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ABSTRACT

A flame-tube study was performed to determine the effects of equiva-
lence ratio and residence time on exhaust emissions with premixed, pre-
vaporized propane fuel.

Nitrogen oxides emissions as low as . 3 g NO,/Kg fuel were measured
with greater than 99% combustion efficiency at 800 K inlet temperature and
an equivalence ratio of . 4,

For a constant combustion efficiency, lower nitrogen oxides emissions
were obtained by burning very lean with relatively long residence times

than by using somewhat higher equivalence ratios with shorter times.
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EFFECTS OF EQUIVALENCE RATIO AND DWELL TIME
ON EXHAUST EMISSIONS FROM AN EXPERIMENTAL
PREMIXING, PREVAPORIZING BURNER

by David Anderson
NASA - Lewis Research Center
Cleveland, Ohio

SUMMARY

Emissions from a 10-cm diameter flame tube burning premixed, pre-
vaporized propane fuel were measured to determine the lower limits of
nitrogen oxides (NOX) formation and the effects of residence time and equiv-
alence ratio on pollutant emissions. Inlet conditions included temperatures
of 600 and 800 K, a pressure of 5.5 atm, and reference velocities of 25 and
30 m/s. Residence times were varied from 1 to 3 msec. Concentrations of
nitric oxide (NO), total nitrogen oxides (NO + NO2), carbon monoxide, car-
bon dioxide and unburned hydrocarbons were measured for a range of equiv-
alence ratios from lean blowout to slightly richer than stoichiometric.

NOx emissions as low as .3 ¢ N02/kg fuel were measured with an inlet
temperature of 800 K at an equivalence ratio of ,4. Blowout occurred for
leaner equivalence ratios. With 600 K inlet temperature it was necessary
to burn with equivalence ratios richer than . 54 to maintain stable burning,
At this temperature, the NOx emission index was about 1 g N02/kg fuel
at an equivalence ratio of . 54.

Comparison of measured NOx emissions at 2 msec dwell time with those
predicted by a well-stirred-reactor computer model showed excellent agree-
ment for equivalence ratios lower than ,75. For higher equivalence ratios

the model predicted higher NOx than was measured.
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For the same combustion efficiency lower NOx was obtained by burn-
ing very lean with relatively long residence times than by using somewhat
higher equivalence ratios with shorter times,

INTRODUCTION

A flame tube burning premixed, prevaporized propane was used to de-
termine the effects of residence time and equivalence ratio on pollutant
emissions and to establish what minimum levels of nitrogen oxides (NOx)
emissions could be expected with a completely uniform fuel-air mixture,

The rate of NOx formation increases exponentially with lccal flame
temperature; thus, the high temperatures and long residence times which
are favorable to good combustion efficiency in a gas turbine combustor
also tend to produce high NOX emissions, Several experimental studies
have looked at methods of reducing the local flame temperature without
sacrificing combustion efficiency.

One approach is to prevaporize the fuel. In conventional combustors
liquid fuel is sprayed into the primary zone to burn near the stoichiometric
fuel-air ratio. Even if the mean primary zone equivalence ratio is reduced,
non-uniformities in fuel-air ratio and droplet burning can produce local
temperatures in excess of the mean,

Droplet burning can be eliminated by the use of a prevaporized fuel.
Norgren and Ingebo (refs. 1 and 2) have conducted tests with an experimental
combustor in which a vapor fuel was substituted for liquid fuel without attempt-
ing to improve fuel-air mixing. Compared with liquid fuel, the vapor fuel
gave a 20% reduction in NO, emissions at an inlet temperature of 700 K

and pressure of 10 atm,




Another way to reduce lceal flame temperature is to improve the fuel-
air mixing while using lean mixtures. Heywood and associates (refs. 3, 4.
and 5) have demonstrated the significance of fuel-air uniformity on nitric
oxide production, Figure 1 (taken from ref. 5) shows their analytical pre-
diction of the effect of burning-zone uniformity. It is apparent from this
prediction that improved mixing might result in orders-of-magnitude reduc-
tion in NO formation rates for equivalence ratios on the order of .6 or less.

This potential for low NOx from a uniform mixture has resulted in sev-
eral experimental studies in which the fuel-air mixing was improved to pro-
duce a more nearly uniform combustion zone. Appleton and Heywood (ref. 5)
increased fuel atomizing pressure to improve fuel-air mixing and were able
to show an order-of-magnitude reduction in NOx emissions at an equivalence
ratio of .62. Ingebo and Norgren (ref. 6) measured about 30% less NOx when
fuel atomization was improved by increasing the nozzle atomizing pressure
from 10 to 20 atm. Both studies used liquid fuels.

