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EFFECTS OF ENVIRONMENTAL REGULATIONS ON MANUFACTURING
PLANT BIRTHS: EVIDENCE FROM A PROPENSITY SCORE

MATCHING ESTIMATOR

John A. List, Daniel L. Millimet, Per G. Fredriksson, and W. Warren McHone*

Abstract—This study examines the effects of air quality regulation on
economic activity. Anecdotal evidence and some recent empirical studies
suggest that an inverse relationship exists between the stringency of
environmental regulations and new plant formations. Using a unique
county-level data set for New York State from 1980 to 1990, we revisit
this conjecture using a seminonparametric method based on propensity
score matching. Our empirical estimates suggest that pollution-intensive
plants are responding to environmental regulations; more importantly, we
find that traditional parametric methods used in previous studies may
dramatically understate the impact of more stringent regulations.

I. Introduction

WHETHER air quality regulation influences the forma-
tion of capital merits serious consideration. In the

United States, the spirit of the Clean Air Act was to clean up
source emissions rather than influence the industrial makeup
of certain regions. In this sense, a finding that federal air
quality regulation has influenced capital flows is against the
fundamental intentions of the Clean Air Act. Indeed, an
important factor leading to the creation of the Environmen-
tal Protection Agency in 1968, which resulted in a domi-
nating federal presence in environmental policy, was that
local discretion over environmental regulation may induce a
“race to the bottom” to attract mobile capital.1 Although
anecdotal evidence from the popular press certainly sug-
gests that capital responds to heterogeneous environmental
standards, empirical estimates in the received literature,
which range from positive and significant to negative and
significant, lead most to conclude that the relationship is
weak at best (see, for example, Jaffe et al., 1995).

Recently, however, several influential studies have pro-
vided strong evidence indicating that federal air quality
regulations do indeed affect capital flows in pollution-
intensive manufacturing plants (Henderson, 1996; Green-
stone, 1998; Becker and Henderson, 2000). Yet, each study
maintains the assumption that stringency of local environ-
mental regulations, determined by county-level attainment
status of the primary federal standard for various pollutant
types, is strictly exogenous, lending the studies a setting

akin to a “natural experiment.”2 Because intuition suggests
that, for example, the location of new polluting plants in
areas currently in attainment leads to higher pollution levels,
and subsequently more stringent regulation if the attainment
status threshold is bypassed, the assumption that attainment
status is strictly exogenous is not trivial. Although quite
convenient, given the county air quality distributions pre-
sented in Henderson (1996, figures 1 and 2), one could
reasonably conclude that a fair number of counties are on
the cusp of the nonattainment threshold. Thus, a few new
pollution-intensive plants in some counties today could shift
their regulatory status to out-of-attainment next period.3

The goal of this study is to examine the effects of air
quality regulation on new-plant formation using a seminon-
parametric propensity score matching method. Whereas
matching methods are applicable primarily to problems of
selection on observables, we employ a difference-in-
difference matching estimator, similar to the efforts in
Heckman, Ichimura, and Todd (1997) and Smith and Todd
(2000), to control for the presence of unobservables that
under normal circumstances may lead to biased estimates.
As a point of reference, we compare empirical estimates
from the matching method with various parametric specifi-
cations. In particular, we relax the exogenity assumption
imposed in the earlier analyses of the effect of attainment
status on plant location by estimating a two-step fixed-
effects Poisson model, similar in spirit to Mullahy (1997)
and Windmeijer and Silva (1997). We also estimate para-
metric models on the data subsamples obtained from the
matching algorithm to investigate differences between the
various estimates.

Using a unique county-level panel data set on the location
decisions of manufacturing plants from 1980 to 1990 in
New York State, we obtain several interesting results. First,
using parametric methods on the full data sample, we find
little evidence that attainment status has a systematic effect
on the location decisions of plants, regardless of the treat-
ment of attainment status as exogenous or endogenous.
Second, empirical estimates from various propensity score
matching algorithms provide strong evidence that environ-
mental regulations have statistically and economically sig-
nificant effects on pollution-intensive plant formation, even
after differencing out unobservables not captured by the
propensity score method. This result suggests that the
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example, List (2001).
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effects of environmental regulation on new-plant formation
may be considerably larger than previously reported, and
the difference is not due to the treatment of attainment status
as strictly exogenous. Moreover, our empirical estimates
strongly indicate that current U.S. environmental air quality
regulations may be leading to a “graying” process whereby
counties historically free of pollution become havens for
polluters. Finally, as the parametric models treating attain-
ment status as either exogenous or endogenous, estimated
on the matched subsamples (obtained from the matching
method), approach the matching estimates (but remain
smaller), we conclude that sample composition only plays a
partial role in explaining the estimation differences.

II. Data and Empirical Methodology

A. The Data

The plant location data come from the comprehensive
Industrial Migration File (IMF) that was maintained until
1990 by the New York State (NYS) Department of Eco-
nomic Development (DED). The intent of the IMF was to
monitor all gains and losses in manufacturing activity in
NYS by county on an annual basis. The data units in the
IMF are case observations of individual plant openings,
closings, expansions, and contractions. The information in
the IMF file was assembled from a variety of sources,
including regional offices of the NYS Department of Com-
merce, local chambers of commerce, the NYS Department
of Labor, newspapers, and private reporting sources. The
DED regional offices verified all reported projects before
their inclusion in the data set.

