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10 Abstract Schumann resonances (SR) are the electromagnetic oscillations of the spherical

11 cavity bounded by the electrically conductive Earth and the conductive but dissipative

12 lower ionosphere (Schumann in Z Naturforsch A 7:6627–6628, 1952). Energetic emissions

13 from the Sun can exert a varied influence on the various parameters of the Earth’s SR:

14 modal frequencies, amplitudes and dissipation parameters. The SR response at multiple

15 receiving stations is considered for two extraordinary solar events from Solar Cycle 23: the

16 Bastille Day event (July 14, 2000) and the Halloween event (October/November 2003).

17 Distinct differences are noted in the ionospheric depths of penetration for X-radiation and

18 solar protons with correspondingly distinct signs of the frequency response. The prefer-

19 ential impact of the protons in the magnetically unshielded polar regions leads to a marked

20 anisotropic frequency response in the two magnetic field components. The general

21 immunity of SR amplitudes to these extreme external perturbations serves to remind that

22 the amplitude parameter is largely controlled by lightning activity with the Earth–iono-

23 sphere cavity.
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27 1 Introduction

28 The Earth’s naturally occurring Schumann resonances (SR), maintained by global light-

29 ning and confined to the thin dielectric region of atmosphere between the conductive Earth

30 and the ionosphere, are rich with information about the terrestrial and space environments.

31 These continuously maintained global resonances are characterized by amplitudes (in-

32 tensities), modal frequencies and dissipation parameters (Q factors and damping param-

33 eters), all of which respond in distinct ways to different kinds of forcing. This study is

34 concerned with the impacts of exceptional solar activity on the parameters of the SR.

35 Two of the most exceptional solar storms on record that also serve to bracket the solar

36 maximum of Solar Cycle 23 have been selected for detailed examination, the Bastille Day

37 event of July 14, 2000 and the Halloween event of October/November, 2003. The Bastille

38 Day event, an X-class (5) solar flare with a distinct separation of X-radiation and solar

39 proton emissions, has already been identified as a choice target for both experimental ELF

40 studies (Nickolaenko and Hayakawa 2002; Roldugin et al. 2004; De et al. 2010; Nicko-

41 laenko and Hayakawa 2014) and modeling work (Ondráškova et al. 2003; Ondráškova

42 2005). The Halloween event, a solar disturbance of exceptionally long duration in spanning

43 a two-month period (Baker et al. 2004), saturated the hard X-ray detectors on the GOES

44 satellite (Lopez et al. 2004). Subsequent analysis led to an upgrade in the X-class of the last

45 flare of the sequence (November 4, 2003) to 45 (Thomson et al. 2004), making it the most

46 energetic solar flare on record. The effects of the Halloween event have not been previ-

47 ously examined at ELF, though a comparison of the solar emissions in the record-breaking

48 Bastille Day and Halloween events can be found in Le et al. (2007).

49 Key objectives in this investigation of SR response to these exceptional events have

50 been the establishment of a systematic global response and an exploration of evidence for a

51 timescale independence in the physical response, when the SR cavity is exposed to similar

52 levels of ionizing radiation but on very different timescales. An important reference for the

53 longer timescale is the response of SR to the 11-year solar cycle (Sátori et al. 2005). Also,

54 in light of the long-standing interest in using multi-station measurements of SR intensity as

55 a continuous monitor of global lightning activity (Williams and Mareev 2014), we have

56 been interested in the degree of immunity in the SR intensity to extraterrestrial influences

57 of the kind considered here.

58 The organization of this paper runs as follows. Section 2 is concerned with a description

59 of the five ELF stations worldwide that have provided SR documentation on the two

60 selected events. Section 3 reviews previous work on this subject, including the discussion

61 of the ionization profiles for mono-energetic particles that are so useful in relationship with

62 the ‘electric’ (he) and magnetic (hm) ionospheric heights for SR. In Sect. 4, the results on

63 measured SR response in frequency and intensity (field amplitude squared) are presented.

64 The results are discussed in comparison with the theoretical predictions in Sect. 5, fol-

65 lowed by the conclusions in the final Sect. 6.

66 2 Observational Assets

67 The interest in this study in establishing a global response to energetic particles and

68 photons from the Sun during extraordinary events led to the examination of Schumann

69 resonance observations at widely separated ELF receiving stations. Data from five separate

70 observatories have been used, as summarized in Table 1. Four of these stations are
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71 operated continuously by co-authors of this paper and include Nagycenk Observatory in

72 Hungary, Mitzpe Ramon Observatory in Israel, the MIT field station in West Greenwich,

73 Rhode Island and the Vernadsky, Antarctica station operated by the Ukraine. Additional

74 observations for Parkfield, California, established as part of an earlier earthquake moni-

75 toring effort there, were obtained from the Web site of the Berkeley Seismological Lab-

76 oratory (http://www.quake.geo.berkeley.edu).

77 It is important to note that Schumann resonance modal frequencies were estimated with

78 different methods in this study, with nearly as many variants as there are observatories

79 involved. For the Nagycenk observations, the complex demodulation method (Sátori et al.

80 1996; Ver}o et al. 2000) was used. For Parkfield data, the Prony algorithmwas used (Füllekrug

81 1994). For Mitzpe Ramon and Rhode Island, conventional three-parameter Lorentzian fits

82 (Mushtak andWilliams 2002; Sátori et al. 2009) were applied to extract frequencies. Finally,

83 for Vernadsky data, yet a different method was used for modal frequency estimation, and in

84 the absence of published documentation, that will be reviewed briefly here:

85 Power spectra Sew and Sns are computed for the east–west and north–south components

86 of magnetic field, respectively, and are computed at 10-min intervals. The weighted mean

87 modal frequency for the ith mode, fpi, of the respective magnetic field, is then computed as

88 follows:

fpins;ew ¼

R

fp0iþDf

fp0i�Df

df � Sns;ew fð Þ � f

R

fp0iþDf

fp0i�Df

df � Sns;ew fð Þ

909091 For first SR mode for example, values used for the integration limits are fp01 ¼ 8 Hz

92 and Df ¼ 1:5 Hz.

93 For later quantitative comparisons with theoretical predictions, use will be made of the

94 SR modal frequencies from Rhode Island and Israel based on Lorentzian fits. All such fits

95 are applied to computed power spectra and so the Lorentzian fits to those spectra represent

96 intensity, not amplitude.

97 It is also important to note that the modal frequencies are not exactly equal to the eigen-

98 modal frequencies. The latter quantities are invariants of the cavity and should be measured

99 by every observer everywhere. The modal frequencies also depend on the source (S) to

100 observer (O) distance in the lossy Earth–ionosphere cavity (Balser and Wagner 1962;

101 Madden and Thompson 1965; Nickolaenko 1997; Nickolaenko and Hayakawa 2002). Kulak

102 et al. (2006) developed a decomposition method to separate the eigenmodal frequency from

103 the distance-dependent variations. This method was successfully applied for a sudden

Table 1 Location and SR parameters of five separate SR stations

Location Lat Long Field component Mode number

Mitzpe Ramon, Israel 30.6 N 34.8 E EZ, HEW, HNS 1st, 2nd, 3rd

Nagycenk, Hungary 46.7 N 16.7 E EZ 1st, 2nd, 3rd

Parkfield, California, USA 35.9 N 120.4 W HEW, HNS 1st

Vernadsky, Antarctica, Ukraine 65.3 S 64.2 W HEW, HNS 1st, 2nd, 3rd

West Greenwich, Rhode Island, USA 41.6 N 71.7 W EZ, HEW, HNS 1st, 2nd, 3rd
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104 ionospheric disturbance at a single station by Dyrda et al. (2015), and more recently for two

105 stations, one in Poland and the other in the USA (Kulak and Dyrda, personal communication

106 2016). The decomposition method claimed by Kulak et al. (2006) to separate the standing

107 (resonant) and traveling wave components cannot be applied to the events studied here

108 because the original time series data are not available for the five receiving stations involved.