By prevaporizing the fuel and premixing fuel and air it should be possible
to obtain a completely uniform mixture. P~mpei and Gerstmann (ref. 7) and
Ferri and Roffe (ref. 8) have been measuring emissions in premixed, pre-
vaporized burners. Pompei and Gerstmann tested their burner both with
propane, to avoid vaporization problems, and with prevaporized liquid fuel.
Their results showed the strong effect of air /fuel ratio on NOx emissions
that would be expected from burning a uniform mixture. They found a
slightly non-linear effect of residence time on NOx emissions,

Roffe's program (unpublished data obtained under NASA Contract NAS-
317865) has used a pre-burner upstream of the test section to produce a

temperature of about 900 K for liquid fuel (JP5) vaporization at 4 atm pres-
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sure. Again, the very strong effect of equivalence ratio on NOx emissions
was demonstrated. Values on the order of 1 g NO2/kg fuel at equivalence
ratios of about .5 were obtained for residence times of about 4 msec.

In preliminary experiments at the Lewis Research Center the effect of
premixing and prevaporizing was studied in a flame-tube apparatus (ref, 9).
Inlet temperature was 590 K, pressure was 5.5 atm and residence time about
5 msec. Propane, used to simulate a prevaporized jet fuel, was injected
far enough upstream of the burner to insure thorough mixing of fuel and air.
Nitric oxide emissions as low as .8 ¢ NO2/kg fuel were measured with com-
bustion efficiency greater than 99% at an equivalence ratio of . 54, However,
for leaner equivalence ratios the flame became unstable and lean blowout oc-
cured at an equivalence ratio of . 5.

The experiments reported here used basically the same apparatus as
the program of reference 9. The purpose was to extend the operating con-
ditions of reference 9 to a higher inlet temperature as well as to study the ef-
fect of residence time on NOx emissions and combustion efficiency. Inlet
cnnditions covered were fuel-air mixture temperatures of 600 and 800 K, a
pressure of 5.5 atm, and reference velocities of 25 and 30 m/s. The gas
sampling probe was traversed axially to positions of 5, 10, 20, and 30 cm
from the flameholder. Concentrations of nitric oxide (NO), total NOx
(NO + N02), carbon monoxide, carbon dioxide, and unburned hydrocarbons
were measured for a range of equivalence ratios from lean blowout to slightly
richer than stoichiometric

A well-stirred-reactor computer model was used to predict NOx emis-

sions for a dwell time of 2 msec at the experimental test conditions.
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APPARATUS AND PROCEDURE

Details of the apparatus are riven in figure 2. Air entering the test sec-
tion was indirectly preheated for all tests. Gaseous propane fuel was intro-
duced through a fuel tube located 2. 6 m upstream of the flameholder to allow
sufficient time for thorough mixing of fuel and air. A small swirler was lo-
cated on the end of the fuel tube to give some initial mixing,

The flameholder was made by welding 61 tubes of . 6 cm inside diame-
ter between two . 6 cm thick stainless steel plates as shown in figure 3, This
arrangement resulted in an open area of 25 percent of the inlet duct cross-
sectional area. The total pressure drop across the burner ranged from 2 to
6 percent of the upstream total pressure, depending on inlet conditions,

It was necessary to water-cool this flameholder to prevent burnout at
800 K inlet mixture temperature when running with equivalence ratios near
unity.

The water-cooled burner was 10, 25 cm in diameter, the same as the inlet
duct, and 31 cm long (see fig. 2). At th: downstream end quench water was
sprayed into the gas stream to cool the exhaust to about 370 K, This mix-
ture of combustion products and water passed through a remotely operated
back-pressure valve for control of rig pressure.

Rakes for inlet instrumentation were avoided to eliminate any possible
flameholders in the inlet duct. Instead, static pressure was measured at
the wall 8.9 cm upstream of the flameholder and a single Chromel- Alumel

thermocouple was inserted to a depth of about 2 cm into the flow at a location

12. 7 cm upstream of the flameholder., Downstream static pressure was meas-

ured at a tap 43 cm downstream of the flameholder, ASME standard orifices

were used to measure air and fuel flows.
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Details of the water-cooled stainless-steel gas-sampling probe are also
shown in figure 2. The single-point probe was . 635 cm outside diameter
with a center sampling tube of . 159 ¢cm diameter., The probe could be tra-
versed axially along the burner center line.