A major advantage of these data is that case-specific
information is not suppressed (Michalke, 1986). Thus, there
are opportunities for improving precision and data analysis
not heretofore available even from the Longitudinal Re-
search Database (McGuckin, 1990). Furthermore, data are
available annually—many recent studies on manufacturing
activity have extrapolated information from the Census of
Manufacturers database, which is only available in five-year
intervals. Although Census data are extremely comprehen-
sive, this limitation is unfortunate, as many plants start up
and die within a five-year window. For example, our com-
putations yield hazard rates amongst new plants in the
25%–30% range, consonant with the published literature.4

Our data are not without cost, however. One shortcoming
is that since no statute exists requiring plants to furnish
information to the state, DED makes no claim that the IMF
is comprehensive. In addition, the IMF excludes some plant
activities involving either small investment activity (less
than $100,000) and/or modest changes in employment (less
than 25 employees). Nevertheless, comparisons with Cen-
sus of Manufacturers data suggest that IMF coverage is

extremely broad for all but the smallest size classes. A
second limitation is that the data are only available for NYS.
However, we view the results as indicative of the general
process underlying capital location decisions throughout the
United States.

The IMF classifies plant activity by Standard Industrial
Classification (SIC) code. Following previous studies, we
focus on plants in pollution-intensive sectors most likely to
be affected by county-level ozone attainment status.5 Given
that attainment status is determined by county-level air
quality readings, we follow Greenstone (1998) and classify
sectors based on their emission levels. Using information
from EPA’s Sector Notebook Project, we label industrial
sectors as ozone-pollution-intensive if they emit at least 6%
of the total industrial sector’s emissions of nitrogen oxide or
volatile organic compounds, the primary chemical precur-
sors to ozone. Plants labeled pollution-intensive area in SIC
codes 2611–2631, 2711–2789, 2812–2819, 2861–2869,
2911, 2930, 2932, 3312–3313, 3321–3325, 3334, and 3371.

After classifying new plants, the data are aggregated to
the county level. In total, we observe location decisions of
280 pollution-intensive plants across the 62 counties in
NYS over the sample period. We then combine this measure
with each county’s ozone attainment designation, as well as
other county-level attributes (discussed below).6 Over the
sample period, slightly more than 25% of the county obser-
vations are out of attainment. Summary statistics are pro-
vided in table A1 in the appendix.

B. The Empirical Models

Propensity Score Matching Method: A method of as-
sessing the effect of environmental regulations on new-plant
location patterns heretofore not utilized is the method of
propensity score matching developed in Rosenbaum and
Rubin (1983). It is extensively used by statisticians, but
economic applications have been sparse until recently. A
few notable examples include Heckman et al. (1997), De-
hejia and Wahba (1999, 2002), and Smith and Todd (2000).

The fundamental problem in identifying treatment effects
is one of incomplete information. Though the econometri-
cian observes whether the treatment occurs and the outcome
conditional on treatment assignment, the counterfactual is
not observed. Let yi1 denote the outcome of observation i if

4 Without a grasp of the underlying spatial distribution of such births,
one cannot predict, a priori, the magnitude or sign of the bias (if any).

5 The 1977 Clean Air Act Amendments set standards on five criteria air
pollutants: sulfur dioxide (SO2), carbon monoxide (CO), ozone (O3),
nitrogen oxides (NOx), and total suspended particulates (TSP). Since
ozone has attracted the most regulatory attention due to the limited
progress that has been made in reducing concentration levels, we follow
Henderson (1996) and focus on county attainment status of ozone.

6 Although attainment status can range from in attainment of the primary
standard to out of attainment, with partial standards in between, ozone
designation has typically been polar in nature; that is, a county is either in
or out of attainment. For a county to be labeled out of attainment, its
second highest daily air quality reading must exceed 0.12 parts per
million. Of the 62 NYS counties, 26 (3) are in (out of) attainment
throughout the sample period, while 33 counties experience both regimes.
Of these 33 counties, 29 are out of attainment for a consecutive block of
time (more than two years).
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the treatment occurs (given by Ti � 1), and yi0 denote the
outcome if the treatment does not occur (Ti � 0). If both
states of the world were observable, the average treatment
effect, �, would equal y� 1 � y� 0, where the former (latter)
average represents the mean outcome for the treatment
(control) group. However, given that only y1 or y0 is
observed for each observation, unless assignment into the
treatment group is random, generally � � y� 1 � y� 0.