109 3 Review of Previous Work

110 3.1 Impact of Energetic Particles on Upper and Lower D-Region Ionization

111 Energetic particles (electrons and protons primarily) and radiation (X-rays primarily),

112 emanating from the Sun and from space and impinging on the Earth’s atmosphere have

113 characteristic depths of penetration as a function of energy. This aspect is particularly

114 important for the problem at hand because well-defined ionospheric heights are deemed

115 important for the behavior of SR (Madden and Thompson 1965; Greifinger and Greifinger

116 1978; Sentman 1990; Schlegel and Füllekrug 1999; Mushtak and Williams 2002;

117 Greifinger et al. 2007). Two special heights were first identified in research on SR (Madden

118 and Thompson 1965) when Maxwell’s equations were applied to the Earth–ionosphere

119 waveguide cavity. The role of these heights has become so important since that time that

120 current models for the Schumann cavity are defined entirely with four complex heights,

121 two for daytime and two for nighttime ionospheres (Greifinger et al. 2007; Kulak and

122 Mlynarczyk 2013). The real part of the complex height is that physical height and the

123 imaginary part represents the scale height of that feature, with the scale heights generally

124 small in comparison with the physical heights. The effect of energetic particles on the

125 entire cavity then reduces simply to how these complex heights are affected by the

126 energetic particles (mainly photons, protons and electrons) and that is the main analysis

127 approach in the present work. The energy dependence of penetration depth has been

128 studied extensively for protons (Reid 1986), for electrons (Rees 1989) and for X-radiation

129 (Richmond and Venkateswaran 1971; Rees 1989; Hargreaves 1992), but this large body of

130 knowledge has not been strongly incorporated in previous studies of Schumann resonance

131 response to these effects. The increasing ionization with depth due to increases in air

132 density is accompanied by an attenuated flux with depth (dependent on the cross sections

133 for ionization by air molecules at the energies of interest), leaving well-defined ‘Chapman

134 layers’ of maximum ionization as a function of energy. The predictions for protons (Reid

135 1986) and electrons (Rees 1989) are reproduced in Fig. 1, with the assumption of no

136 magnetic shielding. Since proton energies exceeding 100 MeV are known to occur in

137 energetic solar events, penetration downward to*30 km altitude is possible (Ondráškova

138 2005) in the unshielded high-latitude regions, with attendant effects on the lower char-

139 acteristic height of SR. It is important to note the additional evidence in Fig. 1 that when

140 proton energies are sufficient ([100 MeV) for maximum effect at 30 km, the ionization

141 impact in the upper characteristic layer is reduced by 2–3 orders of magnitude, and so is of

142 relatively negligible importance, even though the same protons pass through the upper

143 layer on their way down. On account of the substantially greater cross sections for air

144 ionization by protons than electrons, proton energies needed to reach the 80–90 km altitude

145 level (2–3 MeV) are substantially larger than for electrons (*50 keV). The X-radiation

146 considered in this study (0.1–0.8 nm in wavelength or 1.5–12 keV in energy) has still

147 smaller cross section for ionization and so still smaller photon energy is needed to attain

148 the same altitude. X-ray ionization profiles are not shown, but suffice it to say that the
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149 ionization is maximum at 90 km altitude for X-rays in the wavelength range 0.2–1 nm

150 (Whitten and Popoff 1971; Brasseur and Solomon 1986; Hargreaves 1999).

151 3.2 Modifications of Schumann Resonances by Energetic Solar Emission

152 Important early work on the problem of energetic particle modification of the Earth–

153 ionosphere cavity has appeared, pertaining to both short-term (hours and days) and long-

154 term variations (11-year solar cycle).

155 3.2.1 Short Timescale

156 The early modeling work of Madden and Thompson (1965) set the stage for understanding

157 cavity response to ionizing radiation on short timescales by first identifying two key

Fig. 1 Vertical profiles of ionization rate associated with the vertical entry of (a) mono-energetic protons

adapted from Reid (1986) and (b) mono-energetic electrons adapted from Rees (1989) into the Earth’s

atmosphere. Magnetic shielding is assumed to be zero in both cases
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158 dissipation heights in the D-region. The pioneering work of Nelson (1967) in investigating

159 SR parameter variations (modal frequency and Q factor) linked with polar cap absorption

160 (PCA) events (involving solar protons) was built on Madden and Thompson (1965), but

161 has not been cited frequently in the literature on this topic because this doctoral thesis was

162 never published. Nelson (1967) investigated three PCA events and found consistent results

163 in all cases: systematic decreases in SR frequency and Q factor for the fundamental 8 Hz

164 mode. Nelson (1967) recognized on the basis of his modeling work that ionization

165 increases in the lower characteristic height could account for the observed decreased

166 quantities, but also that ionization increases in the upper characteristic layer (now recog-

167 nized to be enacted by less deeply penetrating solar X-radiation) would lead to increases in

168 frequency and Q factor. Sorting out the contributions of competing effects from energetic

169 protons and photons (X-rays) has become an important goal in the present study.

170 Independently of Madden and Thompson (1965), and without awareness of the latter

171 work, Greifinger and Greifinger (1978) developed analytic predictions for the two char-

172 acteristic heights. [The analytical form of the lower height matched that of Madden and

173 Thompson (1965)]. Due to the convenience of the analytical form, much of the subsequent

174 work on mono-energetic particle modification of the Earth–ionosphere cavity (Schlegel

175 and Füllekrug 1999; Sátori et al. 2005; Shvets et al. 2005) has relied on the Greifinger

176 approach.

177 Roldugin et al. (1999) first identified the distinct contributions of energetic protons and

178 X-radiation to Schumann resonance frequency perturbations in relativistic solar proton

179 precipitation on November 6, 1997. Later, the same authors documented a similar sequence

180 of X-rays followed by energetic protons in the extraordinary Bastille Day event of 2000,

181 and again with distinct SR frequency variations made possible by the non-overlapping of

182 these two fluxes in time during the event. The evidence for the different preferential

183 ionization heights for protons (with energies in the 1–100 MeV range) and for solar

184 X-radiation (with energies in the range of 10–30 keV) had been discussed qualitatively by

185 Sentman (1990), but was specified more quantitatively in Reid (1986) for protons and by

186 Richmond and Venkateswaran (1971), Rees (1989) and Hargreaves (1992) for the X-ra-

187 diation as discussed above. Ondráškova’s (2005) model calculations for the Bastille Day

188 event provide important evidence that the solar protons can strongly influence the lower

189 characteristic height of SR while exerting only minor influence on the upper height.

190 Roldugin’s documentation of systematic increases in SR frequency in response to X-ray

191 events (including the analysis on the Bastille Day event), and the findings of a pronounced

192 global response to X-rays on the solar cycle timescale (Sátori et al. 2005), both call into

193 question claims that the effects of X-radiation on the Schumann cavity are negligible

194 (Nickolaenko and Hayakawa 2002). Roldugin’s pioneering work underlines the need for

195 fine time resolution (10 min or better) in both the solar emissions and the global frequency

196 variations.

197 On rare occasion, the Earth’s atmosphere is subjected to photon bombardments from the

198 cosmos with energies (tens of MeV, Palmer et al. 2005) one thousand times greater than

199 that of solar X-radiation. One such gamma ray event on August 27, 1998, studied by Price

200 and Mushtak (2001) showed ‘‘no noticeable changes in the ELF signals’’. This negative

201 result may have explanation in the fact that the main ionization altitude from such ener-

202 getic events does not coincide with either of two characteristic heights of the SR cavity

203 (Greifinger et al. 2007). The gamma flare on December 27, 2004, studied later (Tanaka

204 et al. 2011; Nickolaenko et al. 2012) also showed no discernible effect on SR propagation

205 parameters, as in Price and Mushtak (2001), but it did produce a conspicuous ELF pulse.
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206 Chapman and Jones (1964), Schlegel and Füllekrug (1999) and Shvets et al. (2005) have

207 all noted frequency increases associated with solar proton events. Madden and Thompson

208 (1965) registered surprise with the finding of Chapman and Jones (1964) but at that time

209 the documentation of accompanying X-radiation was rather incomplete. Shvets et al.

210 (2005) dubbed these events ‘‘anti-PCA events’’. Their interpretation of these events

211 involved a decrease of the upper characteristic height, but with no role for X-rays. The

212 common presence of both proton and X-ray emission in solar flares is now well estab-

213 lished. The SR frequency observations of Schlegel and Füllekrug (1999) were limited to

214 daily resolution, and so the changes in frequency from the X-ray-dominant to the solar

215 proton-dominant portion of events they studied [e.g., October 1989, shown in detail for

216 both protons and X-rays in Belov et al. (2005)] could not be examined.

