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Abstract. In this paper we consider the problem of a steady bore running downhill.
The effects of dissipation are included empirically, using the Ch6zy law. The method
of solution is based on an averaging technique which assumes that the uniform solution
is slowly varying.

1. Introduction. The study of the finite amplitude effects upon long waves in
channels was started as long ago as 1845 by Airy [1], From the first investigations
emerged the fact that long waves must change their form as they advance, becoming
steeper ahead of their peaks and less steep behind. Such steeping would, in the absence
of any other tendency, lead to the appearance of bores of hydraulic jumps. However,
the experimental discovery of the solitary wave (Russell, 1837, 1844 [12]) and later the
theoretical investigations of de Boussinesq and Lord Rayleigh, 1876 [11], threw doubts
on the truth of the original investigation. This led to the final elucidation of long waves
by Korteweg and De Yries in 1895 [8]. They showed that permanent, finite amplitude
waves were possible and termed them cnoidal waves.

The classical theory of the bore (Rayleigh, 1914 [11]) is based on a transition between
two uniform flows through which mass and momentum flux is conserved. Although
no loss of momentum due to frictional forces at the bottom is considered, the solutions
show that energy must be lost at the bore, and it was suggested that this was due to
frictional dissipation or turbulence.

For a strong bore it is generally accepted that this energy loss occurs by breaking
and turbulence just downstream of the bore. But it is found experimentally that weak
bores have a stationary train of waves behind them and exhibit no tendency to break
(Favre, 1935 [G]). Lemoine [9] quoting these results suggests that under these circum-
stances the required energy loss may occur by radiation through the wave train. Lemoine
assumed the waves were sinusoidal and calculated their amplitude and the resulting
rate of radiation of energy through them.

His results were, however, only in moderate agreement with experiments. This
led Benjamin and Lighthill to doubt the fact that the wave train was sinusoidal. They
decided to follow the suggestion of Keulegan and Patterson [7] that the wave train
was cnoidal. In their work they defined three quantities, Q the volume flow rate, R the
energy, and S the momentum flow rate. In the absence of friction these quantities
remained constant for each cross-section of the flow. They also showed that it was
possible to match a steady train of cnoidal waves downstream to a uniform upstream
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flow only if there was a change in either Q, R, or S. For cases where Q and S remained
constant they related the resulting wave train behind the bore to the amount by which
R was reduced, varying from waves of large wavelength for very little loss of energy
to waves of very small wavelength when the loss of energy is that given by the classical
theory.

Since the publication of the work by Benjamin and Lighthill [2], it was clear that
further research into the problem would have to include the dissipation effects of, for
example, friction or turbulence. Although very little has been done to include the effects
of a boundary layer at the bottom the effects of empirical dissipation terms have been
studied by various authors for almost a century. This early treatment, however, takes
only the Airy approximations for long waves and an empirical friction law, such as the
Ch6zy Law. The only steady profiles that were produced were monoclinical flood waves.
Such calculations of the slope of the profile have been given by Thomas [15] and Dressier
[5], Dressier also looked for a steady periodic solution but found he had to introduce
discontinuities or bores. This steady solution occurs when the basic flow is unstable and
breaks down into a series of roll waves. The theory was revised by Lighthill and Whitham
in 1955 [10]. They derived a general theory of kinematic waves and took as one example
of their theory the flood movement of rivers.

The first quantitative discussions of the effects of friction on cnoidal waves appears
to have been done by Sandover and Zienkiewicz in 1957 [14], when they studied an
undular surge wave entering still water in a rectangular channel. They assumed that
after a sufficient time the profile was steady and that the changes in energy and momen-
tum were given by the Ch6zy Law. This was repeated and extended to channels of
trapezoidal cross-sections by Sandover and Taylor in 1962 [13]. The resulting ordinary
differential equation was integrated numerically. Their results were in very good agree-
ment with experiment for the leading waves, but the amplitude of the oscillations
they obtained behind the bore was not damped out and did, in fact, grow as they inte-
grated downstream. This they suggested was due to the fact that no allowance was
made for the effects of breaking. Of course, if the bore was very strong and breaking
did occur then these effects would not be accounted for by the empirical terms of Sandover
and Taylor, and Sandover and Zienkiewicz. However, it is difficult to see why their
solutions should not give a good result when the bore is very weak so that no breaking
would be expected.

