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The propagation at high Reynolds number of a heavy, two-dimensional gravity current
of given initial volume at the base of a uniform flow is considered. An experimental
setup is described for which a known volume of fluid is rapidly introduced halfway
down a 9 m channel in which there is a uniform flow of water. The density excess
of the released fluid is produced by either dissolving salt or suspending particles in
water. The upstream and downstream propagation of the current was measured for
different initial salt concentrations, particle sizes and concentrations. A simple box
model for the motion of and deposit from the gravity current is constructed. The
analytical results obtained compare well with our numerical solutions of one-layer
and two-layer models incorporating the appropriate shallow-water equations. Both
sets of results are in very good agreement with the experimental data.

1. Introduction

Gravity currents occur whenever fluid of one density flows primarily horizontally
into fluid of a different density. (If the flow is primarily vertical it is generally studied
as convection.) Gravity currents arise frequently in industrial, laboratory and natural
situations. Much of what is known of their motion and particular properties has been
nicely summarized by Simpson (1997). The first analysis of the motion of a gravity
current was carried out by von Kármán (1940) in response to an enquiry by the
American military before World War II concerning the wind speeds that would blow
released nerve gas back onto friendly troops. Using the Bernoulli equation for inviscid
flow in a manner that was later made rigorous by Benjamin (1968), von Kármán
established that if the current intrudes along a horizontal base beneath a very deep,
otherwise quiescent fluid, the velocity at the front of the current u

N
is related to the

depth of the current just behind the head h
N

by

u
N

= Fr(g′h
N
)1/2, (1.1)

where the Froude number of the flow Fr is constant (
√

2 according to perfect fluid
theory, with the incorporation of the Boussinesq approximation) and the reduced
gravity

g′ = (ρc − ρa)g/ρa (1.2)

is defined in terms of the gravitational acceleration g and densities ρc and ρa of the
current and ambient respectively.
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Figure 1. Graphical representation of the premultiplicative constants for the shallow-water
similarity solution and the box model, given by (1.6), plotted as a function of the Froude number.

Such was the stature of von Kármán that this was hailed as a wonderful result
without it being fully appreciated that (1.1) is but one boundary condition between
two unknowns and that it says nothing directly about the influence of following or
retarding flows in the background ambient. In order to proceed one needs at least
to know more about the generation of the gravity current: fixed volume derived
from an instantaneous release; fixed flux; or some other alternative. Given this added
condition it is possible either to obtain a similarity solution to the governing shallow
water equations (Chen 1980; Bonnecaze, Huppert & Lister 1993) or to construct a
simple ‘box’ model of the flow which assumes that there is no horizontal variation
of properties within the flow and manipulates the two given conditions to derive
a relationship for the rate of propagation and (horizontally uniform) depth of the
current as functions of time. For a two-dimensional, fixed volume, instantaneous
release the latter approach is achieved by writing (1.1) as

l̇ = Fr(g′h)1/2, (1.3)

where l(t) is the length of the current, and the constraint of fixed volume (under the
assumption of zero entrainment) as

lh = A, (1.4)

where A is the constant volume per unit width, or two-dimensional area. Substituting
(1.4) into (1.3) and integrating the result along with the boundary condition

l = 0 (t = 0), (1.5)

we obtain

l = ( 3
2
Fr)2/3(g′A)1/3t2/3. (1.6)

The similarity solution to the shallow-water equations is identical to (1.6) (as will be
further illustrated in § 4.2) except that the pre-multiplicative constant

( 3
2
Fr)2/3 is replaced by

[

27Fr2

12 − 2Fr2

]1/3

.

The difference between these two expressions is small for 1 6 Fr 6 1.6, as is shown
graphically in figure 1. In both cases the area appears only in the product g′A, the
total buoyancy, which remains constant, independent of entrainment of ambient fluid.
(For a discussion of the effects of entrainment see Hallworth et al. 1996.)

Gravity currents driven by the excess buoyancy arising from the presence of
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suspended particles are fundamentally different from homogeneous single-phase flows,
because the heavy particles continually settle out of the flow. The concentration of
particles and consequently the buoyancy force thus changes with time and position.
In this situation the appropriate shallow water equations do not admit a similarity
solution and have to be solved numerically after the introduction of the volume
concentration of particles φ (Bonnecaze et al. 1993). A simple box-model approach
commences by writing the density of the current ρ

c
as

ρ
c
= ρ

p
φ+ ρ

a
(1 − φ),

where ρ
p

is the density of the particles and the density of the interstitial fluid has
been assumed equal to that of the ambient. The reduced gravity of the current g′ is
then expressed in terms of the reduced gravity of the particles g′

p
as

g′ = g′
p
φ, (1.7)

where

g′
p
= g(ρ

p
− ρ

a
)/ρ

a
. (1.8)

The front condition then becomes

l̇ = Fr(g′
p
φh)1/2, (1.9)

while following the arguments of Pantin (1979), Martin & Nokes (1988), Bonnecaze
et al. (1993) and others on the settling of small particles in a well-mixed turbulent
flow, the evolution of particle concentration in the flow is governed by

φ̇ = −Vsφ/h, (1.10)

where Vs is the Stokes free-fall velocity given by 2g′
pa

2/(9ν), ν is the kinematic viscosity
and a is a representative length scale of the particle – the radius if it is spherical; the
radius of the enveloping sphere in most situations if it is aspherical (Batchelor 1970).
To the three equations (1.4), (1.9) and (1.10) for the three unknowns l(t), h(t), φ(t) are
added the two initial conditions

l = 0, φ = φ0 (t = 0). (1.11 a, b)

Dividing (1.10) by (1.9) and using (1.4) to eliminate h, we obtain

dφ

dl
= −λl3/2φ1/2 (1.12)

with (1.11) expressed as

φ = φ0 (l = 0), (1.13)

where

λ = Vs/(Fr
2g′

p
A3)1/2. (1.14)

Equation (1.12) with initial condition (1.13) has solution

φ1/2 = φ
1/2
0 − 1

5
λl5/2, (1.15)

from which it is immediately seen that the current ceases (φ = 0) at

l∞ = (5φ
1/2
0 /λ)

2/5
. (1.16)

Introducing non-dimensional variables Φ = φ/φ0 and ξ = l/l∞, we can rewrite
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(1.15) as

Φ = (1 − ξ5/2)2. (1.17)

Substituting (1.4) and (1.17) into (1.9) and using the initial condition (1.11a), we
obtain

τ =

∫ ξ

0

s1/2ds

1 − s5/2
≡ F(ξ) (1.18 a,b)

in terms of the dimensionless time τ given by

τ = Fr(g′
P
Aφ0)

1/2l−3/2
∞ t. (1.19)

These relationships, using a Froude number of 1.19 (Huppert & Simpson 1980), are
plotted in figure 2(a) along with some confirmatory experimental data for the length
of the current as a function of time taken from Bonnecaze et al. (1993) and Dade
& Huppert (1994). The box model overestimates the value of l∞ given in (1.16) by
a factor of approximately 1.6, as noted by Bonnecaze et al. (1995). Hence all the
experimental lengths were divided by 1.6 before being plotted in figure 2(a). We see
that the proposed scaling collapses all the data well and that the agreement with the
theoretical prediction is good. The difference between the simple box model and the
experimental data is probably due to the fact that motions in the upper layer of the
experiments, neglected in the box model, play a small role, as is discussed further in
§ 4.4, following the results of Bonnecaze et al. (1993) (see particularly their figure 12).

In order to evaluate the resulting deposit distribution, we argue that in time δt, a
mass per unit width δM = −ρ

P
Aδφ is deposited uniformly over a length l to lead to

a deposit density

δη = −ρ
p
Aδφ/l. (1.20)

Thus the total deposit density (of dimensions ML−2) after the flow has ceased is given
by

η = −ρ
p
A

∫ l∞

l

s−1 dφ

ds
ds. (1.21)

Differentiating (1.17), substituting the result into (1.21) and carrying out the integra-
tion, we find that

η =
25φ0ρpA

12l∞
(1 − 8

5
ξ3/2 + 3

5
ξ4) (1.22)

which is graphed and compared with experimental data in figure 2(b). The agreement
between the data and the theory is again seen to be good, except near the back of the
channel where the particles seem to be swept downstream more than theory would
suggest.

