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Abstract 

This paper explores the relationship between fact mutability, 
intervention and human evaluation of counterfactual 
conditionals. Two experiments are reported that show the 
effects of causal strength and causal distance on fact 
mutability and intervention. Subjects’ answers are compared 
to the predictions of three models of counterfactual reasoning 
in Artificial Intelligence. This comparison demonstrates that 
logical inferences and graph topologies are not sufficient for 
modeling all aspects of human counterfactual reasoning.  
Keywords: Counterfactual Reasoning; Causal Networks; 
Norm Theory. 

Introduction 
Counterfactual reasoning has long been a subject of interest 
to philosophers (e.g. Leibniz, 1686; Hume, 1748; Goodman, 
1947; Lewis, 1973; Stalnaker, 1968). More recently 
linguists, psychologist, and later on cognitive scientists, 
have become interested in the study of the concept of “what 
would have been” and how reasoning about events that 
almost happened provides us with knowledge that cannot be 
deduced from simple facts or indicative conditionals (e.g. 
Kahneman and Miller, 1986; Sternberg and Gastel, 1989). 
In the last two decades there have been several attempts to 
model counterfactual reasoning in AI (Ginsberg, 1986; 
Costello and McCarthy, 1999; Pearl, 2000; Hiddleston, 
2005, among others). The advantage of such formal models 
is that they make precise predictions for particular cases. In 
this paper we briefly review two of these models and 
demonstrate using evidence from two psychological 
experiments that these models do not capture the full 
spectrum of human counterfactual reasoning. Specifically, 
we illustrate how causal distance and causal strength affect 
the interpretation of counterfactual statements. In 
conclusion, we argue that utilizing the psychological 
findings on fact mutability and similarity are crucial to 
building cognitively plausible computational models of 
counterfactual reasoning.  

First, we briefly review the Stalnaker/Lewis theory of 
counterfactuals. Next, we discuss Causal Bayesian 
Networks (Spirtes, Glymour, and Scheines, 1993; Pearl, 

2000) and the psychological evidence supporting this 
model. Also in the same section, we review Hiddelston’s 
(2005) extension to Causal Bayesian Networks. We then 
discuss Kahneman and Miller’s Norm Theory (1986) and 
two psychological experiments designed to test the 
correctness of the predictions of the AI models. 

The Stalnaker/Lewis Theory 
Many models of counterfactual reasoning are inspired by 
the model-theoretic accounts of Stalnaker (1968) and Lewis 
(1973). Minor differences aside, both crucially rely on a 
notion of comparative similarity between possible worlds 
relative to the “actual” world i of evaluation. Thus Lewis’s 
truth conditions state that a counterfactual ‘If it were that 
Antecedent, then it would be that Consequent’ (A�C) is 
then true at world i “if and only if, if there is an antecedent-
world accessible from i, then the consequent holds at every 
antecedent-world at least as close to i as a certain accessible 
antecedent-world” (p. 49). Assuming for simplicity that 
there is a set of A-worlds that are maximally similar to i, this 
means that the counterfactual A�C is true if and only if C 
is true in all of those maximally similar A-worlds.  

Stalnaker and Lewis account for various logical properties 
of counterfactuals by imposing conditions on the underlying 
similarity relation, but neither attempts a detailed analysis of 
this notion. However, Lewis (1979), noting that his theory 
“must be fleshed out with an account of the appropriate 
similarity relation, and this will differ from context to 
context,” gives an informal ranked list of general “weights 
or priorities” in determining similarity: first, to avoid big, 
widespread, diverse violations of law; second, to maximize 
the spatio-temporal region of perfect match of particular 
fact; third, to avoid small, localized violations of law; 
fourth, to secure approximate similarity of particular facts. 

Despite the informality of these guidelines, one can 
discern a priority of laws over particular fact, and of “big” 
discrepancies over “small” ones. Much of the subsequent 
work on modeling counterfactual reasoning is based on 
similar intuitions and can be viewed as attempts to make the 
notion of similarity more precise. However, in view of 



Lewis’s emphasis on the inherent vagueness and context-
dependence of the notion, it is not surprising that there is 
considerable variation in detail.  

