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Effects of elastic foundation on the vibration

of laminated non-homogeneous orthotropic
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A.H. Sofiyeva,∗, S.N. Keskina and Ali H. Sofiyevb

aDepartment of Civil Engineering of Suleyman Demirel University, Isparta, Turkey
bTechnical Sciences Department of Kasakh Branch of Azerbaijan Teachers Institute, Kazakh, Azerbaijan

Abstract. In this paper an analytical procedure is given to study the free vibration characteristics of laminated non-homogeneous

orthotropic thin circular cylindrical shells resting on elastic foundation, accounting for Karman type geometric non-linearity. At

first, the basic relations and modified Donnell type stability equations, considering finite deformations, have been obtained for

laminated thin orthotropic circular cylindrical shells, the Young’s moduli of which varies piecewise continuously in the thickness

direction. Applying Galerkin method to the latter equations, a non-linear time dependent differential equation is obtained for the

displacement amplitude. The frequency is obtained from this equation as a function of the shell displacement amplitude. Finally,

the effect of elastic foundation, non-linearity, non-homogeneity, the number and ordering of layers on the frequency is found for

different mode numbers. These results are given in the form of tables and figures. The present analysis is validated by comparing

results with those in the literature.

Keywords: Elastic foundation, vibration, natural and nonlinear frequencies, cross-ply laminated cylindrical shells, orthotropic

material

1. Introduction

Multi-layered composite shells composed of non-

homogeneous materials with different elastic proper-

ties are being used extensively as structural elements

in modern construction engineering, ship building, nu-

clear, space and aeronautical industries as well as the

petroleum and petrochemical industries (pressure ves-

sel, pipeline). These materials have properties that

vary as a function of position in the body. Non-

homogeneous materials can frequently be found in na-

ture as well as in man-made structures. However, typi-

cally non-homogeneous materials seem to be those with

elastic constants varying continuously in different spa-
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tial directions. Continuous non-homogeneity is a di-
rect generalization of homogeneity in theory; besides,
material non-homogeneity becomes essential and must
sufficiently be considered in a number of practical sit-
uations. In all the referenced works, and in most of
available solutions to elastic non-homogeneity, it is as-
sumed that the material is isotropic or orthotropic, the
Poisson’s ratio is constant, and the Young’s moduli is
either an exponential or a power function of a spatial
variable [5,8,12–14,28,32]. Cylindrical shells made of
different materials that have continuous and thorough
contact with an elastic medium, solid or liquid, either
on an outer or inner surface is considered as cylindrical
shells on an elastic foundation. Such components and
structures are often subjected to dynamic loads. Flow-
induced vibrations in heat exchangers and pipelines,
wave loading on submarines, vibrations of fuel-filled
drop tanks of fighter aircraft, underground and under-
sea pipelines, and tunnels and semicircular roofs of un-
derground aircraft hangers subject to seismic forces,
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nuclear explosions, and other blasts are some of the

numerous examples.

Significant contributions have been made in the field

of non-linear vibrations of cylindrical shells in general.

Some of these studies about this subject are given [9,15,

20,22,23,25,26,31,37]. Linear and non-linear free vi-

brations of laminated plates and shells have been stud-

ied only recently see [1–3,6,7,19,27,29,30,33,36,39].

However, vibrations of shells on elastic foundations

have been studied only recently see [4,11,16–18,21,35,
38,40]. In most of these studies, the authors investi-

gate the vibrations of an orthotropic cylindrical shell

on an elastic foundation using membrane theory. It is

known that, response of elastic media can be presented

by using Winkler and Pasternak foundation models. In

this study, response of elastic media is given by Win-

kler foundation model. It is known that Winkler repre-

sented an elastic foundation by a set of closely spaced,

independent linear springs.

The effect of all three factors together that non-
homogeneity, geometric non-linearity and elastic foun-

dation to the vibration modes of laminated shells are

not studied enough. In this study, vibration problem

in large deformations of laminated non-homogeneous

orthotropic cylindrical shells resting on an elastic foun-

dation is taken up and the effect of all three factors

together in question to the vibration frequency is re-

searched.

2. Formulation of the problem

Consider a thin circular cylindrical shell as shown in
Fig. 1, composed of N layers of equal thickness of non-

homogeneous orthotropic composite material perfectly

bonded together. The shell is on elastic foundation and

of length L, total thickness 2h and radius R. In Fig. 1,

the x and y axes are in the middle plane of the shell

in the axial and tangential directions, respectively, and

the z axis normal to them. The axes of orthotropy in

all layers are parallel to x and y axes.

The equations of motion of circular cylindrical thin

shells resting on an elastic foundation are as fol-
lows [10,38]:

N11,x + N12,y = ρ1h1u,tt

N21,x + N22,y = ρ1h1v,tt

M11,xx + 2M12,xy + M22,yy + N22/R (1)

+N11w,xx + 2N12w,xy + N22w,yy − k0w

= ρ1h1w,tt.

where h1 = 2h, a comma denotes partial differenti-

ation with respect to the corresponding coordinates,

N11, N22 and N12 are, respectively, the axial and

circumferential normal forces and the accompanying

shear force; M11, M22 and M12 are, respectively, the

bending moments in axial and circumferential direc-

tions and the accompanying twisting moment, u, v and

w are, respectively, the displacements on the reference

surface in the directions of x, y and z axes, t is time

coordinate, k0 is foundation modulus and the following

definitions apply:

ρ1 =

N
∑

k=1

ρ
(k)
0 /N, (2)

in which ρ
(k)
0 are the densities of the homogeneous

materials, in the kth layer.

