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ABSTRACT 

Near-source ground motion at four azimuths but constant epicentral range 1s 

computed from a buried circular strike-slip fault in a half-space. Particle accel

eration, velocity, and displacement at each station on the free surface is 

computed in the frequency band 0.0 to 5.0 Hz. The assumed dislocation is 

denved from the Kostrov (1964) displacement function for a continuously prop

agating stress relaxation. The azimuthal vanations in the amplitudes and wave

forms directly result from spatially varying slip on the fault, spatially varying 

radiation pattern over the fault, and the magnitude and direction of the rupture 

velocity. The near-source ground motions are dominated by the rupture in the 

direction of the receiver. 

Using a 1 00-bar effective stress (initial stress minus sliding friction) in a 

Poisson solid with p = 3.0 kmjsec the shear wave speed, and shear modulus 

p. = 3.0 x 1011 dynejcm2
, the simulated earthquake has a moment Mo = 4.5 X 

1025 dyne-em. Using a rupture velocity of 0.9/1, the peak acceleration is 1195 

cmjsec2 and velocity 104 em/sec for the receiver directly on strike. For a 

receiver 30° off strike, the maximum acceleration 236 cmjsec2 occurs on the 

vertical component. 

INTRODUCTION 

No.4 

Concepts such as receiver distance, radiation pattern, and arrival times of P and 

S waves are well defined when the receiver is far enough that the radiation appears 

to emanate from a single point. When the receiver is near the source, such that the 

radiation originates over some area or volume, the above far-field quantities are ill 

defined. No longer is there one distance between source and receiver or a single 

coefficient to describe the effect of a radiation pattern. Consequently the ground 

motion cannot be interpreted using the same approach that was appropriate for the 

far-field. In recent years, the data base of strong ground motion records from sites 

near moderately large earthquakes has greatly increased. Most notable is the strong 

motion record set for the 15 October 1979 Imperial Valley earthquake (Brady et al., 

1980). To analyze such records, a clear understanding is needed ofthe complications 

that arise when one is no longer in the far-field but situated close to a finite rupture. 

The fault model discussed here is a relatively simple one, but it includes the 

important effects of fault finiteness, directivity, the stopping phase, and the free 

surface. 

This paper discusses how the spatial extent of the fault influences the near-source 

ground motion, in particular the high-frequency components of ground motion. At 

* Present address U.S. Geological Survey, 345 Middlefield Road. Menlo Park, California 94025. 
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each step in the computations, parameters are chosen that maintain an upper 

frequency resolution of 5 Hz. The ground motion-particle acceleration, velocity, 

and displacement-is computed for a buried circular source in a three-dimensional 

semi-infinite medium, employing fault mechanics based on the slip function for a 

constant propagating stress drop (Kostrov, 1964). The wave propagation is based on 

the Green's functions for a semi-infinite linearly elastic isotropic homogeneous 

medium (Johnson, 1974). Parameters that strongly affect the azimuthal variation of 

near-source motion are spatially varying slip on the fault, spatially varying radiation 

pattern, and rupture velocity. Finally, to examine other approaches for calculating 

near-source ground motion, the model results are compared with the analytic 

solution for a propagating stress relaxation using a program developed by Richards 

(1973) and with a finite element method developed by Archuleta and Frazier (1978). 

DESCRIPTION OF FAULT MoDEL 

The fault is a buried vertically oriented circular plane in a homogeneous isotropic 

linearly elastic half-space (Figure 1). The radius of the fault is 5 km; the center is at 

a depth of 7 km. The faulting is pure strike-slip with only slip parallel to the strike 

y 

-z 

FIG. 1. Geometry of fault and receivers With orthogonal unit vectors R, 0, Z indicating the components 
of particle motion. 
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allowed. The kinematics of the source are based on the Kostrov slip function for a 

constant stress drop and a constant rupture velocity (Kostrov, 1964). Since the 

Kostrov slip function is valid for a continuously expanding fault, the slip function is 

modified to account for the finiteness of the fault, as discussed below. 