The solution advocated in Rosenbaum and Rubin (1983)
is to find a vector of covariates, Z, such that

y1, y0 � T�Z, pr�T � 1�Z� � �0, 1�, (1)

where � denotes independence. Yet, if one is interested in
estimating the average treatment effect, only the weaker
condition

E�y0�T � 1, Z� � E�y0�T � 0, Z� � E�y0�Z�,
(1	)

pr�T � 1�Z� � �0, 1�,

is required. To implement the matching technique, the
treatment group is defined as the set of counties labeled
out-of-attainment in a given year. For condition (1	) to hold,
the conditioning set Z should be multidimensional. Conse-
quently, finding observations with identical values for all
covariates in Z may be untenable. Rosenbaum and Rubin
(1983) prove, however, that conditioning on p(Z) is equiv-
alent to conditioning on Z, where p(Z) � pr(T � 1�Z) is
the propensity score. p(Z) is estimated via logit.

Upon estimation of the propensity score, a matching
algorithm is defined in order to estimate the missing coun-
terfactual, y0i, for each treated observation i. The simplest
algorithm is nearest-neighbor matching, whereby each
treated observation is paired with the control observation
whose propensity score is closest in absolute value (Dehejia
and Wahba, 2002).7 Unmatched controls are discarded. The
matching method, therefore, identifies a restricted control
group that better approximates the treatment group in terms
of pretreatment attributes. The treatment effect on the
treated (TT) is given by

�TT � E�y1�T � 1, p�Z�� � E�y0�T � 0, p�Z��
(2)

� E�y1 � y0�p�Z��.

We amend the nearest-neighbor algorithm in three direc-
tions. First, though a match exists for each out-of-attainment
county, the propensity scores may still be quite different.
Because the unbiasedness of the matching estimator relies
on the propensity scores being identical, pairs with scores
significantly different are excluded. This is known as cali-
per matching (Cochran and Rubin, 1973). Defining “signif-

icantly different” is arbitrary, however. As noted in Dehejia
and Wahba (2002), relaxing the definition permits more
pairs to be retained (increasing efficiency), but at the ex-
pense of introducing greater bias. Consequently, we present
estimates for two cutoff values.

Second, to take advantage of our panel data, we amend
the caliper-matching method by restricting the pool of
potential controls to which a given treated observation may
be paired. Specifically, we perform the matching exercise
three times: first, restricting matched pairs to be from the
same year; second, restricting matched pairs to be from the
same year and same region of the state (see figure A1 in the
appendix); and, finally, restricting matched pairs to be the
same county from a different year. By matching within year,
within year and within region, or within county, we explic-
itly remove any time-, region-, or county-specific unobserv-
ables not already controlled for by the propensity score.
This is the matching method’s analogy to fixed effects, and
is similar to the claims made in Smith and Todd (2000):
matches used to identify the effect of employment programs
should be from the same local labor market. Thus, the
estimator in (2) becomes

�TT,t � E�y1�T � 1, p�Z�, t� � E�y0�T � 0, p�Z�, t�
(3a)

� E�y1 � y0�p�Z�, t�,

�TT,r � E�y1�T � 1, p�Z�, t, r� � E�y0�T � 0, p�Z�, t, r�

� E�y1 � y0�p�Z�, t, r�, (3b)

�TT,i � E�y1�T � 1, p�Z�, i� � E�y0�T � 0, p�Z�, i�
(3c)

� E�y1 � y0�p�Z�, i�,

where t indexes year, r indexes region, and i indexes county.
Finally, we complement these main results by employing

a difference-in-differences (DID) matching estimator. Since
wehaveacountofbothpollution-intensiveandnon-pollution-
intensive plant formations for each county-year observation,
and the location decisions of “clean” plants should not be
affected by attainment status, any differences in the birth of
“clean” plants across the matched treatment and control
groups is assumed to reflect unobservable county-specific
qualities that are attractive to new plants. Thus, in the spirit
of similar estimators used in Smith and Todd (2000) and
Ham, Li, and Reagan (2001), we define the DID counterpart
to (3a)–(3c) as

�DID,t � �TT,t � �	TT,t, (4a)

�DID,r � �TT,r � �	TT,r, (4b)

�DID,i � �TT,i � �	TT,i, (4c)

where �	TT,t (�	TT,r, �	TT,i) is the mean difference in the birth
of “clean” plants across the matched treatment and control
groups. As the DID estimator only requires

7 Typically, nearest-neighbor matching is performed with replacement,
implying that a given control observation may be matched with multiple
treatment observations. Dehejia and Wahba (2002) verify that matching
with replacement faces at least as well as matching without replacement,
and possibly better.
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E�y0 � y	0�T � 1, Z� � E�y0 � y	0�T � 0, Z�
(1
)

� E�y0 � y	0�Z� pr�T � 1�Z� � �0, 1�

for identification, where y	0 is the count of new “clean”
plants, Smith and Todd (2000) conclude that DID matching
estimators are more robust. Below we present estimates of
the estimators in (3a)–(3c) and (4a)–(4c).

Upon completing the matching estimation, balancing and
specification tests are conducted. Balancing refers to the fact
that after conditioning on the propensity score, the distribu-
tion of the conditioning variables Z should not differ across
the treatment and control group in the matched subsample.
Thus, after matching, we also test for differences in the
mean of the Z’s. The specification test proposed by Ham et
al. (2001) requires testing for mean differences in the lagged
outcome across the matched treatment and control groups.
In the present context, this test serves two purposes. First, if
the lagged outcome differs across the treatment and control
groups, that suggests the presence of uncontrolled unob-
servables that may bias the estimated treatment effect.
Second, since lagged plant births may affect current plant
births due to agglomeration externalities, for example, then
any differences in lagged births may have a direct effect on
the outcome as well, further biasing the estimator.

