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We use a band unfolding technique to recover an effective primitive cell picture of the band structure of

graphene under the influence of different types of perturbations. This involves intrinsic perturbations, such as

structural defects, and external ones, comprising nitrogen substitutions and the inclusion of graphene in adsorbed

systems. In such cases, the band unfolding provides a reliable and efficient tool for quantitatively analyzing the

effect of doping and defects on the electronic structure of graphene. We envision that this approach will become

a standard method in the computational analysis of graphene’s electronic structure in related systems.
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Graphene, the two-dimensional carbon allotrope [1], has a

unique combination of properties which make it highly inter-

esting for a wide range of applications, such as flexible high

performance electronics, spintronics, photodetectors, different

types of sensors, etc. [2]. The underlying physical properties,

such as electrical and thermal conductivity, mechanical stiff-

ness, strength, and elasticity, and optical properties, have been

the subject of numerous studies since the discovery in 2004

[3,4].

In order to use graphene for electronics, however, it is often

necessary to restrain its properties. This can be performed,

for instance, by patterning, e.g., formation of graphene

nanoribbons [5], or by doping [2]. The latter is commonly

achieved by introducing nitrogen or boron as substitutional

impurities [6]. An alternative route for tailoring graphene’s

characteristics is to exploit structural defects, which can be

introduced in a controlled way under certain conditions [6].

In several practical situations, both doping and structural

defects can be seen as perturbing agents modifying the

properties of pristine graphene. Assessing how graphene’s

electronic structure changes under the influence of such

perturbations is thus of major interest. In particular, in order

for computational investigations of the influence of such

external agents on the electronic dispersion to come reliable

and efficient, unambiguous evaluations of graphene’s band

structure under their influence are crucial.

Calculations involving realistic systems are frequently

performed using a supercell (SC) approach. Despite the

equivalence between the primitive cell (PC) and the SC

descriptions of a perfectly periodic material, the latter brings

in an inconvenience: The folding of the bands into the smaller

SC Brillouin zone (SCBZ) gives rise to complicated band

structures, even for relatively small SCs. This is illustrated

in Fig. 1 for a calculation using a 4 × 4 graphene SC, for

which the band structure is already difficult to relate to the

one of the PC. Unlike this trivial example, using a PC is not

possible in the cases of the perturbed structures discussed

above. We show in this Rapid Communication that a band

unfolding technique constitutes an extremely efficient tool to
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simplify the analysis of the results. Although the unfolding

is strictly exact only for perfect SCs, it can still provide a

meaningful physical representation, in terms of an effective

PC band structure (EBS), if the deviations from the perfect

case are small [7,8].

Here we introduce the band unfolding technique to recover

an effective PC picture of graphene’s band structure from

calculations using different SCs which include both intrinsic

and extrinsic perturbations. We performed the unfolding using

our implementation [9], based on the method by Popescu and

Zunger [10]. The periodic density functional theory (DFT)

calculations were carried out using the VASP code [11–14],

with a kinetic energy cutoff of 400 eV. Specific computational

details for each of the considered systems are given in the

Supplemental Material [15]. The theory behind the band un-

folding methodology has been described thoroughly elsewhere

[7,8,10,16–19], and only a brief summary is presented here.

We first define �PCBZ and �SCBZ as the volumes of the

primitive cell Brillouin zone (PCBZ) and SCBZ, respectively.

For each wave vector �K of the SCBZ, there are Nunfold ≡
�PCBZ/�SCBZ wave vectors �ki of the PCBZ such that

�ki = �K + �G�ki← �K , i = 1,2,3, . . . ,Nunfold, (1)

where the vectors �G�ki← �K belong to the SC reciprocal lattice.

The wave vector �K is said to unfold onto �ki with the unfolding
vector �G�ki← �K . The reverse operation is

�K = �k − �G�k→ �K , (2)

where �k folds into �K with the folding vector �G�k→ �K . Note that,

for a given �k, there is only one �K that satisfies this relation.

Now consider an eigenstate |ψSC

m �K
〉 of the Hamiltonian in

the SC representation. Let {�̃ki} be the set of wave vectors �ki in

the PCBZ, which relate to �K through Eq. (1), and correspond

to PC eigenstates |ψPC

n�ki

〉 with the same eigenvalue as |ψSC

m �K
〉.

The eigenstates |ψSC

m �K
〉 and |ψPC

n�ki

〉 are related as [10,17,20]

∣∣ψSC

m �K

〉
=

∑

n

�ki ∈ {�̃ki }

a(�ki,n; �K,m)
∣∣ψPC

n�ki

〉
. (3)
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FIG. 1. (Color online) Band structure for a 4 × 4 SC of graphene,

before (blue lines) and after (× marks) unfolding, along the high-

symmetry directions of graphene’s PCBZ.

