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Solutions for collinear shear cracks are used to examine quantitatively the effects of fault slip zone in­
teraction on determinations of moment, stress drop, and static energy release. Two models, the barrier 
model and the asperity model, are considered. In the asperity model, the actual distribution of strengths 
on a fault plane is idealized as a combination of two limiting cases: areas which slip freely at a uniform 
value of a residual friction stress and unbroken ligaments or 'asperities' across which slip occurs only at 
the time of a seismic event. In the barrier model, slip zones separated by unbroken ligaments (barriers) 
are introduced into a uniformly stressed medium to approximate the nonuniform fault propagation pro­
posed by Das and Aki. The strain energy change due fo introducing collinear slip zones or due to break­
ing the asperities between them is shown to be given by the usual formula for an isolated slip zone ,with 
the stress drop replaced by the effective stress. Significant interaction between slip zones occurs only if 
the length of the asperity is less than half the length of the slip zones. For the case of two collinear slip 
zones, fracture of the asperity between them is shown to cause a large moment primarily because of the 
additional displacement which is induced on the adjacent slip zones. For example, if the asperity length 
is 0.051, where l is the length of each adjacent slip zone, then fracture of the asperity causes a moment 
almost 1.8 times the moment caused by introducing a slip zone oflength l. For two collinear slip zones, 
the local stress drop due to fracture of the separating asperity is shown to become unbounded as the aspe­
rity length goes to zero, but in the same limit the stress drop averaged over the entire fault length is ap­
proximately equal to the apparent stress drop inferred for an isolated fault of the same moment and total 
fault length. This apparent stress drop is approximately equal (within a factor of 2 or 3) to the effective 
stress and hence can be used in the usual formula to give a good estimate of the strain energy change. For 
the barrier model, numerical results are given for the ratio of the stress drop calculated on the assumption 
of an isolated slip zone to the true stress drop. For example, in the case of two collinear slip zones of 
length l separated by a barrier of length 0.21, this ratio is 0.5, whereas for a barrier length equal to that of 
the adjacent slip zones, the ratio is 0.24. Stress drop estimates become worse with increasing number of 
fault segments. 

INTRODUCTION 

Although earthquake faulting is often idealized as smoothly 
varying slip on an isolated zone, it has become increasingly 
evident from detailed analysis of seismograms that slip on 
earthquake faults is very irregular. This irregularity is particu­
larly evident in large earthquakes which have been shown to 
consist of a number of distinct events [e.g., Imamura, 1937; 
Miyamura et al., 1964; Wyss and Brune, 1967; Trifunac and 
Brune, 1970; Nagamune, 1971]. More recent studies on the 
waveforms of these multiple shocks have unravelled some of 
the details of the stress release in these complex events [e.g., 
Kanamori and Stewart, 1978; Rial, 1978]. Also, the occurrence 
and distribution of foreshocks [Jones and Molnar, 1979; Ishida 
and Kanamori, 1978, 1980] and doublet earthquakes [Lay and 
Kanamori, 1980] have been used to infer patterns of fault 
plane heterogeneity. Thus it seems likely that the distribution 
of slip and stress on fault planes is very heterogeneous. For 
faults that have previously undergone large amounts of slip, 
the stress on much of the fault plane may be equal to a resid­
ual value of the friction stress. However, there are also likely 
to be regions having higher resistance to slip. These regions 
are usually termed 'asperities' (this term is not meant to be in­
terpreted in the specific sense in which it is used in the physics 
of friction of referring to a geometric surface roughness [e.g., 
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Bowden and Tabor, 1973]), and they may be due to either ma­
terial or geometric effects. 

In the interpretation of these multiple shocks, it is often as­
sumed, implicitly or explicitly, that the individual events in 
the multiple-shock sequence represent failure of such asper­
ities. In the following discussion we refer to this type of fault­
ing as the asperity model. Furthermore, it has been suggested 
[Kanamori, 1978; Das and Aki, l977b; Aki, 1979; Mikumo and 
Miyatake, 1979; Ishida and Kanamori, 1978, 1980; Lay and 
Kanamori, 1980] that asperities may control the pattern of 
earthquake occurrence, for example, foreshock-mainshock, 
swarm, doublet, etc.: as tectonic stress is increased, weaker as­
perities fail and the resulting slip alters the stress in the re­
maining stronger asperities. 

On the other hand, Das and Aki [1977b] have suggested, on 
the basis of numerical experiments in dynamic crack propaga­
tion, that a propagating fault may leave behind unbroken bar­
riers, that is, high-strength areas of the fault plane. They 
called this type of faulting the barrier model. Several authors 
[Madariaga, 1979; Rice, 1979b; Aki, 1979] have shown that 
seismic parameters inferred by assuming uniform slip or stress 
drop can be in considerable error if the earthquake is repre­
sented by the barrier model. 

Although these two models would represent the two ex­
treme cases of the actual earthquake process, they are useful 
for characterizing fault plane heterogeneity. 