Slip is initiated at the center of the fault; the rupture spreads radially with a 

constant velocity 0.9(3, where f3 is the shear wave speed of the medium. When the 

rupture reaches the outer circumference of the fault, a healmg front is initiated that 

propagates from the circumference toward the center with velocity (3, a velocity 

consistent with numerical simulations of dynamic faulting (Day, 1979). At the 

instant this healing front reaches a given point on the fault plane, the slip velocity 

is set to zero, thereby fixing the dislocation amplitude. Similar approaches have 

been taken by Bouchon (1978) and Boatwright (1980) although these investigators 

use a P-wave speed to heal the fault. An illustration of this slip velocity function at 

a radius of 2.5 km is shown in Figure 2. The Kostrov slip velocity, expressed as 

s(r, t) = C(v/(3) UE (3tH(t- r/v) 

JJ- -Jt2 - rz /vz 
(1) 

is singular at the arrival time of the rupture front. In this expression, C( v / f3) is a 

number depending on the rupture velocity (Dahlen, 1974; Richards, 1976), aE the 

effective stress (the difference between the initial stress and sliding friction), p. the 

shear modulus, v the rupture velocity, H the Heaviside function, r the radius, and 

t the time. To remove this singularity, the slip function is analytically convolved 

with a boxcar of width 0.03 sec (also shown in Figure 2). Since convolution with a 

boxcar is equivalent to low-pass filtering, a 0.03-sec width preserves frequencies up 

to 10 Hz. The amplitude spectrum of the boxcar is shown in the lower left of Figure 

2. The final slip velocity function and its corresponding displacement amplitude 

spectrum are shown in the upper and lower right, respectively, of Figure 2. 
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The method of computation of synthetics proceeds by discretizing the fault plane 

with point sources and convolution with s(r, t). We take advantage of the circular 

symmetry in s(r, t) to limit the number of convolutions. Since every point on the 

fault plane at a constant radial distance from the point of nucleation has the same 

slip-velocity function, the fault plane is segmented into a series of concentric rings. 

Each ring is represented by a series of point sources evenly spaced at 100 m. The 

distance between the centers of each adjacent ring is also 100m. The 5-km-radius 

fault consists of 50 rings with a total of 7.722 point sources. The half-space Green's 

functions u, ([', t') (Johnson, 1974) are computed for each point source on a given 

ring and summed with the appropriate phase delays corresponding to the rupture

time and the travel-time delays to a preselected receiver on the free surface. Figure 

3 diagrams the corresponding 50 modified Kostrov slip-velocity functions. The 

synthetic displacement, u(,a:, t), for the entire circular fault model is given by 

50 d 
u(~, t) = l~l s,(r, t')~ dt u,([', t') (2) 

where the summation index l is over the number of rings, * indicates convolution, 

and the displacements u,(z:., t) are computed for a constant ramp source-time 

function. Both u, (r, t) and u(;!, t) are sampled at an interval of 0.008 sec. The point

source spacing of 100 m is therefore the limiting factor in the coherent frequency 
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content of the source. Using the coherent rupture condition of six source points per 

wavelength, the fault model considered here appears as a coherent rupture up to a 

frequency of 5Hz (f = /3/A. = 3 km/sec/0.6 km =5Hz). 

For each field point, the particle displacement is directly computed. The particle 

velocity and acceleration are then computed by numerically differentiating the 

particle displacement. In order to reduce any high-frequency noise caused by the 

numerical differentiation, a two-pole low-pass Butterworth filter, corner frequency 

at 5 Hz, is applied following each differentiation. The filter is applied in such a way 

that no phase shift is introduced. In spite of the 5-Hz filter, the synthetics presented 

in this paper still have some high-frequency ringing. This ringing is produced by the 

band-limited frequency content of the synthetics; it is generally of low amplitude. 

The maximum amplitudes of acceleration are sensitive to the filter's corner fre

quency; however, the maximum velocity and displacement are only slightly increased 

by moving the corner frequency to higher values (Hartzell, 1978). 

