under the two far field earthquakes, the amplification 6 

effect is very obvious (average increase is 301% for the three flexible-base structure 7 

with different heights), but under the two near field earthquakes, the average 8 

maximum lateral deflections of the structures considering SSI at three heights only 9 

increase by 51%. It should be pointed out that the maximum displacement of the 10 

flexible-base 40-storey structure under the Northridge earthquake is less than that of 11 

the fixed-base structure (from 1184.4 mm to 1042.7 mm). This is due to the fact that 12 

the displacement response spectrum curve usually increases first and then decreases. 13 

The natural period of 40-story structure increases from 2.660 seconds of rigid-base 14 

case to 3.817 seconds of flexible-base case, which is in the descending region of the 15 

displacement response spectrum. Therefore, the displacement of the flexible-base 16 

model decreases rather than increases. 17 
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(c)                                      (d) 2 

Fig. 10 Maximum lateral deflections of 20-story structure under following earthquakes: (a) El 3 

Centro earthquake (b) Hachinohe earthquake (c) Kobe earthquake (d) Northridge earthquake 4 
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(c)                                      (d) 8 

Fig. 11 Maximum lateral deflections of 30-story structure under the following earthquakes: (a) El 9 

Centro earthquake (b) Hachinohe earthquake (c) Kobe earthquake (d) Northridge earthquake 10 
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(c)                                      (d) 4 

Fig. 12 Maximum lateral deflections of 40-story structure under the following earthquakes: (a) El 5 

Centro earthquake (b) Hachinohe earthquake (c) Kobe earthquake (d) Northridge earthquake 6 

 7 

Lateral deflections under the impacts of the SSI includes rocking and distortion 8 

components (Kramer 1996). For high-rise buildings, the rocking component plays a 9 

significant role in the lateral deflection. Table 6 records the rocking angle of the 10 

foundation (θf) and the lateral displacement of the top floor caused by foundation 11 

rocking (∆r) at the moment when structures reach the maximum lateral displacements. 12 

For 20-story, 30-story and 40-story structures, 92.01%, 87.28% and 94.31% of the 13 

maximum lateral displacements of the roof is due to the rocking components, which is 14 

much larger than the proportion of the frame structure. On the one hand, the type of 15 

foundation plays a key role in the foundation rocking. In addition, the overall stiffness 16 

of the frame-core tube structure is much larger than that of the frame structure, and 17 

the structure is more likely to rotate overall rather than deform between adjacent 18 



stories. 1 

Table 6 Foundation rocking angle (θf), lateral deflection due to foundation rocking (∆r) and the 2 

proportion of lateral deflection due to foundation rocking in total lateral deflection (∆r/∆) 3 

Earthquakes 

20-storey structure 30-storey structure 40-storey structure 

θf 

(°) 

∆r 

(mm) 

∆r/∆ 

(%) 

θf 

(°) 

∆r 

(mm) 

∆r/∆ 

(%) 

θf 

(°) 

∆r 

(mm) 

∆r/∆ 

(%) 

El Centro 0.64 667.17 94.85 0.71 1120.04 93.66 0.65 1354.30 95.27 

Hachinohe 0.84 877.92 96.06 0.68 1060.79 96.36 0.47 990.30 92.27 

Kobe 0.54 562.60 81.30 0.32 499.19 74.36 0.43 913.64 98.08 

Northridge 1.2 1257.25 95.83 0.60 938.14 84.72 0.46 955.11 91.60 

 4 

Studies on the determined inter-story drifts also confirm this viewpoint (Fig. 13, 5 

14 and 15). The corresponding inter-story drifts were calculated using the method 6 

based on AS1170-4 (2007). As observed, compared with the inter-storey drifts of 7 

rigid-base structure, the inter-storey drifts of the structure considering SSI presents an 8 

approximately vertical straight line, indicating that the inter-storey drifts does not 9 

change much with the height, and the overall deflection curve is approximately linear. 10 

The effect of SSI normally increases the inter-story drifts in structures. However, 11 

similar to the maximum lateral deflections, the variation of inter-story drifts is also 12 

related to the earthquake records. For example, in the far field earthquake cases, the 13 

inter-story drifts of the structures considering SSI increase by 194% on average, while 14 

in the near filed earthquake cases, the inter-story drifts of the 30-storey structure 15 

almost does not increase, and the inter-story drifts of the 40-storey structure even 16 

decreases by 5.7% (Kobe earthquake) and 25.4% (Northridge earthquake), 17 

respectively. As mentioned above, this is also related to the variation of the natural 18 

period of the structure and the shape of the seismic response spectrum curve. In 19 

general, SSI may lead to the change of the structural performance level. For instance, 20 

the maximum inter-storey drifts of 20-storey flexibly-supported building is more than 21 

1.5% under the Hachinohe and Northridge earthquakes, and the performance levels 22 

change towards near-collapse level (BSSC 1997). 23 
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(c)                                      (d) 4 