The probability of |ψSC

m �K
〉 having the same character as a PC

Bloch state of wave vector �k is given by the spectral weight

Pm �K (�k) [10,17]:

Pm �K (�k) ≡
∑

n

∣∣〈ψSC

m �K

∣∣ψPC

n�k

〉∣∣2
=

∑

�g∈PCRL

∣∣CSC

m �K
(�g + �k − �K)

∣∣2
,

(4)

where PCRL stands for the PC reciprocal lattice. The second

equality in Eq. (4) shows that Pm �K (�k) can be obtained entirely

from the coefficients CSC

m �K
of the plane waves that span the

eigenstates of the SC, which means that the knowledge of

the PC eigenstates is not required [10]. The spectral function

A(�k; ε) is then defined as [10,19]

A(�k; ε) ≡
∑

m

Pm �K (�k)δ(ε − εm( �K)). (5)

It is clear that the only pairs (�k, �K) that need to be included

in the sum in Eq. (5) are those in which �K unfolds onto �k.

The last step is then using the spectral function to obtain the

EBS. Slightly differently from what is done in Refs. [8,10],

we accomplish this by working with the infinitesimal version

dS�k(ε) = A(�k; ε)dε of the cumulative probability function

S�k(ε). By observing that dS�k(ε) represents the number of PC

bands, at the PC wave vector �k, crossing the energy interval

(ε,ε + dε), we map the region of interest in the (�k; ε) space

onto a (�ki,εj ) grid with energy intervals of size δε, and assign

a weight δN (�ki ; εj ) to each point, where the quantity

δN(�ki ; εj ) ≡

∫ εj +δε/2

εj −δε/2

dS�ki
(ε)

=
∑

m

Pm �K (�ki)

∫ εj +δε/2

εj −δε/2

δ(ε − εm( �K))dε (6)

gives the number of PC bands crossing (�ki ; εj ). The advantage

with this approach is that we do not need algorithms for finding

the peaks of A(�k; ε), nor the steps of S�k(ε). Finally, δN is

averaged over wave vectors �ki related by symmetry operations

of the PCBZ.

FIG. 2. (Color online) SW defect in graphene: (a) and (b) EBS,

and (c) equilibrium geometry. In (b), the k axis is perpendicular to the

K-Ŵ direction, and the point K is at k = 0. The color scale represents

δN (see main text).

We begin by applying the band unfolding method described

above to obtain the EBS for graphene under the influence of

intrinsic perturbations. We have simulated a Stone-Wales (SW)

defect [21] (Fig. 2), as well as a V2(555-777) double vacancy

[6] (Fig. 3). The SW defects are normally formed by exposing

graphene to nonequilibrium conditions, but since a barrier of

about 5 eV is needed to revert it, it tends to remain stable once

the equilibrium conditions are restored [6]. The V2(555-777)

defect was chosen since it has shown to be thermodynamically

more favorable than other types of double vacancies [6].

Figure 2(a) shows the EBS for the case of the SW defect.

The only appreciable difference between the EBS and the ac-

tual pristine graphene’s PC band structure (PCBS) is the smear-

ing of the PC eigenvalues εPC
n (�k): A set of energy levels ε(i)

n (�k)

now appears smeared around band centers ε̃n(�k) ≈ εPC
n (�k) with

smearing widths �εn(�k). The summation of δN for these en-

ergy levels gives approximately the number of PC bands cross-

ing (�k; ε) for pristine graphene (1 or 2). As shown in Fig. 2(b),

the Dirac cone remains preserved after introducing the defect.

FIG. 3. (Color online) V2(555-777) defect in graphene: (a) and

(b) EBS, and (c) equilibrium geometry. In (b), the k axis is

perpendicular to the K-Ŵ direction, and the point K is at k = 0.

The color scale represents δN (see main text).
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The EBS for the V2(555-777) defect is shown in Fig. 3(a).

Although it appears to retain the overall shape of graphene’s

PCBS, a closer look into the region shown in Fig. 3(b) reveals

the appearance of two flat bands – one around the Fermi energy

and another located around 0.36 eV below it. We attribute this

effect to the electron localization around the defective region

[22] (see the band-decomposed charge densities included in the

Supplemental Material [15]). Such redistribution of electronic

states is accomplished at the cost of breaking the lower branch

of the Dirac cone. The transfer of electrons from graphene’s

π band to the defective region is reflected by an upwards shift

of the Dirac point with respect to the Fermi level.

From the calculated δN (�k; ε), one can determine both ε̃n(�k)

and �εn(�k) (see Supplemental Material [15]). We illustrate,

for different concentrations of SW and V2(555-777) defects,

that �εn(�k) can be used to quantify the smearing of the bands.

