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Effects of chordwise, spanwise, and isotropic flexibility on the force generation and 

propulsive efficiency of flapping wings are elucidated. For a moving body immersed in 

viscous fluid, different types of forces, as a function of the Reynolds number, reduced 

frequency (k), and Strouhal number (St), acting on the moving body are identified based on 

a scaling argument. In particular, at the Reynolds number regime of O(103 - 104) and the 

reduced frequency of O(1), the added mass force, related to the acceleration of the wing, is 

important. Based on the order of magnitude and energy balance arguments, a relationship 

between the propulsive force and the maximum relative wing tip deformation parameter (γ) 

is established. The parameter depends on the density ratio, St, k, natural and flapping 

frequency ratio, and flapping amplitude. The lift generation, and the propulsive efficiency 

can be deduced by the same scaling procedures. It seems that the maximum propulsive force 

is obtained when flapping near the resonance, whereas the optimal propulsive efficiency is 

reached when flapping at about half of the natural frequency; both are supported by the 

reported studies. The established scaling relationships can offer direct guidance for MAV 

design and performance analysis. 

Nomenclature  

    A  ratio between the added mass and the wing inertia, A =  4⁄  

 cross sectional area of the wing AR aspect ratio of the wing 

 drag coefficient 

 force coefficient  

 lift coefficient  

m mean chord  

 power input coefficient 

 pressure coefficient, ref⁄  

 thrust coefficient 

 Young’s modulus 

 flapping (plunging) frequency, 2⁄  

 natural frequency of the wing 
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 force acting on a body, such as a wing 

 non-dimensional plunging position as function of time  

 plunging amplitude  

 thickness of the wing ∗ thickness ratio, ⁄  

 second moment of inertia 

 
reduced frequency of pitch or plunge, ω m 2⁄  for forward flight; 2⁄  for hover (plunging) based on the maximum tip velocity 

 pressure 

 reference pressure at infinity  

 half span of the wing 

 Reynolds number, ⁄  

 Strouhal number, /   

 time 

 temporal part of the separation of variables: ,  

 airfoil oscillation period, 2π/   

 velocity vector  

 free stream (forward) velocity  

 wing displacement relative to the motion at the wing root 

 fluid domain 

 wing displacement body weight of a vehicle  

 position vector  

 pitch pivot point: fraction of chord downstream from airfoil leading edge  

 spatial part of the separation of variables: ,  

 kinematic angle of incidence due to pitch  

 dimensionless maximum tip deformation parameter  Eq. (40) 

 propulsive efficiency 

 twist of the wing 

 viscosity coefficient 

 Poisson’s ratio 

 vorticity 

 effective inertia, ∗ ∗ /  

 effective stiffness, shown in Table II-1 

 fluid density 

 structure density of the wing ∗ density ratio, ⁄  

 angular motion frequency 

 normalized angular natural frequency of the FSI system 

 flap angle, phase lag between plunge and pitch, or velocity potential Φ  phase lag between the tip and the root of the wing 

 flap amplitude 

 bending of the wing 

 scaling function for  

 control volume 

 boundary of the control volume  ∗ non-dimensional variables  

 spatial derivative 

 temporal derivative ~ proportional to: ∼  means  is a constant multiple of  

 approximately:  means  is approximately equal to  involving some 

simplifications 
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I. Introduction 

HE flapping mechanisms inherent to the biological flyers, such as insects and birds, have inspired the most 

exotic dreams, ever since the history of human beings, from Daedalus and Icarus in the Greek mythology, via 

Leonardo Da Vinci’s ornithopter, to a recent successfully sustained human powered flapping flight [1] at human 

scales of 1 m . At smaller scales of 15 cm or less, micro air vehicles (MAVs) are of great interest in remote 

sensing and information gathering capabilities both in military as well in civilian applications. Smaller sizes and 

lower flight speeds lead to lower Reynolds numbers and higher sensitivity to wind gust effects than for the 

conventional airplanes. Furthermore, since MAVs are of light weight and fly at low speeds, they are sensitive to 

wind gust, and their wing structures are often flexible and tend to deform significantly during flight [2,3,4,5,6]. 

Because of the common characteristics shared by MAVs and biological flyers, the aerospace and biological science 

communities are now actively communicating and collaborating.  

Recently, a bio-inspired bird-like MAV has successfully demonstrated its ability to hover (Nano Hummingbird) 

[7]. At larger scales of wing span of two meters (SmartBird) [8] a bird-like flapping motion was integrated into fully 

automated robotic flyer. Other examples of MAVs are the Delfly [9], Microrobotic Fly [10], among others. In order 

to operate under wind gust, to avoid objects, or to hover, highly deformed wing shapes and coordinated wing-tail 

movement in the biological flight are often observed. Understanding the aerodynamic, structural, and control 

implications of these modes is essential for the development of high performance and robust flapping wing MAVs 

for accomplishing desirable missions. Moreover, the large flexibility of the wings leads to complex fluid-structure 

interactions, while the kinematics of flapping and the spectacular maneuvers performed by natural flyers result in 

highly coupled nonlinearities in fluid dynamics, structural dynamics, flight dynamics, and control systems. 