The physical constants that have been used are: 1-t = 3.0 X 10n dyne/cm2
, f3 = 3.0 

km/sec, a= .J3 f3 where a is the P-wave speed of the medium, v = 2.7 km/sec, and 

aE = 100 bars. It is important to note that all values of particle displacement, 

velocity, and acceleration scale directly with the effective stress, aE, (Madariaga, 

1976). The effective stress~ the difference between the initial stress and the stress 

due to sliding friction, is the stress available to accelerate the opposite sides of the 

fault plane. If the final stress is equal to the sliding frictional stress on the fault 

plane, then the effective stress is equal to the stress drop. Stress drop estimates 

Hanks (1977) has compiled for a large number of earthquakes, show that the stress 

drops lie in the range 1 to 100 bars. The choice of .an effective stress of 100 bars, 

then, is a reasonable one. The average dislocation amplitude on a circular fault is 

given by 

- 2 2 (r r) D =- D =- C(v /3) - +- = 190 em 
3max3' vf3 (3) 

where C(v, /3) = 0.81 for v = 0.9{3. The seismic moment, Mo(= J.LDA), is then 4.5 X 

10
25 

dyne-em. Using a moment-magnitude relation (log Mo = 1.5 ML + 16) deter

mined by Thatcher and Hanks (1973), we compute ML = 6.4 for this simulated 

earthquake. 

SYNTHETIC TIME HISTORIES 

Synthetic time histories of particle acceleration (u), velocity (u), and displacement 

(u) are shown in Figures 4 to 6. Each field point is at an epicentral distance of 6 km 

but at four different azimuths; 0°, 30°, 60°, and 90°, measured from the normal to 

the fault (Figure 1). Since we are discussing a finite source, the terms "radial" and 

"azimuthal" strictly apply only for sources that lie on the vertical axis bisecting the 

fault. Nonetheless we have resolved the particle motion into the orthogonal com

ponents R, Z, and 0 as shown in Figure 1. 

The time axes in Figures 4 to 6 start at the origin time of the earthquake. The 

hypocenter is 9.22 km from each station. The first P wave arrives at 1. 77 sec; the 

firstS wave arrives at 3.07 sec. The rupture front reaches the 5-km boundary in 1.85 

sec; the healing front reaches the center 3.52 sec after origin time. The minimum 

and maximum distances between the fault boundary and each receiver are: 6.32 km, 

13.42 km (0°); 5.81 km, 13.64 km (30°); 4.78 km, 14.04 km (60°); and 4.22 km, 14.22 

km (90°). Let cf> be the angle measured counter-clockwise from the horizontal in the 
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FIG 4 Synthetic three-component ground motion for a receiver at 30° and ep1central range of 6 km. 
u = 0 9{3, 0 0 Hz~ f~ 5.0 Hz 

plane of the fault (see Figure 1). The value of~ that locates a radius vector along 

which points in the fault plane are closest to a given receiver are as follows: B = 0°, 

~ = 90°; B = 30°, ~ = 66.8°; B = 60°, B = 53.4°; ~ = 90°, ~ = 49.4°. Knowing the 

rupture velocity, wave speeds, and certain distances, it is possible to identify certain 

arrivals. However, as we point out below, the particle motion cannot be analyzed 

fully in terms of discrete arrivals of particular waves. 

Collectively, the synthetic three-component ground-motion plots (Figures 4 to 6) 

show the azimuthal dependence of the waveforms and amplitudes for each compo

nent of motion. The differences in the time histories at various azimuths result from 

several complicating factors related to the finite spatial extent of the fault. The 

factors that strongly influence the ground motion are (1) spatially varying radiation 

coefficients, (2) time and spatial dependence of the slip function, and (3) the 

interrelation among rupture velocity, elastic wave speeds and hypocentral distance 

between the receiver and different points on the fault plane. 