Madariaga [1979] has given an elegant formula relating 
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Fig. 1. Schematic idealization of a fault plane. Outside the curve 
labeled S there is no relative displacement of the fault surfaces. Inside 
curve S the fault surfaces slip freely at a residual friction stress except 
for the cross-hatched areas which represent 'asperities' across which 
there is relative displacement only during seismic events. 

stress drop and moment under general circumstances, and he 
uses this to give some approximate results for a few special 
cases. It is, however, a matter of practical interest to determine 
the magnitude of effects of fault zone interaction on moment, 
static stress drop, and strain energy change. This paper exam­
ines quantitatively these effects primarily by using the asperity 
model. 

We idealize the distribution of strengths on the fault plane 
as a combination of the followiµg two limiting cases: locked 
segments which slip only at the time of a seismic event and 
segments which freely slip at a residual friction stress. As a 
more specific illustration, consider the idealized fault plane 
shown in Figure 1. The region outside the curve labeled S is 
idealized as locked. Inside curve S, the cross-hatched areas are 
also locked and represent asperities or portions of the fault 
which require a greater level of applied stress in oder for slip 
to occur. The remainder of the fault inside curve S ,,ustains a 
uniform friction stress Tr but slips freely at stresses larger than 
Tr. This model can be further idealized as a distribution of 
plane (or antiplane) strain (i.e., of infinite extent in one direc­
tion) shear cracks as shown in Figure 2. The variations along 
the fault plane of stress and of relative slip are shown sche­
matically. The cracks model slip zones which sustain the uni­
form friction stress Tr, and the ligaments between the cracks 
(slip zones) represent asperities. 

Although this model is oversimplified, it has the advantage 
that existing results for collinear cracks can be used to obtain 
exact, closed-form expressions which make possible a quan­
titative assessment of the effects due to the interaction of slip 
zones. Because the idealization is a limiting one, the results 
given here can reasonably be expected to yield bounds for 
more realistic situations. Moreover, the results provide some 
specific numerical examples of the general relations between 
moment and stress drop derived by Madariaga [1979] and il­
lustrate the extent to which small strong asperities or barriers 
can control the pattern of stress release. Although many of the 
general results illustrated here are well known, for example, 
that stress drop in a small asperity will exceed the average 
stress drop, the numerical results permit a quantitative assess­
ment of the magnitude of these effects and the extent to which 
they depend on the separation distances of slip zones and as­
perities or barriers. 

The next section discusses some preliminary considerations 
and reviews some results for isolated slip zones before consid­
ering the interaction of slip zones separated by asperities. 

SOME RESULTS FOR ISOLATED 

SLIP ZONES 

Consider an isolated slip zone of length I which is embed­
ded in an infinite linear elastic body (Figure 3). For conve-

nience, the slip zone is considered to be of infinite extent in 
one direction so that plane strairI conditions apply. The slip 
zone sustains a uniform frictional stress Tr and the body is 
loaded in the far field by the shear stress T =- The stresses near 
the ends of such a slip zone are proportional to r 112, where r 
is the distance from the edge of the zone, and are character­
ized by the stress intensity factor K [e.g., Knott, 1973; Rice, 
1968], which is defined by the following relation: 

K = lim (2'1Tr) 112
<Ixy 

r-+O 
(l) 

where oxy is the shear stress on the plane ahead of the slip 
zone. If the slip zone shown in Figure 3 encloses no net dis­
location (so that the displacement field outside the zone is 
single valued), the stress intensity factor is 

K; = ('1Tl/2) 112
(Too - Tr) (2) 

where the subscript denotes the value for an isolated slip zone. 
Of course, in any real material, the stresses at the edge of 

the slip zone will not be singular but instead will be alleviated 
by processes of inelastic deformation. If, however, the charac­
teristic dimension of this zone of inelasticity or 'breakdown' 
zone is small by comparison with other length scales in the 
problem (e.g., length of slip zone, distance to boundaries, 
etc.), then the intensity of deformation in this zone is charac­
terized by K. More precisely, the boundary conditions on the 
breakdown zone are fixed by the singular stress of the sur­
rounding linear elastic field. In the absence of any detailed in­
formation about processes in the breakdown zone, the near­
tip stress field can be idealized as singular with the under­
standing that K characterizes the actual near-tip field (Rice 
[1968]; also see Rudnicki [1980] for a recent discussion). 