Parametric Approach: For comparison purposes, we
also estimate several parametric models derived from the
partial equilibrium framework in Henderson (1996) and
Becker and Henderson (2000).8 In equilibrium, the count of
new (pollution-intensive) plants in county i at time t, Yit

(Y � {0, 1, 2, . . .}), is given by

Yit � exp�Xit�� �it � it (5)

where Xit is a vector of county attributes, including attain-
ment status, �it captures all unobservable, time-varying
attributes of county i and may be correlated with some of
the variables in Xit, and it is an error term satisfying E[�X,
�] � 0. Given the inclusion of a constant in Xit, we can
assume E[�] � 1 without loss in generality (Mullahy,
1997).

Equation (5) can be estimated via the fixed-effects (FE)
Poisson model of Hausman, Hall, and Griliches (1984;
hereafter HHG). Resulting estimates of � will be consistent
if E[��X] � E[�]; in other words, regressors in X may be
correlated with time-invariant, county-specific unobserv-
ables, but not time-specific, county-specific unobservables.9

Even if this assumption holds, standard errors from the
Poisson model are sensitive to over- or underdispersion in

the data. Thus, we also estimate negative binomial models,
which relax the restriction of equality of the conditional
mean and variance functions.

If E[��X] � E[�], then another estimator is needed.
Mullahy (1997) and Windmeijer and Silva (1997) discuss
various instrumental variables (IVs) and two-step solutions,
given a sufficient number of instruments, contained in the
vector Wit. IV solutions are typically estimated using a
generalized method of moments (GMM) framework. Two-
step estimators involve, in the case of continuous endoge-
nous regressors, either replacing endogenous variables with
their predicted values from a first-stage regression (and
adjusting the standard errors), or replacing X with W in (5)
and backing out an estimate of � (and its covariance matrix)
using a minimum-distance (MD) estimator.

If the source of endogenity is a dichotomous treatment
variable, as is the case with county-level attainment status,
the two-step solution is not as straightforward. Simply
replacing the attainment dummy with its predicted proba-
bility will not produce consistent estimates of � (Windmei-
jer and Silva, 1997). If one envisions plant location deci-
sions as dependent upon the latent variable underlying
attainment status, however, then consistent estimates of the
effect of that latent variable is obtained by replacing the
treatment variable in (5) with its predicted linear index. The
estimating equation then becomes

Yit � exp��T*it � X	it�	� �it � it, (5	)

where T*it is a latent variable such that if T*it � 0 then the
county is out of attainment (Tit � 1), and if T*it � 0 then
it is in attainment (Tit � 0). Therefore � is the parameter of
interest. X	it contains the remaining variables in Xit exclud-
ing attainment status, and �	 is the corresponding parameter
vector. Consistent estimates can be obtained by replacing
T* with W�, where T*it � Wit� � �it. Assuming � is
unknown, it can be estimated via logit or probit (and the
second-stage standard errors must be adjusted).

Modeling plant births as a function of latent attainment
status is perhaps a more appealing way of organizing loca-
tion decisions in the present context. If, for example, a
county is currently in attainment, but current air quality is
near the federally prescribed threshold, then a plant may still
opt not to start up, ceteris paribus, to avoid potentially more
stringent regulations in the future.

Prior to continuing, it is important to highlight the dif-
ferences between matching estimators and the parametric
Poisson estimators from the previous section. On the posi-
tive side, the matching estimator entails relatively few
distributional assumptions. Moreover the matching estima-
tor allows one to use additional endogenous variables that
are difficult to incorporate into standard parametric count
models: lagged values of the dependent variable and cur-
rent and lagged values of “clean” manufacturing plant
births. In a parametric world, one must rely on valid exclu-
sion restrictions that are uncorrelated with these omitted

8 Note that we have estimated this parametric model elsewhere with
these data, but they are parsed somewhat differently (see, for example,
List & McHone, 2000).

9 HHG estimates are also consistent in the presence of correlation
between variables in X and time-specific unobservables that are constant
across counties if X includes period-specific dummies. The breakdown
comes from http://visitnewyorkstate.net/regions.
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endogenous variables. Finally, matching estimators identify
a restricted subsample of control observations that are most
“similar” to the treatment group, whereas parametric models
utilize all available observations. The major disadvantages
are that: (i) matching estimators yield an estimate of the
treatment effect on the treated (TT), not the expected treat-
ment effect for an observation chosen at random, and (ii)
every treated observation may not have a match.

III. Empirical Results

A. Propensity Score Matching Estimates

Table A2 in the appendix presents the first-stage logit
estimates used to form the propensity score. The specifica-
tion is similar to the first-stage equation used in the two-step
HHG model (discussed below) with the inclusion of higher-
order terms and interactions to facilitate the balancing of the
covariates across the matched treatment and control groups
(Dehejia & Wahba, 2002).