The above results are for monodisperse particles with a single fall speed Vs.
Bonnecaze, Huppert & Lister (1996) considered, both theoretically and experimentally,
the deposit generated when the current is driven by a polydisperse distribution of
particles. Using dimensional analysis on the governing shallow water equations and
their initial conditions, they argued that the total deposit density due to an initial
distribution of N particle sizes, each with Stokes free-fall speed Vi and initial volume
concentration φi0 (i = 1, 2, . . . , N) could be written in terms of a shape function W (s)
as

η(x) = ρ
p
A

N
∑

i=1

φi0γiW (γix), (1.23)
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Figure 2. Data and non-dimensional box-model solutions for particle-driven gravity currents
released at one end of a channel containing quiescent ambient fluid. The data points are from
the experiments of Bonnecaze et al. (1993) and Dade & Huppert (1994) covering a large range of
different initial conditions. (a) The non-dimensional volume fraction Φ (equation (1.17)) and time
τ (equation (1.18)), as functions of the non-dimensional current length ξ. (b) The non-dimensional
deposit density η∗, where η∗ = 12l∞η/25φ0ρpA from equation (1.22), plotted as a function of
non-dimensional current length ξ. The curve denoted by W is the appropriately non-dimensional
empirical relationship suggested by Bonnecaze et al. (1996) and expressed by equation (1.25).

where

γi = [V 2
i /(g

′
oA

3)]1/5 (1.24a)

and

g′
0 = g′

p

N
∑

i=1

φi0. (1.24b)

From their numerical solutions of the shallow water equations, they suggested that a
convenient and accurate empirical representation of W (x̄) (which conserves mass) is
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given by

W (x̄) = 0.820/(1 + 0.683x̄2 + 0.017x̄8), (1.25)

which appropriately non-dimensionalized and incorporating the factor of 1.6 described
above, is also sketched in figure 2(b). The agreement between the two theoretical
relationships is seen to be good.

The purpose of this paper is to ascertain how all these results are influenced
by an opposing or following uniform flow. Some work has been performed on the
influence of such flows on a compositional current (although in a different release
configuration) by Simpson & Britter (1980), Xu (1992) and Xu & Moncrieff (1994),
as will be described in more detail below. No previous paper known to us, however,
has considered the influence of such flows on a particle-driven gravity current.

In the next section we describe the procedure and results of several experiments in
which a fixed volume of relatively dense fluid was suddenly released into the centre
of an open channel through which a uniform flow of water was maintained. The
density excess of the released fluid was produced using either salt solutions or low-
concentration suspensions of small heavy particles, and resulted in gravity currents
which propagated along the channel floor both downstream (with the ambient flow)
and upstream (against the ambient flow).

A simple box model is presented in § 3 which leads to results which are in very good
agreement with the experimental data. In particular, we show that for compositional
currents: the maximum distance upstream that the current can propagate scales with
g′A/U2, where U is the (downstream) velocity of the ambient; the total length of the
current increases as t2/3; and the centroid of the current propagates downstream at 0.6
times that of the ambient velocity. For a particle-driven gravity current we find that:
the total length of the current is given by 22/5l∞, independent of U; and the maximum
upstream penetration scales with l∞ and is a function of a single additional parameter
Λ ∝ (UA/l2∞Vs), which incorporates the ratio of the ambient to the sedimentation
velocity. A rigorous numerical solution of the shallow-water equations is presented
in § 4, which reproduces the results obtained by the box model, except for a few
slight quantitative differences. We are able by this numerical approach, however, to
discuss some phenomena due to the influence of the gravity current on motions in the
upper layer. In particular, our numerical solutions are able to highlight differences
between a two-layer and a one-layer flow model. A few applications of our results
are discussed in the final section.

2. Experiments

2.1. Experimental set-up

The experimental apparatus used is shown schematically in figure 3. A 9.4 m long
Perspex channel having a rectangular cross-section 26 cm wide and 50 cm high was
filled with water to a depth H of 28.7 cm. A uniform ambient flow was established by
pumping the water at a fixed rate in a continuous loop via a hose connecting inlet and
outlet diffuser boxes situated at either end of the channel, thereby giving a working
flow section of 8.4 m. Each diffuser box comprised a flared section packed with
1cm diameter plastic balls and a horizontally aligned honeycomb section, designed
to introduce and withdraw the flow evenly across the whole cross-sectional area
of the channel. Profiles of the flow velocity as a function of depth were measured
at several distances along the medial plane of the working section using a Sontek
acoustic Doppler velocimeter (Lane et al. 1997). This non-intrusive device focuses an



Effects of external flow on gravity currents 115

Recirculating pump

8.4 m

Release
reservoir

Ambient

Current

Flow diffuser

H

U

h

yx 0

Figure 3. Schematic diagram of the experimental apparatus (not to scale).

acoustic beam on a 0.5 cm3 fluid sample volume and digitally translates the reflected
signal into three mutually perpendicular velocity components, which we orientated to
coincide with the major axes of the channel. Both the vertical and horizontal cross-
stream velocity components were negligible. The horizontal downstream velocity
components at various positions are presented as velocity profiles in figure 4(a). Each
profile displays a fairly uniform velocity averaging 2.9 cm s−1 in the interior of the flow
which reduces in value to zero at the channel floor through a lower boundary layer,
approximately 2 cm thick. A reduction in flow velocity is also apparent as the free
surface is approached. Integration of these flow profiles yielded an average volumetric
flux of 1850 cm3 s−1, which corresponds to a Reynolds number of approximately 7000.
The measured flux was found to be in good agreement with independent measurements
of the pump throughput, as shown on figure 4(b).

The conventional lock-release method of initiating fixed-volume gravity currents
into a stationary ambient fluid was impossible to achieve in the present situation
without severely disrupting the ambient flow. An alternative release mechanism was
therefore designed whereby a fixed volume of dense fluid, initially held in a reservoir
above the mid-point of the channel, was allowed to drain rapidly (in less than 1 s)
into the flow stream through a 3 cm diameter tube positioned just beneath the free
surface. The emergent jet of dense fluid inevitably entrained a significant volume of
ambient fluid during its descent and subsequent lateral deflection upon impinging
on the solid channel floor. A somewhat similar situation, of compositional density
currents initiated from a continual flux of downward momentum, was investigated
by Linden & Simpson (1990).

Testing of our release mechanism in quiescent ambient conditions indicated that the
jet split equally and extended roughly 30 cm either side of the central release position
before buoyancy forces began to dominate the motion. Entrainment of ambient fluid
during the early momentum-dominated phase was measured to cause a dilution of
the released fluid by a factor of approximately 20. This estimate was achieved by
trapping a released current between vertical barriers, positioned either 50 or 100 cm
on either side of the entry point. When confined in this manner, the dense flow
eventually settled to form a layer of constant composition. By measuring the height
of this layer, its volume could be calculated and compared with the initial volume. In
each case our measurements indicated that the released fluid was diluted by a factor
of 20 ± 2 through entrainment of ambient fluid over the momentum-dominated jet
entry length.



116 M. A. Hallworth, A. J. Hogg and H. E. Huppert

30

20

10

0
3 0 3 0 3 0 3 0 3 0 3 0

4.232101234.2
0

400

800

1200

1600

2000

x = 3 m x = 2 m x = 1 m y = 3 my = 2 my = 1 m

H
ei

g
h
t 

(c
m

)

(a)

(b)

V
o
lu

m
e 

fl
u
x
 (

cm
3
 s

–
1
)

Ambient flow velocity (cm s–1)

Distance (m)
yx

Figure 4. (a) Profiles of the horizontal downstream ambient fluid velocity as a function of depth,
measured by acoustic Doppler velocimetry at various distances either side of the release position
along the medial plane of the flow channel (in the absence of gravity currents). The structure in the
profile at y = 3 m is due to the proximity of this section to the input diffuser box. (b) The volume
flux of ambient fluid as a function of distance from the release position, calculated by multiplying
the width of the channel by the integrated value of the velocity profiles shown in (a) over the total
depth. The solid line represents the independently measured pump flow rate. The integrated flow
values are slightly in excess of the estimated overall flux because no account was taken of the
sidewall boundary layers in the determination of the integrated flux.