Note that a uniform stress -T = or -Tr may be superposed 
on the stress field in Figure 3 without affecting the relative dis­
placement of the fault surfaces. Hence the relative dis­
placement may be regarded as due to the application of 
stresses T 00 - Tt to the fault surfaces with zero stress at infinity 
or to application of stresses T = - Tr at infinity with a friction­
less fault surface. In any case the relative displacement is 

(3) 

where T = T = - Tr is the effective stress (which is equal in this 
case to the stress drop), µ is the shear modulus, vis Poisson's 
ratio, and the subscript again denotes the value for an isolated 
slip zone. The average relative slip is 

8,{l) = 'IT(l - v)Tµ- 11/4 

The static moment (per unit thickness) is 

Stress 

Tf 

Relative 
Slip 

1
1/2 

M= µo(x) dx 
-1/2 

!U! !Ui: :l I I I I 
1--~~~ 1---l <--~~~~ 

I I 

Ji 

(4) 

(5) 

Fig. 2. Plane strain idealization of a fault plane as a combination 
of areas which freely slip at the friction stress Tr and areas of asperities 
which undergo no relative displacement. 
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where the integration limits imply that the coordinate origin is 
at the crack center, or, for constant µ, 

M = µ18 

Substituting from (4) yields 

M.{l) = (1 - v)rn(l/2)2 

(6) 

(7) 

for the isolated slip zone. In this formula it is, of course, the 
seismic moment which is determined most accurately from 
observations. The stress drop T is typically inferred from (7) or 
a similar formula on the basis of the observed moment and 
the observed or estimated fault length. As has been discussed 
in detail by Madariaga [1977], this stress drop is not generally 
equal to the average of the true stress drop. However, it will 
be shown that for the geometry considered here the difference 
between these quantities is not great. 

STRAIN ENERGY CHANGE 

Although the strain energy change during faulting cannot, 
in general, be determined (because the friction on the fault is 
unknown), the strain energy change does provide an upper 
bound to the energy available for seismic wave radiation. The 
strain energy change caused by introducing the slip zone can 
be computed as the negative of the work done by the fault 
surface tractions in restoring the body to the unslipped state 
[Rice, 1966]. If the stress on the fault is reduced to the residual 
friction stress Tr, this work is 

1 11/2 w =Tr 81 + -2 ~T(X) 8(x) dx 
-1/2 

(8) 

where ~T(x) is the stress drop. For the isolated zone, ~T(x) = 

T = - Tr and, consequently, 

(9) 

The usual interpretation of this equation is that the first term 
is equal to the heat generated by faulting [e.g., Orowan, 1960] 
and the second term is available for seismic energy radiation. 
Comparison of (6) with (9) reveals that this second term, 
which Kanamori [ 1977] calls W0 , can be expressed in terms of 
the moment as 

W0 = TM/2µ (10) 

where T = T = - Tr. Of course, the actual seismic energy radi­
ated during faulting depends on the deatils of the rupture 
process (whereas the strain energy change does not; this will 
be demonstrated below for the specific model considered 
here) and cannot be determined from comparison of the static 

Fig. 3. 

x 
-£-

An isolated slip zone. The resistive frictional stress is Tr, and 
the slip zone is loaded in the far field by T =· 

_, __ r -·- ___, 
-b -a a b -c-
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c ----c -~--c -~<----- c ---- c 

(b) 

Fig. 4. (a) Geometry for two collinear slip zones. (b) Geometry for 
an infinite periodic array of collinear slip zones. 

end-states [Kostrov, 1974]. However, Kanamori [1977] has 
shown that for large earthquakes the energy computed from 
(10) agrees well with the energy determined by using the ob­
served magnitude and the Gutenberg-Richter relation (See 
Richter [1958] with correction noted by Kanamori and Ander­
son [1975].) In the following, we show that the strain energy 
change is also given by (9) for two specific types of nonuni­
form faulting. 

First, we consider an initially unbroken fault. Then failure 
occurs on an array of collinear slip zones separated by liga­
ments as shown schematically in Figure 2. This case corre­
sponds to the barrier model. The strain energy change is still 
given by (8) if the total length of the fault zone is l. Although 
the slip is very nonuniform, wherever the relative slip is non­
zero the stress drop is equal to the effective stress (T= - Tr), 
and consequently (8) again reduces to (9). 

In the second case we suppose that the fault plane is already 
segmented in the initial state and failure of the asperities 
causes reduction of the stress to Tt everywhere on a zone of 
length /. This case corresponds to the asperity model. Again 
the pattern of stress drop is very complex: it is zero on por­
tions of the fault plane which already sustained the residual 
friction stress Tr, but it is nonzero and spatially varying where 
asperities existed. Nevertheless, the strain energy change is 
again given by (8). Note, however, that wherever the stress 
drop is nonzero (at positions which were occupied by aspe­
rities), the relative slip is exactly equal to the relative dis­
placement for an isolated zone of length I. Hence 8(x) in the 
second term of (8) may, in this case, be replaced by 8.{x) from 
(3). The reciprocal theorem of linear elasticity (e.g., Love 
[1927]; also see Madariaga [1979] for a more detailed treat­
ment of a similar application of the reciprocal theorem) re­
quires that 

1
112 1112 

(~T), 8(x) dx = -112 -1/2 ~T(x) 8, (x) dx 
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K; 

4.0 

Infinite Periodic Array 

Fig. 5. Plot of stress intensity factor for fault tip at x = ±a in ~ig­
ure 4a (equation (11)) and for Figure 4b (equation (12)) as a function 
of c/l. 

where the subscript i in the first integral denotes the stress 
drop for an isolated slip zone. The stress drop for an isolated 
zone is, however, uniform and equal to the effective stress so 
that the strain energy change can again be expressed as in (9). 