217 The polar non-uniformity of solar proton events in the Schumann resonance context has

218 been appropriately emphasized by Rabinowicz et al. (2008). The key role of the Earth’s

219 dipolar magnetic field in guiding energetic protons and electrons into polar regions must be

220 considered in interpreting results with a uniform model.

221 3.2.2 Long Timescale

222 The variation in D-region ionization by solar X-radiation and protons over the 11-year

223 solar cycle has also been manifest in numerous observations of the SR (Sátori et al. 2000;

224 Füllekrug et al. 2002; Kulak et al. 2003; Sátori et al. 2005; Ondráškova et al. 2011).

225 Figure 16 serves as a reminder about the two-order-of-magnitude variation in X-ray flux

226 from the Sun over the solar cycle. The strong spikes associated with individual X-ray

227 events are superimposed on a continuously varying background level of X-radiation

228 (Veronig et al. 2004). The 11-year variation of solar protons in the energy range[10 MeV

229 consists of two-order-of-magnitude variations in average fluence from individual solar

230 proton events (Feynman et al. 1990), but such high-energy events are sporadic in time and

231 often disappear for months on end during solar minima (Getselev et al. 2006). The mag-

232 netic intensity variations at Vernadsky (Antarctica) suggest a substantial solar cycle

233 variation (Williams et al. 2014). Based on discussions (D. Baker, B. Blake, H. Spence,

234 personal communication December 2014), we now suspect that energetic electrons from

235 the inner radiation belt are primarily responsible for the modification of the Schumann

236 cavity on the solar cycle timescale at high latitudes.

237 4 Results on Two Extraordinary Solar Events

238 Two exceptional solar events have been selected for multiple-station Schumann resonance

239 analysis in this study with two main goals in mind. The first is to establish the global

240 representativeness of the Schumann signatures, and single-station analyses of the Bastille

241 Day event (Nickolaenko and Hayakawa 2002; Roldugin et al. 2004; De et al. 2010) are

242 available for comparison with the new observations reported here. The second goal is to

243 document the Schumann resonance response to X-rays and protons on a distinctly different

244 timescale than is typical for the Bastille Day kind of event on the short timescale, and for

245 the 11-year solar cycle response on the long timescale.
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246 4.1 The Bastille Day Event

247 4.1.1 Frequency Variations

248 This giant solar proton event occurred on July 14, 2000. This event is known in the

249 literature as the Bastille Day Event and the chronology of the solar emissions has been

250 studied by Bieber et al. (2002). It was preceded by a short but intense X-ray burst in the

251 X-class, the highest possible designation. (Of all solar events occurring since this time,

252 only the soon-to-be discussed Halloween Event exceeded this level in the X-radiation.)

253 Figure 2 shows the SR frequency variations for three resonant modes and for three field

254 components at West Greenwich, Rhode Island. Remarkably similar to the records for the

255 same event shown in single-field components by Roldugin et al. (2004) in Kamchatka, and

256 by De et al. (2010) in India, with the signs of the frequency changes well-timed and with

257 well-separated arrivals for X-rays and protons at the Earth’s ionosphere in all cases. (This

258 separation in time (*90 min) greatly simplifies the interpretation of the observations for

259 the Bastille Day event in comparison with the situation for the Halloween event to be

Fig. 2 Simultaneous records of the Schumann resonance frequency variations in West Greenwich, Rhode

Island (in Hertz) during the Bastille Day Event (July 14, 2000) for (a) the vertical component of the electric

field, for three resonance modes (left hand column), for (b) the Hew component of the magnetic field, for

three resonance modes (middle column) and for (c) the HNS component of the magnetic field, for three

resonance modes. The repeated records at the top of each column show the simultaneous history of the

X-rays (first arrival) followed by the solar protons

AQ4
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260 discussed.) All modal frequencies increased during the short duration X-ray burst (at

261 10:24 UT) and then decreased markedly for several hours (11–16 UT) in all components of

262 electric and magnetic field components in Rhode Island (see Fig. 2). The frequency

263 increases evident in Fig. 2 and quantified in Table 4 of the ‘‘Appendix’’ were determined

264 between the time of the maximum X-ray flux and the 3-h mean frequency value preceding

265 it. The huge frequency decreases were estimated between the time of the maximum flux of

266 the X-ray burst (10:24 UT) and the mean frequency level measured during the 3 h of

267 maximum flux of the solar proton event.

268 4.1.2 The Bastille Day Event Results on Intensity Variations

269 Given the expectation for the deformation of the Schumann resonance cavity by these

270 exceptionally energetic extraterrestrial ionizing events, it is of interest to explore the

271 possibility of variations in the intensity of the SR simultaneous with that deformation.

272 Figure 3 shows the intensity variations for the first resonance mode in West Greenwich,

273 Rhode Island, for 4 days surrounding the Bastille Day event, together with the record of

274 the proton flux (E[ 100 MeV). The proton flux increased by about four orders of mag-

275 nitude between 10:00 UT and 10:30 UT on July 14, 2000 (http://spidr.ngdc.noaa.gov/

Fig. 3 Simultaneous records of the Schumann resonance intensity variations (in A2/m2/Hz) during 4 days

surrounding the Bastille Day event (July 14, 2000) at West Greenwich, Rhode Island, with the Hew field

intensity variation on the left and the HNS variation on the right. The intensity variation for July 13 is

considered as a reference day and is repeated four times (dashed curves). The two (repeated) records at the

top show the simultaneous history of energetic proton forcing
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276 spidr/). The arrows in Figs. 3 and 4 indicate the time point 10:00 UT. At first glance, the

277 enhanced intensity (on the order of several tens of percent) noted on the day of the event

278 and the day following are strongly suggestive of a positive influence, but on closer

279 inspection at the time of the strong onset of the proton flux, no appreciable response in

280 intensity is noted. Since the timing of both data sets is accurately known, and since one has

281 every expectation that the effects of the ionizing radiation on the SR cavity are instanta-

282 neous, this latter observation casts some doubt on an appreciable effect of the protons on

283 SR intensity. One can take this analysis one step further by examining only the single day

284 of the event, in Fig. 4. For a summer day in Rhode Island, the diurnal records of HEW and

285 HNS are unusually free of local meteorological contamination, and one can see the presence

286 of the African and American sources in the two records. But the intensity response to the

287 energetic proton event is not remarkable in either record of magnetic field.

288 4.2 The Halloween Event

289 4.2.1 Frequency Variations

290 Figure 5 documents a series of dramatic emissions from the Sun over a period of several

291 weeks in October and November of 2003 (Baker et al. 2004) that has come to define the so-

292 called Halloween Event. The hard solar X-ray flux (0.1–0.8 nm) increased by more than

293 two orders of magnitude for a period longer than 2 weeks between October 18 and

294 November 4. The X-radiation from this unusual event (Lopez et al. 2004; Thomson et al.

Fig. 4 Simultaneous records of the Schumann resonance intensity variations (in A2/m2/Hz) for the single

day of the Bastille Day event (July 14, 2000) at West Greenwich, Rhode Island, for the Hew component

(middle) and the HNS component (bottom). The simultaneous history of forcing by X-radiation and protons

is repeated at the top
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295 2004) is unprecedented in the era of GOES satellite measurements of hard X-rays. (The

296 GOES sensors were saturated on November 3 during an X-28 class solar flare, and the

297 analysis of that saturation lead to an upgrade in the classification to X-45.) The mean x-ray

Fig. 5 Time histories of key quantities for the Halloween event of October/November 2003, including

(a) the 10.7 cm microwave flux, (b) the GOES solar X-radiation flux (0.1–0.8 nm wavelength), (c) the

GOES solar proton flux (in two energy ranges,[10 MeV and[100 MeV, and (d) the galactic cosmic ray

count (recorded in Moscow). The timing of the maxima in fluxes of X-radiation and solar protons are

generally consistent with specific solar events (flares and coronal mass ejections) documented in Lopez et al.