In this paper we will investigate the effect of introducing the empirical Ch<5zy Law
frictional terms to see if a steady solution is possible.

2. Derivation of equations.

2.1 The basic equations. The basic equations for the mean velocity u and the
height h are obtained by integrating the Navier-Stokes equations across the cross-
section of the channel. To obtain a solution it is necessary to include a body force in
the direction of the flow to counteract the effects of the dissipation forces. The flow is
therefore assumed to take place down a slightly inclined bed, as indicated by Fig. 1.
The coordinate axes are then taken along and perpendicular to the channel bed.

The equations of motion are then

^ f = 0, (2.1.1)dx dy
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Fig. 1. The coordinate axes

du du du I dp . .
^ + = — a - ffs + /, (2.1.2)dt dx dy p dx

dv dv dv 1 dp . .
7;+" — + y— = — ~T ~ 9- (2.1.3)dt dx dy p dy

The first equation is the equation of continuity; the second is the usual z-momentum
equation with the added body force /, and the last is the usual ^-momentum equation.

We also have the boundary condition at the free surface y = h

dh dh ._ + w__y = °. (2.L4)

Using the continuity equation this gives

+ (2-L5)

If we define the mean velocity u by

U = \ f0 Udy' (2.1.6)
then Eq. (2.1.4) can be written as

f+ !<">-"• <2-">
With the aid of Eq. (2.1.4) integration of Eq. (2.1.2) across the cross-section gives

du
dt + "S£ + HI, c -'1'<>y - If, (-;! + !)**-»■ el®

We now appeal to a long wave theory and an order of magnitude agreement to
neglect the integral appearing on the left-hand side of Eq. (2.1.8). On a long wave theory
if U0 (a constant) is a typical velocity scale and a is a typical amplitude scale, then (u — u)
is of order U20a so that the integrant is of order U*0a* and can be neglected.

Thus Eq. (2.1.8) becomes
du .du = 1 fk _ I dp
dt dx h J0 p dx

where J = (1 /h) / dy is the averaged body force due to dissipation.
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2.2 The evaluation of the -pressure. To evaluate the pressure we proceed on the
basis that the dispersion effect is small and can be accounted for on a two-dimensional
linear theory with dissipation neglected. The analysis has been given by Chester [4],
and need not be repeated here. His result is

1 [h 1 dp dh ghl d3h (0 0 nT ~ T~ d,y = 9 TZ + T ^"3 + • ■ • , (^-2.1)h J0 p dx dx o dx

where ha is the undisturbed height.
We approximate by keeping only the first two terms.
When this is substituted into Eq. (2.1.9) we obtain as our basic equations

du _ du dh ghl d3h f . .
M "• &~2)

§ + / (» A) - 0. (2.2.3)dt dx

A steady solution is found by looking for a solution where u and h are functions of
the single variable

£ = x + Ut,

where U is the velocity of the profile relative to the fixed axes.
Eq. (2.2.3) can then be integrated to give

(ft + U)h = Q. (2.2.4)
Then elimination of u gives to our order of approximations

ghl d3h dh ( Q2\ , . .
IT Tf + a? ~ T») = 1" gs■ (2-2"5)

This can be nondimensionalized by setting

h = /i0(l + y), £ = hoX.

The equation for r? is then

W" + 3uu' - (F2 - 1 w = t - S, (2.2.6)

In Eq. (2.2.6) F = Q/(gK)1/2 and terms of order r? are neglected.
2.3 The dissipational body jorce f. If the dissipation is given by the Ch6zy Law,

then, this assumes that the total force over a cross-section due to dissipation is propor-
tional to the square of the mean velocity. Thus

f̂0
/ dy = C¥, (2.3.1)

where C is some constant.
Using the value for u from Eq. (2.2.4), we obtain

j _ gC2[F.(l + i,) - Ff
f- (l + v)3 , (2-3.2)

where Fl = u(gh0) . Thus
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I S _ c . C2(^( 1 + ,) - Ff
g - S - S + (1 + ^ (2.3.3)

since h„ was the undisturbed height r? —> 0 as x -> — <». Therefore, F, = F + y/S/C,

f „ -Slv3 + (2 - 2F2 + F\W ~ (2F2 - 1)„1i ~s ~ <i + ,!j (2-3-4)

where F2 = CFJy/S. For flows between subcritical and supercritical states we must
have F > 1 and F2 > J. In this case the right-hand side of Eq. (2.3.4) can be approxi-
mated to <S(tj2 — y)y-