These examples demonstrate that for a fault zone of a given 
length, which may comprise any number of collinear slip 
zones, the strain energy change is fully determined by the ef­
fective stress and the average displacement regardless of the 
detailed distribution of constituent slip zones or of stress drop. 
Although this result is fully expected from the theory of linear 
elasticity, it often seems to be overlooked in seismology. The 
apparent reason for this is that the actual stress drop, which 
appears in the second term of (8), is not known but must be 
inferred from formulae like (7). Hence calculations based on 
(10) reflect possible inaccuracies in determining the stress 
drop by assuming an isolated slip zone with uniform stress 
drop. 

Before proceeding to specific calculations of moment and 
stress drop for collinear slip zones, we present some results for 
the interaction of slip zone stress fields. 

INTERACTION OF SLIP ZONE 

STRESS FIELDS 

Although the solution for an arbitrary configuration of col­
linear cracks can formally be established using the powerful 
complex variable methods of Muskhelvishvili (1953], only the 
limiting cases of two collinear cracks [Willmore, 1949; Tranter, 
1961; Barenblatt, 1962; Erdogan, 1962, Lowengrub and Srivas­
tava;, 1968] and an infinite periodic array of collinear cracks 
[Irwin, 1957; Koiter, 1959] need be considered here. The solu­
tions for these cases (and for many others) have been summa­
rized by Tada et al. [1973]. For two collinear cracks, the geom­
etry is shown in Figure 4a. The stress intensity factor at the 
interior fault tip (x = ±a) is given by 

112 b2E(m)/F(m) - a2 
K2 = T('7Ta) a(b2 _ a1)112 (11) 

where T = T = - Tt is the excess of the far field stress over the 
frictional stress, m2 = 1 - a2/b2, and F(m) and E(m) are com­
plete elliptic integrals of the first and second kinds, respec­
tively: 

f "12 
F(m) = Jo (1 - m2 sin2 8)-112 dO 

f "12 
E(m) =Jo (1 - m2 sin2 8) 112 dO 

The center-to-center distance between the slip zones is c = a 
+ b and the length of each zone is I = b - a. The geometry for 
the infinite periodic array of slip zones is shown in Figure 4b, 
and the stress intensity factor is 

K= = T[c tan (7T//2c)] 112 (12) 

The interaction between the stress fields can be evaluated 
by examination of Figure 5, which plots K2 and K= divided 
by K;, the stress intensity factor for an isolated crack, as a 
function of c/l. Figure 5 makes it clear that interaction is sig­
nificant only when the slipping zones are very close together. 
This result is not unexpected, since the stress field near the tip 
of the slip zone does die off rapidly (as r- 112) with distance. 
The elevation of the stress intensity factor over the value of 
the isolated slip zone is, of course, greatest for the infinite ar­
ray of slip zones. Even for this configuration, however, the 
stress intensity factor is greater than K; by only slightly more 
than 10% when the zones are separated by a distance equal to 
their length (c// = 2). Hence for greater separations, say, c/l > 
3, the slip zones are effectively isolated. Although the inter­
action may be amplified by three-dimensional effects, the re­
sults here suggest that interaction is significant only if the as­
perities or locked portions occupy a small fraction of the fault 
plane. 

A lower limit to the ratio of asperity length to slip zone 
length can be estimated by requiring that the average stress in 
the asperity which is available for release in a seismic event 
does not exceed the ultimate (peak) strength of brittle rock. 
(Aki (1979] has made similar estimates within the context of 
the barrier model.) For an asperity which has a length small 
by comparison to the lengths of adjacent slip zones, the stress 
in the asperity can be approximated by the singular term in 
the crack-tip expansion, that is, K(2'7Tr)- 112, where K is the ap-

1.8 --c--

-1--

1.6 

14 

1.2 

1.02 1.04 1.06 1.08 110 112 1.14 116 1.18 1.20 

c!J 

Fig. 6. Moment due to the introduction of two collinear slip zones 
of length I divided by 2 times the moment due to introduction of an 
isolated slip zone of length I plotted as a function of c/l (see (16) an~ 
(7)). Also shown is the moment for an isolated zone of length I di­
vided by that for an isolated zone of length c + I. 
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propriate stress intensity factor and r is the distance from the 
edge of the slip zone. Thus the average stress in an asperity of 
length c - I is 

ii = T(K/ K,)[c/l - n-1
12 (13) 

where the numerator and denominator have been multiplied 
by K,, the stress intensity factor for an isolated slip zone, and T 