As reviewed and illustrated by numerous studies [3,6,11,12,13,14,15,16,17,18], biological flyers showcase 

desirable flight characteristics and performance objectives and the strategies exhibited in nature have the potential to 

be utilized in the design of flapping wing MAVs. In particular, wing flexibility is likely to have a significant 

influence on the resulting aerodynamics. Based on a literature study, it was found that several questions in flexible 

wing aerodynamics have not been adequately addressed in the existing literature, among which, the key ones 

include: (i) What are the dominant non-dimensional parameters, such as the Reynolds number ( ) that indicates the 

ratio of the fluid dynamic inertial forces to the viscous forces, the Strouhal number ( ) giving the ratio between the 

wing velocity to the fluid convection velocity, the reduced frequency ( ) that measures the unsteadiness of the flow, 

and the effective stiffness defined as the wing rigidity normalized by the fluid dynamic pressure, etc., for the 

aerodynamic performance of flexible flapping wings? (ii) What are the underlying mechanisms of force generation 

or propulsive efficiency of flexible flapping wings? (iii) Do optima exist for the aerodynamic performances, and if 

so, what are these? This study explores these questions using high-fidelity computational models and analytic 

scaling methods.  

Scaling parameters resulting from dimensional analysis help identify key characteristics of the model, via 

Buckingham's Π-theorem, which also reduces the number of involved parameters to the sufficient number of 

combinations [19,20,21,22]. Under certain circumstances, the result obtained from the dimensional analysis, can be 

reduced to a simpler relationship, with a reduced number of arguments, as a property of the special problem under 

consideration. The non-dimensional parameters arising from such a scaling analysis can identify similarity variables, 

which can be of critical value even if a complete mathematical solution is missing [19].  

In the field of flexible flapping wing aerodynamics numerous efforts using scaling arguments have increased our 

knowledge of the complex interplay between flexibility and resulting aerodynamics. Depending on the type of the 

model and the governing equations the resulting set of scaling parameters may vary. For example, for flexible 

flapping wings, Shyy et al. [6] considered the Navier-Stokes equation for out-of-plane motion of an isotropic flat 

plate, and Ishihara et al. [23] investigated the Navier-Stokes equation along with the linear isotropic elasticity 

equations to study the effects of flexibility on wing pitch changes in dipteran flapping flight. Furthermore, Ishihara 

et al. [24] have measured the lift generated by a dynamically scaled flexible wing model. They introduced the 

Cauchy number that describes the ratio between the fluid dynamic pressure and elastic reaction force and presented 

correlation between time-averaged lift and the Cauchy number. More recently, Thiria and Godoy-Diana [25] and 

Ramananarivo, Godoy-Diana, and Thiria [26] have measured the thrust and the propulsive efficiency of a self-

propelled flapping flyer with flexible wings in air. Since the density ratio is high, the elastic deformation of the wing 

was mostly balanced by the wing inertia. They have introduced the elastoinertial number using scaling arguments to 

define the ratio between the inertial forces and the elastic restoring forces and showed that the measured thrust 

scales with the elastoinertial number. Furthermore, in Ref. [26] the cubic nonlinear damping term due to the 

aerodynamics was linked to the effects of flexibility on the aerodynamic performance. It should be mentioned that 

these two studies only consider a portion of the parameter-space and for example the effects of density ratios on the 

T 
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force generation of flexible flapping wings have not been considered. Hence, the parameter-space involving the 

scaling parameters for the fluid-structure interaction needs to be mapped out in a systematic fashion to understand 

the role of flexibility and density ratio on the fluid dynamic force generations and the propulsive efficiency of 

coupled systems.  

Recent review by Shyy et al. [6] and experimental study by Ramananarivo, Godoy-Diana, and Thiria [26] have 

offered surveys of the current state of the investigation of the role of the flexibility on the fluid dynamic 

performance of flapping wings. The maximum propulsive force, such as thrust in forward flight or lift in hover 

motion, was generated at a frequency which was slightly lower than the natural frequency of the system 

[27,28,25,26,29,30]. Zhang, Liu, and Lu [27] studied numerically using the lattice Boltzmann method a flexible flat 

plate modeled as a rigid plate with a torsional spring at the pivot point on the leading edge of the wing. They 

conclude that the flat plate would move forward, hence generate thrust when the leading edge plunges at a motion 

frequency that is lower than the natural frequency of the system and backward if the frequency ratio, the ratio 

between the motion frequency and the natural frequency, is greater than one. Similarly, Masoud and Alexeev [28] 

used the lattice Boltzmann method to show that at the frequency ratio of 0.95 the maximal propulsive force was 

obtained. The magnitude of the maximal force would increase when the inertial effects became more important than 

the fluid inertia. Michelin and Llewellyn Smith [30] used potential flow theory to describe the flow over a plunging 

flexible wing. The trailing-edge flapping amplitude and the propulsive force are shown to be maximal at resonance 

conditions. In a series of experiments using self-propelled simplified insect model, Thiria and Godoy-Diana [25] and 

Ramananarivo, Godoy-Diana, and Thiria [26] also show that the maximum thrust force was around frequency ratio 

of 0.7. More recently, Gogulapati and Friedmann [29] coupled an approximate aerodynamic model, which was 

extended to forward flight including the effects of fluid viscosity, to a nonlinear structural dynamic model. For 

various setups of composite anisotropic Zimmerman wings [31], they investigated the propulsive force generation in 

forward flight. The maximum propulsive force was also obtained at the frequency ratio slight lower than one. These 

observations are consistent with the general perception of the resonance phenomena in which even small external 

force can induce large amplitude deformations and potentially be efficient as well. 