In this study we focus on the dynamics of gravity currents that are controlled by
a balance between inertial and buoyancy forces. However, because of the elevated
reservoir used to initiate the current, it is possible that the flow may be strongly
influenced by the initial momentum imparted to it. We may assess the influence of the
initial specific momentum flux as follows. The fluid leaves the reservoir at a velocity
approximately given by

ue = (2gHr)
1/2, (2.1)

where Hr is the elevation of the base of the reservoir above the free surface. Therefore,
the initial specific momentum of the fluid is approximately given by

M = Vue, (2.2)

where V is the total volume of fluid discharged. The (conserved) specific buoyancy of
the fluid is given by

B = Vg′. (2.3)

Hence we may estimate a jet entry length as

Le = (M2/B)1/4. (2.4)

For distances much less than this entry length, the flow is dominated by its initial
momentum, whereas at distances sufficiently large compared to Le the flow is domi-
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Figure 5. Lengths as a function of time for various compositional currents of fixed volume released
at the mid-point of a channel containing (a) quiescent ambient fluid and (b) ambient fluid with
a mean downstream velocity of 2.6 cm s−1. Results are presented in each case for initial released
volumes of 2 l of water containing 50 g (◦), 200 g (N) and 400 g (✷) of dissolved salt.

nated by buoyancy. Substituting the experimental values of this study into (2.1)–(2.4),
we find that Le = 30 cm which is in accord with indications from our experimental
observations. Therefore, we conclude that during the descent through the ambient
fluid, the flow was predominantly controlled by momentum, whereas once the gravity
current along the lower boundary had been initiated, the flow was dominated by
buoyancy forces.

Measurements were made of the horizontal distance to the front of the current
from the release point as functions of time in both the downstream (x) and upstream
(y) directions by marking the position of the nose of the current at 3 s intervals. From
these measurements and observations of the thickness of the currents we estimate
that their Reynolds numbers were initially in excess of a thousand but necessarily
decreased as the flows evolved. We are confident that the measurements we report
are for flows dominated by high-Reynolds-number effects.

In the case of particle-driven gravity currents, the final distribution of sedimented
particles was measured by recovering the mass of particles within a 5 cm wide strip
across the width of the tank at various distances from the release point.

2.2. Compositional currents

Compositional currents of different initial densities were generated by releasing 2 l of
water containing 50, 200 and 400 g of dissolved salt into the ambient flow, resulting
in initial values of g′ of 17.1, 64.4 and 121 cm s−2 respectively (g′A = 1330, 4990
and 9380 cm3 s−2). Solutions of each concentration were also released into a quiescent
ambient for comparison. Almost all experiments were repeated at least once and
were found to show excellent reproducibility. Measurements of the position of the
foremost point of the currents in both the x- and y-directions as functions of time
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are presented in figure 5. The currents released into a quiescent ambient fluid spread
symmetrically away from the release point in both directions, and adopted the typical
gravity current profile of a lobate billowing head advancing before a thinner tail
region. A predictable increase in velocity was observed with increasing initial salt
concentration. By contrast, equivalent currents released into a uniform ambient flow
advanced both upstream and downstream, but were markedly asymmetrical. In the
downstream (x) direction, the current was noticeably thicker than its counterpart in
a static environment, and propagated with an increased velocity. As distance from
the release point increased, the velocity of the current gradually decreased to a
value approaching 0.6 times the mean ambient velocity (see § 3.1). In the upstream
(y) direction, the current was significantly retarded by the opposing ambient flow,
and eventually came to rest. Prior to final arrest, the current profile was observed
to undergo a transition from the typical head and tail into a much thinner wedge
shape within the lower boundary layer. Once in this form, dense fluid was continually
stripped away from the upper surface of the arrested wedge by the action of interfacial
eddies.

2.3. Particle currents

The particle-driven gravity currents were generated by releasing well-mixed suspen-
sions of silicon carbide particles in water. These particles are fairly monodisperse,
non-cohesive and have a density ρp = 3.217 g cm−3. As a precaution, a small amount
of Calgon was added to the suspension to prevent particle agglomeration. Three
different particle sizes were used, with mean diameters of 23, 37 and 53 µm. Details
of the size distribution within each grade are reported in Huppert et al. (1991).

For each particle size, experiments were run with four different initial particle
masses of 50, 100, 200 and 400 g suspended in 2 l of water, giving values for φ0,
the initial volume fraction, of 0.0077, 0.015, 0.030 and 0.059; and g′ values of
16.7, 33.3, 65.5 and 127 cm s−2, respectively. Upon release, the particle-driven gravity
currents propagated with decreasing velocity in both the x- and y-directions while
simultaneously depositing a sediment layer over the channel floor until all the particles
had settled out, whereupon the current ceased to exist.

Measurements of the position of the foremost point of the currents in both the x-
and y-directions as functions of time for release into both a quiescent ambient and a
uniform ambient flow, are displayed in figure 6. Velocities of the current at any point
achieved by each flow were observed to increase monotonically with increasing initial
mass of suspended sediment, and the current attained progressively longer maximum
distances from the release point with decreasing particle diameter. Currents released
into a quiescent ambient spread symmetrically about the release point, whereas those
released into an ambient flow were markedly elongated in the downstream direction.
The development of an arrested wedge of dense fluid in the upstream direction was
not as noticeable as that seen in the compositional currents, since particles quickly
sedimented from thinned flows in the slow moving lower boundary layer of the
opposing stream.

Once all the particles had settled out, the final length of the deposited layer was
recorded, and its mass distribution measured by vacuuming up the sediment using
a siphon tube within a 5 cm ×25 cm rectangular pastry cutter placed over the layer
at specific intervals. The mixture was collected in a beaker, the water decanted and
the particles dried and weighed to determine the mass of deposit per unit area.
Depositional profiles for selected experiments are graphed in figure 7. As a check on
the sampling method, the total mass of sediment was recovered by integrating the
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Figure 6. Lengths as a function of time for various particle-driven gravity currents of fixed volume,
released at the mid-point of a channel containing (a) quiescent ambient fluid, and (b) ambient fluid
with a mean downstream velocity of 2.6 cm s−1. Results are presented in each case for three mean
particle diameters of (i) 23 µm, (ii) 37 µm and (iii) 53 µm, at four different initial masses of sediment,
50 g (◦), 100 g (✸), 200 g (N) and 400 g (✷), suspended in 2 l of water.

measured deposition profile and was generally found to be within 1% of the initial
value.

These experimental data can be drawn together using the analytical models to be
developed in the next sections.

3. Box model

A box-model representation of the intrusion can be obtained using the approach
outlined in the Introduction, on the assumption that at all times the salt concentration,
or the particle distribution, in the current and its height are uniform in the horizontal
direction.
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Figure 7. Individual data and interpolated smooth curves for the deposit density of sedimented
particles following the passage of various particle-driven gravity currents. Each graph presents the
mass per unit area as a function of distance from the release point in both directions. (a) Two
currents each initially containing 100 g of 37 µm particles suspended in 2 l of water, released into a
quiescent ambient (◦) and an ambient flow (N). (b) Three currents each initially containing 100 g
of particles of mean diameters 23 µm (◦), 37 µm (N) and 53 µm (✷) suspended in 2 l of water and
released into an ambient flow. (c) Four currents with different initial masses of 50 g (×), 100 g (N),
200 g (◦) and 400 g (✷) of 37 µm particles initially suspended in 2 l of water and released into an
ambient flow.

3.1. Compositional currents

The condition of conservation of volume becomes

l ≡ x+ y = A/h (3.1)

while the two front conditions become

ẋ−U = Fr(g′h)1/2 (3.2a)

and

ẏ +U = Fr(g′h)1/2, (3.2b)

where U is the mean velocity in the x-direction, experienced by the current. As will
be discussed below, this velocity is equal to 0.6 times that of the mean flow. In this
analysis and that of § 3.2 we use a Froude number of 1.19 (Huppert & Simpson
1980). For the purposes of this simple model we have neglected the variation of the
Froude number with the relative magnitude of the mean flow. Some studies have
indicated that this may be a significant consideration (Simpson & Britter 1980; Xu
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1992; and see the appendix). However, from these experiments we are unable to assess
the magnitude of these variations.

Substituting (3.1) into (3.2), adding and subtracting the resulting two equations and
solving these subject to

x = y = 0 (t = 0), (3.3)

leads to solutions

x = Ut+ γt2/3, y = −Ut+ γt2/3, (3.4 a, b)

where

γ = 1
2
(3Fr)2/3(g′A)1/3 (3.5)

(cf (1.6)). From (3.4b) we predict that the maximum distance upstream that the current
propagates is given by 1

6
Fr2(g′A/U2), which except for the pre-multiplicative constant

can be simply obtained by dimensional analysis.
Inspection of (3.4) indicates that there is a timescale

τc = (γ/U)3, (3.6)

which is around 200 s for our experiments. For times less than τc the current prop-
agates mainly due to buoyancy, and the effects of the external flow make a smaller
contribution; for t > τc external flow effects are more important than the buoyancy.
Our experiments were conducted for a duration of around 60 s, beyond which the
gravity current became too thin and weak to be distinguished against the background
flow. (After this time the Reynolds number of the current was also too small for the
above theory to be appropriate.) It was thus impossible for us to test robustly both
of the terms of (3.4) (in the form written).