Radiation coefficwnt 

The clearest example of the effect of the spatially varying radiation coefficient is 

the B component ("SH" radiation) at 30° and 60°, Figures 4 and 5, respectively. For 

a point source at the center of the fault, in fact, any point on the -z axis, the SH 

radiation factor is equal but opposite in sign at 30° and 60° (Aki and Richards, 

1980). At 60°, the receiver is closer to the projected strike of the fault to the free 
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FIG 5 Synthetic three-component ground motwn for a receiver at 60° and ep1central range of 6 km 
v = 0.9{3, 0 0 Hz~ f~ 5.0 Hz. 

surface, and one might expect larger particle velocity and acceleration than for a 

receiver at 30°, compare, e.g., the B component at 90° and 0° (Figure 6). Yet the 

opposite is true. Also at 60°, the amplitude of the firstS waves (3.07 sec) is subdued, 

and there is one more zero crossing of the waveform than at 30°. The cause of this 

complexity lies with the SH radiation coefficient. 

Any point source not along the -z axis is not oriented with an angle of 60° or 30° 

with respect to the particular receiver. As the rupture spreads over the fault the 

radiation coefficient continuously changes. To show how this affects the amplitude 

and waveform, the SH coefficient is computed for different points on the fault plane 

and projected onto the B direction. The values of the SH radiation coefficient that 

contribute to the B component of motion at 60° are shown in Figure 7. The numerical 

values are equally spaced at 1 km on the fault plane. Note that the first arriving S 

waves will come primarily from the upper right quadrant, closest to the receiver. In 

this quadrant, the SH coefficient changes sign, causing the waves to interfere 

destructively. This interference not only diminishes the amplitude but also produces 

a waveform that has an extra oscillation. Waves arriving later from the lower left 

quadrant have larger coefficients but also travel a greater distance with a commen

surate decrease in amplitude due to geometrical spreading. A similar figure can be 

constructed for a receiver at 30°. In that case, the entire upper right quadrant has 

negative coefficients. Hence the S waves first arriving at a receiver at 30° interfere 

constructively, thereby producing a one-sided pulse with larger amplitude than at 

60°. 
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Slip-rate function 

The spatial dependence of the slip rate function (Figure 3) is critical. As the 

rupture grows, those points on the fault farthest from the nucleation have the largest 

peak-in-slip rate, which occurs at the arrival time of the rupture front. From this 

maximum, the slip rate decays with the square root of time to a finite value equal 

to that at the nucleation point. At the arrival of the healing phase from the boundary 

of the fault, the slip rate goes to zero instantaneously. As a consequence, the slip 

velocities for those points near the boundary have large amplitudes and narrow 

pulse widths. For a particular receiver, the section of annulus near the boundary of 

the fault and closest to the receiver greatly influences the amplitude of the particle 

acceleration, as noted by Madariaga (1979) for far-field waveforms. For example, 

the maximum acceleration of the () component (Figure 4) results from radiation 

arriving about 0.7 sec after the firstS wave. Owing to the slip rate being set to zero 

at the boundary, this time corresponds with the expected arrival of the first arriving 

S wave, i.e., the first S wave radiated by healing of the fault. In Figure 5, the 

pronounced second peak at about 3.4 sec for the radial and vertical components also 

appears to originate from the boundary of the fault closest to the receiver. As 

discussed in the next section, the isolation of a particular phase from any specific 

point on the fault, except for the hypocenter, is not a practical form of analysis 

because of the mixing of arrivals from various parts of the fault. 
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FIG. 7 Numencal values of the SH radiation coefficient on the fault that contnbute to the 8 
component of motiOn for the receiver at 60° The numerical values are equally spaced at 1.0-km mtervals. 

Another important parameter is the slip rate's own time dependence. Unlike the 

simple ramp-slip function, which radiates only at its beginning and end, the slip 

function used here radiates continuously from beginning to end. Except for points 

near the boundary, the slip function used, unlike a ramp, is highly asymmetric in 

that the initiation of slip radiates more than the healing, compare, e.g., the ampli

tudes of initiation and healing in Figures 2 or 3. 