Therefore Eq. (2.2.6) becomes

W" + 3w ~ (F2 - iw = S(V2 - (2.3.5)
This equation can be integrated and, as Sandover and Taylor and Sandover and

Zienkiewicz found, the leading waves were of the general form expected from experi-
mental observations, but the solution did not settle down to i)2 as x —> <». In fact, if
we linearize about r}2 , then the solution is a sine wave with an exponentially growing
amplitude as x —> . Thus when we introduce the Chezy term, we cannot hope to
obtain a solution that tends to the uniform flow solution 77 = t?2 • Hence we are led to
the question—does a solution of Eq. (2.3.5) exist which is bounded for all x? The answer
to this question is provided by the method of averaging.

3. Method of averaging.

3.1 Introduction to the method of averaging. In this section we take up the problem
of finding approximate analytic solutions to the periodic solutions of Eq. (2.3.5) in the
case when S is small. From the physical volume of the problem described by Eq. (2.3.5)
no dissipation corresponds to zero S and in this case the solution will be cnoidal waves
of constant amplitude. If S is small the length scale (0 S~l) which characterizes the
dissipative processes is very much larger than the length scale or wavelength of the
cnoidal solutions. Care must be taken here when assuming that the wavelength of the
cnoidal solution is of the same order of magnitude as that of a typical length scale of
the cnoidal solutions, because for the solitary wave the wavelength becomes infinite.
However, this is misleading, since an effective length scale for the solitary wave can
easily be defined. This point is made and discussed by Benjamin and Lighthill ([2], 1954).
Thus during one oscillation the dissipation can produce only a small effect and we can
anticipate that the amplitude and phase of the oscillations will change only very grad-
ually. Consequently, we can allow for the effect of the dissipation terms by calculating
their average over a wavelength.

Eq. (2.3.5) is

We now make the transformation

V = H + |(F2 - 1), (3.1.2)

which gives
Ud3H/dx3) + 3 H(dH/dx) = Sg(H). (3.1.3)
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The cnoidal solutions then satisfy

\{d3H/dx3) + 3 H(dH/dx) = 0, (3.1.4)

and we can integrate twice to get

WH/dxf = —H3 + AH + B, (3.1.5)
where A and B are constants of integration. Physically A and B are related in a com-
plicated fashion to the energy and momentum flow defined earlier. It will be shown later
that for certain well-defined values of A and B there are curves of constant A and B in
the (H', H) phase plane which are closed. It is for these values of A and B that periodic
solutions of Eq. (3.1.4) exist.

There is, in fact, a doubly infinite family of cnoidal oscillations. The solution of those
members of the family which neither gain nor lose energy or momentum over one wave-
length is determined by the dissipation terms. It will be these particular cnoidal solutions
that will be our approximation to the periodic solutions of Eq. (3.1.1).

We can integrate Eq. (3.1.5) again in terms of the Jacobi elliptic functions with
solution

Hc = « + (0 - a)C*[Ai(x + x0), k], (3.1.6)

where A, , a, 13, and k are constants given by

B + AH - H3 = (0 - II)(H - a)(H + a + 0), 0 ^ a ^ -a - 0, }

.4? = f(20 + a), k2 = (0 - a)/(20 + a),
and k is the modulus of the elliptic function. Thus we can write // in the form

H = Hc{x + x0 , A, B), (3.1.8)

where the new constant of integration x0 is the phase, and where the subscript c is to
emphasize that Hc is a solution of the cnoidal approximation (3.1.4).