It is therefore worthwhile concentrating on the alternative representations

l ≡ x+ y = 2γt2/3, z ≡ x− y = 2Ut, (3.7 a, b)

which evaluate the evolution of the length and twice the position of the centre of the
current. Introducing the lengthscale

lc = γ3/U2 (3.8)

and the non-dimensional variables

Lc = l/lc, Zc = (x− y)/lc and Tc = t/τc, (3.9 a–c)

we plot all our experimental data in figure 8 and compare these to our theoretical
predictions

Lc = 2T 2/3
c and Zc = 2Tc. (3.10 a, b)

We note that in these non-dimensionalizations the velocity U is taken to be 0.6 of
the mean ambient flow. That a gravity current only experiences 0.6 of the mean
flow has been suggested previously by Simpson & Britter (1980) and in this study
we find further extremely strong experimental evidence of this fact (see § 3.2). We
noted in § 2.1 that on initial entry to the ambient from the elevated reservoir, the
relatively dense fluid undergoes rapid dilution. However in the theoretical description
of compositional currents, the initial area, A, only occurs in the total buoyancy, g′A,
and this is conserved under mixing.

The agreement between the theoretical predictions and the experimental data is
good and suggests that the relationships (3.4) for the upstream and downstream
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Figure 8. (a) Non-dimensional length Lc, and (b) non-dimensional position of the centroid Zc,
plotted against non-dimensional time Tc, for compositional currents of 50 g (◦), 200 g (N) and 400 g
(✷) of salt dissolved in 2 l of water, released into an ambient flow. The theoretical predictions are
shown as solid lines.

position of the current can be used with confidence (beyond the limits for which
we have confirmed them). We note that (3.10) indicates that the total length of the
current increases as the two-thirds power of the time while the centre of the current
propagates downstream at 0.6 times that of the ambient velocity.

3.2. Particle currents

In order to develop a box model for the propagation of a monodisperse particle
current (3.2) needs to be altered along the lines explained in § 2 to read

ẋ−U = Fr(g′
pφh)

1/2, ẏ +U = Fr(g′
pφh)

1/2. (3.11 a, b)

The system that requires solution is then (1.10), (3.1) and (3.11) along with the
initial conditions (1.11). Using the approach and non-dimensionalizations outlined in
§§ 2 and 3.1, we obtain the relationships

Φ = (1 − L5/2)2, (3.12a)

T =

∫ L

0

s1/2 ds

1 − s5/2
≡ F(L), (3.12b)

z̄ = ΛT , (3.12c)
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where the non-dimensional variables

L = l/lp, z̄ = (x− y)/lp and T = t/τp (3.13 a–c)

have been defined in terms of the length- and timescales

lp =

[

10Fr(g′
pφ0A

3)1/2

Vs

]2/5

≡ 22/5l∞ and τp =
5A

lpVs
(3.14 a–c)

and the single non-dimensional parameter

Λ =
10UA

l2pVs
. (3.14 d )

In contrast to the compositional situation, the current ceases (φ = 0) when l = lp,
a value that is (surprisingly) independent of the ambient flow speed, though we see
from (3.12b) that this length takes (theoretically) an infinite time to achieve. The
magnitude of Λ represents the influence of the mean flow on the runout of the gravity
current and is proportional to the ratio of the mean flow to the settling velocity of
the particles. More precisely, if we re-write A as the product of the runout length
lp and the height of the fluid layer when this length is attained, A = hplp, then the
parameter Λ may be seen to represent the ratio of the horizontal flux of fluid, Uhp,
to the vertical settling flux of particles, Vslp. When the settling flux is large compared
to the flux of the mean flow (and thus Λ is much less than unity), the evolution of
the gravity current is only weakly affected by the motion of the ambient. Conversely,
when Λ is much greater than unity, the gravity current is strongly influenced by the
mean flow.

In the calculation of the length- and timescales, (3.14a, c), the initial area A occurs
separately from the initial total buoyancy g′

pA. This is in contrast to theoretical
descriptions of compositional currents and implies that the initial dilution of the
particle-laden fluid on entry to the ambient is an important effect. In the following cal-
culations, we use the measured dilution factor of 20 (see § 2.1). We plot in figure 9 the
theoretical curves (3.12b, c) and the experimental data, non-dimensionalized according
to the scaling suggested by the box model. We note that the non-dimensionalization
collapses the experimental data and that there is very good agreement with the theo-
retical predictions. The relationship (3.12c) suggests that the position of the centroid
should depend linearly on ΛT . However as noted in § 3.1, we are uncertain as to the
exact value of U to use in the definition of Λ, although previous studies (Simpson
& Britter 1980) have indicated that U = 0.6U, where U is the mean velocity in
the channel. Figure 9(b) presents experimental data on the position of the centroid
against ΛT/U. From the gradient of the fitted curve we find that U = 1.8 m s−1 which
corresponds to U = 0.62U.

The distribution of the deposit arising from these particle-driven gravity currents
may also be calculated from the box-model analysis. We assume that the particles
sediment out of the current uniformly along its length. When there is no ambient
flow, the gravity current propagates symmetrically in the upstream and downstream
directions until it attains the maximum length (lp). In contrast, when there is an
ambient flow, the centroid of the current is advected downstream (c.f. (3.12c)). Thus
the resulting deposit is asymmetric about the initiation line of the two-dimensional
current and may, in fact, extend over a considerable distance downstream. (In terms
of the box model, the deposit may extend infinitely far downstream because the



124 M. A. Hallworth, A. J. Hogg and H. E. Huppert

1.0

0.8

0.6

0.4

0.2

0

0.3

0.2

0.1

0 0.05 0.10 0.15 0.20

0.2 0.4 0.6 0.8 1.0

50 g
100 g
200 g
400 g

23 lm 37 lm 53 lm

Gradient =1.8 cm s–1

(a)

(b)

L

z

KT/U (s cm–1)

T = &(L)

Figure 9. (a) Non-dimensional length L, plotted against non-dimensional time T , and (b)
non-dimensional position of centroid z̄, plotted against ΛT/U, for particle currents with vari-
ous masses and sizes of particles (given by legend) initially suspended in 2 l of water, released into
an ambient flow. The solid curve in (a) is the theoretical relationship given by (3.12b). The solid
curve in (b) is the best-fit straight line through all the data, the gradient of which determines U.

maximum length of the current is only attained after an infinite time. In practice,
of course, viscous forces eventually influence the evolution of the flow at which time
this model, which is based upon a inertial–buoyancy balance, becomes invalid.) The
deposit, expressed as the integrated mass flux per unit area delivered to the bottom
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Figure 10. Schematic diagram depicting the position of the upstream and downstream fronts as
functions of time, showing the progressive increase in the length L(t) of the current with time. At
a given upstream position, y′, deposition of particles commences when the front of the upstream
current first passes at time ts, and ceases when this front is swept back downstream at time tf . At
a given downstream position, x′, deposition of particles starts when the front of the downstream
current first passes, and finishes when the upstream front is swept back downstream.

while the current is overhead, is given by

η(x) = ρpVs

∫ tf

ts

φ dt, (3.15)

where the limits of this integral correspond to the times at which deposition starts
and finishes, denoted by ts and tf , respectively. We reiterate that a box model of the
gravity current is being used in which there is uniform sedimentation along its entire
length. Furthermore the length of the box is increasing whilst its centroid is being
advected downstream (as depicted in figure 10). Therefore at a particular location,
deposition starts when a front of the current first passes and ceases when the rear
of the current is swept by. Substituting (3.12a, b) into (3.15), we obtain the implicit
relationship

η(x) =
5φ0ρpA

lp

[

2L3/2/3 − L4/4
]Lf

Ls
, (3.16)

where Ls and Lf are the values of the dimensionless length, L, at non-dimensional
times of Ts and Tf , which correspond to the dimensional times ts and tf . These are
obtained for x > 0 by rearranging (3.13) to read

Ls = 2x/lp − z̄, Lf = −2x/lp + z̄, (3.17 a, b)

while for x < 0, the equation

L = −2x/lp + z̄ (3.18)

has two solutions; we denote the smaller by Ts and the larger by Tf .
We plot some illustrative profiles of the deposit as a function of position for a

range of values of Λ in figure 11. As noted above, when there is no ambient flow,
U = Λ = 0, the deposit distribution is symmetric about the point at which the
suspension of particles is released. However, as the magnitude of the ambient flow
increases relative to the settling velocity of the particles, the profiles become more
asymmetric. We compare some of the experimentally measured deposit profiles with
the theoretical predictions for four values of Λ in figure 12. The agreement is seen to
be very good and in particular the asymmetry predicted by the theory is accurately
reflected by the data.

