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Stressful events in an early postnatal period have critical implications for the individual’s life and can increase later risk for
psychiatric disorders. The aim of this study was to investigate the influence of early-life stress on the social behavior of adult
male and female mice. C57Bl/6 mice were exposed to maternal separation (MS, 3 h once a day) or handling (HD, 15min once a
day) on postnatal day 2 through 14. Adult male and female mice were tested for social behavior in the social interaction test and
for individual behavior in the plus-maze and open-field tests. Female mice exposed to maternal separation had increased social
behavior and increased anxiety. MS male mice had no changes in social behavior but had significantly disrupted individual
behavior, including locomotor and exploratory activity. Handling had positive effects on social behavior in males and females
and decreased anxiety in males. Our results support the hypothesis that brief separation of pups from their mothers (handling),
which can be considered as moderate stress, may result in future positive changes in behavior. Maternal separation has
deleterious effects on individual behavior and significant sex-specific effects on social behavior.

1. Introduction

There is a wealth of data demonstrating that exposure to
stressful events early in life can increase the risk for psychiat-
ric disorders, including mood and anxiety disorders [1–4].
The neural basis of the consequences of early-life stress is
poorly understood, and stressful events are supposed to cause
structural and functional disturbances in brain regions
responsible for emotional behavior in humans [5–7]. Adults
with a history of mistreatment in childhood have reductions
of medial prefrontal cortex volume [8], decreased hippocam-
pal volume [9, 10], hyperactivity of the hypothalamic-
pituitary-adrenal axis [11], and an associated deterioration
of sensory and cognitive functions [12]. Animal models of
early-life stress also demonstrate disturbances in neuronal
activities and brain plasticity [13–17].

Maternal separation (MS) is the most commonly used
rodent model of early-life stress [18, 19]. Separation of pups
from their dams and nest for 3 or more hours once a day

during the first two postnatal weeks produces increased
anxiety-like behavior and exaggerated hypothalamic-
pituitary-adrenal (HPA)-axis responses to stress in adulthood
as well as behavioral and cognitive disturbances [20–24].
These effects have well been studied in rats, while behavioral
changes in MSmice remain inconsistent [18, 25].

Nevertheless, consequences of early-life stress in mice are
significantly sex-biased. Maternal separation of pups from
their dams generally increases anxiety in adult male mice
[26–28], while females tend to have a stable anxiety level
[25, 27, 29, 30]. Few studies have found increased anxiety
in adult female mice after early-life stress [28, 31]. Neither
male nor female mice have changes in the level of depression
in the forced swim test [25, 26, 32–34]. In mice, MS in
combination with restraint stress for mothers during pup
separation enhanced the expression of depressive symptoms
in the form of decreased sucrose solution preference in both
male and female offspring [29]. If maternal separation was
combined with early weaning, the authors observed
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persistent behavioral disturbances in male mice, including
enhanced anxiety-like behavior and depressive behavior
[35–37]. Apparently, mice require more stress to attain
changes in emotion-related behavior and stress reactivity
similar to those in rats [25].

In humans, psychiatric disorders such as depression and
anxiety are highly comorbid with social dysfunction, and dis-
turbances in social behavior generally appear before these
disorders. Therefore, studying dysfunctional social interac-
tions is important for understanding the development of
the stress response [38]. However, the influence of maternal
separation on social behavior is poorly studied. Studies on
males usually find no changes in social behavior in mice
[39–41] and rats [42, 43]. A small proportion of the studies
reports either slightly intensified social interaction in male
mice [29] or, the other way round, decreased social behavior
[44] under the influence of early-life stress. Female studies
are few, and they provide inconsistent observations: some
state that maternal separation results in decreased time inves-
tigating other mice [31], while others suggest that it has no
effect on social behavior [29]. Thus, effects of early-life stress
on adult social behavior remain evasive, especially in their
sex-specific aspect.

Interestingly, brief separation of rat pups from their dams
(10–15min per day) often has an opposite effect on later
behavioral and stress-related responses compared to pro-
longed separation [21, 22, 45]. Some mouse studies show
decreased anxiety and increased exploratory activity in males
[46, 47] and none of these effects in females [25, 30]. The
influence of brief separation in early life on mouse social
behavior has not yet been investigated.

Here, we attempt to characterize the effects of early-life
stress on the social behavior of adult male and female mice
and to see if there are correlations between changes and
disturbances of individual behavior. A brief (15min/day)
and a prolonged separation (3 h/day) paradigm were used
to identify possible positive and negative consequences of
early-life adversity.

