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Effects of expectation and noise on evolutionary games

Wen-Bo Du a, Xian-Bin Cao a,b,∗, Mao-Bin Hu c,∗, Han-Xin Yang d, Hong Zhou a

a Department of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
b Anhui Province Key Laboratory of Software in Computing and Communication, Hefei, Anhui, 230026, PR China
c School of Engineering Science, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
d Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China

a r t i c l e i n f o

Article history:

Received 18 December 2008

Received in revised form 16 January 2009

Available online 25 February 2009

PACS:

02.50.Le

89.75.Hc

89.65.-s

05.10.-a

Keywords:

Complex networks

Evolutionary games

Cooperation

Prisoner’s Dilemma game

Snowdrift game

a b s t r a c t

Considering the difference between the actual and expected payoffs, we bring a stochastic
learning updating rule into an evolutionary Prisoners Dilemma game and the Snowdrift
game on scale-free networks, and then investigate how the expectation level A and
environmental noise κ influence cooperative behavior. Interestingly, numerical results
show that the mechanism of promoting cooperation exhibits a resonance-like fashion
including the coaction of A, κ and the payoff parameters. High cooperator frequency is
induced by some optimal parameter regions. The variation of time series has also been
investigated. This work could be of particular interest in the evolutionary game dynamics
of biological and social systems.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Ranging from biological systems to economic and social systems, cooperation can be found in almost all realistic
systems. Thus, understanding the conditions for the emergence and persistence of cooperative behavior among selfish
individuals becomes a central problem. Since the unselfish, altruistic actions apparently contradict Darwinian selection,
many scientists from different communities resort to the game theory as a common framework to investigate this
cooperative dilemma, especially the Prisoner’s dilemmagame (PDG) and the Snowdrift game (SDG) togetherwith extensions
involving evolutionary context [1–4].

In the original PDG, which has been considered as a general metaphor for studying cooperation among limited rational
individuals, two players can simultaneously make two choices: to cooperate or to defect. For mutual cooperation both
players receive the rewards R, but only the punishment P for mutual defection. A defector exploiting a cooperator gets
an amount T (temptation to defect) and the exploited cooperator receives S (sucker’s payoff). These elements satisfy the
following two conditions: T > R > P > S and 2R > T + S. As a result, it is better to defect regardless of the opponents
decision. This kind of game rules yields an unresolvable dilemma for limited rational players who just want to maximize
their own income. The SDG differs from the PDG mainly in the order of P and S, as T > R > S > P . Thus, the best action
depends now on the opponent: to defect if the other cooperates, but to cooperate if the other defects. This game often draws

∗ Corresponding author.

E-mail addresses: xbcao@ustc.edu.cn (X.-B. Cao), humaobin@ustc.edu.cn (M.-B. Hu).

0378-4371/$ – see front matter© 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.physa.2009.02.012

http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
mailto:xbcao@ustc.edu.cn
mailto:humaobin@ustc.edu.cn
http://dx.doi.org/10.1016/j.physa.2009.02.012


2216 W.-B. Du et al. / Physica A 388 (2009) 2215–2220

more biological interests. However, there still exists unstable cooperative behavior which is contrary to the observations
in the real world. In the last few years, this disagreement has inspired numerous investigations of suitable extensions that
enable cooperative behavior to emerge and persist [5]. For example, it is found that several rules for adopting strategies
can enhance the cooperation, such as ‘‘Tit-for-tat’’ [6] and ‘‘win stay and lose shift’’ [7]. More interestingly, considering that
aspiration or expectation is common in human behavior, the aspiration-based dynamical rules have been studied later [8–
10]. An original work by Nowak andMay showed that the evolutionary PDG on a simple spatial structure induces emergence
and persistence of cooperation evenwith the co-existence of spatial chaos [11]. Since then,much attention has been given to
the evolutionary games on different population structures, including on regular networks [12–20] and on complex networks
[16,21–30].

It is well known that noisy and disordered processes can obtain surprising phenomena in the evolutionary games. Perc
introduced the random disorder in the PDG matrix and found a resonant behavior that the cooperator frequency obtains
maximal value at an intermediate disorder [17]. Ren andWang investigated both the topological randomness and dynamical
randomness and found that the mechanism of randomness promoting cooperation resembles a resonance-like fashion [27].
In a recent report, Chen andWang adopted a new stochastic learning rule of appropriate payoff expectations in evolutionary
PDG on Newman–Watts networks and they also found a resonance-like behavior [31]. However, they did not consider the
coaction of expectation level and the environmental noise. Thus in this paper, we adopt their new strategy updating rule
in both evolutionary PDG and SDG and then investigate the nontrivial dependance of cooperation level on the expectation
level, the environmental noise and the payoff parameters. Here, the well known BA scale-free network is used to represent
the population structure.