= T = - Tr is the effective stress. (Equation (13) actually gives 
an estimate of the stress in excess of the residual friction 
value.) Rearranging and setting a = a"1" the ultimate stress, 
yield 

-= 1 + - -c ( K T )
2 

I K, au11 
(14) 

although, of course K/K, itself depends on c/l as shown in 
Figure 5. On the basis of laboratory experiments [e.g., Jaeger 
and Cook, 1976], a representative value for a"1' might be 103 

bars (=102 MPa), and Tis presumably in the range of typical 
stress drops, say, 10-100 bars (1-10 MPa). For T/au1, equal to 
10-2 and 10-1

, (14) yields values of c/l equal to 1.006 and 
1.068, respectively, for the infinite periodic array. The corre­
sponding values of c/l for two collinear cracks are 1.003 and 
1.038. Hence c/l = 1.006 seems to be a reasonable lower limit. 

Of course, the above estimates assume that the asperity re­
mains essentially elastic and because of the proximity of the 
slip zones needed to cause significant interaction, it is worth­
while reexamining the adequacy of this assumption. As men­
tioned earlier, the formulation which regards the fault-tip 
stress field as singular is equivalent to one which takes explicit 
account of departures from linear elasticity in a breakdown 
zone as long as the characteristic length of this zone is small 
by comparison with other lengths in the problems. Rice 
[1979a] has estimated breakdown zone sizes from ll mm to l 
m based on laboratory experiments of sliding friction. If these 
results are representative, it seems likely that the asperity size 
will be much greater than the end zone size. For a slip zone 
length of 1 km and the lower limit for c/l = 1.006, the asperity 
length is 6 m. Rudnicki [1979], however, has suggested, based 
on model experiments of Barton [1972, 1973], that larger end 
zone sizes, perhaps of the order of a hundred meters, may oc­
cur in situ, and it is conceivable that asperities may be of this 
size. Unfortunately, there seem to be no accurate estimates of 
sizes of either asperities or breakdown zones in the field, and 
Rudnicki [1980] has discussed the difficulties of extrapolating 
friction experiments to the field. In view of these under­
tainties, the approximation of a singular stress field seems ade­
quate. In any case, the stress field which is given by the result­
ing values for the stress intensity factors can be expected to 
describe adequately the average stress level in the asperity. 

MOMENT AND STRESS DROP 

Since the results are very different for the two models, the 
barrier and the asperity models, we discuss them separately. 
In the barrier model we compare the calculated moment and 
stress drop for the introduction of a segmented fault into a 
uniform state of stress with the corresponding quantities for 
an isolated fault or slip zone. In the asperity model the mo­
ment and stress drop due to failure of an asperity between 
existing slip zones are calculated. (Here 'failure' means that 
the stress is reduced to the residual friction value Tr.) Again 
the results are compared with those for isolated slip zones. As 

(L'.rlapp 

(L'.<ltrue 

l.O 

0.8 

0.6 

0.4 

0.2 

01 2 3 
c!J. 

Fig. 7. Apparent stress drop (based on the assumption of an iso­
lated slip zone) divided by actual stress drop for a fault having two 
segments of length I separated by the center-to-center distance c. 

demonstrated earlier, the strain energy change and hence W0 

is completely determined, for a given fault length and effec­
tive stress, by the average displacement and consequently by 
the moment from (IO). Thus despite the evident importance of 
W0 as a seismological parameter, the results here have been 
expressed in terms of moment and stress drop because the mo­
ment can be determined more directly from observations and 
because errors in the estimation of W0 (say, from (IO)) result 
from errors in the stress drop. 

Barrier Mode/ 

The moment due to introducing two widely separated slip 
zones oflength I is simply 2M,{l), where M, is given by (7). As 
the two slip zones become closer together, the moment in­
creases and the limiting value occurs when the slip zones are 
adjacent so that they approach a single zone of length 2/. In 
this limit the moment is M,{21) = 4M.{l). For intermediate 
cases it is necessary to evaluate the moment by using (5). For 
the two collinear slip zones shown in Figure 4a, the relative 
slip of the fault surfaces can be determined from expressions 
given by Erdogan [1962] and, as shown in the appendix, the 
average slip is 

8 - (1 ) -ib [l + (a/b)2 - 2;\2] 
2 - 7T - P Tµ 2(1 .:... a/b) (15) 

where ;\2 = E(m)/F(m) and m 2 = l - a2/b2. Hence from (5) 
the moment is 

M2 = 27r(l - P)T(b/2)2[1 + (a/b)2 - 2;\2
] (16) 

M2 divided by twice the moment for an isolated zone oflength 
I= b - a is plotted in Figure 6 as a function of c/l (where c = 

a+ b). As shown in Figure 6, M 2 = 4M, when ell= l (i.e., a/b 
= 0) and M 2 approaches 2M, as c/l approaches infinity (i.e., 
a/b = 1). Also plotted is M, (c + /)/2 M,(l). Figure 6 demon­
strates that the effect of interaction is very slight unless the ra­
tio of asperity size to slip zone length is extremely small. For 
example, for c/l = l.2 (ratio of asperity length to slip zone 
length is 0.2), the moment M2 differs by only 15% from the 
combined moments of two isolated zones of length/; for c// = 