Fault slze, rupture velocity, and wave speeds 

For a given point source and receiver, quantities sucl> as arrival times of P and S 

waves, receiver distance, and radiation coefficients are well defined. For a receiver 

in the proximity of a finite fault, those quantities lose their unique interpretation. In 

order to gain more insight into what part of the fault is contributing to the synthetic 

seismogram, the arrival times of S waves from different points on the fault are 

computed. Ts, the arrival time for S wave radiation from the leading edge of the slip 

rate function, i.e., radiation from the initiation phase, is given by 

Ts = R(r, cp, B)//3 + rjv (4) 

where R is the distance between a point on the fault at radius r and angle cp and a 

particular receiver. In terms of epicentral distance e (6 km), hypocenter depth d (7 
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km), and angles 8 and cp shown in Figure 1, 

R 2 = d 2 + e 2 + r 2 
- 2 dr sin cp - 2er cos cp sin 8. (5) 

For the initiation phase, r is simply equal to ut. S-wave radiation from the trailing 

edge of the slip rate function, i.e., the healing phase, arrives at time TH given by 

(6) 

where 

r* = rmax - {3(t- rmax/V) (7) 

with r max equal to the final radius of the fault. The arrival times, Ts and T H, for the 

four receivers are plotted as a function of the angle cp measured in the fault plane 

(Figure 8). To interpret Figure 8, one must be in a (t, cp) coordinate system, where 

the radius is time and the angle cp sweeps around the fault. Each concentric line is 

separated by 0.1 sec. Concentric circles in (r, cp) space on the fault are mapped into 

closed loops of (t, cp) at the receiver. With a hypocentral distance of 9.22 km and 

shear wave speed of 3.0 km/sec, the firstS wave arrives at 3.07 sec. Consequently, 

for the first 3.07 sec, no arrival times are plotted in Figure 8, a to d. Since the 

hypocenter is the same distance to a receiver for all angles cp, the arrival time is a 

circle. The circles become distorted as time increases, reflecting the fact that even 

though the rupture front remains a circle on the fault, the points on that circle at 

different angles cp are at different distances from the receiver. Consequently, radia

tion arrives at different times. The inner collection of closed loops are arrival times 

from the initiation phase. The outer collection of loops, which appear to be the inner 

collection rotated by 180°, are the arrival times resulting from the healing of the 

rupture. Note that the final arrival time of the healing phase is also a circle since the 

last point on the fault to heal is the hypocenter. 

As illustrated by Figure 8, the energy released in the quadrant closest to the 

receiver and the quadrant where the rupture is propagating toward the receiver 

arrives at the receiver within a very short time interval; whereas energy released for 

the initiation phase in the quadrant farthest from the receiver arrives later in time 

and spreads out over a large time interval. The width of the pulse originating from 

the section of the fault propagating toward the receiver is approximately rmaA1/u 

- 1//3 sin i'), where rmax is the final radius and'¥ the angle between the receiver and 

the fault plane. Because the rupture nucleates at depth, a receiver at 8 = 0°, 40° 

(i') off the fault plane, also is affected by directivity. In short, the pulse width at a 

receiver is controlled by directivity related to a propagating rupture. The healing 

phase shows the same effect, but now the healing is moving away from the receiver 

for azimuths, cp, on the fault closest to the receiver. The more distant parts of the 

fault show the energy being concentrated into a narrow pulse because the healing 

phase originates at the boundary and moves inward to the center. The pulse is 

narrower, since the fault heals at the S-wave speed. 

Once the rupture reaches the final radius and healing is initiated, there exists a 

time interval in which both initiating and healing phases are arriving from different 

parts of the fault, e.g., a radius vector of 5 sec in Figure 8 that sweeps all 360° will 

intersect both initiation and healing arrival times. The radiation from an initiation 

phase is of one sign whereas the healing phase has an opposite sign. When initiation 

and healing phases arrive simultaneously, they tend to cancel each other. Note that 
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the pulse width of the first arriving energy at the receiver (the dark region in the 

upper right quadrant) becomes narrower as the receiver changes from 0° to goo, 

where the directivity effect is maximum. 