Ginsberg’s Computational Implementation 
Ginsberg (1986) models the interpretation of counterfactuals 
relative to an imaginary “large database describing the state 
of the world at some point.” This is in line with AI 
conventions on the one hand, and the logical school of 
Premise Semantics (Veltman, 1978; Kratzer, 1981), on the 
other. In this framework, the move from the world of 
evaluation to antecedent-worlds corresponds to a revision of 
the database, and the problem of determining similarity is 
mirrored by the question of which facts to keep and which 
ones to give up in order to keep this revision minimal. Again 
following AI conventions, Ginsberg extends the term 
“possible world” to partial descriptions, which would 
correspond to sets of (total) possible worlds in the 
Stalnaker/Lewis framework.  

Overall, Ginsberg’s theory is set up to minimize 
differences in facts and localize violations of rules. In 
particular, his second postulate ensures that violations are 
treated as exceptions to existing rules, rather than the 
workings of different ones. In this, the theory reflects 
Lewis’s emphasis on minimizing violations of law while 
maximizing correspondence in particular fact. 

Counterfactuals in Causal Bayesian Networks 
Causal Bayesian Networks have recently gained 
considerable currency as a formal tool for representing 
domain knowledge and modeling causal and counterfactual 
reasoning (Pearl, 1998, 2000; Spirtes et al., 1993). A 
Bayesian Network is a directed acyclic graph whose vertices 
represent variables and whose topology encodes 
independencies between those variables in the form of the 
Markov Assumption: The probability of a variable X is fully 
determined by the values of its immediate parents pa(X) in 
the graph. A Bayesian Network is causal if all arrows are 
assumed to lead from causes to effects. Pearl (2000) 
assumes that causation is deterministic; uncertainty is 
modeled as a probability distribution over a distinct set of 
“exogenous” variables. Under this assumption, the values of 
pa(X) jointly determine the value of X. 

The causal interpretation makes a special update 
operation available, formally represented using the “do 
operator”: The result of applying the operation do(X=x) to a 
network with a vertex X results in a new network in which X 
has value x and all arrows leading into X are removed. In 
this network, the variables in pa(X) are independent of X, 
hence unaffected by standard algorithms of belief 
propagation. The intention is that do(X=x) represents an 
external intervention upon X which disrupts the causal 
process that normally determines the value of X, so the fact 
that X=x does not warrant any inferences about its normal 
causes. Thus, do(X=x) represents a local update whose 
effects are limited to the descendants of X in the graph. 
  

                                 
 

Figure 1: do(X=x), an external action 
making X independent of its parent W 

 
Pearl claims that the do operator “is a crucial step in the 
semantics of counterfactuals” (Pearl, 2000): A 
counterfactual with antecedent ‘If it were that X=x’ is 
interpreted in a causal network by first applying do(X=x), 
then evaluating the consequent in the resulting modified 
network. This leads to the strong prediction that unless the 
consequent is not a (direct or indirect) effect of X, it should 
be unaffected by the intervention and retain its prior 
probability. 

In a series of six psychological experiments, Sloman and 
Lagnado (2005) investigate whether human subjects’ 
responses to counterfactual statements can be explained 
using the method of determining the truth of counterfactuals 
in Causal Bayesian networks and the do(x) operator. 
Overall, they conclude that responses of the subjects were 
more or less compatible with the effect of the do(x) 
operator. But they argue that “representing intervention is 
not always as easy as forcing a variable to some value and 
cutting the variable off from its causes. Indeed, most of the 
data reported here show some variability in people's 
responses. People are not generally satisfied to simply 
implement a ‘do’ operation. People often want to know 
precisely how an intervention is taking place.” (Sloman and 
Lagnado, 2005). 

Hiddleston’s Theory of Counterfactuals 
Hiddleston (2005) is a recent attempt to synthesize the 
insights of different strands of research into a theory which 
accounts for a number of problematic examples that were 
discussed in the philosophical literature. He adopts the basic 
idea of representing causal relations as directed acyclic 
graphs from Spirtes et al. (1993) and Pearl (2000), but his 
interpretation of these graphs dispenses with some of the 
assumptions about causality made by the latter. Unlike 
Pearl, he allows for non-deterministic causal laws, and he 
weakens the Markov Assumption to allow for cases in 
which a variable’s taking on a different value is impossible 
given the actual values of its parents and the causal laws.  