To obtain a solution of (3.1.1) we can use the method of variation of parameters
and let x0 , A, and B be functions of x. The dependence of x0 , A, and B are then given
by the equations

f =-2
i - f -

(3.1.9)

The solution of the above equations using the explicit solution (3.1.6) would be an
exact solution of Eq. (3.1.1). This is, of course, impossible. However, since we have
suggested that for small S the effect of the dissipation will be to slowly vary the shape
of the cnoidal oscillations, it is only the overall change in xn , A, and B that we require,
so we replace the right-hand side of Eq. (3.1.9) by the average over a wavelength. Thus

p = -2,s(^ - Hc f-')g/(dIIc/84>),dx \dA ' (3.1.10)

fx = 2^' fx = ~2SgH< ■
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These equations are considerably simpler in that there is no explicit z-dependence
and a solution is feasible. Also, since an average over a wavelength is independent of
the phase, the last two equations suffice to determine A(x) and B(x). Thus the phase
drops out of the problem and we are left with the two equations

dA/dx = 2Sg = 2Sgl(A,B), (3.1.11)
and

dB/dx = -2 SWTg = 2Sg2(A,B). (3.1.12)
We are interested in values of A and B, say A0 and B0 , which make

gi{.A<t , Bo) = gi(Ao , Bo) = 0. (3.1.13)
We can solve Eqs. (3.1.11) and (3.1.12) directly, but it is instructive to note that

the solutions of Eqs. (3.1.13) are the singular points in the (A, B) plane. This suggest
that the structure of the solutions in the (A, B) plane will be of interest. For example,
if the singular point (A0, B0) is a stable singular point we would expect to find the corre-
sponding cnoidal wave train in a numerical integration of Eq. (3.1.1), whereas if the
singular point was an unstable one we would not expect to find the corresponding
cnoidal solution.

3.2 The structure of the (II', H) and (A, B) phase planes. The cnoidal curves, or
curves of constant A and B, in the (H', H) phase plane are given by

\(dH/dxY = —H3 + AH + B. (3.2.1)
We must discuss how the "cnoidal" curves depend on B. The points of equilibrium

are given by

d2H/dx =0, or -3H2 + A = 0, (3.2.2)

so that for A <0 there are no positions of equilibrium while for A > 0 there are two,
given by H = ±(A/3)1/2.

If H0 is a position of equilibrium, then the character of the equilibrium point may
be investigated by studying solutions of the form H = H0 + h for small h. The equation
for h" then becomes

W = —3H0h. (3.2.3)

We see from this that the point H0 = {A/3),/2 is a center, while the point II0 =
— 04/3)1/2 is an unstable saddle point.

When B takes the value B0 — —2(_43/27)1/2 the curve in the neighborhood of II =
(A/3)1/2 is just the single point II = (A/3)1'2. For values of B just greater than B0 the
curves are closed ovals. If A is fixed and B increases, then the size of the loop increases
until B = +2(A3/27)1/2. This is the limiting curve which passes through the singular
point H = — (.4 /3)1/2. As B increases still further, the curve is no longer closed (see
Fig. 2). For bounded oscillatory solutions we must be within the loop of this limiting
curve which divides the closed curves from the unbounded curves. This limiting curve
corresponds to the solitary wave and represents an asymptotic approach to the unstable
equilibrium point.

For solution curves corresponding to those inside this loop we must have the roots
of the cubic on the right-hand side of Eq. (3.1.5) real.
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Fig. 2. The (HH) phase plane for A positive

This gives the condition

A3/27 > B2/4. (3.2.4)

This splits the (A, B) plane up into two regions bounded by the curve A3/27 = B2/4.
Only points right of this curve (see Fig. 3) correspond to bounded solutions in the
(//', H) phase plane. Points of stable equilibrium in the (A, B) plane correspond to a
train of uniform cnoidal waves (for solutions see Eq. (3.1.6)) varying from the solitary
wave on the upper boundary (B = +2(43/27)I/2 to uniform flow on the lower boundary
(B = -2(i3/27)'/2.