The effect of directivity depends not only on the angle between the direction of 

rupture propagation and the receiver but also on the absolute value of the rupture 

velocity (Ben-Menahem, 1g61). As an indication of the degree to which the rupture 

velocity affects the ground motion, synthetics were calculated for a rupture velocity 

of 0. 75/3. The synthetic time histories for receivers at 60°, 0°, and goo shown in 

Figures g and 10 can be compared directly with time histories in Figures 5 and 6. 

The maximum values are listed in Table 1. The most striking contrast is the particle 

acceleration at goo for v = 0.9/3 (Figure 6) and for v = 0.75/3 (Figure 10). The 

maximum positive amplitude of 1165 cm/sec2 at 90° has been reduced 74 per cent 

to 311 cm/sec2 when v = 0.75. The negative swing (-1060 cm/sec2
) in the particle 

acceleration at goo for v = 0.9/3 reduces to -443.5 cm/sec2 for v = 0.75/3. The particle 
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FIG. 9 Synthetic three-component ground motion for a receiver at 60° and ep1central range of 6 km 
v = 0 75/3, 0.0 Hz;;;; f;;i 50 Hz. 

velocity is reduced by 50 per cent, and the particle displacement by 32 per cent for 

the same phases in the time histories. 

The changes in ground-motion amplitudes for ruptures with speeds of 0.9{3 and 

0. 75{3 are the most obvious. More subtle differences are seen in the waveforms 

themselves. The stopping phase arriving at about 7 sec appears larger relative to the 

initiation phase at about 3 sec because the healing criterion has not been changed. 

Although the displacement pulses are similar, the acceleration waveforms are much 

different. Compare, e.g., the radial components in Figures 5 and 9. In Figure 5, the 

leading positive pulse at -3 sec is nearly the same as the following negative swing, 

whereas in Figure 9 only the negative swing appears prominent. This change in 

direction of the phase is attributed to the abrupt stopping of the slip function at the 

boundary closest to the receiver. A similar comparison can be made for the 8 
component. In general, the slower rupture velocity affects the character and ampli

tude of the first arriving phases. Almost no discernible differences exist for phases 

arriving later from other parts of the fault. 

Selsmic and engineering implications 

Because of the source finiteness, many of the methods used for far-field analysis 

of seismograms are inapplicable for ground motion recorded in the near-source 

region. Consider the 8 component in Figure 5. Near-field accelerometers would 

record the motion, but due to instrumental bandwidth, no zero frequency motion 

would be recorded. This makes it impossible to obtain the displacement record 

shown in Figure 5. The velocity would most likely be recovered in total. If one were 
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to take the clean velocity pulse between 3 and 4 sec to construct a Brune (1970) 

displacement spectrum by Fourier transforming and postmultiplying by one over 

the angular frequency, the analysis would lead to gross errors in estimates of the 

source radius and stress drop. Basically, the radiation producing the velocity pulse 

does not come from a single point. More important, the pulse is a measure of only 

that radiation from the section of the fault that propagates toward the receiver. 

Even if one rigorously accounts for directivity, errors will arise from insufficient 

knowledge of the radiation coefficient and of the varying distance between source 

and receiver. These considerations exist for a simple fault in a half-space. If the 

earth's structure is included, the results obtained by far-field analysis of near-source 

records would be highly questionable. 