Hiddleston evaluates counterfactuals relative to models 
consisting of a causal graph and an assignment of values to 
all variables. One may think of such models as “possible 
worlds” and call the values that variables are assigned in 
them their “actual” values. Relative to such a model M, he 
introduces a notion of positive parent of a variable X 
(written ppa(X)), a subset of pa(X), defined as those parents 
Y of X such that the conditional probability of X’s taking on 
its actual value, given that all of X’s parents (including Y) 
have their actual values, is strictly higher than the 
corresponding conditional probability in the event that Y 

W 

   X = x Y 



alone among X’s parents takes on a different value. Thus the 
set of positive parents of X relative to the same causal 
structure may differ between alternative value assignments.  

Instead of modeling the interpretation of a counterfactual 
A�C whose antecedent is the assertion that some variable 
X has value x by “cutting the links” from pa(X) to X, his rule 
involves a comparison between alternative “A-models” with 
the same causal structure as the original model M and in 
which X=x. Among those, a model is “A-minimal” if (i) the 
set of non-descendants Z of X such that both Z and Z’s 
positive parents have the same values as in M is maximal; 
and (ii) the set of “causal breaks” - variables Z which take 
on a different value while the values of Z’s positive parents 
are the same as in M - is minimal. The counterfactual 
A�C is true in M if and only if C is true in all of those A-
minimal models. These conditions, as Hiddleston puts it, 
“force any causal break to be as minor and late as is 
lawfully possible.”  

Hiddleston leaves room for the incorporation of context 
dependence by allowing that depending on the situation, 
only a subset of all “causal breaks” may be relevant. The 
role of the context is not formalized in his models, however. 

Norm Theory 
One important perspective in research on counterfactual 
reasoning in psychology is Kahneman and Miller’s Norm 
Theory (1986). According to this theory, the outcome of a 
situation is compared to a norm, which is constructed online 
based on past experiences and expectations, as well as on 
the particular outcome. Outcomes that are similar to the 
norm are considered normal, while outcomes that are 
significantly different are considered abnormal. Abnormal 
outcomes activate their normal counterparts, thus they are 
an invitation for counterfactual thinking. Kahneman and 
Miller (1986) argue that when constructing the norm, there 
are certain facts that are easier to mentally undo, or 
“mutate” from the actual world than others. People are more 
or less able to predict the availability of counterfactual 
alternatives to a given situation, “Some aspects of reality are 
more mutable than others, in the sense that alternatives to 
them come more readily to mind” (Kahneman, 1995). 
Hence, when thinking about causal situations, there are 
certain causes that tend to be easier to modify or mutate.   

Fact Mutability and Intervention 
According to the Norm Theory, when faced with multiple 
causes with different mutability rates, alternatives to causes 
which have higher mutability rates come more readily to 
mind and therefore these causes tend to be easier to 
mentally undo and give up their values. In other words, the 
higher the mutability rate of a fact, the less likely it is that 
its value will stay the same under an intervention.  

Although deciding the mutability of facts is similar to the 
problem of determining similarity between possible worlds, 
fact mutability has not been taken into account in the 
philosophical and AI literature. We believe that this is an 

important psychological factor which should play a role in 
theories of counterfactual reasoning.  

Two context free conditions which we believe affect fact 
mutability are causal distance and causal strength. Causal 
distance is the relative closeness of the antecedent of the 
counterfactual from its consequent in the causal graph. We 
predict that the closer the antecedent is to its consequent, the 
more mutable the antecedent is and therefore the easier it is 
to mentally undo it. The second condition is the strength of 
the causal connection between the antecedent and the 
consequent. Psychological evidence suggests that people not 
only use causal structures but also utilize beliefs about 
causal strengths (e.g. Kushnir and Gopnik, 2005; Waldmann 
& Hagmayer, 2001). ∆P (Jenkins and Ward, 1965) and 
power PC (Cheng, 1997) both utilize conditional 
probabilities to compute causal strength.  In Bayesian 
Networks, these parameters can be calculated from the 
conditional probabilities. However, none of the models 
discussed above utilizes causal strength when evaluating 
counterfactuals. We predict that if an effect has multiple 
causes, the ones which have a stronger causal connection to 
it are more easily undone than the ones which have a weaker 
connection. This is consistent with our prediction about 
causal distance; the connection with direct causes is stronger 
than that with distant causes.  