2. Materials and Methods

2.1. Animals. C57BL/6J mice were housed in the Center
for Genetic Resources of Laboratory Animals (RFME-
FI61914X0005 and RFMEFI62114Х0010), Institute of Cytol-
ogy and Genetics, the Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, Russia. The animals were
housed under standard conditions (12 : 12 h light/dark cycle,
lights on at 8.00 a.m.; feed pellets and water were available ad
libitum). All procedures were approved by the Ethics
Committee of the Institute of Cytology and Genetics SB
RAS (Protocol number 25, December 2014) in conformity
with EU Directive 2010/63/EU for animal experiments.

2.2. Maternal Separation. Virgin males and females were
used for mating. Pregnant females were individually housed
with paper nesting material during their third week of
gestation. Only litters containing 4–6 pups were used for
experiments. All stress procedures were carried out from 1
to 4 pm, in the light phase of day. Offspring were separated

from dams on PND 2 through PND 14 (the day of birth
was PND 0). At first, each dam was removed from her home
cage and placed into a clean cage. Pups were then removed
from its home cage and placed together into a small box filled
with bedding (one litter for one box). After that, the dam was
placed back into the home cage. In the brief separation
condition [handling (HD)] the pups were separated from
their dams for 15min once a day, while at the prolonged sep-
aration [maternal separation (MS)], the pups were separated
for 180min once a day. The temperature in the MS cages was
kept at 31± 2°C using infrared heat lamps to prevent thermo-
regulatory distress. No heat lamps were used on HD pups.
The control pups were not separated from their dams. All
cages were cleaned on a weekly basis. After weaning on
PND 30, the offspring were housed in sibling groups of 2 to
4 animals of the same sex under standard housing conditions.
Experimental groups consisted of 27 males (11 control, 10
HD, and 6 MS) and 25 females (11 control, 6 HD, and 8
MS), each group included mice from at least three litters.
The behavioral tests were conducted on PND 85–PND 110
in the following order: plus-maze, open-field, and the social
interaction test (one test per day). 24 h after the last behav-
ioral test, the animals were euthanized and the adrenal glands
and thymus were removed and weighted. Schema of the
experiment was presented on Figure 1(a).

2.3. Behavioral Tests

2.3.1. Plus-Maze Test. The elevated plus-maze test was per-
formed according to the established procedure [48, 49]. The
maze consisted of two opposite open arms (25 cm× 5 cm)
and two opposite enclosed arms (25 cm× 5 cm× 15 cm) and
had an open roof. The maze was set at 50 cm above the floor.
All measurements were made in a dimly lit experimental
room. The test apparatus was thoroughly cleaned between
tests with different animals. During a 5min test period, the
following parameters of anxiety-like behavior were recorded:
the percentage of entries into the open arms, closed arms,
and central platform and the percentage of time spent in
the open arms, closed arms, and central platform. These
parameters were reported as the percentage of total entries
and the percentage of testing time, respectively. The
additional parameters were the latency of the first exit from
the central platform, the number of head-dips, and the num-
ber of passages from one closed arm to another.

2.3.2. Open-Field Test. The open field (OF) consisted of a
square arena (80 cm× 80 cm) with a white floor and 25 cm
high walls. The arena was brightly illuminated and had a cen-
tral zone (40 cm× 40 cm) and a peripheral zone (anywhere
between the central zone and the walls). Each mouse was
placed individually in the central zone, and the following
behavioral parameters were recorded during a 5min test
period: the total distance traveled; the latency of the first exit
from the central zone; the number of visits to the central
zone; the time spent in the central and the peripheral zone;
the number of rearing and self-grooming episodes; and total
activity state (activity level of mouse was determined by the
software as a function of pixel changes, EthoVision XT
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threshold for activity—0.2%). The OF arena was thoroughly
cleaned between tests with different animals.