The paper is organized as follows. In the next section, we describe models of evolutionary games and the strategy
updating rule used in this work. The simulation results and discussions are given in Section 3. And the paper is concluded
by the last section.

2. The model

A variety of recent researches have revealed that social networks are actually associatedwith small-world property and a
scale-free, power-lawdegree distribution, p(k) ∼ k−λ withλactor = 2.3±0.1 for themovie actor collaboration network [32],
λscience = 2.1 and 2.5 for the science collaboration network [33], etc. The standard Barabási–Albert (BA) scale-free network
model [34], whose degree distribution is p(k) ∼ k−3, is generally considered suitable to represent the real population
structure. In this model, starting from m0 fully connected nodes and at every step one adds a new node with m(m 6 m0)
edges that link to m different nodes already present in the system in such a way that the probability of being connected to
the existing node i is proportional to its degree, i.e. pi = ki/

∑
j kj, where j runs over all the nodes and ki is the degree of

node i.
For the original PDG, we can simplify the payoff matrix in accordance with common practice: let T = b, R = 1 and

P = S = 0. b represents the advantage of defectors over cooperators. Generally,we can set 1 6 b 6 2. For the SDG, we can
simplify the model in the following way: let R = 1, S = 1 − r , T = 1 + r and P = 0. 0 6 r 6 1 indicates the rate of labor
cost. Following Chen and Wang [31], we introduce the parameter A that indicates the expectation level of the players and
each player calculates its own expectation payoff based on the parameter A. The expectation payoff of node i is PAi = ki ∗ A.

At each step of the evolution, all pairs of directly linked nodes engage in a single round of a given game and get relevant
payoffs. The total payoff of player i is stored as Pi. When the node i is updated, it will compare Pi and PAi and reverse strategy
with a probability based on the difference between real payoff and expectation payoff:

Hi =
1

1 + exp[(Pi − PAi)/κ]
. (1)

Here 0 6 κ < ∞ characterizes the environmental noise, including bounded rationality, individual trials, errors in
decision, etc. The expectation payoff PAi is used to evaluate whether a player is satisfied with its current strategy. This
updating rule is indeed a stochastic alteration of the Win-Stay-Lose-Shift (WSLS) strategy. In this paper, we investigate
the co-effect of noise κ and expectation level A on the stationary density of cooperator.

3. Simulation results and discussion

All the simulations below are carried out on BA scale-free networks with network size N = 1000 and m = m0 = 4.
Initially, strategies (C and D) are randomly distributed among the population. Equilibrium frequencies of cooperators are
obtained by averaging over 3000 generations after a transient time of 10000 generations. Each data is averaged by 30 runs
on 30 different networks. A synchronous updating rule is adopted here.

Fig. 1 briefly shows the relationship of payoff parameters (b in PDG and r in SDG) and the cooperator frequency for
different values of expectation level A and environmental noise κ . One can see that the cooperator frequencymonotonically
decreases with the increment of b (PDG) and r (SDG) no matter under what values of κ and A. Besides, κ and A also play
notable roles: changing the value of A and κ can influence the cooperation level for fixed b and r . When κ = 0.1, the
cooperator frequency has a non-monotonous dependance on A for both PDG and SDG and there exists appropriate payoff
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Fig. 1. (Color online) The cooperation frequency VS b (PDG) and r (SDG) for different values of A and κ .

expectations and environmental noises promoting cooperation. When κ = 1.0, for the PDG, the cooperator frequency
monotonically decreases as a function of A; for the SDG, there exists a crossover point at r = 0.5: the cooperator frequency
increases with an increment of A if r > 0.5 but decreases with an increment of A if r < 0.5. To investigate this phenomenon
more precisely, we examine the effect in the A ↔ b, A ↔ r , κ ↔ b, κ ↔ r and A ↔ κ space respectively.

To quantify the effect of expectation level A to enhance the cooperation more precisely, we fixed κ = 0.1 to study the
cooperator frequency as a function of A and b for PDG (A and r for SDG). As shown in Fig. 2(a), for the PDG, there exists an
optimal resonant region that promotes cooperation at 0.4 < A < 0.6 and 1.0 < b < 1.2. This phenomenon reveals that the
optimal cooperation level only occurs at certain intermediate expectation levels for some fixed b. For the SDG (Fig. 2(b)), the
cooperation can be promoted by a larger range of A, especially when 0.5 < A < 1.0. Interestingly, there exists a trigonal
parameter space, whichwe call the ‘‘harmful region’’, at the upper right corner that can restrain cooperation.Whereafter, we
will simply explain the non-trivial dependence of the cooperator frequency on A. For the small values of A, the total payoffs
of nearly all players are larger than the expectation payoffs, so the players (including C players and D players) can hardly
reverse their strategies. For the large values of A, the majority of players obtain total payoffs below the expectation payoff
and players will change their strategies with a high probability. Hence the cooperator frequency keeps around 0.5. For the
intermediate values of A, C players surrounded by C players can obtain higher payoffs and keep their strategies steadily,
while the D players surrounded by D players can not be satisfied. Besides, although a D player surrounded by C players can
receive a much higher payoff for both types of games, the C neighbors will probably reverse their strategies to D because
their income can not meet the expectation level. Thus the pattern of C players surrounded by C players is more steady.