There are also context dependent factor which affect the 
mutability of facts. For example, actions are more mutable 
than failures to act (Kahneman & Miller, 1986). We 
investigate the affect of these context dependent factors on 
the evaluation of counterfactuals in a separate paper (in 
preparation). 

Experiments 
In the following experiments we present scenarios 
containing facts with different mutability rates and 
investigate how these different rates affect subjects’ 
responses to counterfactual questions. We then compare 
these responses to the predictions of the normative models 
discussed in the previous section focusing on the predictions 
of Causal Bayesian Networks. 

Experiment 1 
In this experiment we investigated how the distance of the 
antecedent from its consequent in the causal graph can 
change the mutability of facts when analyzing a backward 
counterfactual statement, where the effect is the antecedent 
of the counterfactual and the cause is the consequent. 
Sloman and Lagnado (2005) suggest that people are more 
likely to keep the state of the consequent intact when the 
effect is part of the antecedent of the counterfactual 
statement. Therefore, if the effect has been intervened on, 
the status of the cause(s) should not change and hence the 
distance of the cause from the effect should not play a role 
when evaluating counterfactuals. We predict immediate 
causes to be more mutable than distant causes. Therefore, it 
should be easier for people to undo immediate causes than 
distant causes. 



In the following three scenarios we asked questions about  
different variables A, B and C. In each scenario, A causes B 
and B causes C, representing the chain network topology in 
Figure 2. We then asked the following counterfactual 
questions: 

 
(1) If C had not happened, would B have happened?  
(2) If C had not happened, would A have happened? 
(3) If B had not happened, would C have happened?  
(4) If B had not happened, would A have happened?  
                              
                           

               
 

Figure 2: Chain topology 
 

According to Pearl’s (2000) model, given the above network 
)())(|())(|( APBdoAPCdoAP == and )())(|( BPCdoBP = , 

therefore the truth-value of the cause should not change 
given any intervention on its effect.  
 
Method 
36 Northwestern undergraduate students were presented 
with a series of scenarios, and after each scenario they were 
asked to evaluate the likelihood of a number of 
counterfactual statements. The questions were presented on 
a computer screen, and subjects were asked to rate the 
likelihood of each question from 0 to 10, 0 being “definitely 
no” and 10 being “definitely yes.” 

Three different scenarios were designed to follow the 
same causal structure where A causes B, B causes C and 
both A and C definitely happened. Logical abbreviations in 
the parenthesis are added here for the reader’s convenience; 
they were not shown to the subjects.  

 
Scenario 1 
Ball A causes Ball B to move. 
Ball B causes Ball C to move. 
Balls A, B and C definitely moved. 

 
Question 1: If Ball C had not moved, would ball B still have 
moved? (C�B) 
Question 2: If Ball C had not moved, would ball A still have 
moved? (C�A) 
Question 3: If Ball B had not moved, would ball C still have 
moved? (B�C) 
Question 4: If Ball B had not moved, would ball A still have 
moved? (B�A) 
 
Scenario 2  
Tom's alarm clock did not ring on Wednesday morning, 
resulting in Tom being late for work. Because Tom was late 
that morning, Tom's boss gave him extra work for the 
weekend. 
 