Using this simple model of the deposit it is straightforward to calculate numerically
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the maximum upstream distance, d+, over which the current propagates, as a function
of Λ. We present the results in figure 13 and find very good agreement between the
theoretical curve and the experimental observations (except at Λ = 0, corresponding
to zero flow, the situation in which the maximum upstream point is not as sharply
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Figure 13. The maximum non-dimensional upstream distance d+/lp as a function of
Λ = 10UA/(Vsl

2
p ). The calculation of the theoretical curve is described in § 3.2.

defined, as is seen from figure 11). From equations (3.12c) and (3.18) it is possible
to calculate asymptotic representations of this maximum upstream distance in the
regimes Λ ≪ 1 and Λ ≫ 1. We find, with the use of Mathematica, that

d+/lp = 1
2

+
(

1
5
logΛ− 1

8
π
)

Λ+ 1
50
Λ2 + O(Λ3) (Λ ≪ 1), (3.19a)

d+/lp =
1

6Λ2
− 1

8Λ7
+ O(Λ−12) (Λ ≫ 1). (3.19b)

An approximate composite expansion derived from (3.19) which agrees well with the
exact behaviour is given by

d+/lp =
1
2

+
(

1
5
logΛ− 1

8
π
)

Λ+ 1
50
Λ2

1 + 3
25
Λ4

. (3.20)

4. Shallow-water analysis

4.1. Model formulation

Whereas in the preceding section we employed a ‘box’ model to describe the evolution
of particle-driven gravity currents, we now derive a model of the flow that uses the
more complete shallow-water equations. These exploit the low aspect ratio of the
currents, defined as the ratio of the height to the length of the currents, and consider
both temporal and spatial variations of the hydrodynamic properties of the flow. This
approach is to be contrasted with ‘box models’, the derivation of which comes from
horizontal integrals of the shallow-water equations (Hogg, Ungarish & Huppert 1998).
It is to be expected that the use of the shallow-water equations would render more
accurate results than the box model because use of the shallow-water equations is
more rigorous. However, as demonstrated above, the box model approach provides an
excellent general description of the flow up to an experimentally determined constant
(§ 3.2) and also gives an analytical representation of the results.

As described in § 2, the gravity currents considered in this study were initiated
by the sudden release of suspensions of relatively heavy silicon carbide particles.
These were delivered into the ambient flow from an elevated reservoir, and during
a very short initial period the suspension rapidly mixed with the ambient fluid.
This mixing proceeded via turbulent motions which were both three-dimensional and
unsteady. However, the gravity current soon propagated sufficiently far upstream
and downstream that its length l(t) was much greater than its height h(x, t). Once
this flow has been established, we may employ the ‘shallow-water’ description of the
flow (as presented by Bonnecaze et al. 1993). In essence this approximation neglects
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vertical accelerations which implies a hydrostatic pressure distribution. Furthermore,
we assume that the dynamics of the flow are governed by a balance between buoyancy
and inertial forces (and neglect effects of entrainment or viscosity). The dimensionless
equations describing the conservation of mass and momentum are then given by
(Bonnecaze et al. 1993)

∂h

∂t
+

∂

∂x
(uh) = 0, (4.1)

∂

∂t
(uh) +

∂

∂x

(

u2h+ 1
2
Φh2

)

= 0. (4.2)

In these equations we have made the lengths, times and velocities dimensionless with
respect to h0, a characteristic initial height of the current after it has been released into
the flow, (h0/g

′
0)

1/2, where g′
0 is the initial reduced gravity, and (h0g

′
0)

1/2, respectively.
The volume fraction of particles is scaled by the initial volume fraction, φ0. We have
also assumed that the interstitial density of the suspension is the same as the ambient.
(Sparks et al. 1992 and Bonnecaze et al. 1993 discuss effects due to the inclusion of
differing interstitial and ambient fluid densities.)

On the assumptions that: the vertical mixing induced by the turbulence in the
gravity current is sufficient to produce a vertically uniform distribution of particles;
the particles sediment out of the current with velocity Vs; and the deposited particles
are not re-entrained by the flow, the equation describing the evolution of the volume
fraction of particles is given by (Bonnecaze et al. 1993)

∂Φ

∂t
+ u

∂Φ

∂x
= −βΦ/h (4.3)

(c.f. (1.10)) where β = Vs/(h0g
′
0)

1/2 is the dimensionless settling velocity.
The present analysis of two-dimensional currents in the presence of an ambient

flow differs from previous analyses in the specification of the boundary conditions.
While previous studies have considered only one moving front, in this scenario there
are fronts which propagate both upstream and downstream. At the nose of a gravity
current, the motions are unsteady and three-dimensional. Hence we do not expect
the shallow-water approximation to be valid there. Instead, we invoke two frontal
conditions which relate the difference between the velocity of the current at the nose
and the mean velocity of the ambient felt by the current to the local shallow-water
wave speed. This nose condition, as discussed in the Introduction, was developed
by von Kármán (1940) and Benjamin (1968) for a quiescent ambient and has been
experimentally studied by Huppert & Simpson (1980). The conditions, incorporating
a steady mean flow in the ambient, may be expressed as

u(xN , t) = Fr (Φ(xN , t)h(xN , t))
1/2 +U (4.4a)

and

u(xT , t) = −Fr (Φ(xT , t)h(xT , t))
1/2 +U (4.4b)

(c.f. (3.2)) where xN , xT = −yN are the positions of the upstream and downstream
propagating fronts and Fr is the Froude number. We use the experimentally deter-
mined Froude number condition (Huppert & Simpson 1980)

Fr = 1.19 (0 6 h(xN , t)/H 6 0.075) (4.5a)

= 0.5(h(xN , t)/H)−1/3 (0.075 6 h(xN , t)/H). (4.5b)

With zero ambient flow, this model of gravity current motion has been successfully
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employed by a number of investigators (Rottman & Simpson 1983; Bonnecaze et al.
1993) and has been found to render good agreement with experimental observations.
As in § 3 we do not account for any variation of the Froude number with the relative
magnitude of the mean flow. For releases of a fixed volume of a suspension of
particles these two boundary conditions are sufficient to enable the integration of the
equations, subject to the specification of the initial conditions for the height, length,
velocity and particle volume fraction of the current.

4.2. Similarity solution

In the case of vanishing particle settling velocity (β = 0), equations (4.1)–(4.3) describe
the evolution of a gravity current with a fixed excess density over the ambient, such
as for the compositional currents described in §§ 2.1, 3.1. In this limit, we may derive
a similarity form of solution in an analogous manner to the solutions for gravity
currents in a quiescent ambient with a single moving front. To derive this solution,
we introduce the variables

L(t) = xN − xT , (4.6)

Z(t) = 1
2
(xN + xT ), (4.7)

ζ = (x− Z)/L, (4.8)

where L is the length of the current, Z is the coordinate of the centroid and ζ
is a suitable similarity variable. We denote the velocity of the flow, measured in a
frame of reference which is moving with the centroid of the current, by v = u − U.
Substituting (4.6)–(4.8) into (4.1) and (4.2), with Φ = 1 corresponding to β = 0, we
find the following equations govern the evolution of the current

∂h

∂t
− y

L
dL
dt

∂h

∂y
+

1

L
∂

∂y
(vh) = 0, (4.9)

∂v

∂t
− y

L
dL
dt

∂v

∂y
+

v

L
∂v

∂y
+

1

L
∂h

∂y
= 0, (4.10)

while the motion of the centroid is given by

dZ
dt

= U. (4.11)

The boundary conditions at the upstream and downstream fronts of the current
indicate that

v(xN , t) = Fr[h(xN , t)]
1/2, v(xT , t) = −Fr[h(xT , t)]1/2 (4.12 a, b)

and
dL
dt

= v(xN , t) − v(xT , t), (4.13)

while the conservation of the volume of the current requires that
∫ 1/2

−1/2

h dζ = L0/L, (4.14)

where L0 = A/h2
0 and A is the initial volume per unit width of the current. From

these equations, a similarity solution may be calculated as

L = (ΥL0)
1/3t2/3, (4.15)

u = U + 2
3
(ΥL0)

1/3t−1/3U(ζ), (4.16)
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the theoretical curve arises from the similarity solution with Fr = 1.1.

h = 4
9
(ΥL0)

2/3t−2/3H(ζ), (4.17)

where Υ = 54Fr2/(6 −Fr2), U(ζ) = ζ and H(ζ) = ζ2/4+Fr−2/4 − 1/16. We plot this
similarity form of solution in figure 14(a). Also we note that there is good agreement
between the experimental observations and the temporal evolution of the length of
the current if Fr = 1.1 which is slightly lower than the value proposed by Huppert &
Simpson (1980).