3.3 The solution in the (A, B) -plane with Chezy resistance. We remarked earlier
that the solution with Chezv resistance did not seem to settle down to a regular oscillation

NO BOUNDED MOTION
POSSIBLE

Fig. 3. The (A, B) plane
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even when integration was carried out over a large distance. Although the resulting
averaged equations (3.1.11) and (3.1.12)) still need to be integrated numerically, the
need to integrate over large distances is removed by the method of solution outlined
in Sec. 3.1. This is because the small parameter s can be scaled out of the equations
and the step length taken is effectively s_1 times as great as the step length required
for the full Eq. (3.1.1).

For this problem the resistance term becomes

g(H) — — H)(Hi + H) (3.3.1)
where H, = {(F2 — 1) and H2 = y2 — f(F2 — 1). The averaged equations are then

dA/dx = 2a(HtHa + {Ha - Ht)ff - R2), (3.3.2)
and

dB/dx = -2siH.H.B + (H2 - H,)R2 - R3). (3.3.3)

The average of a power of H is fairly easily obtained in terms of k and either a or /8.
The first three are

H = 0[3 E/K - 2 + fc2]/(l + k2) = 1/3. (3.3.4)

H2 = 02[1 - k2 + A:4]/(l + k2)2 = m/32. (3.3.5)

H3 = /33 J9/5[3 E/K (1 - k2 + fc4) - (1 - /c2)(3 - 4k2 + 5k4)]

+ (4 - 2k2)3i/(l + k2)3 = ti/33, (3.3.6)

where I, m, and n are functions of k2 only, and K and E are the complete elliptic integrals
of the first and second kind, respectively. This gives

dA/dx = 2s[H,H2 + (H2 - - /32m], (3.3.7)

and

dB/dx = —2 slHiHil + (H2 — — (Fn]. (3.3.8)
The equilibrium points of the (A, B) phase plane are given by

dA/dx = dB/dx = 0. (3.3.9)

Hence /3 must satisfy

H1H„ + (H2 - HtW - P2m = HXHJ. + (Ht - H1)fim - /32n = 0. (3.3.10)

The two quadratic equations have equal roots when k is given by the solution of the
equation

(m - l2)(m2 - id)/(n - ml)2 = H,H2/{H2 - H,)2. (3.3.11)

The solution for /3 is then

0 = (H2 - Hi)(m - l2)/(n - ml). (3.3.12)

We also get a solution when one quadratic equation is a multiple of the other; this
occurs when

m — I2 = n — ml = m2 — nl = 0. (3.3.13)
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The latter case occurs (1) for k = 0 when I = m = n = 1, the solution for /3 is then
/S = H2 or —Hi ; (2) for k = 1 when I = m = J, n — — the solution for /3 is then
/S = 2or — 2i/2 .

To study the character of these equilibrium points it is now easier to work in terms
of a and /3, so we substitute for A and B by

B = -ap(a + P), (3.3.14)

and

A = a2 + «0 + /32. (3.3.15)

The character of the equilibrium points (a0 , /S0) may be investigated by studying
solutions of the form a = a0 + 5, /3 = /30 + 7-

For the equilibrium point 0 = H2 , a0 — H2 , Eqs. (3.3.7) and (3.3.8) become

5'

and

= _ 3tL (3-3'i6)

V = + 7]. (3.3.17)

Hence this gives an unstable saddle point in the (B, A) phase plane with singular
directions

dB/dA = -H2 and 2H2 . (3.3.18)

For the equilibrium point /3 = 2//, , a = —II2 the wavelength becomes infinite.
In this case the averaging breaks down and the form of the solutions is not given by
the solution of Eqs. (3.3.7) and (3.3.8). However, the behavior of the solution curves
in the neighborhood of the singular point is of interest since we need to know whether
the point is a stable or an unstable point. We can determine this by studying the limit
of (dB/dx)/(dA/dx) as ft —> 2H, , a —> —//, , so as to find the singular directions (if
there are any).

This, in fact, gives two cases:

(1) H > 1-4/7, . In this case we get a saddle point.
(2) Hi < 1 -4//i . In this case the singular point is a stable node.

The two singular directions are in both cases

dB/dA = H, or -(//2 - {$Hx/b))HJ{H2 - Ht).

The diagrams of the solution curves in the neighborhood of the singular points are
given in Figs. 4 and 5.