The first matching algorithm pairs each out-of-attainment
county with the in-attainment county from the same year
having the nearest propensity score. Of the 176 treatment
(out-of-attainment) observations, we retain those with pro-
pensity scores that differ by less than 1% or 5%. Under
these cutoffs, 37 and 81 matched pairs are formed. Using
the same cutoffs but restricting matches to be from the same
year and region of NYS (see figure A1) reduces the number
of matched pairs to 8 and 16, respectively. Finally, matching
each treatment county to itself at a different point in time
and using the same cutoffs yields 9 and 11 matches, respec-
tively.10

Table 1 presents estimated mean differences between the
treatment and control groups, along with p-values associ-
ated with the null that the means are equal, for each of the
six matched subsamples. Examination of the table yields
three important insights. First, within-year and within-
county matching algorithms balance the mean of all the
covariates (at the p � 0.10 level) across the treatment and
control groups using the 1% cutoff; the within-year, within-
region algorithm balances the means using the 5% cutoff.
This includes the variables specifically controlled for in the
first-stage logit, as well as property taxes, the proportion of
the population with a high school diploma, and highway
expenditure. Thus, these algorithms satisfy the balancing
test.

Second, the three algorithms passing the balancing test
also pass the specification test proposed in Ham et al.
(2001): lagged pollution-intensive births and lagged net
births (defined as dirty births minus clean births) are bal-
anced as well. Finally, of these three algorithms, two (within-
year and within-county) yield negative, statistically signif-
icant (at the p � 0.10 level) estimates of the TT (�TT,t �

�0.32, p � 0.08; �TT,i � �1.33, p � 0.09); the
within-year, within-region estimate, though negative, is not
significant (�TT,r � �0.19, p � 0.60). However, as
aforementioned, a more robust estimate is the DID estima-
tor. Again, two of the three DID estimators (the within-year,
within-region one and the within-county one) yield nega-
tive, statistically significant estimates (�DID,r � �0.69, p �
0.05; �DID,i � �1.33, p � 0.03); the within-year estimate
is negative, but not significant (�DID,t � �0.35, p � 0.27).

Given the robustness of the DID estimators, and recog-
nizing that the within-year, within-region matching algo-
rithm is more likely to yield an unbiased estimate of the
treatment effect than matching within year alone—since it
removes any region-specific unobservables that may affect
the location decisions of pollution-intensive plants not al-
ready removed through the use of net births as the outcome
measure (e.g., differences in political activism across re-
gions)—implies an estimated “cost” of being out of attain-
ment that is between 0.7 and 1.3 new plants per year. As the
average county obtains 0.4 new (pollution-intensive) plants
per year, this represents a sizable percentage loss.

B. Parametric Results

To facilitate comparison with the received literature, we
begin by estimating (5), treating attainment status as exog-
enous. Choosing the most appropriate specification is diffi-
cult in view of the numerous specifications that have been
utilized (see, for example, Jeppessen, List, & Folmer, 2002).
To provide a fair comparison, we estimate four specifica-
tions. The baseline specification follows Henderson (1996)
and includes county FEs, county-level attainment status,
and a measure of scale (manufacturing employment) as the
determinants of new-plant formations. We then add addi-
tional controls for real manufacturing wages, population,
and real property taxes. Finally, we reestimate the previous
two specifications including time dummies.

Before discussing coefficient estimates, we should note
that the empirical results from Poisson and negative-
binomial specifications are generally similar, so we focus on
the HHG estimates.11 Columns (1) and (2) in table 2
presents empirical results from the specifications treating
attainment status as exogenous and including time effects.
Empirical results suggest that attainment status is a signif-
icant determinant of new-plant formations in pollution-
intensive industries, suggesting that being out of attainment
reduces the flow of births by approximately 50%.12 Since
the mean number of new pollution-intensive plants is 0.4,
these estimates imply that being out of attainment results in
an average annual loss of nearly 0.2 new plants. Although
economically significant, the point estimates are considerably

10 The number of “unique” controls used is 33 and 44 for the within-year
algorithm (1% and 5% cutoff, respectively), and 8 and 15 (6 and 7) for the
within-year, within-region (the within-county) algorithm.

11 For brevity, we only present selected results here. All results not
shown are available at http://faculty.smu.edu/millimet/pdf/ny1results.pdf.

12 We should note that in the specifications omitting time effects (results
not shown), attainment status coefficients are negative and significantly
different from zero at the p � 0.05 level in both specifications.
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smaller than the matching estimates presented in the previ-
ous section.

Our initial supposition as to why the HHG estimates are
3.5 to 6.5 times smaller in magnitude than the matching
estimates is that the parametric estimates are biased due to
the endogenity of attainment status. To explore this hypoth-
esis, we estimate the two-step model in (5	). Consistency of
the estimates relies on finding a valid instrument for attain-
ment status. Because attainment status depends on the
lagged level of air quality, which in turn depends on lagged
manufacturing activity, which in turn may affect plant
startup decisions on account of positive Marshall-Arrow-
Romer or negative Jacobs externalities, one is hard pressed
to argue that some particular attribute influences current
attainment status and not current births conditional on
attainment status.