The height of the current has been found to be an even function of the similarity
variable ζ. In experiments, however, we observed a difference between the upstream
and downstream propagating noses of the current. We suggest that this difference
arises from the fluid motions in the layer above the current, as is further discussed
below. We also note that this solution permits us to calculate the maximum upstream
distance, ymax, over which a compositional gravity current will propagate. This is given
by solving when dxT/dt = 0 and hence, in dimensional terms, we find that

ymax =
Fr2g′A

(6 − Fr2)U2
. (4.18)

This expression is to be compared with that calculated from the box model (§ 3.1).
We note that the two differ only in the premultiplicative constant and that when the
Froude number is order unity, this difference is relatively small.

4.3. Numerical solution

When the settling velocity of the particles is non-vanishing (β 6= 0), the form of
similarity solution given above is no longer applicable. It is possible, however, for
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times t ≪ β−3/5 to derive a perturbation expansion to the similarity solution (Hogg et
al. 1998). In this paper, though, we perform a numerical integration of the equations,
using the methods described by Bonnecaze et al. (1993). This approach formulates
the equations into flux-conservative variables in a coordinate system which is scaled
by the overall length of the current. In addition, for the present study, we consider
the variables measured in a frame of reference that is moving with the centroid of
the current. Therefore the equations are of a form similar to (4.9)–(4.13), except that
the flux-conservative variables q = uh and ψ = uΦ are used in place of u and Φ.

The numerical method employs an explicit scheme and uses outward propagating
characteristics to provide additional boundary conditions to the Froude number
conditions given above. The advantages of this scheme are that the formation and
position of shocks need not be explicitly calculated. Shocks are expected to form in
this system of equations as an internal bore separating a particle-free jet-like region
at the centre of the current from a dense gravity current at the two fronts. This effect
can be noted in the numerical results (see § 4.5). The drawback of this scheme is that
a small timestep must be taken to ensure that the scheme remains stable. However
run-times were only of order 10 minutes on an HP715/50 and so were not at all
prohibitive.

4.4. Two-layer flow

It was noted by Rottman & Simpson (1983) and Bonnecaze et al. (1993) that for
gravity currents propagating in relatively shallow depths of ambient fluid, it may
be important to account for the motion of the upper layer. For currents within an
otherwise quiescent ambient, the flow in the upper layer may be thought of as arising
to satisfy mass conservation within the channel; effectively the forward propagating
gravity current drives a return flow. For situations when there is an ambient flow with
a given volume flux in the absence of the gravity current, we impose the condition
that the sum of the volume fluxes of the gravity current and the upper layer must be
constant (cf. Baines 1995). Using the suffix u to denote variables which are associated
with the upper layer, we find that the dimensionless expressions of mass conservation
within the two layers are given by

∂h

∂t
+

∂

∂x
(uh) = 0, (4.19)

∂hu

∂t
+

∂

∂x
(uuhu) = 0, (4.20)

and the dimensionless balances of momentum are given by

∂

∂t
(uh) +

∂

∂x

(

u2h+ 1
2
Φh2

)

+ h
∂p

∂x
= 0, (4.21)

∂

∂t
(uuhu) +

∂

∂x

(

u2
uhu

)

+ hu
∂p

∂x
= 0. (4.22)

In these equations, we have denoted the interfacial pressure by p and have assumed
that the particles are confined to the lower layer. Furthermore, we have ignored
entrainment and the resulting drag between the two layers. In the context of the
formation of saline wedges, these effects have been modelled by Arita & Jirka
(1987a, b). We note that the drag force is only of a similar magnitude to the buoyancy
and inertial forces during the latter stages of the flow of the current. Finally, since
the particles are solely in the lower layer, we model the evolution of their volume
fraction using (4.3).
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We assume that the depth of the two layers is constant and so we may write

hu(x, t) + h(x, t) = H, (4.23)

where H is the total depth of the two layers. We note that the experiments were
conducted for free-surface flows and so this condition is only an approximation, but
a well-tested and largely valid one. Furthermore, the ambient has a constant volume
flux Q in the absence of the gravity current and so from equations (4.19) and (4.20)
we deduce that

hu(x, t)uu(x, t) + h(x, t)u(x, t) = Q. (4.24)

We note that when the gravity current flows downstream its velocity exceeds that
of the ambient (the upper layer). Therefore, the velocity of the upper layer must
be reduced relative to the mean flow in the absence of a gravity current, in order
to maintain this balance of volume fluxes. Conversely when the gravity current
flows upstream the velocity of the upper layer must increase. In our experiments,
by mounting the acoustic Doppler velocimeter to take velocity measurements in the
upper layer we were able to observe this phenomenon quantitatively.

We use (4.22) to eliminate the interfacial pressure from the momentum equation of
the lower layer (4.21) to find, with the aid of (4.23) and (4.24), that

∂

∂t
(uh) +

(

H − h

H

)

∂

∂x

(

u2h+ 1
2
Φh2

)

− h

H

∂

∂x

(

(Q− hu)2

H − h

)

= 0. (4.25)

This approach is entirely equivalent to Bonnecaze et al. (1993); in their notation the
dimensionless scales are defined such that H = 1 and there is no ambient flow (Q = 0).
In this regime, equation (4.25) is the same as that presented by Bonnecaze et al. (1993)
after the correction of a typographical mistake in the final term of their equation (24).
We numerically integrate this system of equations using a similar numerical method
to that described above. However, we note that this technique is only applicable when
the ratio of the initial height of the current to the flow depth (h0/H) is less than
a critical value. (This value depends on the Froude number through the imposition
of the boundary condition at the nose of the current. Rottman & Simpson (1983)
demonstrate that the critical value is equal to 1/2 when Fr =

√
2.) If the initial height

exceeds this critical value then the flow is strongly influenced by ‘upstream’ conditions
and this method using outward propagating characteristics fails. This effect was
noted by Rottman & Simpson (1983) and they suggested that an internal hydraulic
jump occurs, although their attempts to accommodate such a discontinuity into the
formulation of their model were unsuccessful. Klemp, Rotunno & Skamarock (1994),
however, developed a technique to model gravity current evolution when the initial
depth exceeds the critical value. In this paper we restrict ourselves to cases when the
ratio of the initial height to the flow depth is less than critical.

4.5. Results

In this subsection we review some of the results which may be generated from the
numerical integration of this system of equations. The results presented here are not
a complete set of those which may be produced from this model, but rather they
reflect a number of the most significant characteristics. For each of the numerical
calculations, the initial conditions were taken to be that the relatively heavy fluid
was introduced into the ambient in a stationary state with unit aspect ratio. Such
conditions are clearly not appropriate for direct comparison with the experimentally
realized flows of §§ 2, 3 at early times. However, numerical experimentation indicates
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Figure 15. The numerically determined profiles of the height h(x, t) of a collapsing homogeneous
gravity current of fixed volume intruding into a deep ambient fluid moving with uniform velocity
(single-layer model, mean flow U = 0.1). (a) The profiles at early times (0 6 t 6 10). (b) The profiles
at later times (15 6 t 6 40). The dashed lines correspond to the similarity profile given by (4.17),
where the length of the current has been fitted to the numerically determined length.

that the precise form of the initial conditions has relatively little effect on the long-time
evolution of the numerical description of these gravity currents. Hence, we anticipate
being able to model the motion adequately without a precise knowledge of the initial
configuration.