Fig. 13 Inter-story drifts of 20-story structure under the following earthquakes: (a) El Centro 5 

earthquake (b) Hachinohe earthquake (c) Kobe earthquake (d) Northridge earthquake 6 
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(c)                                      (d) 2 

Fig. 14 Inter-story drifts of 30-story structure under the following earthquakes: (a) El Centro 3 

earthquake (b) Hachinohe earthquake (c) Kobe earthquake (d) Northridge earthquake 4 
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 7 

(c)                                      (d) 8 

Fig. 15 Inter-story drifts of 40-story structure under the following earthquakes: (a) El Centro 9 

earthquake (b) Hachinohe earthquake (c) Kobe earthquake (d) Northridge earthquake 10 

Fig. 16, 17 and 18 compare the shear forces of three structures with different 11 

heights. Similar to the frame structure (Tabatabaiefar et al. 2013), the storey shear 12 



forces of frame-core tube structures decrease to some extent under the influence of the 1 

SSI. For the two far field earthquakes, the average base shear force of flexible-base 2 

structure is about 54.3% of that of fixed-base structure, while the average ratio of the 3 

two near filed earthquakes is 30.8%. This is because the spectral acceleration (Sa) 4 

curves of the four earthquake records basically show monotonous downward trends 5 

within the natural period range of structures. However, it should be pointed out that 6 

not all storey shear forces is reduced. For example, under the Kobe earthquake of 7 

20-storey structure, the shear forces above 16 storey increase after considering SSI. 8 
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(c)                                      (d) 12 

Fig. 16 Storey shear forces of 20-story structure under the following earthquakes: (a) El Centro 13 

earthquake (b) Hachinohe earthquake (c) Kobe earthquake (d) Northridge earthquake 14 
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(a)                                      (b) 2 
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(c)                                      (d) 4 

Fig. 17 Storey shear forces of 30-story structure under the following earthquakes: (a) El Centro 5 

earthquake (b) Hachinohe earthquake (c) Kobe earthquake (d) Northridge earthquake 6 
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(c)                                      (d) 2 

Fig. 18 Storey shear forces of 40-story structure under the following earthquakes: (a) El Centro 3 

earthquake (b) Hachinohe earthquake (c) Kobe earthquake (d) Northridge earthquake 4 

 5 

5 Conclusions 6 

In this study, a novel and enhanced soil-structure model is developed in finite 7 

element software ABAQUS to investigate the influence of SSI on high-rise buildings. 8 

Firstly, the accuracy of the numerical model are verified according to the previous 9 

shaking table test’s results. After that, numerical simulations were conducted on three 10 

types of frame-core tube structures: 20, 30, and 40- story buildings. For each case, 11 

two near field and two far field earthquakes were applied to rigid-base and 12 

flexible-base models, respectively. According to the results of numerical simulation, 13 

this study can draw the following conclusions： 14 

Under the two far field earthquake records, the increase of the maximum lateral 15 

deflections of structures with different heights considering SSI is much more obvious 16 

than that of the structures under the action of two near field earthquakes. In general, 17 

SSI can result in an increase in the maximum lateral deflection, but in terms of 18 

high-rise structures, its natural period may be in the descending region of 19 

displacement response spectrum curve, which may lead to a decrease in the maximum 20 

lateral deflection. Therefore, in practical engineering, the effect of SSI does not 21 

necessarily amplify the structure lateral deflection as the height of the structure 22 

increases. The structural height and the ground motion features should be considered 23 

to determine whether the effects of SSI are beneficial or detrimental. 24 



Different from frame structures, for frame-core tube structures, the maximum 1 

lateral deflection caused by the foundation rocking accounts for a large proportion. 2 

The reduction of the foundation rocking can effectively reduce the lateral deflections 3 

of buildings. Therefore, the lateral deflection of the structure can be effectively 4 

reduced by using pile foundation or increasing the width of foundation. 5 

The inter-storey drifts of structures considering SSI do not change much with the 6 

height, and the overall deflection curve of the structure is approximately linear, which 7 

is also caused by the large proportion of foundation rocking. Generally ignoring SSI is 8 

safety threatening because it may change the performance level of buildings from life 9 

safe to near collapse. 10 

Under different earthquake records, the base shear of frame-core tube structures 11 

decrease to different extents after considering SSI. However, it should be pointed out 12 

that in most cases in this study, the storey shear forces of the topmost stories are 13 

almost not reduced. Hence, in designing high-rise buildings, it is not reasonable to use 14 

the same shear force reduction factor for all stories in a structure. 15 

In short, SSI has a noticeable influence on the seismic behaviour of high-rise 16 

frame-core tube structures. There are also notable differences in the seismic behaviour 17 

of soil-structure model under near and far field earthquakes. Therefore, ignoring SSI 18 

or considering inappropriate seismic records in real construction projects can 19 

misestimate the damage level of structures and cause unsafe consequences. 20 

 21 

  22 
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