Stainless steel tubing of . 95 ¢ diameter connected the gas sample
probe with the exhaust gas analyzers. T, prevent condensation of unburned
hydrocarbons this sample line tubing was electrically heated to maintain the
sample gas temperature between 410 K and 450 K. The sample line was ap-
proximately 18 m long,

Gas analysis equipment included a Model 402 Beckman Flame Ionization
Detector for measuring unburned hydrocarbons, Model 315B Beckman non-
dispersive infrared analyzers for measuring concentrations of carbon mon-
oxide and carbon di~:ide, and a Model 10A Thermo-Electron Chemilumin-
escent instrument for nitric oxi-le and total NOX concentration,

Calibration of the instruments with standard calibration gases was per-
formed at the beginning of each day's testing and whenever a range change
was made,

Inlet air humidity was measured with an EG & G Model 137 Vapor Mate
IT humidity meter with a Model S3 sensor. Although measuremen:s of CO,
C02, NO and NOx were made after water vapor was removed from the sam-
ple, the values reported for all constituents are on a wet basis. Inlet air
humidity was essentially zero for all tests,

Commercial grade (92% pure) gaseous propane was used for al) tests
(see table ). Propane has a heating value near that of jet fuels so that com-
bustion characteristics, especially NOx production, are similar., By using

a gaseous fuel, problems associated with vaporization were avoided and it




was possible to simulate a prevaporized as well as a premixed system,
DATA ACCURACY
Combustor Heat Losses

Because the combustor was water cooled, quenching of the combustion
could have occurred at the walls. Heat loss through cooling was measured
to be consistently about 10 percent. However, by sampling guses only at
the combustor centerline it should be possible to assume that the sample
is the same as would result from an adiabatic burner,

The flameholder was also water-cooled. To determine the effect of
heat losses on the emissions measurements, especially the NOx emissions,
preliminary tests were made at 600 K inlet temperature with ana without
water cooling over the full range of equivalence ratios tested. It was found
that there was little di{ference in the results and that within the experimental
scatter, the effect was insignificant. All the data presented were measured
with the water-cooled flameholder,

Sample Validity

It shouid not be necessary to sample the exhaust gases of a uniform
mixture at more than one location in the combustor to get a representative
measurement, assuming no wall effects. To determine if this single-point
sample was adequate an equivalence ratio based on the measured carbon
concentrations was compared with that from fuel and air flow measurements,
The agreement should be within +15 percent to insure good sample validity
(ref. 10). The comparison is shown in figure 4 for the test data reported
here.

The carbon-balance equivalence ratio averages about . 9 of the equiva-

lence ratio based on flow measurements, The differential pressure trans-




cducers on the propane flow orifice had a tendency to drift, displaying higher-
than-actual orifice pressure drops. For this reason, it was assumed that
the equivalence ratio based on carbon balance was more accurate, It was
used to compute the emission indexes and it is also the equivalence ratio
which appears as the abscissa and as a parameter in the data plots,
RESULTS AND DISCUSSION
Nitrogen Oxides Emissions

The total nitrogen oxides (NO + NO2) emissions reported are for dry
inlet air conditions. They show the strong effect of equivalence ratio
typical of a uniform mixture (figs. 5(a) and 5(b)).

With an inlet mixture temperature of 600 K (fig. 5(a)), instability pre-
vented operating with equivalence ratios less than , 54, Lean blowout oc-
curred at . 5 equivalence ratio. Therefore, the lowest attainable NOx emis-
sion index was about 1 ¢ N02/kg fuel at this inlet temperature,

The curve of the nitric oxide measurements from reference 9 at an in-
let mixture temperature of 590 K and a probe position of 46 cm from the
flameholder is also shown in figure 5(a) for comparison. The present NOx
levels measured at the lowest equivalence ratios are about twice (about 15 ppm
higher than) those obtained in the study of reference 9. Although only nitric
oxide was measuced in that study, measurements of NO in the present pro-
gram showed that total NO M is about 907 NO for all conditions tested (see
fig. 6). The difference in results between the two programs may be typi-
cal of the measurement inaccuracies Lo be expected when operating with
very low NOx levels.

At 290 K inlet mixture temperature (fig. 5(b)), stability was improved at

the lean conditions and it was possible to burn with equivalence ratios as low
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as .42. Lean blowout occurred at an equivalence ratio just under . 4, No_
emissions of , 3 ¢ NO2,’kg fuel were measured. For reference, emiss? - -
from conventional gas turbine engines at similar operating conditior.. are of

the order of 20 ¢ NO, /kg fuel.