(2004)
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298 flux was 2.7 9 10-6 W/m2 in this period in contrast with the mean level of 1 9 10-8 W/

299 m2 in the 3 days before and after this strongly disturbed interval. All modal frequencies at

300 all SR stations increased during the days of increased X-ray flux for both the electric and

301 magnetic field components. This organized global behavior is shown by consistent

302 Schumann resonance frequency records at Nagycenk, Hungary (Fig. 6), Mitzpe Ramon,

303 Israel (Fig. 7), Parkfield, California (Fig. 9) and Vernadsky, Antarctica (Fig. 10) that are

304 all well correlated with the GOES satellite measured X-radiation. The magnitudes of the

305 frequency variations, extracted from these various time series records, are summarized in

306 Tables 5, 6, 7 and 8 in the ‘‘Appendix’’. The frequency changes were estimated in the

307 same way as for the perturbed and reference levels for the X-ray flux variations. Within

308 this extended Halloween event, a giant solar proton event also occurred on October 25,

Fig. 6 Simultaneous records of Schumann resonance frequency variations (in Hertz) during the Halloween

Event (October/November, 2003) in the first (top plot) and second (bottom plot) mode of the vertical electric

field at Nagycenk (Hungary) Observatory, and the GOES solar X-radiation flux (0.1–0.8 nm wavelength).

Note positive correlation of frequency variations and X-ray flux over the substructure of the X-ray record
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309 7 days after the onset of the marked X-ray activity. The increase of solar proton flux

310 ([10 MeV) was more than four orders of magnitude (10-1–103 protons/(cm-2 s-1 sr-1)

311 with the maximum value on October 29. The period of increased frequencies was inter-

312 rupted in the case of the HEW field component for each mode at the Mitzpe Ramon station

313 for some days near the time of peak values of solar proton flux, as shown in Fig. 8 and a

314 sudden decrease in frequency occurred on October 26 and for more than five consecutive

315 days when the solar proton flux still varied by more than two orders of magnitude. Then,

316 the frequencies began to increase again during the bursty X-ray period that persisted until

317 November 4. In this case, the frequency values measured on October 26 and the mean

318 frequency value of October 28–30 are compared as shown for HEW at Mitzpe Ramon in

319 Table 5.

320 A regression analysis of the frequencies was performed using different combinations of

321 stations, field components, and modes for exactly the same time windows presented in

322 Figs. 6, 7, 8, 9 and 10. Although the time history of the event is lost in the regression

323 analysis, it can be seen in Figs. 11 and 12 that all combinations of frequency values exhibit

324 increasing trends. The increasing trend is especially important in case of the regression

325 analysis for PKD (Northern Hemisphere station) and VND (Southern Hemisphere station)

326 (see the subplots: Fig. 12a, b). This result excludes the possibility of a systematic

327 meridional source motion with respect to these two stations during the event as the 1st

328 magnetic mode is an excellent indicator of the source motion, too (Nickolaenko and

329 Hayakawa 2002). In the latter case, the regression analysis should have shown a decreasing

330 trend. (The frequency of the HEW field component at PKD should be increasing when the

331 source moves away from the observer and simultaneously decreasing at VND when the

332 source approaches it and vice versa). The increasing trend of frequencies for the HNS field

333 component at MR and PKD (see Fig. 11d) also excludes a systematic westward/eastward

334 motion of the sources from day to day during the observed period. The common increasing

Fig. 7 Simultaneous records of Schumann resonance frequency variations (in Hertz) during the Halloween

Event (October/November, 2003) for three field components (Ez, HEW and HNS, running left to right) and for

three modes (running from top to bottom) at Mitzpe Ramon, Israel, and the GOES solar X-radiation flux

(0.1–0.8 nm) (red, dashed, and repeated panel to panel)
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335 trends indicate the ionospheric origin of the frequency variations due to the excess ion-

336 ization in the upper D-region attributed to the increased background solar X-ray flux by

337 more than two orders of magnitudes during the Halloween event (*2 weeks). Insignificant

338 trends were found only in those cases (subplots Figs. 11c, 12c) when the HEW field

339 component recorded in MR was involved in the regression analysis. The increased fre-

340 quencies due to the increased X-ray flux were interrupted by a large decrease of frequency

341 during the huge solar proton event discussed as the manifestation of an anisotropic wave

Fig. 8 Simultaneous records of Schumann resonance frequency variations (in Hertz) during the Halloween

Event (October/November, 2003) for the HEW component of magnetic field for three resonance modes (from

top to bottom) at Mitzpe Ramon, Israel, and the GOES solar proton flux ([10 MeV) superimposed on each

subplot (dashed, purple, and repeated panel to panel)
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342 propagation and shown in Fig. 8. The two effects with the opposite sign of frequency

343 variations canceled each other in the regression analysis. A SO effect might appear in the

344 scatter of frequency values around the regression line due to the day-to-day variability of

345 the global lightning distribution on the timescale of the Halloween event.

Fig. 9 Simultaneous records of the Schumann resonance frequency variations (in Hertz) during the

Halloween Event (October/November, 2003) for the HEW (left panels) and HNS (right panels) components of

magnetic field at Parkfield, CA. Superimposed on the frequency records are the histories of the GOES solar

X-radiation flux (0.1–0.8 nm wavelength, top panels, red, dashed) and the GOES solar proton flux

([10 MeV, lower panels, purple, dashed)

Fig. 10 Simultaneous records of the Schumann resonance frequency variations (in Hertz) during the

Halloween event (October/November 2003) for the HEW (left panels) and HNS (right panels) components of

magnetic field at Vernadsky, Antarctica. Superimposed on the frequency records are the histories of the

GOES solar X-radiation flux (0.1–0.8 nm wavelength, red, dashed, and repeated panel to panel)
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346 4.2.2 The Halloween Event: Results on Intensity Variations

347 Considerable effort has been invested in looking for an intensity response to the

348 unprecedented X-ray increase in the Halloween event. With the knowledge that the dayside

349 of the Earth is the main recipient of the increased X-ray flux from the Sun, the SR intensity

350 observations at Parkfield were separated into daytime and nighttime contributions. The

351 mean intensities during 10 local daytime hours (8–18 h LT) and 10 local nighttime

352 (20–06 h LT) hours were considered to form two separate time series. Figure 13 shows

353 these two contributions for the full 2-month period (October/November 2003) surrounding

354 the Halloween event. As expected, the daytime intensities are systematically greater than

355 the nighttime ones and additionally a small but discernible increase (*10 %) can be noted

356 during the X-ray forcing, especially in the case of the HNS field component (upper right

357 subplot of Fig. 13). It might be considered as the consequence of the changed cavity

358 properties because the HNS field component is responsive for the east–west propagation

359 paths of ELF waves and the cavity in these low-latitude zonal regions can be influenced

360 only by X-ray variations. The problem is that the natural variability of the SR intensity

Fig. 11 Regression analysis on simultaneously measured modal frequencies for the different combinations

of SR station-pairs a NCK–MR, EZ, 1st mode; b NCK–MR; EZ, 2nd mode; c PKD–MR, HEW, 1st mode;

d PKD–MR, HNS, 1st mode
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361 competes with the predicted changes due to cavity deformation. This point will be further

362 clarified in the interpretation Sect. 5.

363 4.2.3 The Halloween Event: Results on Damping

364 Spectral half-widths given in Hertz (closely related to the reciprocal of the Q factor) were

365 available from the Parkfield station in October–November, 2003. These parameters are

366 characteristic for the damping of the propagating waves in the SR cavity. Figure 14 shows

367 these values for the HEW and HNS field components together with the proton flux variations

368 (upper three subplots) as well as the intensity variation of the EZ field component available

369 at the Nagycenk Observatory, Hungary (bottom subplot) during October–November days.

370 It can be seen that the damping is slightly increased in the days near the maximum of

371 proton flux and the intensity of EZ shows a moderate decrease in that time period but the

372 magnitude of the decrease is comparable with the diurnal intensity variations due to

373 changes in the source intensity.