2.3.3. Social Interaction Test. A square plastic arena
(40 cm×40 cm×25 cm) was used for the social interaction
test. A small perforated plastic target box (10 cm×10 cm)
was placed near the center of one of the walls. The test con-
sisted of two trials (5min each). At the beginning of each trial,
an experimental mouse was placed in the zone opposite to the
target box, face to the wall. In the adaptation trial, the target
box was empty and the animal was habituated to the novel
environment for 5min. In the interaction trial, an unfamiliar
partner of the same sex was placed into the target box and
the reaction of the experimental mouse to the social target
was investigated. Between the trials, the mouse was placed to
a neutral cage. The following parameters were recorded during
each trial: the total distance traveled, the number of visits to
the interaction zone (a 5 cm zone around the target box),
the time spent in the interaction zone, and the latency of
the first contact with the target box. The interaction ratio
was calculated as 100∗(time in the interaction zone, partner
present)/(time in the interaction zone, partner absent).

2.4. Characterization of Estrous Phase. Vaginal smears from
each female were taken every day after behavioral tests to
determine the phase of the estrous cycle. Based on vaginal

cytology, females were divided into two groups: diestrous
(those in diestrus and metaestrus) and estrous (those in
estrus and proestrus).

2.5. Statistical Analysis. All tests were videotaped and
manually scored by the free open-source software BORIS
(Behavioral Observation Research Interactive Software,
http://www.boris.unito.it) [50]. The distance traveled in the
OF test was scored using EthoVision XT v.10.0 (Noldus
Information Technology, Netherlands).

Normal distribution and homogeneity of variances were
tested using Shapiro–Wilk’s and Levene’s tests, respectively.
As most behavioral data were not normally distributed, non-
parametric tests were used. The statistical analysis of behav-
ioral data was performed using Kruskal–Wallis one-way
ANOVA, with the type of stress as a factor separately for
males and females. Pairwise comparisons were performed
by the Mann–Whitney U test. The statistical significance
threshold was set at p < 0 05.

3. Results

3.1. Body, Adrenal Glands, and Thymus Weight. Males had
more body weight and less relative weights of adrenals
and thymus than females (effect of sex: for body weight
H (1, 52) = 18.8, p < 0 001; for adrenals H (1, 52) = 29.1,
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Figure 1: Timeline of the experiment (a), weights of the body (b), relative weights of adrenal glands (c), and thymus (d) in adult male and
female mice. Handling decreased the weight of the body in males but not females. Females have the only tendency to reduce relative
adrenal weight under early postnatal stress. Relative weights of adrenal glands and thymus are shown as organ weight in mg per gram of
body weight. Data present as mean± standard error of the mean (SEM). White box: controls (males n = 11, females n = 11); grey box: HD
(males n = 10, females n = 6), black box: MS (males n = 6, females n = 8); open columns: males; cross-hatched columns: females. ∗p < 0 05

compared to controls.
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p < 0 001; for thymus H (1, 52) = 35.9, p < 0 001)
(Figure 1). Early postnatal stress has an effect on body
weight in males (H (2, 27) = 6.8, p = 0 03); in HD males,
the body weight is reduced in comparison with the control
(p = 0 017), and MS males also have a tendency to reduce
the body weight (p = 0 0841). Females have the only ten-
dency to reduce relative adrenal weight under early post-
natal stress (H (1, 19) = 3.3, p = 0 069).

3.2. Plus-Maze Behavior. Generally, males were less anxious
than females (more time spent in open arms (H (1,
52) = 6.6, p = 0 01) and center (H (1, 52) = 19.9, p < 0 001))
and have higher locomotor activity than females (more total
number of entries (H (1, N = 52) = 15.9, p = 0 0001); more
passages (H (1, N = 52) = 6.2, p = 0 0126)).

Early-life stress had no effect on plus-maze behavior in
male mice (Figure 2). However, stress in early life led to
significant anxiogenic effect in MS females. MS females had
increased latency to exit the central platform compared with
controls (effect of stress: H (2, 24) = 9.9, p = 0 007; Mann–
Whitney U test: U = 8, p = 0 006) and spent less time in the
open arms than controls (effect of stress: H (2, 24) = 8.6,
p = 0 013; Mann–Whitney U test: U = 16, p = 0 041) and
HD mice (U = 3, p = 0 01). Stress has a weak effect on the
number of entries into the closed (a trend, H (2, 24) = 5.1,
p = 0 077) and open (a trend, H (2, 24) = 5.1, p = 0 077)
arms. Nevertheless, the percentage of entries into the open
arms was decreased (U = 17, p = 0 05) and the percentage
of entries into the closed arms was increased (U = 17,
p = 0 05) in MS females compared to controls. Anxious
effect was not caused by a decrease in locomotor activity of
females (total entries, p > 0 05), and MS females even had a
higher number of passages between the closed arms com-
pared to controls (U = 12 5, p = 0 018). HD females had only
increased latency to exit the central platform compared with
controls (U = 11 5, p = 0 031).