2.0, the difference is only about 3%. 
In calculating the moment it was assumed that the stress 

drop for each fault segment was T = - Tr· However, as noted 
earlier, the moment is the quantity which can be determined 
accurately by observations, whereas the stress drop is typically 
inferred from formulae like (7) which assume that the fault is 
a single isolated zone. Thus it is perhaps more relevant for ob­
servations to determine for a fixed moment and fault length 
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Fig. 8. Moment due to failure of asperity between two slip zones 
divided by the moment due to uniform stress drop on an isolated slip 
zone of length c + /. 

the ratio between the actual stress drop and the apparent 
stress drop inferred from (7). Equating the moments calcu­
lated from (6) by using (15) with T = AT,rue and from (7) with l 
= 2b and T = ATapp yields 

AT1,.,,e = ------
ATapp l + (a/b)2 

- 2;\..2 
(17) 

The reciprocal of this exPJ,"ession is plotted versus c/l [=(l + 
a/b)/(l - a/b)] in Figure 7. For very small asperity lengths 
the two stress drops are approximately equal, but more gener­
ally the apparent stress drop can significantly underestimate 
the true stress drop. For example, if c/l = 1.2, the true stress 
drop is roughly twice the apparent value, but if the asperity 
length is equal to the length of the adjacent slip zones (c// = 
2), the apparent stress drop is only 24% of the true stress drop. 

Rice [1979b] has used results for the infinite periodic array 
of collinear cracks to obtain a formula corresponding to (17) 
for a large number of segments. Rice's expression is (in our 
notation) 

AT1,.,,e nr 
ATapp = 81n [secf(l-//c)J 

(18) 

where n » 1 is the number of slip zone segments. For c/l = 
I.01, 1.1, 1.2, and 1.5 this ratio is 0.30n, 0.63n, 0.9ln, and 
l.78n, respectively. (The numerical values given by Rice 
[1979b] for (l - //c) = 0.25, 0.1, and 0.01 are in error and 
should be replaced by l.28n, 0.67n, and 0.30n, respectively.) 
Comparison of (18) with (17) reveals that the difference be­
tween the actual and apparent stress drops is greater for the 
larger numbers of slip zone segments. For c/l = 1.2, llT,rue = 2 
!lT app for two segments, but for a large number of segments, 
say, 20-25, the actual stress drop in each segment is 20-25 
times the apparent value. 

The calculations in this section give specific numerical ex­
amples of the general result obtained by Madariaga [1979]: for 
a given moment and fault length the segmented fault repre­
sented by the barrier model has high stress drop than the iso­
lated fault. 

Asperity Mode/ 

In this section we demonstrate that the failure of an aspe­
rity, which may occupy a very small portion of the fault plane, 
can cause a relatively large moment because of the additional 
displacement induced on the adjacent slip zones. Because the 

body has been assumed to be linearly elastic, this moment is 
simply equal to the difference 

!lM = M,(c + /) - Mi (19) 

where Mi is given by (16) and M,{/) is given by (7). This dif­
ference divided by 2M;(/) is the difference between the two 
curves in Figure 6, and in Figure 8, !lM/M,{c +/)is plotted as 
a function of c/l. (For fixed stress drop, M 2/M,{c +/)is equal 
to the reciprocal of the right-hand side of ( 17) so that Figure 7 
is also a plot of 1 - !lM/ M,{c + /).) 

For values of c/l greater than about 2, the ratio !lM/ M,{c + 
/)is roughly unity, and the moment AM differs from M,{c + /) 
by less than 20%. Thus if the asperity length is greater than 
about one third of the total length which slips during failure 
of the asperity, the effect of the preexisting slip zones on the 
moment is relatively small (Figure 8). Note, however, that the 
moment due to failure of the asperity can be relatively large 
even if the asperity is very small. For example, when the aspe­
rity length is only 5% of the preexisting slip zone length (for cf 
i = 1.05, the asperity length is 2% of the total length which 
slips during failure of the asperity), the moment due to failure 
of the asperity is 1.8 times the moment due to creating an iso­
lated slip zone of length l or about 40% of the moment due to 
breaking the entire slip zone of length c + l. As mentioned 
earlier, this relatively large moment is due to the additional 
displacement induced on the already existing slip zones. Be­
cause the strength of these zones has already been reduced to 
the residual friction level T 1, these portions of the fault plane 
undergo zero stress drop during the failure of the asperity. 
The effect of this on the average stress drop will be examined 
next. 