First we consider the evolution of a homogeneous gravity current (β = 0) in the
presence of a mean flow (U = 0.1) for both a single-layer and a two-layer model of
the flow. We plot the height along the current at varying times after the initiation of
the current in figures 15 and 16 and compare these with the similarity solution (§ 4.2).
We note that the single-layer model evolves in a relatively symmetric manner about
the centroid of the current, which itself is being advected downstream with velocity U.
Furthermore, the similarity solution provides an accurate representation of the height
of the current after approximately 10 non-dimensional units of time. In contrast, the
height of the current in the two-layer model does not evolve symmetrically and the
height of the downstream nose of the current is greater than the height of the upstream
nose after an initial (short) period of adjustment. The asymmetry is such that the
symmetric similarity solution never provides a particularly accurate representation of
the height along the current.

This asymmetry has been noted before (Xu 1992; Xu & Moncrieff 1994). It may
be rationalized by consideration of the distribution of the interfacial pressure which
is given by

p = (u2h+ u2
uhu + 1

2
Φh2)/H. (4.26)
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Figure 16. The numerically determined profiles of the height h(x, t) of a collapsing homogeneous
gravity current of fixed volume intruding into a shallow ambient fluid moving with uniform velocity
(two-layer model, h0/H = 0.25, mean flow U = 0.1). (a) The profiles at early times (0 6 t 6 10). (b)
The profiles at later times (15 6 t 6 40). The dashed lines correspond to the similarity profile given
by (4.17), where the length of the current has been fitted to the numerically determined length.

Eliminating the upper-layer variables, we find that

p =
(Q2 − 2hQu+ u2Hh)

(H − h)
+ 1

2
Φh2. (4.27)

Hence if the velocity of the current and the ambient are in the same direction
(Qu > 0) then the pressure is lower than if the two velocities are in opposite
directions (Qu < 0). Therefore the interfacial pressure acts to accelerate the fluid in
the downstream direction and so relative to the mean flow the velocity of the upstream
front is less than the downstream front. In turn this implies that the height of the
downstream front is greater than the upstream front. We note that this difference,
which is observed in experiments (§ 2), is entirely dependent upon the motion of the
upper layer.

We now compare the box model with the numerical integration of the shallow-water
equations. To this end we integrate the equations with various dimensionless settling
velocities (β) until 95% of the particles have been deposited. (It is possible to integrate
the equations until a greater proportion have settled out. However, the results are
then more prone to significant numerical error, because the height of the current
is very small. At such small heights, in any case, the governing equations should
be altered to include viscous effects.) We re-scale the numerical results according

to the box-model non-dimensionalization [lengths with respect to h0(10Fr/β)2/5L3/5
0

and times with respect to 5(g′
pφ0/h0)

−1/2(10β3/2Fr)−2/5L2/5
0 ] and plot the variation

of the length and centroid of the current with time in figure 17. We find that the
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Figure 17. Comparison of the predicted evolution of (a) the length, and (b) the centroid of
a particle-driven gravity current as a function of time for the box model and the single-layer
shallow-water model. The length and time are non-dimensionalized according to the box-model
scalings given by (3.14a, c). The numerical calculations are made with three settling velocities
(β = 0.01, 0.005 and 0.001).

scaling collapses the numerical data. In figure 17(a), there are in fact three curves
corresponding to numerical integrations of the shallow-water equations with different
values of β. These curves, though, are indistinguishable under the box-model non-
dimensionlization. This concurs with the findings of Bonnecaze et al. (1995) that
under this non-dimensionalization different values of β yield only different initial
conditions and the evolution becomes independent of these conditions after some
initial time. However, the final length and the rate of growth in the length of the
current are not identical with that predicted by the box model. This is not surprising
since the box model is a considerable simplification of the shallow-water equations
(Hogg et al. 1998). Our numerical experimentation over several orders of magnitude
of β indicates that the box model under-predicts the runout length by a factor of
approximately 1.2. We noted in § 3.2 that a knowledge of the initial volume of the
particle-laden fluid was critical to permit the calculation of the runout length of the
current. Also, for our experimental setup significant dilution occurs when the fluid is
introduced into the ambient from the elevated reservoir. In § 3.2 we used a measured
dilution of a factor of 20 and found good agreement with the box model. Here we
note that had the dilution been 25% lower good agreement would have been found
with the shallow-water analysis. We also note that the centroid of the current is
indeed advected downstream at a constant velocity. We also compare the predictions
of the distribution of the deposit arising from the passage of a particle-laden gravity
current for both the box model and the numerical calculation (figure 18a, b). We find



136 M. A. Hallworth, A. J. Hogg and H. E. Huppert

2.5

2.0

1.5

1.0

0.5

0
1.0 0.5 0 0.5 1.0

1.0 0.5 0 0.5 1.0
yx

Rescaled position

Rescaled position
yx

R
es

ca
le

d
 d

ep
o
si

t

2.5

2.0

1.5

1.0

0.5

0

R
es

ca
le

d
 d

ep
o
si

t

(a)

(b)
U

Figure 18. Comparison of the predictions of the distribution of the deposit between the box model
(solid curve) and the single-layer shallow-water model (dashed curve) with non-dimensional settling
velocity β = 0.005 for (a) a quiescent ambient fluid, and (b) a uniform ambient flow (U = 0.2). The
deposit and position are non-dimensionalized according to the box-model scalings given by (3.16)
and (3.14 a).

broad agreement between the two models, although the numerical integration predicts
a slightly greater runout length of the current. Since the distribution of the deposit is
over a slightly greater range, the maximum deposit is necessarily reduced.

Finally, we compare the numerical integration of the equations for particle-driven
gravity currents in the single- and two-layer models. We plot the height and volume
fraction of particles associated with the current along its length in figures 19 and
20. We note that in both cases the middle of the current, being thinner, becomes
depleted in particles relative to the upstream and downstream propagating fronts.
Furthermore, compared to homogeneous currents, the height of the front is increased.
As with the homogeneous currents we note that while the single-layer model develops
symmetrically about its centroid, the two-layer model develops significant asymmetry.
This implies that the upstream propagating front is slower in the two-layer than in
the single-layer model and vice versa for the downstream propagating front. Hence,
although the total length of both currents increases similarly, the centroid moves
downstream more rapidly in the two-layer model (figure 21) and the deposit is
more heavily skewed towards the downstream direction (figure 22). Once again the
difference between the two models of the current is due to the distribution of the
interfacial pressure.

5. Discussion

5.1. The nose condition in the presence of an ambient flow

We noted in § 2 that although during the initial phase of the gravity current propa-
gation the shape of the upstream and downstream flows were similar, an asymmetry
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and (b) a relatively shallow ambient fluid (two-layer model, h0/H = 0.25). In both cases, the
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Figure 20. The numerically determined profiles of the volume fraction Φ(x, t) of a collapsing parti-
cle-driven gravity current of fixed volume intruding into (a) a very deep ambient fluid (single-layer
model), and (b) a relatively shallow ambient fluid (two-layer model, h0/H = 0.25). In both cases,
the non-dimensional settling velocity was given by β = 0.005, and initially the relatively heavy fluid
was stationary and of unit height and volume with Φ(x, t) = 1. In this case the ambient fluid was
moving uniformly with U = 0.1.
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of time, intruding into a deep (dashed curve) and shallow (solid curve) ambient fluid. The settling
velocity and the mean flow are given by β = 0.005 and U = 0.1 respectively. The depth of the
shallow ambient is h0/H = 0.25.
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Figure 22. The numerically calculated deposit arising from the passage of a particle-driven gravity
current of fixed volume, intruding into a deep (dashed curve) and shallow (solid curve) ambient
fluid. The settling velocity and the mean flow are given by β = 0.005 and U = 0.1 respectively. The
depth of the shallow ambient is h0/H = 0.25.

soon developed. The current propagating upstream was considerably thinner than
the downstream current and the elevation of the foremost part of the nose, relative
to the overall height of the nose, was reduced. These observations have been noted
before in studies of compositional gravity currents (Simpson & Britter 1980; Jirka &
Arita 1987; Bühler, Wright & Kim 1991). Eventually the upstream current is arrested
and adopts a wedge-like form before being stripped away by interfacial eddies. In
the context of estuarine density wedges, a theory has been developed to model the
shape of these wedge-like structures (Turner 1973). These models balance horizontal
pressure gradients with the interfacial drag between the layers.