In an attempt to circumvent this problem, we exploit a
natural phenomenon that has heretofore not been utilized:
wind direction. Since county-level attainment status is not
based on own emissions, but rather observed air quality
readings, emissions from neighboring counties may influ-
ence attainment status. We therefore use the proportion of
all contiguous western neighbors (the jet stream flows from
west to east) that are out of attainment to identify the
model.13 Before examining the two-step results, we note
that (western) neighboring attainment status is a highly
significant determinant of own attainment status ( p �
0.01; see table A2). Thus, there is no question of bias due

13 For counties located on the NYS border, we obtained data on the
attainment status of neighboring counties in other states to form the
appropriate instrument.

TABLE 1.—PROPENSITY SCORE ESTIMATES OF ATTAINMENT-STATUS EFFECT

Independent Variable

Matching Algorithm

Within Year Max.
Difference

Within Region & Year
Max. Difference

Within County Max.
Difference

(0.01) (0.05) (0.01) (0.05) (0.01) (0.05)

Propensity score �0.00 0.00 0.00 0.00 0.00 0.01
(0.99) (0.97) (0.98) (0.98) (1.00) (0.97)

New dirty plants (�TT,�) �0.32 �0.69 0.38 �0.19 �1.33 �1.18
(0.08) (0.00) (0.25) (0.60) (0.09) (0.07)

New clean plants 0.03 �0.59 1.25 0.50 0.00 �0.18
(0.95) (0.08) (0.07) (0.36) (1.00) (0.84)

Net new plants (�DID,�) �0.35 �0.10 �0.88 �0.69 �1.33 �1.00
(0.27) (0.68) (0.12) (0.05) (0.03) (0.08)

Lagged new dirty plants (1 year) �0.07 �0.06 0.71 0.43 1.00 1.04
(0.79) (0.70) (0.08) (0.10) (0.12) (0.05)

Lagged net new plants (1 year) 0.53 0.71 0.50 0.44 0.00 �0.14
(0.31) (0.04) (0.41) (0.43) (1.00) (0.74)

Man. wages ($1000s) �0.73 �0.20 �0.06 �0.91 0.54 �0.01
(0.33) (0.66) (0.98) (0.44) (0.60) (0.99)

Man. employment ($1000s) �38.86 �52.88 29.94 4.05 3.11 2.53
(0.27) (0.07) (0.63) (0.93) (0.98) (0.98)

Man. plants �0.72 �0.76 �0.79 �2.37 0.59 0.48
(0.52) (0.32) (0.82) (0.26) (0.70) (0.74)

Population (1000s) �53.91 �40.74 59.49 4.61 �0.65 �0.31
(0.50) (0.57) (0.55) (0.96) (1.00) (1.00)

Per capita income ($1000s) �0.09 0.15 �0.66 �0.61 0.33 �0.20
(0.89) (0.72) (0.79) (0.66) (0.84) (0.90)

Property tax �31.38 7.85 �389.13 �186.81 1.22 1.00
(0.40) (0.73) (0.06) (0.10) (0.98) (0.98)

High school graduates (%) �1.10 �0.85 �3.61 �3.39 �1.09 �0.89
(0.34) (0.29) (0.32) (0.12) (0.70) (0.71)

Highway expenditure �0.01 0.01 �0.16 �0.07 �0.00 �0.00
(0.38) (0.31) (0.09) (0.16) (0.97) (0.92)

Number of matched pairs 37 81 8 16 9 11
Number of unique controls 33 44 8 15 6 7

Entries represent mean difference between treatment counties (out of attainment) and control counties (in attainment). p-values in parentheses are for the tests that the mean difference across the treatment and
controls groups are equal.

“Dirty” plants are those defined as pollution-intensive (see text); “clean” are all remaining manufacturing plants.
“Unique controls” reports the number of control counties that are matched with at least one treatment county.
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to a weak instrument (Bound, Jaeger, & Baker, 1995).
Moreover, as the coefficient is positive, this is consonant
with our logic that emission spillovers affect the attainment
status of eastern neighboring counties.

In terms of the actual results—displayed in columns (3)
and (4) of table 2—the point estimates are �0.07 and
�0.08, respectively, although the confidence intervals are
extremely wide (90% confidence intervals are obtained via
1,000 bootstrap repetitions). When interpreting the magni-
tude of the two-step coefficients, one must note that the
two-step model does not provide an estimate of the treat-
ment effect per se, since the coefficient refers to a one-unit
increase in latent attainment status. Since the predicted
mean of latent attainment status (Zit�̂) is �2.3, a 2.3-unit
increase in latent attainment is required to move the average
county from in to out of attainment. Multiplying the esti-
mated two-step coefficients yields an estimated treatment
effect of roughly �0.2, with a 90% confidence interval of
approximately [�0.6, 0.3]. This implies a loss of around 0.1
new plant formations per annum from being out of attain-
ment. These estimates remain significantly smaller than the
matching estimates of between 0.7 and 1.3, and in fact are
not statistically significant. This result holds in the two-step
estimation of the specifications omitting time dummies as
well (results not shown).