However, it was reported for insects, that the flapping frequency of the insects is below the natural frequencies 

of the wing, only a fraction of the resonance frequency [32,33]. Sunada, Zeng, and Kawachi [32] measured the 

natural frequencies of vibration in air and the wing beat frequencies for four different dragonfly wings. The wing 

beat frequency ratio were in the range of 0.30 – 0.46. Chen, Chen, and Chou [33] have also measured the wing beat 

frequencies and natural frequencies of the dragonfly wings. In their measurements the average flapping frequency 

was 27 Hz while the natural frequency, calculated using a spectrum analyzer, was 170 Hz when it is clamped at the 

wing base, resulting in a frequency ratio of about 0.16. The propulsive efficiency was also investigated numerically 

[34,28] and experimentally using a self-propelled model [25,26]. Vanella et al. [34] conducted numerical 

investigations on a two link model and found that the optimal performance as realized when the wing was excited at 

the frequency ratio of 0.33. For all Reynolds numbers considered in the range of 75 to 1000 the wake capture 

mechanism was enhanced due to a stronger flow around the wing at stroke reversal, resulting from a stronger vortex 

at the trailing edge. Thiria and Godoy-Diana [25] and Ramananarivo, Godoy-Diana, and Thiria [26] also showed 

using the experimental setup that was described above that the maximum efficiency was obtained at a frequency 

ratio lower than that of the maximum propulsion at 0.7. They concluded that the performance optimization is not by 

looking at the resonance, but adjusting the temporal evolution of the wing shape. On the other hand, Masoud and 

Alexeev [28] showed that the optimal efficiency for a hovering flat plate at  = 100 was when the motion was 

excited at the frequency ratio of 1.25. In their setup the flexible flat plate has a geometric angle of attack of 40 

degrees in contrast to the previously mentioned studies where the plunging motion was symmetric. 

The objective of the this study is three-fold: i) Provide a framework to analyze the effect of flexibility on 

flapping wings; ii) Elucidate the interplay between the fluid dynamic forces on the wing and the scaling parameters; 

and iii) Understand the underlying physics of force generation and propulsive efficiency of flapping wings related to 

the wing flexibility. First, starting from the Navier-Stokes equations the forces acting on a moving body immersed in 

a fluid, such as a wing in air or water, will be scaled by properly normalizing the equations. The concepts such as 

added mass effects, that denotes the force on the wing that is proportional to the wing acceleration and the 

hydrodynamic impulse will be introduced. The analysis of the fluid dynamic performance of flexible wings is 

similar to that of flutter in the aeroelasticity community: in flutter research the wing oscillations are the results of the 

interaction between the wing deformations and the aerodynamic loading, here the kinematic motion at the root of the 

wing is given and we look for the response of the wing structures, the aerodynamics, and the interaction between 

these two. To quantify the interplay of the flapping kinematics and the response of the flexible wing structure and to 

identify the dominant parameter involved, three canonical cases with sinusoidal kinematics will be considered to 

assess the role of the chordwise flexible, spanwise flexible, and isotropic wings on the resulting fluid dynamic 
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forces. Based on these canonical cases, we will identify the underlying physical mechanism and propose a scaling 

parameter for the force generation and the propulsive efficiency of flexible flapping wings that depends on the a 

priori known non-dimensional parameters. Identifying this scaling parameter leads to an order of magnitude 

estimation of the flexilibity enhanced fluid dynamic performance. Furthermore, we will extrapolate the scaling 

parameter to the insects by assuming that the weight of the insects are sustained by the lift and show that the 

generated lift also follows the same scaling. 

The outline of this paper is as follows. First, a dimensional analysis will be performed in Section II, followed by 

the non-dimensionalization of the governing equations. In Section III, the numerical framework for flexible flapping 

wings will be introduced. Then in Section IV, the scaling of the forces will be discussed based on a control volume 

analysis. In Section V the scaling relationships for the force generation and the propulsive efficiency for flexible 

flapping wings will be established for high Reynolds number and high reduced frequency systems. Based on the 

numerical computations of i) the thrust generation of a plunging chordwise flexible airfoil in Secion V.1.A, ii) 

spanwise flexible wing in Section V.1.B in forward flight in water for different wing stiffnesses and motion 

frequencies, the physics of fluid-structure interaction between the plunging wing and the fluid flow will be explored. 

Furthermore, the lift generation of a flapping isotropic Zimmerman wing in hover in air (Section V.1.C) will be 

shown to follow a similar mechanism. For this case a surrogate model will be constructed based on the variations of 

Young's modulus and wing density. Furthermore, based the identified mechanism, a scaling parameter for the force 

generation due to the flexibility of the wing will be proposed using a dynamic beam analysis in Section V.1.D, with 

an extrapolation of the scaling to insects. Finally, a scaling parameter will be obtained for the propulsive efficiency 

in Section V.2 with a discussion on the applicability of the scaling on the MAV design and interpretation of the 

observed physics.  

II. Dimensional Analysis and Non-Dimensional Governing Equations 

The relevant physical quantities related to the system of flexible flapping wing fluid dynamics are the density,  

and the viscosity, , of the fluid; the reference velocity, ref, of the fluid flow field; the half span, , the mean chord, 

, and the thickness, , of the wing geometry; the density,  and the Young's modulus, , and the Poisson's ratio, 

, of the wing structure; the flapping (plunging) amplitude,  ( ), the flapping frequency, 2⁄ , and the 

geometric angle of attack, ; and finally the resulting aerodynamic force, , see Figure II-1. There are 13 variables 

and three fundamental dimensions leading to 10 non-dimensional parameters. With , ref, and  as the basis 

variables to independently span the fundamental dimensions, the dimensional analysis leads to the non-dimensional 

parameters shown in Table II-1. The resulting set of non-dimensional parameters consists of most of the well-known 

parameters in the flapping wing aerodynamics community, however it is not unique. 