The detailed dynamics of the head of gravity currents have been the subject of
some theoretical and experimental study (Britter & Simpson 1978; Simpson & Britter
1979), although most attention has focused on currents driven by a constant volume
flux. The dynamics of these constant-flux currents are different from those of currents
generated by the release of a fixed volume of fluid in that the head of the constant-flux
currents are being continually replenished by fluid from the tail. Britter & Simpson
(1978) suggest that this ‘over-taking’ velocity of the tail exceeds the velocity of the
head by approximately 10%. In contrast no such overtaking is found for fixed-volume
releases (Hallworth et al. 1996). Instead the head of these currents loses fluid to an
almost stationary tail. It has been noted that the detailed flow structure of the head
of a gravity current is extremely sensitive to anomalies in the flow relative to it. For
currents generated by a fixed-flux release, both Jirka & Arita (1987) and Rottman,
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Hunt & Mercer (1985) have formulated simple models of the flow in the region near
the stagnation point at the foremost point of the head. Jirka & Arita (1987) conclude
that the interface is flattened when the ambient flow is less than the velocity of the
current and is steepened when the ambient exceeds the current. This is entirely in
accord with our experimental observations. It also concurs with the observations of
Simpson & Britter (1979).

In § 3, we found that the centroid of the gravity current was advected by a velocity
of 0.6 times the mean flow. A similar factor has been reported by Simpson & Britter
(1980) in the context of laboratory experiments with constant-flux currents and from
a series of atmospheric measurements. They proposed a simple hydraulic model of
the flow which may rationalize this observation. The model used principles of mass
and momentum conservation, together with an empirically determined variation of
the elevation of the foremost point of the nose as a function of the ratio of current
velocity to the difference between the current and ambient velocities. We include a
version of this analysis for constant-volume currents in the Appendix. Regrettably,
there are as yet no experimental observations to validate fully this model and further
experiments are required to understand the detailed dynamics.

5.2. Applications

Our results find immediate application in a number of different industrial situations.
First, the upstream penetration of pollutants, either chemical or particulate, discharged
into a stream or generated from a sedimented basement can be calculated. Second,
the treatment of sewage and waste often consists of running suspended particulate
matter sufficiently far down a channel for sedimentation of the solid waste to occur.
Our results indicate the speed with which the separation takes place and the length
of channel required.

Although the influence of an ambient flow on the propagation of a gravity current
was considered more than fifty years ago, this paper presents the first definitive
quantitative investigation of the problem. Nevertheless, extensions of the simplest
situation considered in this paper immediately come to mind; and we plan to present
investigations of at least some of them in the near future. These will include studies
on the influences of: a fixed, or variable, flux to the input current, rather than the
instantaneous release of a finite volume considered here; a distribution of particle
sizes, rather than the monodisperse distribution assumed here; a relatively light
interstitial fluid, rather than the case of equal densities of interstitial and ambient
considered here; and the input into a moving ambient of fluid whose bulk density is
less than that of the ambient.

We thank Stuart Lane for the generous loan of the acoustic Doppler velocimeter
and Brian Dade, Ross Kerr, John Lister and Henry Pantin for helpful comments on
an earlier draft. This research is partially supported by MAFF.

Appendix. Derivation of the nose condition

In this Appendix we propose a highly simplified analysis for the hydraulic prop-
erties of the flow around the head of a gravity current. This problem has received
considerable earlier attention (Benjamin 1968; Britter & Simpson 1978; Simpson &
Britter 1979, 1980; Klemp et al. 1994). The purpose here is to present a simplified
version of the analysis developed by Simpson & Britter (1979) which is combined
with an empirical observation of the height of the head of a gravity current origi-
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Figure 23. Schematic representation of a gravity current in a frame of reference which is moving
with the velocity of the current at its head (U0), showing the relative heights of the head (h3 + h4),
its foremost point (h5), the tail (h4) and the ambient (h1).

nating from the instantaneous release of a fixed volume (Hallworth et al. 1996). It is
demonstrated that when a gravity current propagates through an ambient which has
a mean flow, it is advected downstream by a proportion of the mean flow and that the
Froude number at the head is reduced. We emphasize that the series of experiments
reported in this paper do not provide a rigorous test of this simple model. Rather we
include this analysis in order to consider more fully the influence of a mean flow on
the hydrodynamics of the head of a gravity current.

The approach follows closely the work of Benjamin (1968) in that mass conservation
and the Bernoulli equation are invoked. However, the analysis is extended to include
the elevation of the foremost front of the gravity current (Simpson & Britter 1979).
This foremost point is not at the boundary, as was assumed by Benjamin (1968),
because of the action of viscous forces close to the boundary. We assume that the
gravity current is in a quasi-steady state so that its acceleration may be neglected and
within a control volume (which is specified below) the total momentum is conserved.
Furthermore, entrainment into the head is ignored and we assume that there is a well-
defined interface between the fluids of different density. This considerably simplifies
the analysis of Britter & Simpson (1978). Finally, we assume that the combined depth
of the two layers of fluid is constant. (This assumption was shown by Benjamin (1968)
to be valid provided that the density difference is not too great.)

A schematic representation of the flow which is to be analysed is given in figure
23. We work in a frame of reference which is moving with the velocity of the
gravity current at its head (U0). In this frame the oncoming velocity is denoted by
U1 = U − U0. The total depth of the fluid is denoted by h1, while the height of the
tail of the gravity current is h4. In this frame of reference the foremost point of the
gravity current corresponds to a stagnation point, denoted by O in figure 23, which
is elevated by a height h5 above the boundary. Finally the total height of the head of
the gravity current is given by h3 + h4. We consider, a control volume ABCD with the
section AB and CD being sufficiently far from the head that the flow through these
sections is horizontal and uniform. Applying mass continuity, we find that

h1U1 = (h1 − h4)U2. (A 1)

Using Bernoulli’s theorem on a streamline passing through the stagnation point at
which the pressure is set equal to zero, we find that the pressure at B is given by

pB = − 1
2
ρ1U

2
1 + ρ1gh5 (A 2)
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and the pressure at C is given by

pC = ρ2gh5. (A 3)

On each of the sections AB and CD we assume that the pressure adopts a hydrostatic
distribution. Hence balancing the momentum fluxes across the two sections yields

1
2
ρ1U

2
1h1 − 1

2
ρ1gh

2
1 + ρ1gh5h1 = ρ1U2(h1 − h4)

2 − 1
2
ρ1gh

2
1 − 1

2
(ρ2 − ρ1)gh

2
4

−(ρ2 − ρ1)gh4(h1 − h4) + ρ2gh5h1. (A 4)

Substituting for U2 and writing g′ = ∆ρg/ρ and ϕ = h4/h1, we find that

U2
1

g′h4

=
(2 − ϕ)(1 − ϕ)

(1 + ϕ)
− 2h5(1 − ϕ)

h4(1 + ϕ)
. (A 5)

The leading term of the right-hand side of this equation corresponds to that derived
by Benjamin (1968), whereas the second term represents the influence of variations of
the height of the foremost point. Simpson & Britter (1980) experimently studied this
variation for fixed-flux compositional gravity currents. They proposed the empirical
relationship that

h5

h4

= −Γ U0

U1

, (A 6)

and found that Γ (h3 + h4)/h4 = 0.1. For fixed-volume releases no equivalent mea-
surements have been made. Furthermore, there has been no extensive research of the
various dimensions of the head, although Hallworth et al. (1996) suggest that for
two-dimensional gravity currents flowing over a rigid boundary h4 = (h3 + h4)/8.

We may form an asymptotic solution to (A 5),(A 6) in the regime of Γ ≪ 1 and of
deep ambient fluid (ϕ ≪ 1). This yields

U0 =
(

2g′h4

)1/2
(1 − ϕ− Γ/2) +U(1 − Γ/2) + O(Γ 2, ϕ2, Γϕ). (A 7)

Hence we observe that both the proportion of the mean flow experienced by the head
of the gravity current and its effective Froude number are reduced by a factor of
(1 − Γ/2). Furthermore, if we use the experimental results of Hallworth et al. (1996)
and Simpson & Britter (1980), even though the latter considered constant-flux gravity
currents, we find that the head of the gravity current experiences a velocity only
0.6 times that of the mean flow – a result which was found from the experimental
data in § 3. This result may be fortuitous because the model invoked here contains a
number of simplifications and the relationship proposed in (A 6) is purely empirical.
Nevertheless, we would highlight this as a future area of research. In particular, there
is a need to understand the details of the complex dynamics around the head of the
gravity current. To this end, future models of the motion should include effects due
to three-dimensional flow and viscosity.
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