Question 1: If Tom had not had extra work for the weekend, 
would he have been on time on Wednesday morning? 
(C�B) 
Question 2: If Tom had not had extra work for the weekend, 
would his alarm have rung on Wednesday morning? 
(C�A) 
Question 3: If Tom had not been late on Wednesday 
morning, would he have extra work for the weekend? 
(B�C) 
Question 4: If Tom had not been late on Wednesday 
morning, would his alarm have rung on time? (B�A) 

 
Scenario 3  
A lifeboat is overloaded with people saved from a sinking 
ship. The captain is aware that even a few additional pounds 
could sink the boat. However, he decides to search for the 
last person: a missing child. Soon, they find the 5-year-old 
girl, but when she gets onboard, the boat sinks 
 
Question 1: If the boat had not sunk, would they have found 
the child? (C�B) 
Question 2: If the boat had not sunk, would the captain have 
decided to search for the child? (C�A) 
 
Results  
The results are summarized in Table 1. The Moving Balls 
scenario replicated one of Sloman and Lagnado's (2005) 
findings: forward counterfactuals are treated differently 
from backwards counterfactuals. The responses to the 
forward counterfactual question “If B had not happened 
would C have happened?” (B�C) were lower than those 
to any of the backward counterfactuals (mean=2.8, SD = .5, 
F(1,35) = 9.53, p<.05), suggesting that the hypothetical 
absence of the cause has a stronger influence on the state of 
the effect than vice versa.  

A repeated measure ANOVA was conducted comparing 
the mean of the answers to the three backward 
counterfactuals, revealing significant:  A post hoc test 
revealed that B� A was significantly lower than both 
C�A and C�B (F(1,35) = 7.89, p<.05) However, there 
was no reliable difference between the estimated 
probabilities of C�A and C�B.   

The same pattern was observed in the Alarm Clock 
scenario: there was a significant difference between 

 

 
Table 1: Subjects’ mean response to backward 

counterfactual questions 
 

Scenario/Questions C�B C�A B�A B�C 

Moving Balls 5.9 5.6 4* 2* 

Alarm Clock 5.6 5.3 7.9* 2.9* 

Lifeboat 4.5* 6.2 N/A N/A 

 A   C  B 



backward and forward counterfactuals (F(1,35)=21.23, 
p<0.05). No significant difference was detected between 
C�A and C�B, but the estimated B�A was much 
higher than any of the other two (F(1,35)=9.92, p<.05).  

In the third scenario we asked only two questions, C�A 
and C�B, which came out to be the significantly different 
(F(1,35)=12.10, p<.05). 

 
Discussion 
Causal Bayesian networks predict that an intervention on 
the effect should not affect the value of its cause(s). 
Therefore, answers to backward counterfactual questions in 
the first and third scenario should all be Yes (10) and in the 
second scenario should all be No (0).  Hiddleston’s and 
Ginsberg’s models predict the answers to all the questions 
in the three scenarios to be No (0). 

Subjects’ answers to B�A were consistently different 
from answers to C � A. We believe that this difference 
may be due to the distance between the cause and the effect 
nodes. That is, the closer the antecedent is to its consequent, 
the easier it is to undo its value. Therefore, it is easier to 
undo the value of A in B�A than in C�A. Following 
this hypothesis, in the first scenario where A is true (10) in 
the consequent of counterfactuals, it seems that subjects 
more often undid the value of A in B�A and altered it to 
false (0) than in C�A. In the second scenario the same 
trend was observed: A is false in the consequent of 
counterfactuals, and subjects more often undid its value to 
true in B�A than in C�A.  

Also, in the last scenario significant difference was 
observed between answers to C� B and C� A which 
again agrees with the above hypothesis and is due to the fact 
that B is closer to C than A. Therefore, it is easier to undo, or 
give up, its value. 

All of the observed differences were consistent with our 
prediction. However, no difference was detected between 
C�B and C�A in the first two scenarios. We believe 
this might be due to the differences of the context in which 
the conditionals were being evaluated, as B in the third 
scenario seems to be a more salient cause that in the other 
two scenarios. How different context affects the evaluation 
of counterfactuals is part of our ongoing research. 

In conclusion, the experiments show that the degree to 
which people are willing to mutate the antecedent of the 
counterfactual varies with the location of the antecedent and 
the context of the scenario. This conclusion contradicts the 
predictions of the three models discussed in this paper.  

In the next part we describe another experiment which 
questions the applicability of the do(x) operator, and the 
logical operations of the two other models. 