The Kirchhoff hypothesis on non-deformable normal

element and Karman type geometric non-linearity are

taken into account. In that case, in large deformation

the stress-strain relations for a thin laminated layer,

which has non-uniform Young’s moduli with respect to

the thickness coordinate, are given as follows
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where σ
(k)
11 , σ

(k)
22 and σ

(k)
12 are the stresses in the lay-

ers. The quantities Q
(k)
ij , i, j = 1, 2, 6 for orthotropic

lamina are
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66 = G
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0 ϕ(k)(z) (4)

− h + (k − 1)δ � z � −h + kδ, z = z/h,

k = 1, 2, . . . , N, δ = 2hN−1

wherein the superscript k denotes the kth layer. The

quantity E
(k)
01 and E

(k)
02 are Young’s modulus of the

homogeneous material in the x and y directions for the

layer k, G
(k)
0 are the shear modulus of the homogeneous

material in the x-y plane of the layer k, ν
(k)
12 and ν

(k)
21

are the Poisson’s ratio for contraction in the y and x
directions due to tension in the x and y directions for the
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Fig. 1. Laminated cylindrical thin shell on elastic foundation.

layer k, respectively. There are apparently five material

constants per layer; however, because of the reciprocal

relations (ν
(k)
12 E

(k)
01 = ν

(k)
21 E

(k)
02 ) there are actually only

four independent constants. ϕ(k)(z) = 1 + µϕ(k)(z)
is continuous functions expressing the variation of the

Young’s moduli for the layer k and |ϕ (k)(z)| � 1. In

the above expression, µ is the variation coefficient of

Young’s moduli and 0 � µ < 1. δ is the equal thickness

of the layers.

In the large deformation the strain compatibility

equation on the reference surface is given as fol-

lows [10]:

e11,yy + e22,xx − 2e12,xy = (w,xy)2 − w,xxw,yy

−w,xx/R (5)

where e11 and e22 are the normal strains in the curvilin-

ear coordinate directions x and y, respectively, whereas

e12 is the corresponding shear strain.

The force and moment resultants are defined by the

following integrals [1,24,27,33,36,39]:

[(N11, N22, N12), (M11, M22, M12)]
(6)

=

N
∑

k=1

∫

−h+kδ

−h+(k−1)δ

(1, z)(σ
(k)
11 , σ

(k)
22 , σ

(k)
12 )dz

Let φ = φ/h1 be the stress function for the stress

resultants defined by

[N11, N22, N12] = [φ,yy, φ,xx,−φ,xy] (7)

Considering relations (2–7) in Eq. (1) for compati-

bility and dynamic stability equations of laminated cir-

cular cylindrical shells resting on an elastic foundation,

after some mathematical operations, one gets

L1(w) + L2(φ) − φ,xx/R = L(φ, w) (8)

L3(φ) + L4(w) + w,xx/R = −0.5L(w, w) (9)

where

L1(•) = C3(•),xxxx + (C4 + 2C10

+C7)(•),xxyy + C8(•),yyyy + k0(•)

+ρ1h1(•),tt

L2(•) = −C2(•),xxxx − (C1 − 2C9

+C6)(•),xxyy − C5(•),yyyy

L3(•) = C16(•),xxxx + (C12 + 2C19 (10)

+C15)(•),xxyy + C11(•),yyyy

L4(•) = −C17(•),xxxx − (C13 − 2C20

+C18)(•),xxyy − C14(•),yyyy

L(•) = (•),yy(•),xx + (•),xx(•),yy

−2(•),xy(•),xy

in which the expressions Cj(j = 1, 2, . . . , 20) are:

C1 = a111C11 + a121C15,

C2 = a111C12 + a121C16,

C3 = a111C13 + a121C17 + a112,

C4 = a111C15 + a121C18 + a122,

C5 = a211C11 + a221C15,

C6 = a211C12 + a221C16,

C7 = a211C13 + a221C17 + a212,

C8 = a211C14 + a221C18 + a222,
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C9 = a661C19,

C10 = a661C20 + a662,

C11 = a220D, C12 = −a120D, (11)

C13 = (a120a211 − a111a220)D,

C14 = (a120a221 − a121a220)D,

C15 = −a210D,

C16 = a110D,

C17 = (a210a111 − a211a110)D,

C18 = (a210a121 − a221a110)D,

C19 = 1/a660, C20 = −a661/a660,

D = 1/(a110a220 − a210a120)

Finally, the expressions for the factors aijγ , i, j =
1, 2, 6 and γ = 0, 1, 2 are:

a11γ = hγ+1
N

∑

k=1

E
(k)
01 Ψ(k)

1 − v
(k)
12 v

(k)
21

,

a12γ = hγ+1
N

∑

k=1

v
(k)
21 E

(k)
01 Ψ(k)

1 − v
(k)
12 v

(k)
21

,

a22γ = hγ+1
N

∑

k=1

E
(k)
02 Ψ(k)