In engineering applications, the response spectrum is generally tied to the peak 

acceleration. In Table 1, we list the maximum values of particle acceleration, 

velocity, and displacement for each component at the various azimuths, again 

numerical values are based on a 100-bar effective stress. An earthquake with a 50-

bar effective stress and the same rupture velocity in an identical medium would 

produce values half as large. Although the synthetics of particle acceleration 

accurately include frequencies only up to 5 Hz, the peak acceleration is 1195.6 em/ 
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TABLE 1 

MAXIMUM VALUES OF PARTICLE ACCELERATION (u), VELOCITY (u), AND DISPLACEMENT (u) IN CM/ 

8EC
2

, CM/8EC, AND CM AT VARIOUS AziMUTHS 

u = 0.9{3 

60° 30° 

u u u u u u 

R -2286 32 4 16 1 128.7 18.4 15.3 

z 236.2 26 9 14 9 88.7 12 0 9.6 
() -194.4 -18.8 6.0 3292 -41.7 5.8 

oo 900 

u u u u u u 

() 359.8 -42 2 -11.4 1195.6 104.4 -12.6 

u = 0 75{3 

60° 30° 

u u u u u u 

R -118 5 190 16.1 118.3 -13.8 15.3 

z 141.2 19.5 13.3 831 10.6 9.2 
() 157.3 -17.3 57 256.9 -319 -6 7 

oo 900 

u u u u u u 

() 2970 -35.1 -10.9 -443.5 50.2 93 

sec2 for the horizontal component at 90°. This large value results from the receiver 

being directly along the strike of the rupture, where the effect of directivity is 

maximized. Off the fault the peak values are of the order of 300 cm/sec2
• The values 

in Table 1 include no attenuation. If a simple Q correction [exp (wt/2Q)] with Q = 
150 is applied, the peak accelerations are reduced about 10 per cent; the velocity 

and· displacement are practically unchanged. The peak acceleration is extremely 

sensitive to the filter parameterS- (Hartzell, 1978). The peak particle velocity and 

displacement are much more stable measures relative to frequency content. Finally, 

it is worth pointing out that at 60° the vertical acceleration is the largest of the 

three components. Earthquakes such as Gazli, USSR, Coyote Lake, California, and 

Imperial Valley, California, all have the maximum recorded acceleration on the 

vertical. Although these recorded accelerations may have been caused by the local 

structure, the synthetics at 60° show that even without structure, the vertical 

component of acceleration at a particular site can be the maximum acceleration 

even where the earthquake is pure strike slip. 

Self-similar and fimte-element comparisons 

The basis for the slip rate function used in this paper is the self-similar model 

described by Kostrov (1964). The constant stress drop model is for a circular rupture 
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12. Same as Figure 11 for (} = 60° 

that expands continuously in a full-space. If the effects of the free surface are 

ignored, the fault model is a self-similar rupture for the first second following the 

arrival of the P wave from the hypocenter. For a receiver at 60°, the closest edge of 

the fault boundary is 4.78 km. A P wave arrives at the receiver from the edge at 2.77 

sec (t = 5.0 km/2.7 km/sec + 4.78 km/5.2 km/sec). The fust P wave from the 

hypocenter arrives at 1.77 sec (9.22 km/5.2 kmjsec). For 1 sec after the P wave 

arrival, the particle motion from the self-similar runture and the nnmPrirHl <:vnth .. t-
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ics presented here, should agree except for effects due to the free surface. Figures 11 

and 12 compare the analytic and numerical results for the particle acceleration and 

velocity forB at 30° and 60°, respectively. The analytic solution, shown offset above 

the numerical results, was computed using a program written by Richards (1973) 

wherein analytic solution has been filtered in exactly the same manner as our 

synthetics. To approximate the free surface, the amplitudes of the self-similar 

calculation have been doubled. The agreement, especially for acceleration, is close. 

The S- to P-wave conversion at the free surface and the first arrival of the stopping 

phase from the outer annulus produce the most marked differences. Nevertheless, 

the analytic solution is a valuable indicator of the amplitude and waveform of the 

first motion to be expected from the initial part of the rupture process. Although 

the analytic solution is filtered so that a valid comparison could be made, the 

analytic solution is not limited in its frequency content and could be used as 

diagnostic of amplitudes for coherent ruptures when discussing higher frequency 

ground motions that are expensive to compute using other numerical techniques. 