Fig. 12 Regression analysis on simultaneously measured modal frequencies for the different combinations

of SR station-pairs a VND–PKD, HEW, 1st mode; b VND–PKD, HNS, 1st mode; c VND–MR, HEW, 1st

mode; d VND–MR, HNS, 1st mode
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374 5 Discussion

375 5.1 Interpretation of Results: Frequencies and Q factors

376 The perturbations to the Earth–ionosphere cavity by ionizing protons and X-radiation are

377 decidedly non-uniform on both short and long timescales, but in keeping with the analytic

378 convenience of earlier work (Sátori et al. 2005), we shall attempt a zeroth-order inter-

379 pretation of the observations in the context of a uniform cavity. The main observables are

380 Schumann modal frequencies and Q factors. In the context of the uniform knee model

381 (Mushtak and Williams 2002) that is used for the sake of simplicity in the interpretation of

382 observations in this study, the entire cavity response is determined by four physical

383 quantities: two characteristic heights and two conductivity scale heights at the same two

384 altitudes. The approximate nature of this uniform assumption deserves special emphasis in

385 the context of quantitative predictions for the frequency and intensity changes in these

386 energetic solar events. We are confident in the predictions for the signs of the frequency

387 changes (consistent with the unanimous agreement among multiple receiving stations

388 within the non-uniform cavity). But no great accuracy is claimed for the magnitudes of the

389 changes, as they are highly dependent on the spectral methods different for nearly all the

390 stations. The use of a more sophisticated day-night model of the cavity and the consistent

391 treatment of time series data from all stations will be needed in future studies toward

392 achieving greater consistency between theory and observation.

Fig. 13 Simultaneous records of Schumann resonance intensity during the Halloween event (October/

November, 2003) at Parkfield, CA for the 2-month interval bracketing the Halloween event. Local daytime

records are shown in the top panels and local nighttime records in bottom panels for both components of

magnetic fields (HEW left, HNS right). Superimposed on the frequency records are the histories of the GOES

solar X-radiation flux (0.1–0.8 nm wavelength, red, dashed, and repeated panel to panel)
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393 For a fixed Earth circumference, the modal frequencies are physically linked directly

394 with the phase speeds of the waves, and the latter depend on the ratio of the heights. (When

395 the two heights merge at higher frequency (VLF), the phase speed is the speed of light.)

396 Accordingly, the modal frequency is

Fig. 14 Simultaneous records of solar proton flux in two energy ranges (top panel) and damping parameter

for the HEW (second panel) and HNS (third panel) field component at Parkfield and the SR intensity variation

of the EZ field component (fourth panel) at Nagycenk in October–November days, 2003 of the Halloween

event
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fn � f 0ð Þ
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi

he fnð Þ

hm fnð Þ

s

; where f 0ð Þ
n �

c

2pa

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n nþ 1ð Þ
p

ð1Þ

398398399 The fn modal frequencies are not exactly the eigenmodal frequencies of the Earth–

400 ionosphere cavity, as they are specified theoretically for a uniform cavity. They are not

401 eigenmodal frequencies due to the overlapping of the neighboring modes in the lossy

402 Earth–ionosphere cavity, and the multiple asymmetries (departures from a uniform cavity)

403 in reality. The observable SR frequencies depend on the cavity properties and on the

404 source–observer distance (Balser and Wagner 1962; Madden and Thompson 1965;

405 Nickolaenko and Hayakawa 2002).

406 Although it is less well known in the SR community, the SR frequencies also depend on

407 the spectral method employed (Ver}o et al. 2000; Yang and Pasko 2006; Ondráškova and

408 Ševčik 2014). Using the same time series, Ver}o et al. (2000) compared SR frequencies

409 computed by FFT and complex demodulation, and Yang and Pasko (2006) determined SR

410 frequencies by Lorentzian fitting and Prony algorithm. Both studies found systematic

411 differences (some tenths of Hz) in the frequency values deduced by different spectral

412 techniques. It is important to note that the station-to-station frequency values can be

413 compared quantitatively if they are determined by the same spectral technique.

414 The formula for the global quality factor involves the two heights and in addition, the

415 two scale heights of conductivity at the same two altitudes (Nickolaenko and Rabinowicz

416 1982; Mushtak and Williams 2002). These quantities enter symmetrically in their Q factor

417 dependence.

Qn �
2

pcn
; cn �

1effe fnð Þ

he fnð Þ
þ
1effm fnð Þ

hm fnð Þ
ð2Þ

419419420 The incursions of protons and X-rays lead to reductions in the lower and upper char-

421 acteristic heights, respectively, as discussed in Sect. 3. Reductions in either height alone,

422 with all other quantities remaining constant, lead to reductions in Q factor. In Sátori et al.

423 (2005), the observations showed that for the X-ray response on the solar cycle timescale,

424 both a reduction in upper characteristic height and a reduction in the upper characteristic

425 scale height produced increases in frequency and Q factor consistent with the measured

426 response. In another recent study, Dyrda et al. (2015) document large increases in cavity Q

427 factor associated with a solar flare of short duration. In this study, the separate reduction in

428 lower characteristic height by the energetic proton incursion alone leads to reductions in

429 frequency (shown) and Q factor (not shown) that are broadly consistent with the observed

430 behavior for both the Halloween Day and Bastille Day storms, as well as with earlier

431 observations (and modeling) by Nelson (1967) on solar proton events.

432 The use of Eqs. (1) and (2) for the interpretation of observations is most appropriate

433 when the changes in cavity properties (heights and scale heights) are globally uniform.

434 With the possible exception of the cavity response to changes in galactic cosmic radiation,

435 this uniform scenario is seldom realized. It is well recognized that the bombardment of the

436 Earth’s atmosphere by the X-ray, electron and proton bombardments of the kind consid-

437 ered here is far from globally uniform. The X-radiation comes closest to this idealization,

438 in being quasi-uniform on the sunlit side of the Earth’s atmosphere, though the high-

439 latitude penetration will be diminished on account of the near-grazing incidence.

440 For the Bastille Day event, Table 4 shows that the frequency increase in response to the

441 X-ray event was matched at ?0.3 Hz on both magnetic channels. Computations using
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442 Eq. (1), with reference to earlier calculations (Sátori et al. 2005), show that a reduction in

443 the magnetic height hm from 99 to 92 km, with no change in the electric height he would

444 account for the measured change in a uniform waveguide. The observed frequency increase

445 is larger than the one recorded with the same equipment and processing methods at RI in

446 response to the 11-year solar cycle increase in X-radiation documented by Sátori et al.

447 (2005), with a required larger height change by*2 km. Consistent with this larger overall

448 frequency change is the finding that the variation in X-ray intensity for the Bastille Day

449 event exceeded the 100-fold change over the 11-year solar cycle by about 50 %. This is

450 consistent with the larger frequency increase for the Bastille Day event (?0.3 Hz) than for

451 the solar cycle (?0.2 Hz). Regarding the SR response to the following proton flux later in

452 the Bastille Day event (Fig. 2), the largest frequency decrease is recorded in the EZ field

453 component (Table 4) and is *0.8 Hz. Use of Eq. (1) for a uniform model with the

454 assumption that the proton event involves only a change in he shows that a height decrease

455 from 52 to 42 km is required. This diminished height is substantially less than the model

456 prediction (28 km) for the Bastille Day event (Ondráškova 2005), and this may be due to

457 our use of a uniform model for interpretation. The evidence in Fig. 1 suggests that protons

458 with energy in the range of 30–100 MeV dominate this modification in ionospheric height

459 in the magnetically unshielded polar regions, and also validates the assumption that only

460 the lower characteristic height is affected by these protons.

461 For the Halloween event, we consider again the very consistent frequency response at

462 several stations (Figs. 6, 7, 9, 10) to X-radiation on a substantially longer timescale,

463 supporting the global nature of the response. Table 5 (‘‘Appendix’’) shows a frequency

464 increase of*0.2 Hz recorded at Mitzpe Ramon for the fundamental mode. This change is

465 comparable to the first SR response (?0.20 Hz) to the change in X-radiation over the solar

466 cycle in Sátori et al. (2005), but it must be remembered that the competing effects of the

467 protons are superimposed on the X-ray contributions for the Halloween event. In the

468 present case, the use of Eq. (1) for a uniform cavity requires a diminishment of hm from the

469 reference level (Sátori et al. 2005) of 99 to 94 km to account for the measured frequency

470 change, and with no modification of the lower height he.
471 Regarding the frequency response to the proton arrival that peaks up on October 29 in

472 association with the coronal mass ejection (Lopez et al. 2004) as shown in Fig. 8 or the

473 Halloween event, Table 5 (‘‘Appendix’’) shows a frequency decrease of *0.2 Hz in the

474 Hew component of magnetic field. Referring again to Eq. (1) shows that this diminishment

475 of frequency will require a drop in the lower height he from the reference level of*52 km

476 (Sátori et al. 2005) to 48 km. This is a rather modest change, and according to the

477 calculations in Fig. 1, which indicates a predominant role of protons with energy not much

478 more than 30 MeV. However, because of the simultaneous occurrence of effects from both

479 protons and X-radiation, serving to dilute the impact of the protons, this interpretation must

480 be treated cautiously.