1 − v
(k)
12 v

(k)
21

,

(12)

a21γ = hγ+1
N

∑

k=1

v
(K)
12 E

(k)
02 Ψ(k)

1 − v
(k)
12 v

(k)
21

,

a66γ = hγ+1
N

∑

k=1

G
(k)
0 Ψ(k),

Ψ(k) =

∫

−1+2k/N

−1+2(k−1)/N

zγϕ(k)(z)dz

3. Analytic solution of the problem

Assuming that the cylindrical shell is simply supports

at both ends, the solution of equation set (8–9) is sought

in the following form [10]:

w = q(t) sin αx sin βy (13)

where α = mπ/L, β = n/R, m is the half wave length

in the direction of the x axis, n is the wave number in

the direction of the y axis and q(t) is the time dependent

amplitude. Substituting expressions (13) in the Eq. (9)

and eliminating

φ = A1 cos 2αx + A2 cos 2βy
(14)

+A3 sin αx sin βy

where

A1 = B1q
2(t), A2 = B2q

2(t), A3 = B3q(t),

B1 =
β2

32C16α2
, B2

α2

32C11β2

(15)
B3 = [C17α

4(C13 − 2C20 + C18)α
2β2

+C14β
4 + α2/R]/[C16α

4+

(C12 + 2C19 + C15)α
2β2 + C11β

4]

Substituting expressions (13) and (14) in Eq. (8) and

applying Galerkin method in the ranges 0 � x � L and

0 � y � 2πR, the following nonlinear time differential

equation obtained as:

q1,ττ + λ1q1(τ) + λ2q
2
1(τ) + λ3q

3
1(τ) = 0 (16)

where q1 = q/h1, τ = tω, ω is frequency parameter,

τ is dimensionless parameter and the following defini-

tions apply:

λ1 =
Λ1 + k0

ω2
, k0 =

k0

ρ1h1
,

(17a)

λ2 =
8β2α2B2

ρ1ω2
, λ3 =

8α2β2B1h1

ρ1ω2

Λ1 =
1

ρ1h1
{[C3α

4 + (C4 + 2C10 + C7)α
2β2

+C8β
4] + B3[α

2/R − C2α
4 − (C1 (17b)

−2C9 + C6)α
2β2 − C5β

4]}

in which

k0 = a110k1/R2 (18)

where k1 is a non-dimensional foundation modulus.

The expression (18) for the single layer shell made

of homogeneous isotropic and orthotropic material are

in the following form [16,18]:

k01 = E0k1h1/[R2(1 − ν2)] (19)

k02 = E01k1h1/[R2(1 − ν12ν21)] (20)

where E0, ν are the Young’s modulus and Poisson’s

ratio of the homogeneous isotropic material and E01,

ν12, ν21 are the Young’s modulus and Poisson’s ratios

of the homogeneous orthotropic material, respectively.

By making the following transformation in Eq. (16),
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q1(τ) = (Ap/h1)f(τ) (21)

below equation is obtained:

f,ττ(τ) + λ1f(τ) + λ2(Ap/h1)f
2(τ)

(22)
+ λ3(Ap/h1)

2f3(τ) = 0

An approximating function will be chosen as a first

approximation as [10]:

f(τ) = cos τ (23)

satisfying the initial conditions

f(0) = 1, f,τ (0) = 0 (24)

Substituting expression (23) in Eq.(22) and solving

the resulting equation, satisfying the orthogonality con-

dition
∫ π/2

0

[f,ττ(τ) + λ1f(τ) + λ2(Ap/h1)f
2(τ)

(25)
+λ3(Ap/h1)

2f3(τ)] cos τdτ = 0

the amplitude-frequencyrelation for the finite deforma-

tions of laminated non-homogeneousorthotropic cylin-

drical thin shells resting on elastic foundation is ob-

tained in the following form:

ωNL

ωL
=

[

1 +
8

3π

Ap

h1

λ2

λ1
+

3

4

(

Ap

h1

)2
λ3

λ1

]1/2

(26)

where

ωL = (Λ1 + k0)
1/2 (27)

ωL is the linear frequency, ωNL is the nonlinear fre-

quency and ωNL/ωL relative frequency of vibrating

shell.

The dimensionless frequency parameter defined in

the following form:

∆ = ωL[ρ1R
2h/a110]

0.5 (28)

The expression (28) for a single layer shell made of

homogeneous orthotropic and isotropic material are in

the following form [18,31]:

∆1 = ωL[ρ0R
2(1 − ν12ν21)/E01]

0.5 (29)

∆2 = ωL[ρ0R
2(1 − ν2)/E0]

0.5 (30)

where ρ0 density of the homogeneous material in a

single layer shell.