It is clear that an increased defect density leads to more spread

bands, while the positions of the band centers remain relatively

constant.

As an example of an extrinsic perturbation, we analyzed

the case of a double nitrogen substitution in graphene. The

employed SC contains 798 C atoms and one NAA
2 dopant, re-

producing the experimentally measured dopant concentration

of around 5 × 1012 NAA
2 defects per cm2 reported in Ref. [23].

A Fermi level shift of 0.28 eV can be readily observed from the

EBS [Fig. 4(b)], in close agreement with the experimentally

estimated shift of 0.35 eV [23]. Furthermore, some defect-

induced flat bands can now be identified, indicating once

again electronic localization around the defect. As in the

case of the SW defect, smearing out of the energy levels is

also observed. Besides the NAA
2 defect, we have also studied

the case of a single N dopant with a setup corresponding

to the experimental conditions reported in Ref. [24]. We

found similar results for this case, also in agreement with

the corresponding experimental results (see Supplemental

Material [15]). We would like to stress that the simplicity of

the analysis and its interpretation is made possible as a result

of the band unfolding method.

The effectiveness of the method is further accentuated when

we consider the band structure of graphene in adsorption

FIG. 4. (Color online) NAA
2 substitutional defect in graphene:

(a) and (b) EBS, and (c) equilibrium geometry. In (b), the k axis

is perpendicular to the K-Ŵ direction, and the point K is at k = 0.

The color scale represents δN (see main text).

FIG. 5. (Color online) F4-TCNQ@graphene: (a) and (b) EBS,

and (c) equilibrium geometry. In (b), the k axis is perpendicular

to the K-Ŵ direction, and the point K is at k = 0. The color scale

represents δN (see main text).

complexes. As an example, we simulated a 2,3,5,6-tetrafluoro-

7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) molecule ad-

sorbed on graphene, and, as in Ref. [25], we used a 6 × 6

graphene SC. The EBS [Fig. 5(a)] leads to the same quan-

titative conclusions as those drawn in Ref. [25], regarding

both the p-type doping of graphene and the presence of a

molecule-derived energy level at EF . An immediate advantage

of our approach for this type of system is that, by providing a

unified reference frame for calculations using different-sized

SCs, it allows a much more straightforward investigation of

the changes in the band structure of graphene as a function of

molecular coverage.

Finally, we investigated the adsorption of graphene on a

Cu(111) surface (Fig. 6). Due to the incommensurability of

these two lattices, we adjusted the metal’s in-plane lattice

parameter to match graphene. Such an adjustment could, in

principle, introduce artificial effects in the electronic structure

of the system. To avoid this problem, we used a relatively

large SC, shown in Fig. 6(c), for which the mismatch is

only 0.6%. Figure 6(a) shows the EBS for this system.

FIG. 6. (Color online) Graphene@Cu(111): (a) and (b) EBS, and

(c) employed SC. In (b), the k axis is perpendicular to the K-Ŵ

direction, and the point K is at k = 0. The color scale represents δN

(see main text).
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MEDEIROS, STAFSTRÖM, AND BJÖRK PHYSICAL REVIEW B 89, 041407(R) (2014)

While a direct comparison with graphene’s PCBS would

be virtually impossible without performing band unfolding,

the characteristic PCBS of graphene can be easily identified

among the copper bands in the EBS. A simple inspection of

the position of graphene’s Dirac point in Fig. 6(b) reveals the

type and amount of doping of graphene (n type, with a Fermi

level shift of 0.25 eV).

In conclusion, we have applied a band unfolding technique

to analyze the electronic structure of graphene in the presence

of intrinsic and extrinsic perturbations. The suitability of such

a methodology was demonstrated for cases where an effective

PC picture of the band structure of graphene is desired, but

the use of a PC is not possible. Notably, this methodology

can be employed to study any periodic system. A major

advantage of this approach is that it provides a better interface

for comparing electronic dispersion relations obtained for

systems that, albeit sharing a similar nature, are simulated

using different SCs. This includes, for example, obtaining

rules on how the density of a particular defect affects the

band structure. Furthermore, reporting not only SC-derived

band structures but also the EBS obtained from band unfolding

establishes a common ground in which theory and experiments

can be better faced against each other, as experimental band

structure measurements, such as angle-resolved photoemission

spectroscopy (ARPES), are often represented along the high-

symmetry directions of the graphene PCBZ. We envision that

the band unfolding technique will be routinely applied to un-

ambiguously calculate perturbed band structures of graphene,

both for comparison with experimental data, as well as for

computational screening of novel graphene-based electronic

materials.

The authors acknowledge the Swedish Research Council
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