 

 
Figure II-1 Relevant physical variables shown for a case of hummingbird. The picture is reproduced, by 

permission, from Wei Shyy © [35].  
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The governing equations are non-dimensionalized with the reference velocity, ref, as the velocity scale, inverse 

of the motion frequency, 2 /  as the time scale, and the mean chord, m, as the length scale. For forward flight 

cases the forward velocity of the wing, i.e. the incoming velocity in the frame of reference of the wing, is chosen as ref and for hovering flight the mean wing tip velocity during half stroke is taken as the reference velocity. The 

resulting governing equations for the incompressible fluid modeled by the unsteady three-dimensional Navier-

Stokes equations with constant density and viscosity are 

 

 
∗ ∗ 0 

(1)     ∗ ∗ ∗ ∗ ∗∗ 1 ∗ ∗∗  

 

where ⋅ ∗ indicates non-dimensional variables. The reduced frequency  is a measure of unsteadiness by comparing 

the spatial wavelength of the flow disturbance to the chord [36]. For hover, the reference velocity is based on the 

mean wing tip velocity, thus reduced frequency is inversely proportional to the flapping (plunging) amplitude and 

aspect ratio of the wing and is not related to the flapping frequency. On the other hand, the reduced frequency based 

on the forward speed is proportional to flapping frequency and the mean chord length, and inversely proportional to 

the flight speed. Another interpretation of the reduced frequency is that it gives the ratio between the fluid 

convection time scale, m/ ref, and the motion time scale, 2 / . The Reynolds number  is the ratio between the 

inertial and the viscous forces in the fluids. For hover the Reynolds number is proportional to the flapping 

(plunging) amplitude, the flapping frequency, square of the mean chord length, and the aspect ratio of the wing. 

 

Table II-1 Non-dimensional parameters for the flexible flapping wing systems 

Non-dimensional parameter Symbol Definition Note 

Reynolds number  ref ⁄   

Aspect ratio ⁄  

Thickness ratio ∗ ⁄   

Density ratio ∗ ⁄   

Poisson’s ratio  

Effective stiffness Π  
∗ 12 1 ref  plate ∗ 12 ref  beam 

Reduced frequency  2 ref⁄   

Strouhal number  
⁄  flapping ⁄  plunging 

Effective angle of attack atan 2 plunging 

Force coefficient  
12 ref   

 

The flexible wing structure is modeled locally by 

 

 ∗ ∗ ∗∗ Π Δ∗ ∗ ∗, (2) 

 

where  is the displacement due to bending motion, Δ∗ ∗ ∗⁄  the Laplacian operator, and ∗ the distributed 

transverse fluid force on the wing per unit span. A special care is given in the direction of the wing bending, because 

the correct length-scale for the spanwise bending is the half span  and not the chord . The correction factor that 

arises is expressed as ⁄ , where ⁄ 1 for the chordwise flexible airfoil case (Section V.1.A), and ⁄
 for the spanwise flexible wing case (Section V.1.B) and isotropic Zimmerman wing case (Section V.1.C), where 

 is the aspect ratio of the wing: For the three-dimensional wings the bending motion is aligned with , so that a 

factor of  is required to renormalize the transverse displacement. The density ratio ∗ is the ratio between the 

wing density and the fluid density and the effective stiffness Π  [6] gives the ratio between the elastic bending forces 

and the fluid dynamic forces. The coefficient of the inertial term will be used frequently later in the discussion of the 
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fluid dynamic performance of flexible wings in Section V and is abbreviated as the effective inertia Π∗ ∗ ⁄ .In this study the prescribed motion at either the root of the wing or the region of the wing specified is 

sinusoidal of the form  

 

 ∗ sin 2 ∗ , (3) 

 

for the flapping motion and  

 

 ∗ sin 2 ∗ , (4) 

 

for the plunging motion, where the sine function can be replaced by the cosine function. The Strouhal number  

appears in combination with  to give the plunge amplitude ⁄ . The Strouhal number indicates the ratio between 

the flapping speed and the reference velocity. It characterizes the vortex dynamics of the wake and shedding 

behavior of vortices of a flapping wing in forward flight [3,36]. Still unclear is the meaning and the role of the 

Strouhal number in hover, since for hover the Strouhal number will reduce to a constant. Active pitching motion is 

not considered in this paper. 

Finally, the force coefficient is then given by a to-be-determined relation  

 

 Ψ , , ∗, ∗, Π , , . (5) 

 

In this study the aim is to simplify Eq. (5) by reducing the number of non-dimensional parameters involved. The 

time-averaged force 〈 〉 of  are calculated as  

 

 〈 〉 2 /
/ , (6) 

 

where 2 unless otherwise specified. The reason for setting 1 is to avoid initial transient effects. 

III. Numerical Methods 

III.1 Fluid Dynamics Solver 

The governing equations for the fluids given by Eq. (1) are solved with Loci-STREAM [37,38,39], which is a 

three-dimensional, unstructured, pressure-based finite volume solver written in the Loci-framework. It employs 

implicit first or second order time stepping and treats the convection terms using the second order upwind-type 

scheme and the pressure and viscous terms using second order schemes. The system of equations resulting from the 

linearized momentum equations are handled with the symmetric Gauss-Seidel solver. The pressure correction 

equation is solved with either the GMRES linear solver with Jacobi preconditioner provided by PETSc [40,41,42], 

or the BoomerAMG [43] linear solver provided by hypre. The Loci-framework is by design rule-based highly 

parallelizable framework for finite volume methods [44]. The geometric conservation law [45], a necessary 

consideration in domains with moving boundaries, is satisfied [46]. The mesh deformations are realized using radial 

basis function (RBF) interpolations [47]. The turbulence closure is modeled by Menter’s Shear Stress Transport 

turbulence model [48,49].  

III.2 Structural Dynamics Solvers 

Two structural dynamics solvers with different fidelity have been incorporated. For linear analysis of a beamlike 

flat plate an Euler-Bernoulli beam model has been incorporated to solve Eq. (2) in one-dimension, i.e. / . 