The solution of Eq. (19) with initial conditions

f(0) = 1, f,τ (0) = 0 have been given in [9] and the

ratio of nonlinear and linear frequencies takes the form

Table 1

Comparing the results obtained in [16] (the lowest eigen-

frequency ∆2) with the dimensionless frequency parameter

when the effect of elastic foundation is taken into considera-

tion (m1 = mπR/L, n = 2, k1 = 0.5, h1/R = 0.002,
ν = 0.3)

∆2 = ωL[ρ0R2(1 − ν2)/E0]0.5

m1 1 2 3 4

Paliwal and Pandey [16] 0.670 0.780 0.910 1.010

Present study 0.725 0.799 0.884 0.955

Table 2

Comparison of frequency parameters ∆2 for an isotropic cylindrical
shell (m = 1, R/h1 = 500, L/R = 6, ν = 0.3)

∆2 = ωL[ρ0R2(1 − ν2)/E0]0.5

n Present study Naeem and Sharma [31],

(Number of polynamials N1)

N1 = 2 N1 = 8

2 0.05696 0.05976 0.054323

3 0.027715 0.029967 0.027074
4 0.01829 0.019339 0.017776

5 0.01776 0.017804 0.017088

6 0.020746 0.021587 0.021303

7 0.028878 0.028213 0.028089

8 0.03727 0.036524 0.036469

9 0.04698 0.046195 0.046174

10 0.057896 0.057105 0.057088

ω1NL

ω1L
(31)

=

[

1 +

(

Ap

h1

)2
(

3λ3

4λ1
−

5

6

(

λ2

λ1

)2
)]1/2

When λ2 = λ3 = 0, k1 = 0 expression (26)

yields the amplitude-frequencyrelation for the geomet-

ric linear free vibration analysis of a laminated non-

homogeneous orthotropic cylindrical thin shell as a spe-

cial case. When µ = 0, N = 1 expression (26) yields

the amplitude-frequencyrelation for a single layer non-

homogeneous orthotropic cylindrical thin shell resting

on an elastic foundation, as another special case.

4. Results and discussions

To validate the analysis, for simply supported one

layered orthotropic cylindrical shells, the values of rel-

ative frequency are compared with the analytical re-

sults obtained in [22] and the results obtained in [3]

by using finite elements method, see in Fig. 2. For

one layered isotropic cylindrical shells, a) by taking

the effect of foundation into consideration, the values

of dimensionless frequency parameter are compared

with the analytical results obtained in Ref. [16], see

Table 1, b) the values of dimensionless frequency pa-
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Table 3

Comparison of experimental and theoretical natural frequencies

(Hz) of an isotropic cylindrical shell (h1 = 2.29 × 10−4 (m),

R = 0.377 (m), L = 0.234 (m), E0 = 2 × 105 (MPa),

ρ0 = 7.8 × 103(kg/m3), ν = 0.3)

(m,n) Lakis et al. [3] Exper. Study Present study

Lindholm et al. [37]

(1,5) 942 995 1012

(1,6) 1353 1430 1429
(1,7) 1853 1938 1935

(2,3) 2067 2070 2000

(2,4) 1368 1430 1369

(2,5) 1248 1313 1290

(2,6) 1489 1570 1551

(2,7) 1927 2050 1998

rameter are compared with the analytical results ob-

tained in Ref. [31], see Table 2, c) the values of natural

frequency are compared with the experimental results

obtained in references [23,37,39], analytical results ob-

tained in Ref. [31] and the results obtained in [3] by us-

ing finite elements method, see Tables 3–4 and Fig. 3.

The comparisons show that the present results are in

accommodation with the results in literature.

Figure 2 shows, the influence of geometrical non-

linear effects on the free vibrations of a simply sup-

ported orthotropic cylindrical shell, along with corre-

sponding results given in references [3] and [22]. The

given results in [22] were obtained based on Donnel-

l’s simplified non-linear method where only lateral dis-

placement was considered. The finite element method

based on an energy formulation is used in [3]. The com-

parisons were carried out for non-dimensional founda-
tion modulus k1 = 0 and for the following material

properties, shell parameters and mode numbers:

E01 = 2 × 105 (MPa), E02 = 0.05 × E01,

ν12 = 0.2, ν21 = 0.05 × ν12,

ρ0 = 7.8 × 103 (kg/m3), R = 0.254 (m),

L = 0.40 (m), h1 = 0.00254 (m), m = 1,

n = 4.

The values obtained in this study for the free vibra-

tion frequencies are greater than the values obtained in

references [3] and [22].

In Table 1, the results obtained in this study for di-

mensionless frequency parameter are compared with

the theoretical results obtained in [16] for the non-

dimensional foundation modulus of k1 = 0.5. It is

observed that there is an agreement with the results

obtained in this study and the results in [16].

In Table 2, the values of dimensionless frequency

parameter for one layered isotropic cylindrical shell for

which the effect of foundation is not taken into consid-

eration are compared with the values of dimensionless

frequency parameter obtained analytically in Ref. [31].

It is observed that the results are in a well accommoda-

tion. Besides, in both of two studies, the minimum val-
ues of dimensionless frequency parameter versus the

circumferential wave number n = 5 and these values

are exactly the same.

In Fig. 3, the values of natural frequencies for one

layered isotropic cylindrical shell for which the effect
of foundation is not taken into consideration are com-

pared with experimental values in [23] and with ana-

lytical values obtained in [31]. There is an agreement

with the results obtained in this study, analytical results

obtained in [31] and experimental results obtained in

Ref. [23]. Besides, although in the studies which are
compared, the minimum values of natural frequencies

covers the value of circumferential wave number when

n = 7, in the present study n = 6. But in all three stud-

ies, the values of natural frequencies are approximately

the same. When the results obtained in this study are
compared with the theoretical results obtained in [31]

and the experimental results obtained in [23], the max-

imum difference is 5.5% and it is covering the value of

circumferential wave number n = 4.