Another approach to computing near-source ground motions from a propagating 

stress relaxation over an areal fault in a half-space is a finite element method 

(Archuleta and Frazier, 1978), a dynamical model of the source in that the slip 

function directly results from a stress relaxation. The slip function is not prescribed 

as in the fault model described earlier. The finite element method also has the 

capability for incorporating different frictional constitutive relations and various 

rheological properties. This method, though, is limited in practice to the low

frequency part of the ground motion. Figures 13 and 14 compare the finite element 

results, the offset trace, and the kinematic results. Because of frequency limitations 

in the finite element method, all the results are low passed with a corner frequency 

of 0.5 Hz. In the frequency range considered, the particle velocity and displacement 

are in excellent agreement. 
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Although the particle displacement has not changed much in waveform or 

amplitude, the particle velocity has clearly undergone a significant change. In this 

low-frequency range, the details offaulting have been smeared to such a degree that 

the effects of the spatial extent of the fault are almost lost. The greatest change is 

for the B component at 60° (Figure 14). The whole character of the 5-Hz pulse 

(Figure 5) is lost, and the only hint of the fault's spatial effect is the lower amplitude 

of the 8 component relative to R and Z. 

DISCUSSION 

Based on the idea that an earthquake is a propagating stress relaxation over some 

finite area, a kinematic source model has been constructed. The slip, equivalently 

the slip rate, is based on the analytic solution of a propagating stress relaxation 

(Kostrov, 1964). To account for the finiteness of the fault, a healing phase is 

introduced. From this kinematic description of faulting, near-source ground motion 

is computed in the frequency band 0.0 to 5.0 Hz. 

In analyzing the different aspects of the azimuthal variation of the near-source 

ground motion, it was found that the spatial extent of the faulting is preeminent in 

determining the waveforms and amplitudes. The main factors are the spatially 

varying slip rate function, spatially varying radiation pattern coefficient, the rupture 

velocity magnitude and direction relative to the receiver, and the constructive and 

destructive interference of radiation arriving from different parts of the fault. 

Although these factors complicate the total time history of near-source ground 

motion, the first arriving radiation, principally a measure of the duration of rupture 

in the direction of the receiver, dominates the ground motion. Real earthquakes 

occur in a much more complicated stress and geologic environment, both of which 

can severely alter the near-source recordings. Nevertheless, the near-source "SH" 

particle velocity time histories from the California earthquakes-1966 Parkfield 

(station 2), 1971 San Fernando (Pacoima dam), 1979 Coyote Lake (Gilroy Array 

station 6), and the 1979 Imperial Valley (El Centro Array stations 6 and 7)-are 
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remarkably similar in their waveforms (Figure 15). In degrees measured clockwise 

from the north, the direction of positive horizontal particle velocity for each station 

is: Parkfield, 245°; Pacoima, 346°; Gilroy 6, 230°; El Centro 6, 230°; and El Centro 

7, 230°. The polarity of the phases depends, of course, on the relative position 

between the epicenter and the station. In the 1966 Parkfield earthquake, e.g., the 

epicenter was north of station 2, and the rupture propagated southward toward 

station 2. In the 1979 Imperial Valley earthquake the epicenter was south of stations 

6 and 7, and the rupture propagated north. Both were right-lateral strike-slip events. 

The time history for each event is dominated by a clean pulse whose width is 

substantially narrower than the time it would take for a rupture having velocity less 

than the shear wave speed to traverse the length of the assumed faulted area. 

Although the simulated earthquake can be analyzed in terms of corner frequency 
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and displacement spectrum for receivers far from the source in a half-space (Hartzell, 

1978), the same type of analysis applied to near-source records IS fraught with 

erroneous assumptions. For the ground motion computed in this paper, each detail 

of the source, propagation path, and receiver location is precisely known. Neverthe

less the interpretation of the waveforms is not a straightforward or easy process. In 

cases of real earthquakes where very little is known about the source or the medium, 

the explanations of the near-source ground motion can be multitudinous. This is not 

to imply that near-source ground motion is uninterpretable but rather that inter

pretations of near-source ground motion should take into account effects due to the 

finiteness of the fault. 
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