To simulate large displacement wing motions geometrically nonlinear structural dynamics equations are modeled 

with a flexible multi-body type finite element using triangular shell elements. The rigid-body motions are prescribed 

in the global frame of reference in addition to a co-rotational framework to account for the geometric nonlinearities. 

By applying the co-rotational frame transformations the motion of an element is decomposed into the rigid-body 

motion part and the pure deformation part. By using linear elasticity theory for the latter, the co-rotational 
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formulation can efficiently solve for the structural dynamics with small strains, yet large rotations. A linear 

combination of an optimal membrane element and a discrete Kirchhoff triangle plate bending element is employed 

for the elastic stiffness of a shell element [50,51]. 

III.3 Fluid-Structure Interaction Interface 

The fluid-structure interaction (FSI) is based on a time-domain partitioned solution process in which the 

nonlinear partial differential equation governing the fluid and the structure are solved independently and spatially 

coupled through the interface between the fluid and the structure. An interface module has been added to the fluid 

solver to communicate the parallelized flow solutions on the three-dimensional wetted surface to and from the serial 

structural solver. At each time step the fluid and the structural solvers are called one after the other until sufficient 

convergence on the displacements on the shared boundary surface are reached in an inner-iteration before advancing 

to the next time step. Full details of this algorithm are described in Ref. [52]. In this study, in order to accelerate and 

ensure the convergence of the FSI the Aitken relaxation method [53] has been incorporated. The numerical 

implementation of the Aitken relaxation method in the current numerical framework is described in Ref. [54]. 

IV. Scaling of the Forces Acting on a Moving Body Immersed in Fluid 

IV.1 Scaling of Forces 

Consider a control volume of fluid domain  bounded by  at infinity in which a body Ω moves in time  and 

space ∈ . Integration of Eq. (1) in  yields, 

 

 

     ⋅
⋅   ⋅    
⋅  

(7) 

 

where Ω  is the boundary surface of Ω,  the unit normal pointing outward from the body,  is the velocity of 

the surface,  the unit tensor, and  the viscous stress tensor. 

The force  acting on a moving body Ω immersed in an incompressible viscous fluid is 

 

 ⋅ . (8) 

 

With no-flow through boundary condition, ⋅ 0 on Ω and under the assumption that the viscous terms 

and convective terms are negligible at , Eq. (7) simplifies to 

 

   ⋅ ⋅   . (9) 

 

Based on Eq. (9), Noca [55] derived an expression for  for a doubly connected infinite fluid domain  as  

 

 
1 1 im a  (10) 

 

where 

 

 im  (11) 
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 a  (12) 

 

where  is the spatial dimension and  is the vorticity. The first integral, im, represents the time 

derivative of the hydrodynamic impulse, see e.g. [56], which is equal to the non-conservative external body forces 

for inviscid flows. Following the discussion given by Saffman [56], consider a three-dimensional flow field resulting 

from a motion of a moving body, such that the vortices are confined in a material volume, v. Then we have for the 

impulse 

 

 im     vv vv 2 vv 2 e   vv   (13) 

 

where the external velocity e is due to other vortices not confined in v or the motion of the body. Because of the 

time evolution of the vorticity in the flow field, the force due to this term may have different phase than the motion 

of the body. Saffman [56] also proves that for inviscid, irrotational flow without net circulation around Ω the second 

integral in Eq. (10), a, represents the force due to added mass. Noca [55] further shows that for an impulsively 

starting flat plate in a viscous flow with no-slip boundary condition on Ω in quiescent fluid the force acting on the 

body has the same expression immediately after the start of the motion. 

Using the non-dimensionalization procedure introduced in Section II the magnitudes of the force components in 

Eq. (10) are estimated as follows. For the hydrodynamic impulse term, if we assume that the vorticity is confined in 

a rectangular fluid region in the order of m  in the streamwise direction and  in the normal direction and 

that ∼ m, ∼ ref m⁄ , and e ∼  in the integrand Eq. (13),  

 

 ,im ∼ 1 1 1 .  (14) 

 

as a first order approximation. Hence the force due to the hydrodynamic impulse scales with , however if the 

viscous time scale, m/ , is much greater than the motion time scale, 1/ , such that   ≫ 1, then the first term in 

Eq. (14) becomes negligible. Moreover, when the plunge amplitude m⁄ ∼ ⁄  is small the second term in Eq. 

(14) will only have a small contribution to the total force felt on the wing. In general, however, complex fluid 

dynamics mechanisms, such as the wing-wake interaction, or the wake-wake interactions would additionally affect 

the vorticity distribution in the flow field. 

Similarly, the force due to added mass can be non-dimensionalized as  

 

 ,a ∼ ,  (15) 

 

with ∼  in the integrand of Eq. (12). This non-dimensionalization process reveals that the fluid dynamic force 

is proportional to , hence with increasing  the force acting on the wing is expected to increase On the other 

hand, if the motion is highly unsteady, i.e.   is high, the force due to the motion of the body appearing as the added 

mass component, dominates over the forces due to vorticity in the flow field.  

A parametrization of special interest for flapping wing community is the dependence of the force on the flapping 

motion frequency, . The current scaling shows that for forward flight with ref  the added mass has the 

largest order of frequency as ~  . The resulting dimensional force is then proportional to square of the motion 

frequency. Similarly, for hovering motions the current scaling shows that the non-dimensional force is independent 

of the motion frequency since the Strouhal number is a constant and the reduced frequency only a function of 

flapping (plunging) amplitude. However, since ref ∼  the resulting dimensional force is also proportional to 

square of the motion frequency. Similar observations were reported by Gogulapati and Friedmann [29] who 

conducted potential theory based aerodynamic analysis of flappingwings in hovering and forward flight. 