The values of the non-dimensional fundamental fre-
quencies obtained from the present study are shown in

Fig. 4 along with corresponding values given in ref-

erences [29,30], for a four layer cross-ply cylindrical

shell to demonstrate the accuracy and range of appli-

cability of the present study. All layers, for Fig. 4,

are assumed to have the same geometric and material
parameters and the individual layer is assumed to be

orthotropic with the following material properties:

E01 = 25 × E02, G0 = 0.5 × E02,

ν12 = 0.25, ρ0 = 1, m = 1, n = 4

The results obtained in this study are in a well accom-

modation with the theoretical results obtained in [29].

However, the results obtained in [30] by using finite

element are a little smaller. It is because of that, also
the effect of transverse shear deformation is taken into

consideration in [30]. In this study, medium length

shells are used, so the values of L/R are taken into con-

sideration in comparison which are showed in figure.

In Table 3, the values of natural frequency for one
layered isotropic cylindrical shell for which the effect

of foundation is not taken into consideration are com-

pared with experimental values obtained in Ref. [37]

and with the values obtained in [3] by using finite el-

ements method. The comparison shows that the re-
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Table 4

Comparison of experimental frequency spectra of a monocoque cylindrical shell (R/h1 = 400, L/R = 0.465, ρ0 =
8.538 × 103 (kg/m3), E0 = 2.06843 × 105 (MPa), ν = 0.315)

ωL(cps)

(m, n) (1,3) (1,4) (1,8) (1,11) (2,5) (2,12) (3,9) (3,11) (4,9) (4,11)

Experimental study Weingarten [39] 1648 1266 590 765 2168 1067 1797 1560 2557 2320

Present study 1626 1056 586 944 2103 1252 1775 1576 2528 2143

1

1,05

1,1

1,15

1,2

1,25

1,3

0 0,5 1 1,5 2 2,5

Amplitude to thickness ratio Ap / h1

ω
N

L
 

ωω L

Nowinski [22] Lakis et.al. [3]
Present study

Fig. 2. Relative frequencies versus relative amplitude Ap/h1 for nonlinear vibration of an orthotropic cylindrical shell.
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Fig. 3. Comparison of experimental and theoretical natural frequencies (Hz) of an isotropic cylindrical shell (h1 = 0.000648 (m),

R = 0.2423 (m), L = 0.6096 (m), m = 1, k1 = 0, ρ0 = 2.7145 × 103 (kg/m3), E0 = 68.95 × 103 (MPa), ν = 0.315).

sults obtained in this study and the experimental val-

ues obtained in [37] are more approximate than the re-

sults which are obtained in [3] by using finite elements

method.

In Table 4, the values of frequency spectra for one

layered isotropic cylindrical shell for which the effect of

foundation is not taken into consideration are compared

with the values of frequency spectra obtained in [39]

experimentally. It is observed that the results are in

accommodation.

In the calculations presented in Table (5–10), that

are done for the formulas (26)–(31) by considering

the cases of cross-ply laminated orthotropic cylindrical

shells up to five layers, variation function of Young’s
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Table 5

Variation of the natural and relative frequencies with respect to number and ordering of layers for non-dimensional

foundation modulus k1 = 0.01 and variation coefficient of Young’s moduli µ = 0 and µ = 0.9 (m = 1,
n = 4, h1 = 5.08 × 10−4 (m), Ap/h1 = 3)

k1 = 0, µ = 0 k1 = 0.01, µ = 0

N Stacking of layers ωL(Hz) ωNL/ωL ω1NL/ω1L ωL(Hz) ωNL/ωL ω1NL/ω1L

1 (0◦) 790 1.681 1.164 1846 1.155 1.032

1 (90◦) 618 2.892 2.858 1779 1.374 1.365

2 (0◦/90◦) (90◦/0◦) 796 2.033 1.829 1848 1.257 1.198

3 (0◦/90◦/0◦) 778 1.953 1.661 1841 1.226 1.146

3 (90◦/0◦/90◦) 803 2.124 1.989 1851 1.288 1.247

4 (0◦/90◦/0◦/90◦) 796 2.033 1.829 1848 1.257 1.198

4 (90◦/0◦/90◦/0◦) 796 2.033 1.829 1848 1.257 1.198

4 (0◦/90◦/90◦/0◦) 766 2.092 1.878 1836 1.260 1.200

4 (90◦/0◦/0◦/90◦) 824 1.980 1.785 1861 1.254 1.195
5 (0◦/90◦/0◦/..) 785 1.987 1.732 1844 1.238 1.167

5 (90◦/0◦/90◦ ..) 803 2.082 1.922 1851 1.276 1.227

N k1 = 0, µ = 0.9 k1 = 0.01, µ = 0.9
1 (0◦) 1077 1.681 1.165 1986 1.240 1.051

1 (90◦) 840 2.897 2.863 1868 1.580 1.567

2 (0◦/90◦) (90◦/0◦) 1083 2.034 1.830 1989 1.389 1.302

3 (0◦/90◦/0◦) 1058 1.958 1.668 1976 1.347 1.230
3 (90◦/0◦/90◦) 1094 2.120 1.984 1995 1.432 1.372