Females were grouped by the phase of the estrous cycle to
assess its effect on plus-maze behavior. However, an insuffi-
cient number of mice in each phase does not allow a correct
statistical analysis. MS females tended to have increased
anxiety both in estrus and diestrus (Figure 3).

3.3. Open-Field Behavior.Males have higher locomotor activ-
ity than females (longer distance travelled: H (1, 52) = 17.8,
p < 0 001, higher total activity: H (1, 52) = 24.7, p < 0 001)
and more often go to the central zone (H (1, 52) = 9.3,
p = 0 002), indicating that males are less anxious than
females in OF.

3.3.1. Males. In the OF test, maternal separation had the
greatest effect on the locomotor and exploratory activities
of animals (Figure 4). Stress had an influence on total activity
(H (2, 27) = 6.5; p = 0 038); parameters reflecting any move-
ments of mice and the total activity of MS males were lower
than in the control (U = 7 0; p = 0 031) and HD group
(U = 3 0; p = 0 016). Decrease in activity is accompanied
by decreasing distance travelled (stress effect: H (2, 27) = 5.0;
p = 0 083; U = 9 0; p = 0 05 compared to control; U = 6 0;
p = 0 048 compared to the HD group). The MS group

has less the duration of rearing (H (2, 27) = 8.6; p = 0 013;
U = 8 0; p = 0 04) than the controls that reflects a decrease
exploratory activity under prolonged postnatal stress.

Brief postnatal stress (handling) has an effect, mainly, on
anxiety-like behavior. The number of visits (effect of stress:H
(2, 27) = 5.6; p = 0 062; U = 28 5; p = 0 022) and time spent in
the central zone (effect of stress: H (2, 27) = 5.2; p = 0 075;
U = 25 0; p = 0 013) in the HD group were increased to
compare with controls, reflecting a slight decrease in anxiety.
Moreover, the duration of rearing were decreased in the HD
groups compared to controls (U = 23 0; p = 0 009), as in the
MS group. Parameters of locomotor activity were unchanged
in the HD group.

3.3.2. Females. The analysis did not reveal any significant dif-
ferences between groups (Figure 4). Estrous phase did not
influence behavior in the OF test. However, diestrous HD
females were slightly more anxious thanMS females (Figure 5).

3.4. Social Interaction Test. Social interaction test assesses the
level of sociability, which is measured by comparing the time
a mouse spends in an interaction zone with a social target to
the time in that zone in the absence of a social target. Males
spend more time than females in the interaction zone both
with an empty box and with a social target (effect of sex:
H (1, 52) = 6.2, p = 0 012; H (1, 52) = 4.6, p = 0 033, resp.).

3.4.1. Males. Behaviors in an adaptation trial of the SI test,
when a mouse can investigate a new place, confirm the
decline locomotor and exploratory activities in theMS group.
MS males covered significantly less distance than controls
(effect of stress: H (2, 27) = 5.5, p = 0 064; U = 8 0; p = 0 042)
and HDmales (U = 4 0; p = 0 024) (Figure 6). The number
of rearing was lower in MS males than in controls (effect
of stress: H (2, 27) = 8.1, p = 0 017; U = 4 0; p = 0 012)
and HD males (U = 0 5; p = 0 006).

In the interaction trial, when an unknown mouse was
introduced into the small box, all groups had increased time
spent in the interaction zone (interaction score> 100%,
Figure 6). A significant effect of stress was revealed on the time
spent in the interaction zone (H (2, 27) = 8.1, p = 0 018); HD
males spent more time responding to the social target than
controls (U = 30 0; p = 0 03). The MS group did not differ
from controls and the HD group.

3.4.2. Females. Early-life stress has no significant effect on
behavioral parameters in the adaptation trial. In the interac-
tion trial, all groups had increased time spent in the interac-
tion zone when a partner was presented (interaction
score> 100%, Figure 7). Surprisingly, the interaction scores
in HD and MS females were higher than in controls (effect
of stress: H (2, 25) = 10.3, p = 0 006; U = 8 0; p = 0 012 and
U = 11 0; p = 0 006, resp.), indicating that both stressed
females groups increased sociability. MS females have
enhanced not only score but also time spent near the social
target compared to controls (effect of stress: H (2, 25) = 4.7,
p = 0 096; U = 17 0; p = 0 026). And, apparently, this
increased sociability led to an increase in the distance
traveled in MS females compared to controls (effect of stress:
H (2, 25) =6.0, p = 0 049; U = 17 0; p = 0 026).
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Figure 8 shows behavioral parameters depend on estrus
and diestrus. There was only one estrous HD female in the
test, which complicated the statistical analysis of the
estrous cycle.