At high Reynolds number, high reduced frequency regime, Visbal, Gordnier, and Galbraith [57] considered a 

high frequency small amplitude plunging motion at  = 10  over a three-dimensional SD7003 wing (  = 4 

deg;  = 3.93;  = 0.06;  = 1×104, 4×104). They used the iLES (implicit Large Eddy Simulation) approach to 

solve for the flow structures including the laminar-to-turbulence transition and the forces on the wing. The flow field 

exhibits formation of dynamic-stall like leading edge vortices, breakdown due to spanwise instabilities, and 

transitional features, however the forces on the wing could still be well predicted by the Theodorsen Eq. (16) 
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formula for lift. 

 2 1 2 2 1 ∗2 2     32 2 ∗ . (16) 

 

The time history of lift was “independent of Reynolds number and of the 3-D transitional aspects of the flow field” 

[57]. They explained that the lift is dominated by the acceleration of the airfoil, which is proportional to the square 

of the motion frequency. This observation is also consistent with the scaling that the hydrodynamic impulse term Eq. 

(11) is small compared to the added mass term Eq. (12)  for the given non-dimensional parameters. 

On the other hand, at lower Reynolds numbers, Trizila et al. [58] have shown at  = 100 and  in the range of 

0.25 – 0.5 that the formation and interaction of leading edge and trailing edge vortices with the airfoil and previous 

shed wake substantially affect the lift and power generation for hover and forward flight. Furthermore, three-

dimensionality effects play a significant role, for instance for a delayed rotation kinematics (  = 0.5; low angle of 

attack;  = 100) the tip vortex generated at the tip of the  = 4 flat plate would interact with the leading edge 

vortex enhancing lift compared to its two-dimensional counterpart, which contrasts the classical steady-state thin 

wing theory [58], [59] which predicts the formation of wing tip vortices as lift reducing flow feature. This complex 

interplay between the kinematics, the wing-wake, wake-wake interactions, and the fluid dynamic forces on the wing 

at the given range of non-dimensional parameters is also consistent with the scaling analysis described in this 

Section. 

IV.2 Linearized Aerodynamic Theories 

When a body accelerates in a fluid, the fluid kinetic energy changes. The rate of work done by pressure moving 

the body in an inviscid fluid yields a force that is proportional to the acceleration (see e.g. [60]). Then, the constant 

of proportionality has the dimension of mass, hence the name added mass. The added mass term is usually some 

fraction of the fluid mass displaced by the body. Determination of the added mass, which is a tensor, because it 

relates the acceleration vector to the force vector, is not easy in general because the local acceleration of the fluid is 

not necessarily the same as the acceleration of the body [61]. However, for an accelerating thin flat plate with a 

chord length of m normal to itself, the force acting normal to the flat plate, can be obtained as follows. The velocity 

potential difference is (e.g. [61]),  

 

 Δ 1 2⁄  (16) 

 

where  is the vertical velocity component. Hence the vertical component of the force acting on the flat plate due to 

added mass becomes,  

 

 a 4 (17) 

 

whence the added mass of a vertically accelerating thin flat plate is equal to the displaced fluid cylinder with radius 2⁄ . 

For a harmonically plunging thin rigid flat plate in a freestream the lift coefficient can be derived assuming 

inviscid incompressible flow as  

 

 2 cos 4 sin  (18) 

 

assuming quasi steady-state flow where the influence of the wake vorticities are neglected. The first term in Eq. (18) 

is the non-circulatory term which is consistent with the added mass force derived in Eq. (12). The second term in Eq. 

(18) is the circulatory term, which can be expressed in a more familiar form, 2 e, by recognizing that 2   sin e  where e is the effective angle of attack for purely plunging motions. Both terms are also 

consistent with the scaling found in Eq. (14) and Eq. (15). 

A more accurate representation of the lift coefficient beyond the quasi-steady approximation was Theodorsen 



11 

 

[62], for sinusoidal pitch-plunge of a thin airfoil, by assuming a planar wake and a trailing-edge Kutta condition, in 

incompressible inviscid flow, see Eq. (16). The pitch and plunge motions are described by the complex 

exponentials, ∗ ∗
 and ∗   ⁄ ∗

. The phase lead of pitch compared to plunge is 

denoted by . In the most common case, motivated by considerations of maximum propulsive efficiency, pitch leads 

plunge by 90º, which results in /2 [63]. The  is the complex-valued Theodorsen function with magnitude 

 1. It accounts for attenuation of lift amplitude and time-lag in lift response, from its real and imaginary parts, 

respectively. The first term is the steady-state lift and the second term is the noncirculatory lift due to acceleration 

effects. The third term models circulatory effects. Setting 1 recovers the quasi-steady thin airfoil solution. 

Note that 1 for pure plunge kinematics with 0 yields Eq. (18). 

The scaling for the hydrodynamic impulse and the added mass terms are summarized in Table IV-1. The scaling 

shows that for low reduced frequency motions or low Reynolds number flows the hydrodynamic impulse term, 

which indicates the interaction between the vortices and the wing becomes important. On the other hand, when the 

reduced frequency increases the added mass term will dominate over the hydrodynamic impulse term. Both 

components are proportional to the Strouhal number. 

 

Table IV-1 Summary of the force scaling  

Force Scaling Note 

Hydrodynamic impulse 
⁄ ~ viscous term ⁄ ~ vortex force due to motion of moving body 

Added mass ~   

 

An interesting consequence that needs to be investigated more is that for hovering flight condition where both 

Strouhal number and reduced frequencies are independent of motion frequency, the normalized force will be 

independent of frequency, for high Reynolds number flows.  