Experiment 2 
In addition to causal distance, another factor which we 
believe may influence counterfactual reasoning is the causal 
strength between the antecedent and the conclusion of 
counterfactual statements. We predict that the stronger the 
causal effect is, the easier it is to undo it. Hence, when faced 

with two causes with a common effect, people more easily 
undo the cause which has the connection to the effect.  

The topology of the network in the following scenario is a 
collider (Figure 3): There are two causes which affect the 
same effect. We hypothesize that a difference between A 
and B in the strength of their respective causal connection 
with C will affect which of the two is given up in 
counterfactual reasoning about C, contrary to the 
assumption in the Causal Networks literature that both 
should be equally unaffected. 

 

                                     
                

Figure 3: Collider Topology 
 
Method 
The same participants were presented with another scenario 
which was very similar to the Lifeboat scenario, with the 
only difference that this time there were two persons in the 
water.  
Scenario 1  
A lifeboat is overloaded with people saved from a sinking 
ship. The captain is aware that even a few additional pounds 
could sink the boat. However, he decides to search for the 
last two people: a missing child and a missing cook. Soon, 
they find both people, but when they get onboard, the boat 
sinks. 

 
Questions: 
(1) If the boat had not sunk, would they have found the 
child? (C�B) 
(2) If the boat had not sunk, would they have found the 
cook? (C�A) 

                            
Results 
The mean for C�A was 6.5 while the mean for C�B 
was 7.0. The difference between the two questions was 
significant (F(1,35) = 7.19 p<.05).  
 
Discussion 
Causal Bayesian networks predict that the answers to both 
of the questions should be Yes (10), and Hiddleston’s and 
Ginsberg’s models predicts that the answers should be No 
(0).  

It was explicitly mentioned in the scenario that a few 
additional pounds would be enough to sink the lifeboat, 
therefore both the cook and the child were potential causes 
for the sinking of the boat. However, the results show that it 
was easier for the subjects to undo A (cook was found).  
This result suggests that the subjects were less likely to cut 
the link between the weaker cause and the effect compared 
to the link between to the stronger cause and the same 
effect. Thus causes with stronger effects are more mutable 
and more likely to be intervened on than weak causes. 

 A 

 C 

  B 



Conclusion 
Although the models discussed are able to correctly predict 
people’s judgments about many counterfactual questions, 
they fail to capture certain aspects of human counterfactual 
reasoning. We argue that causal strength and causal distance 
influence the interpretation of counterfactual conditionals. 
None of the models reviewed in this paper utilize these two 
factors. 

While intervention may not necessarily remove the causal 
dependencies between the antecedent of the counterfactual 
and its immediate causes, how people choose the location of 
intervention is related to psychological factors including the 
mutability of facts involved in the case.  

In a series of new experiments we aimed at a direct 
comparison between the context sensitivity of Norm Theory 
and the context neutrality of the Bayesian Networks 
approach in analyzing counterfactuals conditionals (in 
preparation). Among the important predictions that the 
Norm Theory makes is that when people analyze 
counterfactuals, they are more likely to undo actions that 
lead to some type of consequence rather than inactions that 
lead to the same consequence. In other words, actions are 
more mutable compared to inactions. We have found 
evidence for this effect in a set of experiments which follow 
the same causal network but set up a different context. 
Generally, if the causal network is a collider, people tend to 
undo the value of the node which represents an action. This 
result follows the main claims of this paper that not only the 
causal structure of the graph is important, but the content of 
each node and the context in which the conditional is being 
evaluated affect speakers’ evaluation of counterfactual 
conditionals. 

Determining the mutability of facts and performing 
similarity analyses between potential worlds are two 
important steps in evaluating the truth of counterfactual 
conditionals. These two context dependent factors are 
influenced by a variety of psychological factors and are not 
fully captured by the popular models of counterfactual 
reasoning in AI. In future work, we plan to continue our 
experimental studies on how psychological findings on 
similarity can be related to fact mutability and in general to 
Stalnaker and Lewis’ notion of comparative similarity, and 
work towards a formal theory in which the role of these 
factors can be implemented. 
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