4. Discussion

Our study focused on the effects of maternal separation on
the social behavior of adult mice and compared changes with
changes in individual behavior. We showed that early
postnatal stress had different effects on males and females.

The study of individual female behavior in the MS group
revealed significantly increased anxiety in the elevated plus
maze. Females avoided the open arms of the maze, but their
locomotor activity was the same as that of controls. The OF
test also did not reveal changes in the locomotor activity of
MS females. In contrast to females, MS male anxiety in our
experiments remained unchanged. The lack of MS effect on
male emotional behavior was accompanied by changes in
locomotor and exploratory activity. The OF test showed a
significantly less distance traveled and reduced total and

exploratory activity. Moreover, less distance was covered in
the SI test during the adaptation trial, when the mice explore
a new field without any additional social stimulus. So we have
found gender-specific influence of prolonged maternal sepa-
ration on anxiety and locomotion. There are few works in
which both males and females of the С57BL6 mice were
simultaneously studied. Some of them found the same effects
of MS on anxiety in males and females [28, 30], whereas one
study revealed sex-specific influence on anxiety [27], but dif-
ferent from our results. Various results can be explained by
the differences in methodology of maternal separation. So,
for example, in the study of Romeo and colleagues [27], sep-
arated pups were kept at the ambient temperature of the
vivarium during 3 hours without additional heating that
can lead to a pup’s hypothermia. Some of the works used sex-
ually experienced females (having two or three litters before)
[25, 30]. Procedures for checking health and gender of pups
as well as culling the pups at first postnatal day are stress fac-
tors for dams and pups and can affect results of the experi-
ment [28]. So, minor differences in methodological aspects
lead to a significant disagreement in the results.
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These disagreements and other inconsistent results
[31, 32, 51–55] suggest that effects on anxiety in mice are
highly variable and depend even on small variations in envi-
ronmental conditions during the postnatal period. Similarly,
Millstein and Holmes [25] have concluded that repeated
postnatal MS did not produce clear changes in anxiety- or
depression-related behaviors in any of the five mouse strains
studied. However, even in the lack of MS effects on behavior,
it may alter the feedback regulation of response to a subse-
quent stress event, for example, resulting in a more
pronounced and prolonged elevation of corticosterone levels
[56–58] or a greater decrease in GR expression in the frontal
cortex and hippocampus [59, 60].

The study of social behavior revealed somewhat unex-
pected results in females with prolonged maternal separation.
The social interaction test showed increased sociability in MS
females: the females responded to a novel conspecific more
actively than the controls. However, this is not consistent
with a high level of anxiety observed in females given the
plus-maze test. High anxiety normally inhibits exploratory
or social activity in animals. Here, we can hypothesize that
the adaptation trial, during which the animals are familiariz-
ing themselves with the experimental field, reduces anxiety.
As is known, animals in familiar situations are less anxious

and tend to have longer social contacts [61]. Additionally,
longer testing decreases the fear of new space and stimulates
exploratory behavior [62, 63]. As is known, anxiety in
new, unfamiliar situations (“state” anxiety) does not
necessarily correlate with anxiety shown in familiar situa-
tions (“trait” anxiety) [64, 65]. Some kinds of stress, for
example, repeated aggression experience, induce enhanced
anxiety [66] as observed in the plus-maze together with
enhanced exploratory activity towards a new neutral
stimulus [67]. It is possible that early-life stress in MS
females increases “state,” but not “trait” anxiety, and that
these females, when in a familiar situation, can display a
high level of social behavior. However, this hypothesis
requires scrutiny.

Interestingly, in contrast to females, the social behavior
of adult males was absolutely unaffected by prolonged
maternal separation, and the level of reaction to the pre-
sentation of another mouse remained the same as in
controls, which is consistent with some other social behav-
ioral studies in males [39, 40].

Thus, in our experiment, separating the pups from
their dams for 3 hours in an early postnatal period
has a pronounced sex-specific effect on both social and
individual mice behavior. Females are more sensitive to
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stress than males, and maternal separation has contrast-
ing effects (increased anxiety versus increased sociability)
on the former.