If the slip zones are widely separated, the stress on the aspe­
rity will be roughly equal to the value of the stress applied in 
the far field ( T =) except very near the edges of the slip zones. 
Consequently, failure of the asperity will be accompanied by 
a stress drop approximately equal to T = - Tt· If, however, the 
slip zones are closer together, the average stress on the aspe­
rity will exceed T =(as demonstrated by Figure 5), and the cor­
responding stress drop due to failure of the asperity is in­
creased. Of course, the case of most interest is when the 
asperity between the slip zones is small by comparison to the 
slip zone length because this is the case for which the presence 
of the neighboring slip zones is likely to induce failure of the 
asperity. Specifically, the calculations will demonstrate that 
the stress drop averaged over the area of a small asperity can 
be very large, whereas the average over the entire zone which 
slips (during failure of the asperity) is small. 

For the two collinear slip zones shown in Figure 4a, the 
stress on the plane between the slip zones can be determined 
from expressions given by Erdogan [1962]. The result is 

(b2A.2 _ x2) 
Tasp = (T= - Tr) [(a2 _ x2)(b2 _ x2)]';2 +Tr (20) 

where -a < x < a, T = is the stress applied in the far field, Tr is 
the residual friction stress, and A.2 = E(m)/ F(m). Because the 
stress in the asperity is assumed to be reduced to Tr by failure, 
the stress drop is simply given by the first term of (20). Con­
sequently, the average stress drop in the asperity is simply 

(21) 
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where T = T = - T1. This integral can be expressed as [Abra­
mowitz and Stegun, 1964, p. 596, equation 17.3.13] 

!::..iasp = T(b/a)[(2/"1T)F(m)r 1 (22) 

Because the stress on other portions of the slip zones has al­
ready been reduced to T1, the stress drop here is zero (although 
there is, of course, additional slip caused by failure of the as­
perity). Consequently, the average stress drop for the entire 
slip .zone is obtained by multiplying (22) by a/b or 

(23) 

This relation between the average stress drop in the asperity 
and the average stress drop of the slip zone is a special case of 
the more general relation established by Madariaga. (See 
equation (15) of Madariaga [1979].) It is straightforward to 
demonstrate from the properties of F(m) [e.g., Abramowitz and 
Stegun, 1964, equation 17.3.26] that !::..iasp approaches infinity 
as a/b approaches zero (or c/l = 1), but that !::..i11, = 0 in this 
same limit. Thus although the local stress drop in the asperity 
can be large, it occurs over such a small area that its contribu­
tion to the average stress drop of the entire fault is very small. 
!::..i11,/T and (!::..fasp/T)- 1 are plotted in Figure 9. 

The stress drop defined by (20) is the true stress drop, that 
is, the stress on the fault plane prior to slip minus that after 
slip. As noted earlier, the true stress drop is generally not 
known; rather an apparent stress drop is inferred from (7). 
Thus, letting T = !::..Tapp and l = lb in the right-hand side of (7) 
and setting the left-hand side equal to !::..M yield 

(24) 

The ratio of the apparent stress drop to the true average stress 
drop is 

!::..T~PP = ~ [2E(m) - (1 - m2)F(m)] 
f:..Tftt "IT 

(25) 

where m2 = 1 - a2/b2
• This ratio varies monotonically from 

unity when c/l = 1 (i.e., a/b = 0) to 4/"IT when c/l = oo (alb= 
1). Hence the apparent stress drop calculated from (7) is a 
good estimate for the true average stress drop. 

Although the apparent stress drop does not differ greatly 
from the true average stress drop, both quantities under­
estimate the effective stress for small values of c/l. For c/l = 

1.01, !::..Tapp underestimates the effective stress by a factor of 
more than 3 and !::..i11, by a factor of more than 5. Hence if the 
stress drop is assumed equal to the effective stress (as is the 
case for an isolated zone) for the purpose of computing W0 

from (10), this quantity may be underestimated by a signifi­
cant amount. If, however, c/l > 1.2, !::..Tapp agrees with the ef­
fective stress to a factor of 2, and the difference is probably 
not significant. 

CONCLUDING DISCUSSION 

Although our model is too simple to describe a real fault in 
detail, it does make it possible to evaluate quantitatively the 
effects of the interaction of slip zones separated by asperities. 
The results are not surprising, but they do demonstrate the 
dramatic effects that small strong asperities can have on fault 
processes. In particular, the failure of a small strong asperity 
can cause a relatively large moment. This result is primarily 
due to the additional displacement, which is induced by fail­
ure of the asperity, on the adjacent already weakened slip 

1.0 

OIO 1.2 1.4 1.6 1.8 20 22 2.4 26 2.8 30 

cl.£ 

Fig. 9. Average stress drop due to failure of the asperity between 
two collinear slip zones divided by effective stress as a function of c/ I. 
/j/f asp is the stress drop averaged over the width of the asperity (note 
that the reciprocal of {ff asplr is plotted) and ti.f 11, is the stress drop av­
eraged over the entire region which slips (see (22) and (23)). ti.'f app is 
the apparent stress drop inferred by assuming uniform stress drop on 
an isolated fault of length c + I. 