2

Fer constant probe positions the hot gas residence time varies with
equivalence ratio (flame temperature). Data of fizure 5 which fell in the
range of 1.8 to 2. 2 msec residence time have been replotted in figure 7 along
with similar data taken at 30 m/s reference velocity, Also shown for com-
parison is the nitric oxide levels predicted by a well-stirred-reactor com-
puter model (refs, 11 and 12) for a residence time of 2 msec. The data
agree with the prediction for equivalence ratios up to . 75. For richer mix-
tures, the model predicts higher values than are measured experimentally,

The experimental results may be in error due to catalytic probe effects
for equivalence ratios near unity. Carbon monoxide is known to reduce nitric
oxide to nitrogen. Halstead and Munro (ref. 13) found no catalytic effect in
oxidizing atmospheres, but measured as much as two orders of magaitude
decrease in nitric oxide concentration in reducing atmospheres. England,
et al (ref. 14) reported the difference in NO measured with several probes,
including a stainless steel probe and a water-cooled quartz probe, for a
range of equivalence ratios from .4 to 1.5, For equivalence ratios less than
. 65 they found no difference in measured NO between the various probes. As
equivalence ratio was increased, the stainless-steel probe showed an in-
creasing error compared with the quartz. At an equivalence ratio of 1.0
the NO from the stainless-steel probe was 25% below that for the quartz.

For the present experiments it is impossible to determine how much of

an error might result due to catalytic effects. Both probe residence timc
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and sample gas temperature affect the reduction of NO to N2. The probe
used was designed for rapid cooling to temperatures on the order of 600 K
while sample line temperatures were maintained at 410-450 K,

Carbon Monoxide Emissions

The measured CO emissions are presented in figure 8. For compari-
son, the equilibrium levels at 600 and 800 K inlet mixture temperatures
are also shown, Within experimental accuracy, CO has reached equilibrium,
sugresting complete combustion, for nearly all the conditions shown, As
equivalence ratio was decreased for £,0 K 1rlet temperature the CC measured
10 ¢m from the flameholder began to rise above equilibrium indicating a
lengthened reaction zone., Moving the probe to 20 cm from the flameholder
caused the measured CO to drop back down to equilibrium, At the 800 K
inlet temperature, near equilibrium CO was measured for all probe positions,
even at equivalence ratios near lean blowout.

In the measurement of carbon moncxide it is necessary to cool the hot
sampled gases quickly to quench the reactions, If this is not done the CO
concentration will adjust to the shifting equilibrium of the cooling sample,
giving measurements which are below ile actual levels in the combustor.
Evidence of not-rapid-enough quench is present in some of the experimental
data as the CO was measured at a level below equilibrium. However, be-
cause the CO does not decr~ase with distance from the flameholder, it may
be concluded that near-equilibrium levels were actually present in the burner.

Unburned Hydrocarbons Emissions

Unburned hydrocarbon emission indexes were less than 1 g C3H8/kg fuel

for all but one test point, The one exception was at an equivalence ratio of

. 54 with 600 K inlet mixture temperature and a probe position of 10 cm ‘rom
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the flameholder, Because the hydrocarbon oxidation is not yet complete ac
this point 4, 2 ¢ C3H8/kg fuel were measured., For the range of equivalence
ratios tested, the equilibrium hydrocarbon levels are vistually zero.
Combustion Efficiency

As no thermocouple rakes wvere used downstream of the burner, it was
only possible to determine combus )n efficiency from gas analysis, Com-
bustion inefficiency is due to incomplete burning of CO and hydrocarbons,
In these experiments the levels of both CO and unburned hydrocarbons were
measured to be near equilibrium. For this reason, the calculated combus-
tion efficiencies for all test points shown in figures 5-3 were greater than
39%.