By considering the transformation H2 Hi we can show that when Hx < 0 the
singular point given by k = 0, 0 = — 2HX , is a saddle point. By making the same trans-
formation we can show that when H2 < 0 the singular point given by k = 1, /} = —1H2
is a saddle point.

The position of the third singular point depends on the solution of k = k0 of Eq.
(3.3.11).

The function G(k) = (m — l2)(m2 — ln)/(n — lm)2 is a monotonically increasing



EFFECTS OF EMPIRICAL DISSIPATION TERMS 509

-8-2 $)*

Fig. 4. Hi > 1.4 Hi. A sketch of the Fig. 5. Hi > 1.4 Hi. A sketch of the
solution curves near the singular points solution curves for the singular points

corresponding to /3 = 211 ,k = 1. corresponding to (3 = 2Hxk = 1.

function of k in the range (0, 1) and varies from —0.25 when k = 0 to 8.75 when k = 1
(see Fig. 6). Therefore, the value of H1H2/(H2 — II,)2 must lie between —0.25 and 8.75
for this singular point to exist. We also require 0 > 0 and since (m — I2) /(n — Im) > 0,
then H2 > Hi . Therefore, this singular point exists for all values of IIJII2 in the range
— 1 < Hi/Hi < 5/7. The location of the singular point in the (A, B) plane is given in
Fig. 7.

Thus when H2 > 1.47/j we have three singular points, and when II2 < 1.4#! we
have only two. For the second case the solution curves can be drawn immediately
(see Fig. 8). It can be seen that a solution starting from H = H2 at x = — °o and ending
at H = — Hi as x —» + <*> does exist on this theory. However, due to the inadequacies
of the averaging technique along and near the line B2/4 = A3/27 it is impossible to say
whether this solution represents a good approximation to the solution of the full equation

Fig. 6. A graph of the function G(fc) = , ,
(n — In)2
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h,/h2= I

Fiq. 7. A sketch of the (A, B) plane. The locus r of values (AZJ3) corresponding to steady
periodic solutions is shown.

Fig. 8. Solution curves for //2 < 1.4 H
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Fig. 9. Representation of the negative bore solution

as we approach the singular point as x —> °°. The exact solution might quite possibly
be carried through the singular point into the region B'/4 > A3/27 and then the solution
for H will tend to <*>. Certainly numerical integration of the full equation exhibits this
behavior when H2 < I AH. If this solution does exist it represents a steady bore of
negative strength, and is shown in Fig. 9.

For the case H2 > 1 .4/7, we have three singular points. The two on the boundary
B2/4l = A3/27 are unstable. All that remains is to determine the character of the third
singular point. Since the solution of Eq. (3.3.11), which gives the location of the third
singular point, can only be done numerically, the best method of investigation into the
character of this point is by studying the numerical solutions of Eqs. (3.3.2) and (3.3.3).
The numerical solutions for the solution curves in the {A, B) plane are given for various

_?• 

Kiu. 10. Solution curves in the (A, B) plane for H,/H2 = I-
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-2 -

Fig. 11. Solution curves in the (A, B) plane for H1/H2 = 0.

values of (see Figs. 10, 11, and 12). These solutions possess some remarkable
properties. When the singular point (Aa, B0) is far from the boundary the solution curves
in the neighborhood of (A0 , B0) seem, to a very good approximation, to be elliptical;
this suggests that (/10 , B0) is a center on a linear theory. Even at large distances from
(A0 , Ba) the numerical solution still seemed to be a closed curve. Thus the numerical
analysis tells us that we have a focal point, but does not tell us whether it is stable
or unstable. In fact, the supposition that Aa , B0 is a center on a linear theory can be
proved analytically if we use the fact that we know from the numerical results that
(A0 , B0) is a focal point. (See Appendix.) Therefore, since all curves have to tend to
some region around (A0 , Bn), on an exact theory (Aa , B0) must either be a stable focal
point or an unstable focal point with a limit cycle surrounding it. It is also to be noted
that the density of solution curves becomes very high near the boundary where the
averaging becomes suspect.