Hence a high cooperation level emerges. From what has been discussed above, it is not difficult to draw the conclusion
that there exists an appropriate intermediate level A which can induce maximum cooperator frequency.

Since Fig. 1 shows that the environmental noise κ plays an important role on the cooperative behavior during the
evolution, to further demonstrate the effect of κ , next wewill investigate the relationship of κ and the cooperator frequency
under fixed A. Fig. 2(c) depicts the co-action of k and b for PDG, and Fig. 2(d) depicts coaction of k and r for SDG. One
can see that at the region of 0 < κ < 0.4 and 1.0 < b < 1.1, the cooperative behavior is highly promoted. For the
SDG, the parameter region promoting cooperation is much larger and the highest cooperator frequency is obtained under
0.2 < κ < 0.6 and 0 < r < 0.2. κ = 0 denotes the completely deterministic learning and κ = +∞ denotes the
completely random strategy learning and thus ignores the neighbor information. The finite positive values of κ incorporate
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(a) PDG κ = 0.1. (b) SDG κ = 0.1.

(c) PDG A = 0.5. (d) SDG A = 0.5.

(e) PDG b = 1.2. (f) PDG r = 0.2.

Fig. 2. (Color online) The cooperation frequency as VS A, κ , b (PDG) and r (SDG).

the uncertainties in the strategy adoption, i.e., the better player’s strategy is readily adopted, but there is also a small
probability to adopt the worse strategy, which is more realistic. In the present work, the cooperation level has a nonlinear
dependence on κ , which is in accordance with previous researches [35].

In Fig. 2(e) and (f), to investigate the combined effect of both A and κ , we fix b = 1.2 and r = 0.2 and focus on the
cooperator frequency depending on A and κ together. For the PDG, the cooperation is slightly promoted in a small parameter
space of 0.3 < A < 0.5 and 0 < κ < 0.2. But for the SDG, the cooperation is promoted in the whole parameter space except
for a trigonal region at the lower left corner, especially when A > 0.5 and 0 < κ < 0.2.

Moreover, it is found that besides the promotion of cooperation, the stochastic updating rule can also induce surprising
evolution time series. In the following, we will examine the time series of PDG and SDG in detail.

Fig. 3 shows the time series of PDG and SDG under different values of A and κ . Fig. 3(a) shows the first 400 steps of
A = [0.01, 0.5, 1.5] under κ = 1.0 and b = 2.0. One can see that the time series of A = 1.5 is very interesting: the
‘‘ping-pong effect’’ is observed since T = 350 and the fluctuation amplitude enlarges from [0.48, 0.52] to [0.03, 0.91]
with the evolution process. Fig. 3(c) represents the last 50 steps of the evolution under A = 1.5 and κ = 1.0. We can
easily find that the ‘‘ping-pong effect’’ emerges for all values of b and the amplitude increases with the increment of b. The
difference between the maximum and minimum values of the cooperator density is 0.04, 0.2 and 0.91 for b = 1.0, 1.5 and
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Fig. 3. (Color online) The long-range time series of PDG under different values of A and κ .

2.0, respectively. For the SDG, as shown in Fig. 3(b) and (d), the situation is nearly the same as the PDG, such as the ‘‘ping-
pong effect’’ and the variety of fluctuation amplitude. We have also examined the time series under the random sequential
updatingmechanism and similar oscillation is observed. In the present rule of evolution, players don’t learn from neighbors.
Thus the synchronous and random updating mechanisms should produce the same result.

4. Conclusion

In summary, we have investigated how the co-action of expectation level A and environmental noise κ influences
the cooperation behavior by introducing a stochastic Win-Stay-Lose-Shift strategy updating rule with appropriate payoff
expectations into the evolutionary Prisoner’s Dilemma game and the Snowdrift game on BA scale-free networks. Numerical
results demonstrate that there exist some optimal areas of randomness, resulting in high cooperator frequency. Moreover,
the evolution processes also have a strong dependence on the updating rule. When A is large, the time series resembles the
‘‘ping-ping effect’’ for both the PDG and the SDG, and the fluctuation amplitude is determined by b and r (b for the PDG, r
for the SDG). This work may be helpful to understand the cooperative behavior in biological and social systems.
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