481 In pioneering work on this subject, Schlegel and Füllekrug (1999) found increases in

482 daily-averaged Schumann resonance frequencies associated with a collection of nine solar

483 proton events. These observations run counter to both earlier theoretical and experimental

484 results (Madden and Thompson 1965; Nelson 1967), to later observations on the Bastille

485 Day event (Roldugin et al. 2003; De et al. 2010) and other relativistic solar precipitation

486 (Roldugin et al. 1999, 2001), to more recently published results (Zhou and Qiao 2015), and

487 to the results shown in this study for two of the strongest solar proton events on record.

488 Three possible explanations for this apparent discrepancy are suggested. The first is that the

489 events chosen by Schlegel and Füllekrug (1999) involved dominant proton energies not

490 much greater than 1 MeV, and so according to Fig. 1, only the upper characteristic height
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491 of the Schumann cavity is affected, consistent with their own theoretical interpretation.

492 Further resolution here will require a more complete look at the proton energy spectra for

493 the selected events. The second reason is that X-radiation in the same events is not

494 considered. In many proton events, the faster moving X-radiation arrives from the Sun

495 ahead of the protons, and produces systematic frequency increases in SR, on both short

496 (Roldugin et al. 2003, 2004; De et al. 2010; Fig. 2 in this study) and long [Sátori et al.

497 (2005)] timescales, with the general interpretation being that only the upper characteristic

498 layer is affected. This explanation is problematic, however, because in general, after an

499 initial relatively short X-ray event, a much long sustained flux of energetic protons is

500 observed (Roldugin et al. 2004; Belov et al. 2005), which one would expect to dominate

501 the X-ray effects and preferentially influence the lower characteristic height. However, it

502 should also be noted that one of the largest solar proton events (October 1989) documented

503 by Schlegel and Füllekrug (1999) was later shown (Belov et al. 2005) to exhibit an

504 elevated flux of X-radiation throughout the two-week-long event. The third reason is

505 related to the second one. These authors had access to SR frequency changes at the Arrival

506 Heights ELF station with only daily resolution. Given the evidence for variable contri-

507 butions from different species (X-rays, protons and electrons) at shorter timescales than

508 1 day may lead to aliasing of the results.

509 Distinct contrasts in the frequency response on magnetic coils oriented east–west and

510 north–south have been documented for both the Halloween Event (most strongly at the

511 Mitzpe Ramon station, as shown in Fig. 7, and less prominently at Parkfield, as shown in

512 Fig. 9) and for the Bastille Day event (on the Rhode Island station, as shown in Fig. 2).

513 The systematic nature of the observed response, namely a substantially larger lowering of

514 frequency in the EW magnetic field relative to the NS field, was shown earlier for the same

515 Bastille Day event by Nickolaenko and Hayakawa (2002, Fig. 6.30), at another ELF station

516 at Karymshino (53�N, 158�E) in Kamchatka. (In additional documentation of the Bastille

517 Day event by Roldugin et al. (2003), De et al. (2010) and Sanfui et al. (2015), only one SR

518 field component is shown so these contrasts in frequency behavior cannot be explored.)

519 Anisotropic effects on phase speeds of Schumann resonance waves can be expected when

520 the polar regions are more strongly affected by ionizing particles than lower latitudes. In all

521 these cases, reductions in modal frequencies are noted, consistent with a greater separation

522 between the two characteristic heights he and hm in Eq. (1), caused primarily by a lowering

523 of he relative to hm. Charged particles electrons and protons will find easier entry into the

524 lower and upper D-regions of the ionosphere along the Earth’s magnetic field lines, where

525 the impact on heights will be more dramatic. Global waves propagating meridionally and

526 sampled in the EW component of magnetic field will propagate through both polar regions,

527 whereas zonally propagating waves, sampled in the NS magnetic field, are expected to be

528 less affected by the polar modifications.

529 In the same manner that solar proton events induce anisotropy in the frequency response

530 for two magnetic field directions, one might expect that pure X-ray bursts might induce

531 anisotropy by affecting the upper characteristic height at low latitudes preferentially rel-

532 ative to the meridional path linking the polar regions. In this scenario, the Hns frequency is

533 expected to increase more strongly than the Hew frequency. Some slight indication of this

534 expectation can be seen in Fig. 2 for the Rhode Island records for the initial X-ray

535 excursion for the Bastille Day event where one can make comparisons for three resonant

536 modes. A search for such an effect in more numerous but weaker X-ray events in Roldugin

537 et al. (2004) does not show any obvious tendency.
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538 5.2 Interpretation of Results: Intensity Variations

539 The effects of height of the Earth–ionosphere cavity on Schumann resonance intensity

540 have long been recognized (Madden and Thompson 1965; Sentman and Fraser 1991;

541 Schlegel and Füllekrug 1999; Füllekrug et al. 2002; Greifinger et al. 2005). The role of

542 X-radiation and energetic protons in the ionization of D-region altitudes of interest for SR

543 is also well known (Richmond and Venkateswaran 1971; Sentman 1990; Hargreaves 1992;

544 Roldugin et al. 2003, 2004; Ondráškova 2005; Sátori et al. 2005) and has been reviewed in

545 Sect. 3.1. In the context of the analytical treatments for the Earth–ionosphere cavity

546 (Greifinger and Greifinger 1978; Mushtak and Williams 2002; Greifinger et al. 2007), it is

547 essential that the ionizing radiation affect at least one of two characteristic heights to be

548 effective in modifying Schumann resonance intensities. In this context, Williams and

549 Sátori (2007) have emphasized the need for large changes in ionization to enact appre-

550 ciable changes in the two characteristic heights. The reason for this need is that generally

551 height is logarithmic in conductivity, with the implication that an order of magnitude

552 change in conductivity is needed to enact a change in characteristic height (lower or upper)

553 equal to one scale height. One conductivity scale height (*5 km) is typically quite small

554 in comparison with typical characteristic heights (50–90 km).

555 It turns out, however, that for both X-rays and solar proton emission from the Sun, the

556 changes in intensity on record for exceptional events can be several orders of magnitude.

557 Variations in X-ray intensity of two orders of magnitude and more have been documented

558 on both short and long timescales (Belov et al. 2005; Sátori et al. 2005). Documented

559 intensity changes in solar proton events in certain energy ranges can be even more dra-

560 matic. For the Bastille Day event, a five-order-of-magnitude increase of proton flux with

561 energy[100 MeV in hourly time resolution has been documented. For the Halloween

562 event, five- and three-order-of-magnitude increases of energetic proton flux with energies

563 of[10 and[100 MeV, respectively, in daily time resolution were exhibited (http://spidr.

564 ngdc.noaa.gov/spidr/). These changes can translate to changes in lower characteristic

565 height amounting to several scale heights.

566 Greifinger et al. (2005) have made predictions based on the transmission line treatment

567 of SR by Kirillov (1996) and others for changes in SR amplitude as a function of changes

568 in ionospheric height.

569 The predictive equations for the field response of the three field components (Er, Hu and

570 Hh) to height variations are reproduced below. MS, which is frequency dependent, is the

571 charge moment of the lightning source, he is the lower (capacitive, electric) height and hm
572 is the upper (inductive, magnetic) height. Parentheticals (S) and (O) refer to heights over

573 the source region and over the observer region, respectively, which were also considered

574 earlier by Madden and Thompson (1965; page 244).
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581 The effect of wave propagation between source S and observer O represented by some

582 formula U representing the electric field response to point source excitation along the great

583 circle path between source (S) and observer (O). For a uniform cavity (no lateral variations

584 in heights of either kind) U is analytic, is the voltage on the transmission line represented

585 as the product of the local electric field and the local constant ‘electric’ height, and can be

586 found in works by Wait (1962); Huang et al. (1999), Nickolaenko and Hayakawa (2002)

587 and Sátori et al. (2009). U0 is the magnetic field and is obtained analytically from U by

588 application of Faraday’s Law. For the non-uniform cavity, one no longer has an analytical

589 form, and hence the justification for the use of the symbolic forms U and U0 above. But

590 despite the loss of the analytic form, the scaling of the fields with waveguide heights is

591 known from the transmission line/telegraph equation analogy. We assume here that during

592 the days of solar events in question, that the distance-dependent variations of U and U0 are

593 invariant with time as the source–observer geometries are not appreciably modified from

594 day to day, and so we do not need to know these U, U’ quantities in making our predictions

595 for field/intensity changes.