4 (0◦/90◦/0◦/90◦) 1083 2.034 1.823 1989 1.389 1.302

4 (90◦/0◦/90◦/0◦) 1083 2.034 1.823 1989 1.389 1.302

4 (0◦/90◦/90◦/0◦) 1043 2.098 1.886 1968 1.398 1.311

4 (90◦/0◦/0◦/90◦) 1122 1.977 1.614 2011 1.381 1.294

5 (0◦/90◦/0◦/..) 1069 1.988 1.735 1981 1.364 1.259

5 (90◦/0◦/90◦ ..) 1093 2.083 1.922 1994 1.415 1.345
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Fig. 4. Non-dimensional fundamental frequencies of simply supported cylindrical shell with symmetric cross-ply (0◦/90◦/90◦/0◦).

moduli in layers is taken into consideration in the
form ϕ(k)(z) = exp(−0.1|z|) and natural frequency
is taken into consideration in the form ωL = ωL/(2π)
(Hz). Furthermore, the values of variation coefficient
of Young’s moduli µ and non-dimensional foundation
modulus k1 are indicated in Tables (5–10). In all layers
of cross-ply cylindrical shell, the material properties
are same and the material properties in [2], shell pa-

rameters in Ref. [39] and non-dimensional foundation
modulus in Ref. [16–18,35,38] are given as:

E01 = 1.3237× 105 (MPa),

E02 = 1.0755× 104 (MPa),

G0 = 5.6537× 103 (MPa), ν12 = 0.24,

ν21 = 0.0195, ρ0 = 1.308× 103 (kg/m3),
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Table 6

Variation of the relative frequency with respect to amplitude of the frequency, number and ordering of layers for k1 = 0.005
and µ = 0 (h1 = 2.54 × 10−4 (m), m = 1, n = 4)

Ap/h1 ωNL/ωL

k1 = 0, µ = 0 k1 = 0.005, µ = 0

(0◦) 2 Layers (0◦/90◦/0◦) (90◦/0◦/90◦) (0◦) 2 Layers (0◦/90◦/0◦) (90◦/0◦/90◦)

0 1 1 1 1 1 1 1 1

0.5 1.062 1.044 1.050 1.039 1.0193 1.0131 1.0152 1.0131

1.0 1.122 1.103 1.109 1.098 1.0390 1.0311 1.0338 1.0286

1.5 1.182 1.174 1.176 1.176 1.0590 1.0538 1.0555 1.0524

2.0 1.241 1.255 1.250 1.268 1.0793 1.0808 1.0803 1.0940

2.5 1.299 1.345 1.328 1.371 1.1000 1.1120 1.1080 1.1170
3.0 1.356 1.441 1.412 1.484 1.1210 1.1468 1.1382 1.1568

Table 7

Variation of the natural frequency with respect to half axial wave number m, number and ordering of layers for
k1 = 0.01, µ = 0 and µ = 0.9 (n = 4, h1 = 2.54 × 10−4 (m), Ap/h1 = 3)

m ωL(Hz)

k1 = 0, µ = 0 k1 = 0.01, µ = 0

(0◦) 2 Layers (0◦/90◦/0◦) (90◦/0◦/90◦) (0◦) 2 Layers (0◦/90◦/0◦) (90◦/0◦/90◦)

1 783 759 768 738 1843 1833 1837 1824

2 1575 1634 1637 1619 2295 2335 2337 2325

3 2228 2465 2454 2461 2784 2977 2967 2974
4 2750 3257 3224 3266 3217 3660 3630 3668

m k1 = 0, µ = 0.9 k1 = 0.01, µ = 0.9
1 1067 1033 1046 1006 1980 1962 1969 1948

2 2146 2226 2230 2207 2718 2782 2785 2767

3 3036 3359 3344 3354 3464 3750 3737 3746

4 3747 4438 4394 4450 4101 4741 4700 4752

Table 8

Variation of the natural frequency with respect to the number of circumferential waves and number and ordering of

layers for k1 = 0.005, µ = 0 and µ = 0.9 (m = 1, h1 = 2.54 × 10−4 (m), Ap/h1 = 3)

n ωL(Hz)

k1 = 0, µ = 0 k1 = 0.005, µ = 0

(0o) 2 Layers (0◦/90◦/0◦) (90◦/0◦/90◦) (0◦) 2 Layers (0◦/90◦/0◦) (90◦/0◦/90◦)

4 783 759 768 737 1416 1403 1408 1391

5 612 602 592 602 1329 1324 1320 1324

6 501 536 483 578 1282 1296 1275 1314

7 431 546 421 643 1256 1300 1253 1344

8 396 616 399 771 1245 1331 1246 1410

9 391 728 412 943 1258 1387 1250 1510
10 412 872 452 1147 1250 1467 1263 1646

11 454 1041 513 1379 1264 1573 1287 1815

n k1 = 0, µ = 0.9 k1 = 0.005, µ = 0.9
4 1067 1033 1046 1006 1590 1568 1576 1551

5 833 819 806 820 1444 1436 1429 1437

6 682 729 657 786 1363 1387 1350 1418

7 587 741 573 873 1318 1393 1311 1468
8 539 835 543 1046 1297 1445 1299 1577

9 531 987 560 1278 1294 1538 1306 1739

10 559 1182 614 1553 1306 1670 1330 1951

11 615 1410 698 1868 1331 1839 1371 2209

L/R = 0.465, R = 0.1016 (m),

h1 = 2.54 × 10−4 (m) or

h1 = 5.08 × 10−4 (m)