Residence Time Effects

In determining the minimum possible residence time for limiting NOx
formation, consideration must be given to adequate combustion efficiency.
Therefore, it was of interest to determine what sacrifices in efficiency might
result when residence time is reduced for NOx control. Figure 9 is a cross-
plot made using the daia of figures 5-8 along with additional measurements
made with probe positions of 10-30 cm at 30 m/s reference velocity and a
5-cm probe position at 25 m/s, This additional data not only extended the
range of residence times but also provided ccnfirmation of the trends indi-
cated by the rest of the data. In this figure, total nitrogen oxides emission
index is a function of residence time with combustion efficiency and equiv-
alence ratio as parameters. The residence time for each test point was cal-
culated from the probe position using th. measurcd weight flowrates of air
and fuel, the measured pressure in the comtusiur, ana the ideal flame temp-

erature, assuming that temperature and pressure were constant downstream
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of the flameholder,

Figure 9 shows that residence time reduction is an effective way to de-
crease NOx emissions if the equivalence ratio is high enough., At .6 equiv-
alence ratio, for example, the NOX level at 1 msec is 437 that at 3 msec.
For richer equivalence ratios therc is an even stronger effect of time on
Noxemissions, as indicated by the rates of formation shown in figure 1,
However, for leaner mixtures the rate of formation can be so low that NOX
is fairly insensiiive to time. At an cquivalence ratio of .4, for example,
NO, drops only about 15% for the same 3-msec-to-1-msec change in resi-
dence time,

These measurementis suggest that for low equivalence ratios NOx is
formed more rapidiy near the flameholder than it is farther away, in
agreement with the observations in reference 7. This non-linearity is ap-
parent only at low equivalence ratios, while for equivalence ratios near unity
there appears to be a nearly linear effect of probe position. This result is
probably due to super-equilibrium levels of cxygen atom concentratiou; this
overshoot has been found to be greatest for lean mixtures (ref, 15).

Figure 9 also shows that as equivalence ratio is decreased larger resi-
dence times are required to maintain combustion efficiency at a particular
level, Thus, 99.7% combustion efficiency is achieved at . 6 equivalence ra-
tio after only .75 msec, while it takes about 1.7 msec to burn to the same
efficiency at an equivalence ratio of . 4.

The figure suggests that the way to achieve the lowest possible NOx
emissions while maintaining high combustion efficiency is to burn as lean

as possible but to allow long residence times.
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CONCLUDING REMARKS

These studies showed that very low NOX emissions can be achieved by
premixing and prevaporizing at lean equivalence ratios, At 800 K inlet mix-
ture temperature and 5.5 atm pressure, emissions on the order of .3 to .5
g NO2/kg fuel were measured at an equivalence ratio of .42, At 600 K inlet
mixture temperature, emissions .~ere betweenl and 1.5 g N02/kg fuel at
.55 equivalence ratio, Leaner burning was prevented by lean blowout at
just under . 4 equivalence ratio with 800 K inlet mixture temperature and
poor stability with 600 K inlet mixture temperature at equivalence ratios
less than . 54.

There was excellent agreement hetween measured NOx and that pre-
dicted by a well-stirred-reactor computer model for equivalence ratios
less than .75,

Carbon monoxide and unburned hydrocarbon emissions were essentially
at the equilibrium level for the entire range of equivalence ratios for resi-
dence times greater than 1.5 msec. Combustion efficiency was thus com-
puted to be greater than 997 for all test points taken with a residence time
greater than 1.5 msec.

Although premixing and prevaporizing shows potential for low NOx for-
mation, it also presents practical problems, One is the possibility of flame
propagation upstream of the flameholder to the fuel nozzle. Besides causing
damage to combustor components, upstream burning defeats the objective
of burning a uniform mixture, Some combination of a high pressure drop
across the flameholder or high velocity upstream of the flameholder will be
necessary to avoid upstream burning, To insure uniformity of mixture a

liquid-fuel vaporizer will be required.
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Unlike a conventional combustor, a premixing, prevaporizing com-
bustor has no locally rich zones to maintain combustion in very lean mix-
tures. Thus, lean blowout occurs at a higher reaction zone equivalence
ratio than for a conventional combustor. The necessity of maintaining the
reaction zone equivalence ratio high enough to prevent blowout yet low
enough to avoid appreciable NOX formation leaves a relatively narrow span
of permissahle values. Variable geometry will probably be necessary to
allow a wide range of combustor equivalence ratio while maintaining reac-
tion zone equivalence ratio within the required limits,
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TABLE 1. - PROPERTIES OF COMMERCIAL GRADE

PROPANE USED IN THIS STUDY

Analysis:

Dew point:
Heat content:

Vapor pressure:
Specific gravity:

C3H8 92 percent
Volatile S 4-6 grains /100 ft

244 K (-20° ¥)
11 900 cal/g (21 400 Btu/lbm)
11.9 atm. at 310 K (175 psi at 100° F)

0.508

3
P
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Figure 3. - Flameholder (dimensions in cm). Open area = 25 percent.
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5.5 atm; reference velocity, 25 mis.
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