Given that the discrepancy between the parametric and
matching estimates cannot be explained by a failure to treat
attainment status as endogenous, we seek an alternative
explanation. At least three possible explanations exist: (i)

the matching algorithm, by restricting the estimation to a
matched subsample more similar in terms of other at-
tributes, produces an estimator that is not subject to “outli-
ers”; (ii) the parametric assumptions of the Poisson model
are invalid; and (iii) the matching algorithm yields an
estimate of the treatment effect on the treated, while the
parametric approach estimates the treatment effect on a
random observation from the population.

As there is no formal specification test for the Poisson
model (other than testing for over- or underdispersion), we
focus first on the role of sample composition. Thus, we
proceed by estimating the parametric models—exogenous
and two-step HHG—on the matched subsamples from the
within-year matching algorithm (since the sample sizes are
relatively large). Empirical results are displayed in table 3.

Estimated treatment effects are considerably larger than
those reported in table 2. The new parametric estimates
range from �0.6 to �1.4 on treating attainment status as
exogenous (an increase of up to nearly threefold), and
approximately �0.5 to �0.6 in the two-step models (a
similar increase of up to threefold).14 Moreover, empirical
results from the exogenous HHG models are statistically
significant despite the small sample sizes; yet the two-step
estimates remain imprecise. Taking the point estimates lit-
erally, however, implies an estimated loss of 0.2 to 0.6 (of
�0.2) new pollution-intensive plants per annum from being
out of attainment when attainment status is treated as
exogenous (endogenous). Though larger, these point esti-
mates remain smaller than the matching estimates presented
in table 1. Thus, although sample composition plays a role

14 The point estimates from the two-step models are �0.24 and �0.21.
Multiplying these by 2.3 yields the range �0.5 to �0.6.

TABLE 2.—PARAMETRIC ESTIMATES OF THE DETERMINANTS OF

COUNTY-LEVEL PLANT LOCATION

Independent
Variable

Fixed-Effects Poisson

HHG Two-Step HHG

(1) (2) (3) (4)

Nonattainment �0.35 �0.50* �0.07 �0.08
(0.22) (0.23) [�0.26, 0.13] [�0.28, 0.10]

ln(employment) �4.63* �7.13* �4.41* �6.63*
(1.70) (2.11) [�7.35, �1.53] [�10.37, �3.08]

ln(wage) — �1.50 — �0.80
(2.24) [�5.09, 3.32]

ln(population) — 10.91* — 9.27*
(4.90) [0.67, 17.21]

ln(prop. tax) — �3.19 — �2.98
(2.07) [�6.68, 0.42]

Period effects Yes Yes Yes Yes
County effects Yes Yes Yes Yes
Log likelihood �325.0 �319.4 �326.2 �321.6
N 682 682 682 682

Dependent variable is the count of new plants annually from 1980 to 1990.
Nonattainment equals 1 if county is out of attainment of federal standards, 0 otherwise.
Models (1) and (2) treat attainment status as exogenous [estimated using HHG (1984) quasi maximum

likelihood (QML)]; models (3) and (4) treat attainment status as endogenous (estimated using a two-step
QML procedure). The proportion of western neighboring counties that are out of attainment is used as
the instrument (see table A2).

Standard errors are in parentheses beneath coefficient estimates; 90% bootstrap confidence intervals—
based on 1,000 repetitions—in brackets. * indicates significant at the 10% level using a two-sided
alternative.

ln indicates the natural logarithm of the variable.
Time effects are jointly significant in models (1) and (2) at the p � 0.15 level.

TABLE 3.—PARAMETRIC ESTIMATES OF THE DETERMINANTS OF

COUNTY-LEVEL PLANT LOCATION

Independent
Variable

Fixed-Effects Poisson

HHG
Two-Step HHG

0.01
Sample

(1)

0.05
Sample

(2) 0.01 Sample (3)
0.05 Sample

(4)

Nonattainment �1.35* �0.62* �0.24 �0.21
(0.74) (0.33) [�12.55, 8.24] [�0.49, 0.28]

ln(employment) �2.01 0.31 �1.29 �0.58
(2.00) (0.67) [�103.63, 54.74] [�3.71, 3.86]

ln(wage) �6.13 2.37 �3.32 2.38
(4.82) (1.83) [�94.00, 79.87] [�6.93, 8.91]

ln(population) 3.29 0.57 2.32 1.35
(2.33) (0.66) [�55.32, 125.14] [�2.02, 5.20]

ln(prop. tax) �1.38 �0.30 �0.61 0.37
(1.87) (0.92) [�137.16, 19.89] [�3.59, 3.38]

Period effects Yes Yes Yes Yes
County effects Yes Yes Yes Yes
Log likelihood �11.0 �54.3 �13.0 �54.2
N 74 162 74 162

Sample restricted to the matched subsamples used in columns (1) and (2) of table 1.
See table 2.
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in explaining the discrepancy across methods, it does not
tell the entire story.15

IV. Concluding Remarks

This study examines whether plant location is influenced
by environmental air quality regulations.16 Some recent
innovative studies provide evidence that suggests environ-
mental regulations are an important factor in the startup
decisions of new manufacturing plants. Using the Census of
Manufacturers database, Greenstone (1998), and Becker
and Henderson (2000) present evidence indicating an in-
verse relationship exists between the stringency of air qual-
ity regulations and certain types of capital formation, im-
plying that the spirit of the Clean Air Act has been violated.