Results of rat experiments demonstrated that brief
maternal separation, or handling, which can be considered
moderately stressful for pups, can result in positive behav-
ioral changes and even tolerance to more intensive stress
[21, 22, 45, 56, 68]. In our experiment, we also have found
a positive effect of handling—HD males demonstrated a
decreased anxiety in the OF test and increased sociability in
the SI test. Males were not afraid of visiting the central part
of the open field and spent more time there than the controls
or the MS group, and HD males also spent more time in the
interaction zone when the unknown partner was presented.
Brief separation of females had no effect on anxiety or indi-
vidual and exploratory behavior but also an increased level
of sociability—HD females had the highest interaction score,
which reflects the difference between a reaction to a partner
and a reaction to an empty box. There are few works on the
impact of handling on subsequent behavior of adult mice.
Unlike rat studies, the vast majority of studies of HD stress

have not found significant changes in anxiety or individual
behavior in male and female C57BL6 mice [25, 30, 69]. Only
one study has found decreased anxiety in male mice induced
by brief separation [46], which is similar to our results. Our
study has shown for the first time, to our knowledge, that
brief maternal separation may positively affect social behav-
ior in mice. Both males and females showed increased
sociability in the form of a more active reaction to the
same-sex partner in the social interaction test.

Our study has shown that female mice have more pro-
nounced positive and negative consequences of both
maternal separation and neonatal handling compared to
their male conspecifics. Compared to male rodents, female
rodents are known to have greater corticosterone release
under basal conditions [70] and in response to stress
[71–74]. Female mice were shown to be more sensitive
to unpredictable chronic mild stress [75], subchronic vari-
able stress [76], and even acute stress [77]. Also, females
have longer consequences of social defeat stress than males
[78, 79]. These findings explain the higher sensitivity of
females to early-life stress consequences.
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According to a systematic review [18], female studies
nearly always show positive or deleterious effects of early
stress on anxiety, depressiveness, or cognitive functions,
while male studies do not reveal significant effects of stress
on these psychoemotional traits in about 30% of cases. The
analysis of maternal separation consequences [18] suggests
that, in most (but not all) cases, stress results in higher

anxiety and cognitive deterioration in both males and
females. However, a sex-specific difference is sometimes
observed in the studies. The study by Romeo and colleagues
[27] showed opposite changes in the locomotor activity of
males and females, and another study [28] identified con-
trasting changes in aggressive behavior. Increased social
behavior after maternal separation that we have discovered
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is typical of females only, while males have the same reaction
to the partner as controls. Notably, brief separation has the
same effect on social behavior both in males and females.
Thus, the influence of early-life stress on behavior in adult-
hood is gender-dependent.

Multiple studies in sex hormone effects on emotional
behavior and stress response [80, 81] suggest that estrous
cycle should be taken into account in female experiments.
Although emotional behavior and especially the level of
anxiety in females are sensitive to the level of sex hormones
[82, 83], only few studies on female behavior after early-life
stress [27, 84] take into account the phase of the estrous cycle.
Most researchers believe that daily vaginal smears are too
stressful for animals or that the selections of females used
in the studies are insufficiently representative to analyze
[25, 28–30]. However, studies often find no correlation
between behavior and cycle phase [85, 86]. The reason may
be that hormonal influence is not very strong, and the stress
of testing hides possible behavior dependence on hormones.
We have not detected an influence of cycle phase on the
behavioral traits studied. Proper statistical analysis was
impeded by a low number of animals in the groups. How-
ever, the direction of change was the same in the estrous
and diestrous phases, that is, hormonal level had an insig-
nificant effect on emotional behavior, locomotor, and
exploratory activity.

5. Conclusion

Thus, the present study shows that the social and individual
behavior of adult mice can be modified by early-life events
in a sex-specific manner. We have found no changes in the
anxiety or social behavior of MS males. Disrupted individual
behavior has been the only consequence of early stress. The
intensity of stress may have been insufficient to produce later
effects in males. Females have been more sensitive to stress.
Maternal separation has led to increased female anxiety
and social behavior. Brief separation of pups from their
mothers resulted in positive behavioral changes in males
and females. Both sexes had increased social behavior,
and males had decreased anxiety, which confirms the
hypothesis that mild early-life stress has a positive effect
on later emotional behavior.
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