V. Effects of Flexibility on the Fluid Dynamic Performance of Wings 

In this section the effects of flexibility on the fluid dynamic performances, i.e. propulsive force generation and 

the propulsive efficiency, are considered. The findings reported in the literature can be summarized by the following 

two observations: 

(i) Maximum propulsive force is generated when the wing motion frequency is near the natural frequency of 

the wing [27,28,25,26,29,30]. 

(ii) Optimal propulsive efficiency is obtained at a motion frequency that is only a fraction of the natural 

frequency [34,28,25,26]. 

To probe and to elucidate the mechanisms related to these observations, first three canonical cases with 

sinusoidal kinematics will be considered to assess the role of the chordwise flexibility, spanwise flexibility, and 

isotropic wings on the resulting fluid dynamic forces: i) thrust generation of a purely plunging chordwise flexible 

airfoils in water in forward flight at  = 9.0  103, studied experimentally by Heathcote and Gursul [64] and 

numerically for one particular motion frequency by Shyy et al. [6]. The airfoil consists of rigid teardrop leading 

edge with elastic flat plate as tail. In this study five flat plate thicknesses will be considered for various motion 

frequencies with resulting thrust; ii) thrust generation of a purely plunging spanwise flexible wing with NACA0012 

airfoil in water in forward flight at  = 3.0  104 considered by Heathcote, Wang, and Gursul [65], Chimakurthi et 

al. [52], and Shyy et al. [6]. Two different wing materials will be used to evaluate the wing flexibility effects on the 

resulting thrust for a range of motion parameters; iii) lift generation of flapping isotropic Zimmerman wing hovering 

in air at  = 1.5  103  and  = 0.56 where the Young's modulus and the mass of the wing are varied to assess the 

effects of the structural properties on the resulting lift. Although a wing with the same geometry is preferred to study 

the effects of the chordwise and the spanwise flexibilities independently, the first two cases studied in this study are 

chosen, because the experimental results [64] [65] are well documented for validation purposes. The design space of 

the third case is based on several choices of the wing material and fluids that are used in wind/water tunnel 

experiments as well as Micro Air Vehicle (MAV) applications. Based on these canonical cases, the underlying 

physical mechanisms will be identified and a scaling parameter for the force generation and the propulsive 

efficiency of flexible flapping wings will be proposed that depends on the a priori known non-dimensional 

parameters. Identifying this scaling parameter leads to an order of magnitude estimation of the flexibility enhanced 

fluid dynamic performance. Furthermore, the scaling parameter will be extrapolated to the case of insects by 
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assuming that the weight of the insects are sustained by the lift and it will be shown that the lift generated also 

follows the same scaling. Finally, scaling for the propulsive efficiency will be presented that sheds light on the two 

observations mentioned at the beginning of this section. 

V.1 Propulsive Force Generation of Flapping Flexible Wings 

V.1.A Purely Plunging Chordwise Flexible Airfoil in Forward Flight in Water 

To explore the thrust enhancement induced by chordwise flexibility, the thrust of a purely plunging chordwise 

flexible airfoil is computed for different thickness ratios ( ∗ = 4.23×10-3, 1.41×10-3, 1.13×10-3, 0.85×10-3, and 

0.56×10-3) and motion frequencies that produce Strouhal numbers between  = 0.085 and 0.3 with 0.025 increment 

with the plunge amplitude kept fixed to / m = 0.194. The reduced frequency  varies then between 1.4 and 4.86. 

As shown in Table II-1 variation in the thickness changes Π , whereas the motion frequency affects both the reduced 

frequency and the Strouhal number. The airfoil consists of a rigid teardrop leading edge and an elastic plate that 

plunges sinusoidally in freestream. Detailed experimental setup and discussion of fluid physics is in Ref. [64], and 

Shyy et al. [6] obtained a numerical solution for  = 0.17 for different thickness ratios. An Euler-Bernoulli beam 

solver is used to solve Eq. (2) for the deformation of the elastic flat plate, while the rigid teardrop moves with the 

imposed kinematics. Furthermore, the Reynolds number  = 9.0×103 and the density ratio ∗ = 7.8 are held 

constant in all cases. The grid and time step sensitivity studies are shown in Appendix A.1. 

To validate the current computation to the experimental measurements [64] the trailing edge motion is plotted as 

function of /  for the moderate thick ∗ = 1.41×10-3 and the thinnest ∗ = 0.56×10-3 cases at  = 0.17 in Figure 

V-1. For the thinnest airfoil the displacement peak in the downstroke near /  = 0.25 is slightly overpredicted, 

however the overall trend matches well. At  = 0.17 the thinnest airfoil deformes considerably more than the airfoil 

with ∗ = 1.41×10-3 with larger phase lag. 

 

Figure V-1 Trailing edge displacement as function of non-dimensional time for the purely plunging chordwise 

flexible airfoils in water in freestream at  = 9.0×103 with ∗ = 1.41×10-3 and 0.56×10-3 at  = 0.17. The 

experimental measurements are from [64]. 

 

For  = 0.17 the thrust coefficient as a function of normalized time (with respect to the period of plunge) for the 

Rigid ( ∗ = 4.23×10-3), Flexible ( ∗ = 1.41×10-3), and Very Flexible ( ∗ = 0.56×10-3) thickness ratios is shown in 

Figure V-2. In order to estimate the individual contribution of the teardrop and the flexible plate to force generation, 

the time histories of thrust coefficient are shown in Figure V-2 separately for each element. It is seen that the thrust 

response with variation in flexibility is different in each of the two cases: with increasing chordwise flexibility of the 

plate the instantaneous thrust contributed by the flexible plate increases. One of the mechanisms found in Ref. [6] is 

that the chordwise deformation of the rear flexible plate in both Flexible and Very Flexible cases result in an 

effective projected area for the thrust forces to develop. 
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(a)  generated by the rigid teardrop (b)  generated by the flexible flat plate 

Figure V-2 Time histories of thrust coefficient contribution due to the teardrop and the flexible plate 

separately at  = 0.17: (a) response of the teardrop; (b) response of the flexible plate. Extracted from [6].