In Table 5, by taking the number and ordering

of layers, elastic foundation and the effect of non-

homogeneity into consideration, the values of natu-

ral frequency and ωNL/ωL relative frequency are pre-
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Table 9

Variation of the relative frequency with respect to the number of circumferential waves and number and ordering of layers

for k1 = 0.005 and µ = 0 (m = 1, h1 = 2.54 × 10−4 (m), Ap/h1 = 3)

µ = 0 ωNL/ωL

n k1 = 0 k1 = 0.005

(0◦) 2 Layers (0◦/90◦/0◦) (90◦/0◦/90◦) (0◦) 2 Layers (0◦/90◦/0◦) (90◦/0◦/90◦)

4 1.356 1.442 1.412 1.484 1.121 1.147 1.138 1.157

5 1.609 2.047 1.941 2.169 1.156 1.288 1.247 1.328

6 1.988 2.899 2.855 2.959 1.205 1.506 1.423 1.581

7 2.503 3.676 4.107 3.497 1.273 1.791 1.671 1.890

8 3.096 4.162 5.449 3.755 1.368 2.120 1.987 2.219

9 3.649 4.404 6.563 3.863 1.490 2.465 2.360 2.535

10 4.062 4.513 7.308 3.907 1.638 2.801 2.776 2.816
11 4.321 4.463 7.743 3.925 1.810 3.110 3.222 3.053

12 4.465 4.585 7.981 3.933 2.000 3.381 3.682 3.244

Table 10

Variation of the natural and relative frequencies with respect to non-dimensional foundation modulus k1, number and

ordering of layers for µ = 0 (m = 1, n = 7, h1 = 2.54 × 10−4 (m), Ap/h1 = 3)

µ = 0 ωL(Hz) ωNL/ωL

k1 (0◦) 2 Layers (0◦/90◦/0◦) (90◦/0◦/90◦) (0◦) 2 Layers (0◦/90◦/0◦) (90◦/0◦/90◦)

0 431 546 421 643 2.5032 3.6764 4.1074 3.497

0.005 1256 1300 1253 1344 1.2733 1.7907 1.6712 1.890

0.010 1723 1755 1721 1788 1.1533 1.4866 1.3965 1.5660

0.015 2088 2115 2086 2142 1.1067 1.3541 1.2831 1.4184

sented. When the effect of elastic foundation isn’t taken

into consideration, it is observed that the effect of the

variation of number and ordering of layers on the nat-

ural frequency ωNL/ωL relative frequency values are

very important. Besides, although the effect of non-

homogeneity on natural frequency values is very con-

siderable, the effect of non-homogeneity on ωNL/ωL

relative frequency values is very little. When the effect

of elastic foundation is taken into consideration, values

of the natural frequency increase, however values of the

relative frequency decrease and approximates to one.

Consequently, the effect of non-linearity on the values

of vibration frequencies decreases. Besides this, the

effect of non-homogeneity and variation of layers num-

ber on the values of vibration frequency is very small.

Furthermore, when the calculations done according to

the formulas (26) and (31) are compared, it is observed

that the values of ωNL/ωL are greater than the values of

ω1NL/ω1L. The formulas used for ω1NL/ω1L relative

frequency values is obtained from [9].

In Table 6, by taking various number and ordering of

layers and elastic foundation into consideration, the rel-

ative frequency values are presented dependent on the

variation of Ap/h1. When the effect of elastic founda-

tion isn’t taken into consideration, if Ap/h1 increases,

the effect of geometrical non-linearity on frequency

values increases. The effect of the number and ordering

of layers variation on frequency values is considerable.

When the effect of elastic foundation is taken into con-

sideration, there is no effect of variation of number and

ordering of layers on the frequency values.

In Table 7, taking various number and ordering of

layers, elastic foundation and non-homogeneity into

consideration, the values of natural frequency for the

half axial wave number are presented. When the ef-

fect of elastic foundation isn’t taken into consideration

(k1 = 0) and the half axial wave number increases,

the values of natural frequency increases importantly

and the effect of non-homogeneity, variation of number

and ordering of layers is very considerable. When the

effect of elastic foundation is taken into consideration

(k1 = 0.01), the effect of the changes in the Young’s

moduli in layers on natural frequency values decrease.

There is a very little effect of the variation number and

ordering of layers.

By comparing Tables 5 and 7, it can be observed that,

the ratio of thickness to radius (h1/R) variation effect

on natural frequency values is considerable.

In Table 8, by taking various number and order-

ing of layers, elastic foundation and non-homogeneity

into consideration, natural frequency values for differ-

ent circumferential wave number values are presented.

When the effect of elastic foundation isn’t taken into

consideration, the effect of number and ordering of

layers on natural frequency values in the great values

of wave number is very large. For example, for the
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wave numbers (1,11), in one layered (0◦) ordering and

three layered (90◦/0◦/90◦) ordering shells, difference

between the values of natural frequencies go up to 3

times of the first value. When the effect of elastic foun-

dation is taken into consideration, the factors in ques-

tion are not effective and the values of natural frequency

are approximate with the values of one layered shell.