596 Simple assumptions are made here about height variations in X-ray and solar proton

597 events to see what amplitude changes can be expected. As noted earlier, X-rays in the

598 wavelength region 0.1–0.8 nm have a ‘Chapman layer’ in the vicinity of 90 km height

599 (Richmond and Venkateswaran 1971). For the solar X-ray enhancement amounting to two

600 orders of magnitude, and a conductivity increase of about one order of magnitude, the

601 treatment in Sátori et al. (2005) is repeated. This involves a height decrease (at 8 Hz) by

602 about one scale height from hm = 99 km to hm
0
= 94 km. It should be noted here, how-

603 ever, that the decrease in lower characteristic height consistent with the observed fre-

604 quency change for the uniform model is substantially less than the model prediction (42 vs.

605 28 km). This diluted result is consistent with the realization that the big height change is

606 confined to the polar region, where the protons are the guided by the Earth’s magnetic field

607 there where the majority of the Earth’s magnetic field lines enter and exit. Given these

608 estimates for original and perturbed characteristic heights for the two influences of incident

609 X-rays and protons, the equations can be used to estimate percentage changes in field

610 amplitudes. The results of these simple calculations are included in Tables 2 and 3 below,

611 one each for the electric and the magnetic field. Each Table provides estimates for the

612 percentage change in field amplitude for each of two ionization processes (X-rays and

613 protons) and for each of two observer locations (one mid-latitude and one high latitude).

614 Here, we are assuming unperturbed heights he = 52 km and hm = 99 km, following Sátori

615 et al. (2005) and perturbed heights of he = 42 km and hm = 94 km. (In this context, it is

616 noteworthy that Ondráškova (2005) estimated a decrease in he to 28 km in modeling work

617 on the Bastille Day event.) The impact on he at low latitudes is ignored because of

618 magnetic shielding of the protons by the geomagnetic field.

619 In the case of predictions for X-ray effects, the same percentage variations of hm (S) and

620 hm(O) can cancel the X-ray effect in the amplitude of the field components. The amplitude

621 decreases (-5 %) if only hm(S) decreases and the amplitude increases (?5 %) if only

622 hm(O) decreases. (The intensity changes in percent will be approximately twice these

623 values, namely if the relative amplitude variation is 1 ? 1.05 then the relative intensity

624 variation is 12 ? 1.052 = 1.1025, that is *10 %.) In general both hm(S) and hm(O) vary

625 simultaneously, but with different magnitudes. The symbolic equations enable us to make

626 estimates for a non-uniform cavity, too, in the case of solar X-radiation if the source

627 (S) and the observer (O) are on the different (sunlit or dark) sides of the cavity. Therefore,

628 in Table 2 and 3 for the X-ray variations, a maximum percentage range of (-5 %)–(0 %)

629 is given for SR electric field as well as (-5 %)–(?5 %) for SR magnetic field at 8 Hz.
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630 Parkfield is in a special geographical position as shown in Fig. 15. There are several local

631 daytime hours when the main tropical chimney regions are mostly under nighttime con-

632 ditions during the Halloween event, and the X-ray effect on hm(S) can be neglected while

633 hm(O) decreases. This can explain why the magnetic field intensity increases at Parkfield in

634 local daytime hours during the days of the Halloween event (see Fig. 13). With the

635 exception of the high-latitude observer, for which localized effects on amplitude are

636 dominant, the predicted changes in amplitude for low-to-mid-latitude stations are quite

637 modest at only a few percent. At high latitude, the expectation for a large positive

638 amplitude effect is dependent on a decrease in he over the observer for the electric field

639 prediction. It means*19 % increase of EZ amplitude if he(O) changes from 52 to 42 km.

640 It can also be supposed that protons with smaller energies (\3 MeV, see Fig. 1) can

641 influence hm(O), too, and consequently the magnetic field components can also increase.

642 For example if hm(O) changes from 99 to 88 km, this means an *11 % increase in the

643 magnetic amplitudes. It can be stated that the increase of the field amplitudes in the polar

644 region is highly dependent on the energy of the incoming protons (charged particles).

645 A search for SR intensity changes at mid-latitude station associated with the Bastille

646 Day event (Figs. 3 and 4) West Greenwich, Rhode Island, was shown earlier in Sect. 4, no

Table 2 Predicted amplitude changes for Schumann resonance electric field (at 8 Hz), based on the

symbolic Eq. (3)

Mid-latitude observer High-latitude observer

X-radiation (-5 %)–(0 %) (-5 %)–(0 %)

Proton 0 % ?19 %

The global lightning source is assumed to predominate at low latitude

Table 3 Predicted amplitude changes for Schumann resonance magnetic field (at 8 Hz), based on the

symbolic Eqs. (4) and (5)

Mid-latitude observer High-latitude observer

X-radiation (-5 %)–(?5 %) (-5 %)–(?5 %)

Proton 0 % ?11 %

The global lightning source is assumed to predominate at low latitude

Fig. 15 Sunlit and dark side of the Earth when the Parkfield SR station (indicated with red dot) is on the

dayside at 15 h LT (left) and on the nightside at 03 h LT (right)
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647 conspicuous evidence was found and a *10 % intensity increase related to the bursty

648 X-ray period of the Halloween event was identified in the magnetic field component at

649 Parkfield, but only in the daytime hours and mainly for the HNS field component (see

650 Fig. 13). An intensity decrease of some ten percent appeared in the vertical electric field

651 component at Nagycenk (see Fig. 14) during the quasi-simultaneous episodes of the

652 energetic proton flux and the main depression of the huge Forbush-decrease. The latter

653 event can result in an increase of the he(O) and consequently an additional decrease of EZ

654 due to the decreased cosmic ray ionization with the Forbush-decrease (the first equation in

655 the set of three above). However, the increased damping corresponds to an expected

656 decrease of the Q factor at PKD, contrary to the predictions based on the analytical

657 expression for Q factor. So the uniform model seems inadequate to describe this com-

658 plicated condition. We did not make model predictions for the damping parameter for the

659 results shown in Fig. 14.

660 These results are consistent with the predictions for amplitude changes in Tables 2 and

661 3 for the electric and magnetic field, together with the competition from the natural

662 variability of the intensity which amounts to tens of percent on these relatively short

663 timescales.

664 These findings are also consistent with a host of earlier published results at mid-latitude

665 stations. For example, Sentman (1996) found no measureable response in SR intensity to

666 large solar storms in the fall of 1989 [the same storms also investigated by Schlegel and

667 Füllekrug (1999) at a high-latitude site] at two mid-latitude stations in California and

668 Australia. Likewise, Roldugin et al. (1999) found no substantial response of the SR

669 amplitude to solar proton events. Roldugin et al. (2001) reported a mixture of results for

670 four solar events in the 1997–1998 time frame. In two cases, decreases of the order of tens

671 of percent in magnetic amplitude were noted, in a third a weak decrease of amplitude and

672 in the fourth no change was detected. The negative signs of the observed changes are also

673 possible in accordance with the predictions in Table 3 but the magnitudes are on the high

674 side, and questions remain about the reality of the physical linkages, given the natural

675 variability. In a still later analysis pertaining to the Bastille Day event, Roldugin et al.

676 (2004) reported: ‘‘Neither in Lovozero (68�N, 35�E) nor in Karymshino (53�N, 158�E) any

677 appreciable effect (in magnetic amplitude) is found in any components and modes.’’

678 Regarding the situation at high latitude, it is important to note the predictions for

679 magnetic amplitude for the observer at high latitude where the height change is local to that

680 location (the second equation in the set of three above). The magnetic amplitude change is

681 appreciable only if the upper characteristic height hm is reduced, as noted above. This

682 prediction is consistent with the inconspicuous change in the Vernadsky magnetic intensity

683 at the time of the large proton flux for the Halloween event. For solar protons, we now have

684 abundant evidence that it is the lower height that is affected, not the upper one. The

685 remaining puzzle pertains to the daily mean amplitude increases up to a few tens of percent

686 at Arrival Heights, another high-latitude station, reported by Schlegel and Füllekrug

687 (1999). This would suggest that the hm values are reduced in keeping with their theoretical

688 interpretation, but not in keeping with the evidence that energetic protons are more likely

689 to lower the he values.