4. Discussion of the solutions. We have shown that only in the case when
H2 > 0 and //2 > 1.477, does an acceptable bounded solution exist. For 77, > 0 we
do in fact have two bounded solutions, one that starts as uniform supercritical flow
at j — — <» and tends to a uniform train of waves at x = + 00 • This represents a solution
for a steady bore running down hill and is the type of solution for which we have been
looking (see Fig. 13). The other solution is one that starts as uniform subcritical flow at
x = — co. When 77, < 0 the second type of solution is the only one that exists.

We can also explain the reasons for the unexpected numerical results obtained from
integration of the full equation. As H,/H2 increases from —1 to 5/7 the singular point
moves closer to the upper boundary. Then the solution curves run extremely close
together and with numerical errors the solution easily moves from one curve to another
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Fig. 12. Solution curves in the (A, B) plane for H,/H« = — f.

in this region near the boundary, so that no regularity in the solution would be observed.
Also, since (40 , B0) is a center on a linear theory, the convergence of the solution to
the point (A„ , B0) is very slow, so that integration would be broken off long before a
steady oscillation was reached, especially if S is taken to be very small.

Appendix. An analytical investigation into the character oj the third singular -point.
The numerical results of the averaged equations suggest that the third singular point
(^40 , B0) is a center for all values of Hi/H2 in the range ( — 1, 5/7). Although a complete
analytical investigation into the character of (A0 , B0) is not possible, we can show that
(.A0 , B0) is a center without actually solving Eqs. (3.3.11) to find Aa and B„ . We can

Fia. 13. Representation of the bore solution.
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do this by introducing a generating function W, defined by

W(A, B) = j> (.H'c,)2 dx = j> H[ dH, (A.l)

where the integral is taken around the cnoidal curves in the (HH) phase plane given
by A and B and Eq. (3.1.5).

Using this function we can express dA/dx and dB/dx in terms of W and its derivatives
with respect to A and B.

We recall that Eq. (3.1.5) is

\{dH/dx)2 = -H3 + AH + B, (A.2)

with the help of this equation we can calculate the derivatives of W with respect to
A and B.

Thus

dW/dB = ~ f V3(-H3 + AH + B)w2 dH = 3X/2, (A.3)

and

= dA f ^-n3 + AH + B),/2 dH = ^H, (A.4)

where X is the wave length of the cnoidal oscillation. Since the average value of dH/dx3
is zero, we have

(~w' + -«<**• <A-5)

Therefore

H2 = $A. (A.6)

Finally the average value of H3 is found from equation (A.l) as

II3 = AH + B - \W/\. (A.7)
Eqs. (3.3.2) and (3.3.3) then become

dA/dX = (4e/3ViWsHJh + {II2 - HJWjl + iAWB] = ffl(A, B), (A.8)

dB/dX = (— 4e/3X)[HXH2WA + (H2 - H,)\AWB + \W — AWa - BWB]
= g2(A, B).

The condition for A0B0 to be a center is

(dg x/dA)i%B, + (dg,/dB)A.B. = 0, (A.10)

and

SsLfeL - (^LfeL. > »■
(A. 11) is the condition for a focal point and (A. 10) tells us that the focal point is

a center. We now appeal to the results of the numerical integration to say that the
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second condition is satisfied since the solution curves near (A0B0) are approximately
ellipses. From Eqs. (A.8) and (A.9) the condition for a center is thus

^ T(H - H \(d-^ - 4 ?W) + fl , R ,
3\ L \dA2 3 dB2 ) + \6 dB + dB2 +

Partial differentiation of Eq. (A.l) gives

2A d2\\
3 dB dy

= 0. (A.12)

.4
d2W .4 d2W a/3 „ r 3 If
dA2 ~~ 3 dB2 ~~ 4 P f (-H* + AH + Bf/2 dH

- -l,fhUw) (A.13)
= 0,

and

1 d]V , T. a2jr 2.4 d2W
~ o ~T 13 .1)2 I o6 dB dB 3 d.4 3/<

V3 / j-dH + § ̂ //)
2 J (-//'' + AH + B)'/2 4 J (-H3 + + B)I/2

--->piis^w) »-14)
= 0

where jP denotes the fact that we have taken the Cauchy principle value of the
integral. Hence condition (A. 10) is satisfied for all values of HxIHi so that the singular
point is always a center.
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