Besides, the minimum values of natural frequency are

obtained in different wave circumferential numbers by

the effect of in question factors. For example, the mini-

mum value of natural frequency is obtained for k 1 = 0,

µ = 0 in the circumferential wave number n = 8 for

(0◦/90◦/0◦) ordering shells and for k1 = 0, µ = 0 in

the circumferential wave number n = 6 for (90◦/0◦)

and (90◦/0◦/90◦) ordering shells.

In Table 9, taking various number and ordering

of layers and elastic foundation into consideration,

ωNL/ωL relative frequency values are presented for

different circumferential wave number values. If the

effect of elastic foundation is not taken into consid-

eration, when circumferential wave number values in-

crease, relative frequency values increase and for the

great values of wave number, the effect of number

and ordering of layers is important. For example, for

(1,12) wave numbers, in three layered (0◦/90◦/0◦) and

(90◦/0◦/90◦) ordering shells, the difference between the

relative frequency values is 51%. When the effect of

elastic foundation is taken into consideration, in small

values of circumferential wave number, the factors in

question are not effective and the relative frequency

values are approximate with the values of one layered

shells.

In Table 10, natural frequency and ωNL/ωL relative

frequency values for various non-dimensional founda-

tion modulus, various number and ordering of layers

are presented. When the foundation modulus increase,

the effect of non-linearity on natural frequency and rel-

ative frequency values decreases. But in larger values

of foundation modulus, this effect may not taken into

consideration.

5. Conclusion

The present study considers the vibration problem

of laminated non-homogeneous orthotropic cylindri-

cal thin shells resting on elastic foundation, account-

ing for Karman type geometric non-linearity. Obtain-

ing the fundamental relations employing finite defor-

mation analysis, the equations of compatibility and dy-

namic stability are derived and solved simultaneously

to establish an analytical relation between amplitude
and frequency. The following conclusions have been

drawn from the numerical analysis carried out using the
general formulas obtained from the analytical study:

a) When the effect of elastic foundation is not taken
into consideration, the effects of geometrical non-
linearity, non-homogeneity, number and ordering
of layers are very important on frequency values.

b) When the value of foundation modulus increases,
the effects of the factors in question on the fre-

quency values decrease and these factors do not
have effects on frequency values in larger values
of foundation modulus.

c) When the ratio of shell thickness to radius (h1/R)
increases, the values of natural frequency in-
crease.

A validation of the analysis has been carried out by
comparing results with those in the literature and has

found to be accurate.
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Nomenclature

Ap, Ap/h1 Amplitude and dimensionless or relative

amplitude of motion, respectively

Cj , aijγ The constants depend on properties of

material and shell and included by

Eq. (9)

G
(k)
0 Shear moduli of the homogeneous or-

thotropic materials in the kth layer

G0 Shear modulus of the homogeneous ma-

terial in a single layer shell

E
(k)
01 , E

(k)
02 Young’s moduli of the homogeneous or-

thotropic materials in the kth layer

E01, E02 Young’s moduli of the homogeneous or-

thotropic material in a single layer
E0 Young’s modulus of the homogeneous

isotropic material in a single layer

e11, e22, e12 Axial, circumferential and shear strains

on the reference surface of the shell,

respectively

f(τ) Time dependent amplitude

h1 = 2h Thickness of the cylindrical shell

k0, k1 Foundation modulus
and non-dimensional foundation modu-

lus, respectively

k Denotes the kth layer

L Length of the cylindrical shell

m Half axial wave number

m1 = mπR/L Axial wave parameter

M11, M22, M12 Axial, circumferential and twisting mo-

ments, respectively
N11, N22, N12 Axial, circumferential and shear forces,

respectively

N, Ni Number of layers and number of poly-

nomials, respectively

n Circumferential wave number

Oxyz Coordinate system with the origin on the

reference surface of the shell
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Q
(k)(i,j=1,2,6)
ij

Coefficients defined by Eq (4)

q(τ) Time dependent amplitude

R Mean radius of the cylindrical shell

t Time coordinate

u, v, w Axial, circumferential and radial dis-

placements, respectively

x, y, z Rectangular coordinates (axial, circum-

ferential and radial, respectively)
α = mπ/L Parameter

β = n/R Parameter

φ Stress function

ϕ(k)(z) Variation function of Young’s moduli in

the kth layer

ν
(k)
12 , ν

(k)
21 Poisson’s ratios of the orthotropic mate-

rials in the kth layer

ν12, ν21 Poisson’s ratios of the orthotropic mate-

rials in a single layer shell
ν Poisson’s ratio of the isotropic material

in a single layer shell

λ1, λ2, λ3 Coefficients defined by Eq. (20a)
µ Variation coefficient of the Young’s

moduli

ρ0 Density of the homogeneous material in

a single layer shell

ρ
(k)
0 Densities of the homogeneous or-

thotropic materials in the kth layer

σ
(k)
ij

(i, j = 1, 2) Stress components in the kth layer

τ Dimensionless time parameter

ω Frequency parameter

ωL, ωL, Linear frequency and natural frequency

(Hz), respectively
ωNL Non-linear frequency of free vibrations

ωNL/ωL Relative frequency defined by Eq (26)

ω1NL/ω1L Relative frequency defined by Eq (31)

∆, ∆1, ∆2 Dimensionless frequency parameters de-

fined by Eqs (28–30)
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