690 5.3 Similarities on the Longer Timescale of the 11-year Solar Cycle

691 Part of the motivation for investigating the effects of energetic solar emissions on short

692 timescales came from the earlier analysis on the 11-year solar cycle timescale (Sátori et al.

693 2005). In that work, it was shown that a two-order-of-magnitude increase in hard X-radiation
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694 at solar maximum was responsible for a worldwide increase in Schumann resonance modal

695 frequencies. Now that the Halloween event has been explored on a timescale intermediate

696 between the single-day Bastille Event and the 11-year solar cycle, we are now equipped to

697 address the evidence for a timescale independence of the SR X-ray response. Figure 16

698 compares records of 10.7 cm radiation and sustained X-radiation from the Sun for the

699 11-year solar cycle on the left and the Halloween event on the right. The 10.7 cm solar

700 radiation is generally used as an indication of solar EUV radiation which is the main

701 ionization source of the upper D-region in daytime. In this depiction, the time history of the

702 Halloween event appears as a miniature version of the solar cycle, though with slightly

703 elevated radiation levels in comparison with the solar cycle. The SR frequency variations

704 follow most closely the time history of the bursty period of X-radiation of more than two

705 orders of magnitude of flux changes as shown in Figs. 6, 7, 9 and 10. The frequency

706 variations do not run parallel with the*threefold flux changes in the 10.7 cm solar radiation

707 (Williams and Sátori 2007). The systematic and conspicuous positive SR frequency response

708 to X-radiation during the Halloween event has been documented in Figs. 6, 7, 9 and 10 and a

709 similar response to X-radiation on much shorter timescale in the Bastille Day event in Fig. 2.

710 Yet another short term X-ray event was documented in Sátori et al. (2005). Now the SR

711 responses can be assembled for comparison in Tables 4, 5, 6, 7 and 8 in the ‘‘Appendix’’. The

712 sign of the frequency variations can be compared and the magnitudes, too, if the frequencies

713 were determined by the same spectral technique like as at RI and in MR. Here, it is seen that

714 the frequency increases for the 1st SR mode are ordered by the magnitude of the X-radiation

715 flux, independent of the timescale over which the event occurs.

716 When the records of energetic protons are considered on the widely different timescales

717 of the Halloween event and the 11-year solar cycle, less similarity is apparent. The duty

Fig. 16 Flux comparisons on long (11-year solar cycle, left panel) and short (*2-week period of

‘Halloween’ event in October/November, 2003, right panel). Upper plots represent 10.7 cm radiation flux.

Lower plots show GOES solar X-radiation (0.1–0.8 nm wavelength) fluxes. The variations in both fluxes are

of comparable magnitude on these two quite different timescales
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718 cycle of the protons for the Halloween event is substantially larger than for the solar cycle,

719 with more than half of the overall period of enhanced X-radiation also exhibiting proton

720 enhancements (Fig. 5). On the latter timescale, the general incidence of energetic protons

721 follow the solar cycle and with a rough two-order-of-magnitude change, but the proton flux

722 is highly episodic (Feynman et al. 1990) by comparison and in marked contrast with the

723 quasi-steady variation in the background X-radiation (Veronig et al. 2004) also shown in

724 Fig. 16. The search for an explanation of the sustained enhancement of SR magnetic

725 intensity near solar maximum at the high-latitude station at Vernadsky (Antarctica) arose

726 in this context (Williams et al. 2014). It was also noticed that independent estimates of

727 ionospheric height on a global basis showed a noticeable reduction sustained in time at

728 higher latitude (Toledo-Redondo et al. 2012). The impact of local height changes on SR

729 amplitude was first noted by Madden and Thompson (1965, page 244) but that has since

730 been quantified (Greifinger et al. 2005) with the Eqs. (3) to (5) by the local observer height.

731 A key point in the interpretation of Eq. (4) is that no appreciable increase in amplitude will

732 be manifest at the high-latitude station unless the upper (magnetic) magnetic height is

733 lowered. Yet much evidence has accrued in this study that protons will affect primarily the

734 lower characteristic height there, and indeed, little change in magnetic intensity was noted

735 at Vernadsky (not shown) in response to the energetic protons in the Halloween event. But

736 returning to the solar cycle timescale, if 50 keV electrons are available, Fig. 1 shows that

737 they are most likely to affect the upper characteristic height and on the basis of Eqs. (4)

738 and (5) lead to an enhanced amplitude at solar maximum. Recent discussions (D. Baker, B.

739 Blake and H. Spence, personal communication, December 2014) indicate that such ener-

740 getic electrons are available from the Earth’s inner radiation belt and may be the main

741 players in modulating the SR intensity at Vernadsky over the 11-year solar cycle. This

742 suggestion is currently under further investigation.

743 6 Conclusions

744 The main conclusions to be drawn from this work are as follows:

745 1. Generally speaking, X-rays with wavelengths in the 0.1–0.8 nm range affect the upper

746 characteristic height and solar protons primarily the lower characteristic height of the SR

747 cavity. This result is already well known but is strongly substantiated by results shown

748 here, and the unanimous multiple-station documentation assures the global nature of the

749 phenomena. The linkage with specific altitudes of the ionosphere is consistent with

750 independently published results on penetration depth versus particle energy.

751 2. Time-resolved frequency variations are essential in diagnosing independent ionizing

752 effects of X-rays and energetic protons on the Earth–ionosphere cavity.

753 3. The effect of X-radiation on SR frequency increase is not monotonic with X-ray flux and

754 this is probably due to the overlapping effects of the protons that typically force the phase

755 speeds of ELF waves and the attendant modal frequencies in the opposite direction.

756 4. The impact of charged particle events, most notably the energetic proton events on

757 short timescales, is predominant in polar regions. As a consequence, ELF propagation

758 paths in the meridional direction are more strongly affected than those in the zonal

759 direction. The larger frequency decreases in the east–west magnetic field components

760 compared to the north–south components is consistent with this physical picture.

761 5. In response to solar events, the SR response in frequency is most conspicuous and in

762 amplitude least conspicuous (consistent with earlier work by Williams and Sátori 2007).
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763 6. The inconspicuous response of SR amplitude/intensity to the most energetic solar

764 events on record is consistent with theoretical considerations and provides additional

765 indirect evidence that the SR intensity is primarily a record of the lightning activity

766 within the Earth–ionosphere cavity. This finding provides additional encouragement to

767 make use of the natural framework of SR to monitor the global lightning activity in

768 absolute units (Williams and Mareev 2014).

769 Future analyses of major perturbations of the SR will benefit from the use of a cavity

770 model with both day–night and polar asymmetry, and a common processing of all receiver

771 data sets for the same modal frequencies.
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783 Appendix

784 Tables of Modal Frequency Variations in Response to Specific Solar Events

785 See Tables 4, 5, 6, 7 and 8.
786

787

Table 4 Schumann resonance modal frequency changes at West Greenwich, Rhode Island, for the Bastille

Day event: July 14, 2000

Mode

number

RI, EZ RI, HEW RI, HNS

X-ray burst

(Hz)

Proton flare

(Hz)

X-ray burst

(Hz)

Proton flare

(Hz)

X-ray burst

(Hz)

Proton flare

(Hz)

1st mode ?0.2 -0.8 ?0.3 -0.5 ?0.3 -0.3

2nd mode ?0.3 -1.0 ?0.5 -1.0 ?0.5 -1.0

3rd mode ?0.5 -1.2 ?0.5 -1.0 ?0.7 -1.2

Table 5 Schumann resonance modal frequency changes at Mitzpe Ramon, Israel, for the Halloween Event:

October–November, 2003

Mode number MR, EZ MR, HEW MR, HNS

X-ray (Hz) X-ray (Hz) Proton flare (Hz) X-ray (Hz)

1st mode ?0.2 ?0.2z -0.2 ?0.2

2nd mode ?0.3 ?0.6 -0.6 ?0.4

3rd mode ?0.4 ?0.5 -0.5 ?0.5
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