zones. Consequently, slip on these zones might be said to 'pre­
pare' the fault for large relative displacements due to failure 
of the strong asperity. The failure of such an asperity can be 
associated with a large local stress drop, but the stress drop 
when averaged over the entire slipping region is approxi­
mately equal to the stress drop obtained by assuming slip oc­
curred on an isolated fault of the same moment and length. 
This result suggests itself as a possible explanation for why the 
observed stress drops for large earthquakes (which are usually 
an average over the entire slipping region) are relatively con­
stant despite possible heterogeneity of the fault zone [e.g., 
Kanamori and Anderson, 1975]. Moreover, unless the ratio of 
asperity size to fault length is very small, this stress drop is a 
good estimate (within a factor of 2) of the effective stress ( T = 

- Tt) and hence yields a good estimate of the strain energy 
change when used in the usual formula for an isolated fault. 

For convenience of analysis the fault plane has been ideal­
ized as consisting of regions which slip freely at a uniform re­
sidual value of the friction stress and of regions which slip 
only at the time of an earthquake. In actuality, there is likely 
to be a distribution of strength on the fault plane and a rela­
tively continuous variation of the slipping regions as the tec­
tonic stress is increased. Of course, the interactions in this case 
will be much more complicated than those described here. 
Nevertheless, the idealization considered here is a limiting one 
and hence can reasonably be considered to yield bounds for 
intermediate situations. Moreover, there is evidence from di­
rect observation of fault surfaces associated with seismic 
events in mines [McGarr et al., 1979a] that fault slip zones, at 
least in some instances, may not be planar. Again the analysis 
of this case is more complicated than that presented here, but 
some preliminary results have been obtained by Segall and 
Pollard [1980] and by McGarr et al. [1979b]. Three-dimen­
sional effects may also be important, and Madariaga has given 
some general results which are applicable in this case. Al­
though for the three-dimensional case there appears to be no 
simple calculation analogous to that presented here, McGarr 
[1981] has recently considered an approximate solution for an 
annular fault model. His predictions are comparable to those 
given here if the results are compared on the basis of fault 
area. More generally, the development of a fault plane may be 
a late stage in a process of inelastic deformation in a large re-
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gion. In this case an inclusion model like that suggested by 
Rudnicki [I 977} may be appropriate, and the development of a 
fault may occur by the localization processes which were ana­
lyzed by Rudnicki and Rice (1975]. Indeed, Rice (1978] has 
suggested that the observations of Lindh et al. [1978] on the 
orientation of foreshocks relative to mainshock are consistent 
with this latter analysis. However, this misorientation may be 
related to the principal stress axes rotation caused by the fore­
shocks themselves [Rudnicki, 1979]. 

This analysis has also assumed that failure results in a re­
duction of the stress to the residual friction value. In general, 
the stress may not be reduced to this value upon failure, and 
consequently the friction stress on the fault plane will not be 
uniform. A limiting case is the model of Das and Aki [1977a, 
b] in which a propagating fault can leave unbroken ligaments 
behind its tip. The calculations given here for the barrier 
model are relevant to this case, but they are purely kinematic 
in nature, and for a more detailed analysis it would be neces­
sary to introduce a fracture criteria. Moreover, for fault 
lengths which are comparable to the distance to the free sur­
face or boundary of the seismogenic region, the details of 
propagation are likely to be affected by whether the boundary 
conditions are idealized as prescribed displacements or 
stresses [Freund, 1979]. 

In spite of all the limitations of the present analysis, it is 
useful in demonstrating the magnitude of the effects that in­
teracting slip zones may have in fault processes. 

APPENDIX 

The relative displacement for the two collinear slip zones 
(Figure 4b) can be shown from expressions given by Erdogan 
[1962} to be 

_ _
1 

(b (s2 - VA2
) ds 

o(x) - 2(1 - v)rµ lx f(s2 - a2)(b2 - s2)jll2 

where A2 = E(m)/F(m), m2 = l - a2/b2, and E(m) and F(m) 
are the complete elliptic integrals defined following (11). This 
integral can be expressed as 

where 

o(x) = 2(1 - v)rµ- 1b[E(<j>, m) - A2F(<j>, m)] (AI) 

F(<j>, m) = 1<1> (I - m2 sin2 <1>)- 112 dB 

E(q,, m) = 1<1> (I - m2 sin2 0) 112 dB 

are elliptic integrals of the first and second kinds, respectively 
[Abramowitz and Stegun, 1964], and 

sin2 </> = m-2[1 - (x/b)2] 

The average displacement is simply the integral of fJ(x) di­
vided by b - a. Evaluation of the integral can be accomplished 
by using the results of Tranter [1961] or of Lowengrub and 
Srisvastava [1968] for the corresponding tensile crack prob­
lem, and the final expression can be written in the form of 
(15). 
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