We extend these studies by using various parametric
methods and a seminonparametric method based on propen-
sity score matching, which has been shown to estimate
treatment effects from nonexperimental data more precisely
than standard parametric estimators. Via the matching tech-
nique we are able to take advantage of the panel nature of
our data to control for time- and location-specific unobserv-
ables, as well as lagged values to the outcome of interest, in
a straightforward manner. Our major findings are that: (i)
pollution-intensive plants respond quite adversely to more
stringent environmental regulations, and (ii) the matching
method produces empirical estimates considerably larger
than parametric estimates which treat attainment status as
exogenous or endogenous within a Poisson framework.
These findings suggest that the current state of the literature
may dramatically understate the impact of pollution regu-
lations.
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APPENDIX
TABLE A1.—DESCRIPTION OF VARIABLES

Variable Mean
In-Attainment

Mean
Out-of-Attainment

Mean Definition and Source

New pollution-intensive
plants

0.41 0.31 0.70 Actual count of new plants from 1980 to 1990 labeled as having production
activities that are pollution-intensive. Industrial Migration File, NYS
DED.

(0.89) (0.64) (1.32)

New non-pollution-
intensive plants

1.05 0.71 2.02 Actual count of new plants from 1980 to 1990 labeled as having production
activities that are non-pollution-intensive. Industrial Migration File, NYS
DED.

(2.09) (1.25) (3.36)

Attainment status 0.26 — — Intensity of county-level pollution regulations. Dichotomous variable � 1 if
county is out of attainment of federal standards for ozone, 0 otherwise.
Federal Register Title 40 CFR, Part 81.305.

(0.44)

ln(employment) 10.81 10.55 11.59 Natural logarithm of total employment in manufacturing. County Business
Patterns.(1.33) (1.15) (1.53)

ln(wage) 9.71 9.74 9.65 Natural logarithm of total annual manufacturing payroll divided by the
number of employees by county, adjusted for inflation. County Business
Patterns.

(0.23) (0.22) (0.25)

ln(population) 11.66 11.39 12.47 Natural logarithm of county population. Current Population Reports, U.S.
Bureau of Census.(1.25) (1.07) (1.38)

ln(property tax) 6.26 6.27 6.25 Natural logarithm of real property tax collected per capita. Census of
Governments.(0.34) (0.35) (0.28)

Data are for the 62 New York counties from 1980 to 1990. N � 682 (176 out of attainment).
Standard deviations in parentheses.

TABLE A2.—FIRST-STAGE LOGIT ESTIMATES OF THE DETERMINANTS OF ATTAINMENT STATUS

Independent Variable

Coefficient (SE)

(1) (2)

Neighboring attainment status 2.85* (0.33) —
Man. employment 1.99E�06 (1.29E�06) —
Property taxes �1.85E�03* (8.75E�04) —

Man. wages �3.95E�06 (7.08E�05) 3.63E�03 (2.55E�03)
(Man. wages)1 �2.23E�07 (1.41E�07)
(Man. wages)2 4.27E�12 (2.74E�12)

Man. plants 1.40* (0.58)
(Man. plants)1 �0.09* (0.05)
(Man. plants)2 1.84E�03* (1.04E�03)

Population 1.62E�06* (5.09E�07) �1.85E�06 (6.28E�06)
Population1 7.37E�12 (6.12E�12)
Population2 �3.14E�18* (1.82E�18)

Per capita income 4.73E�03* (1.25E�03)
(Per capita income)1 �1.86E�07* (9.64E�08)
(Per capita income)2 2.63E�12* (1.40E�12)

Man. wages � man. plants �9.57E�06 (3.20E�05)
Man. wages � population 1.08E�09* (4.53E�10)
Man. wages � per capita income �1.61E�08 (6.61E�08)
Man. plants � population �8.61E�07* (3.54E�07)
Man. plants � per capita income 1.67E�05 (3.04E�05)
Population � per capita income �8.88E�10* (4.10E�10)

Time effects Yes Yes
Log likelihood �180.7 �145.8
Pseudo R1 0.54 0.63
N 682 682

Dependent variable is equal to 1 if county is out of attainment of federal ozone standards during the year, 0 otherwise. Neighboring attainment status is the percentage of western contiguous neighbors that are
out of attainment.

Time effects jointly significant at the 1% level.
1 Standard errors are in parentheses beside the coefficient estimates and are adjusted for clustering within counties. * indicates significant at the 10% level using a two-sided alternative.
2 Model (1) is used in the two-step FE Poisson estimation. Model (2) is used to generate the propensity score estimates.
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