 

 
(a) Flexible ( ∗ = 1.41×10-3) 

 
(b) Very Flexible ( ∗ = 0.56×10-3) 

Figure V-3 Time histories of thrust and wing tip displacement normalized by the plunge amplitude as 

function of non-dimensional time. Pressure coefficient and vorticity contours at ∗ = 0.25 for each Strouhal 

number are shown as well. (  = 9.0×103 and ∗ =7.8) 
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The interplay between the motion frequency indicated with Strouhal number and the resulting thrust and wing tip 

displacement is further illustrated in Figure V-3. For the Flexible airfoil the resulting thrust generation increases 

with the increased motion frequency (Strouhal number and reduced frequency) and the maximum wing tip 

displacement also shows monotonic increase with the motion frequency. A striking observation is that the vorticity 

field looks similar for all Strouhal numbers shown, however the pressure contours and also the resulting thrust time 

histories differ in values. This could be related to the scaling proposed in Section IV that the force acting on a 

moving body is largely dominated by the motion of the airfoil and less with the vorticity in the flow field at high 

reduced frequencies. Similar trend is shown for the Very Flexible airfoil with the thickness ratio about 2.5 times 

smaller than for the Flexible airfoil cases. The thrust increases with higher St and k, however the maximum tip 

amplitude saturates for  = 0.15, 0.25, and 0.4. Instead of resulting in a larger tip amplitude motion, higher motion 

frequency leads to larger phase lag of the wing tip relative to the wing root.  

Increasing motion frequency leads to higher acceleration of the wing, and hence greater force generation. However, 

eventually the fluid dynamics time scale and reponse become limiting factors, as it will be discussed in Sections 

V.1.D and V.2. 

Figure V-4 shows the time-averaged thrust coefficient for a range of motion frequencies from the current 

numerical computation and the experimental measurements [64]. For the thickest flat plate ( ∗ = 4.23×10-3) the 

computed thrust compares well with the experimental measurements. At the higher motion frequencies,  = 0.28 

and 0.3, the computed thrust starts to deviate. Similar trend is observed for the other thicknesses: at ∗ = 0.85×10-3 

the correlation between the numerical result and the experimental measurement is good until  = 0.23 and at ∗ = 

0.56×10-3 only at the lowest frequencies. Modeling uncertainties, such as laminar-to-turbulent transitions, 

nonlinearities in the structural modeling, or nonnegligible twist or spanwise bending in the experimental setup, 

which are not accounted for in the numerical computations may be attributed to the observed differences. 

 

 
Figure V-4 Time-averaged thrust coefficient for a plunging chordwise flexible airfoil at  = 9.0×103 and ∗ 
=7.8 for different flat plate thickness and motion frequencies. The experimental data are extracted from [64]. 
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(a) Tip displacement (b) Relative tip deformation 

Figure V-5 Tip deformations of a plunging chordwise flexible airfoil at  = 9.0×103 and ∗ =7.8 for different 

flat plate thickness and motion frequencies. ∗ . ; ∗ . ; ♢  ∗ . ;   ∗ . ;   ∗ .  

 

The thrust for the thickest airfoil ( ∗ = 4.23×10-3) can be enhanced by increasing the motion frequency that 

results to higher  and . Increased  leads to greater fluid dynamic force, but also greater added mass force. 

Furthermore, as the added mass force depends on the acceleration and the chord of the wing, see Eq. (17), higher  

will increase the added mass force further. Figure V-4 also shows that the thrust generation depends on the thickness 

of the wing: At  = 0.125, 〈 〉 for ∗ = 0.56×10-3 is the maximum; however, for higher Strouhal numbers the 

thrust generated by the thinnest airfoil is the lowest: at  = 0.3, ∗ = 0.85×10-3 generates the highest thrust, while 

the thinnest wing, ∗ = 0.56×10-3, deteriorate in thrust. 

To characterize the structural response, the tip displacement normalized to the plunge amplitude, tip⁄ , is 

plotted in Figure V-5 as function of the phase lag relative to the leading edge for the thicknesses and frequencies 

considered. The phase lag Φ is calculated by determining the time instant at which the trailing edge displacement is 

a maximum. For the thickest airfoil, ∗ = 4.23×10-3, both the deformations and the phase lag are small. As we 

decrease the airfoil thickness, both tip⁄  and Φ increase with increasing frequency, see Figure V-5. Eventually, tip⁄  saturates when Φ approaches 90 deg: when Φ > 90 deg the motion of the deformed trailing edge is out of 

phase with the imposed leading edge. Relative to the leading edge displacement, tip root ⁄  shows that by 

decreasing the stiffness and increasing the motion frequency not only the tip deformation increases monotonically, 

but also the phase lag, so that the resulting wing tip displacement reduces in magnitude when the motion is out of 

phase (Figure V-5). In Section V.1.D a relationship between the mean thrust and the structural response will be 

established. 

V.1.B Purely Plunging Spanwise Flexible Wing in Forward Flight in Water 

The effects of spanwise flexibility on thrust generation of a three-dimensional rectangular wing oscillating in 

pure plunge in forward flight have been investigated with water tunnel experiments [65] and numerical simulations 

[52,6,66]. The wing models of  = 0.3 m semi-span and m = 0.1 m chord length with several spanwise flexibilities 

were considered. More detailed information of experimental case setup can be obtained in Ref. [65]. In this study, 

two combinations of density ratio and effective stiffnesses and several motion frequencies at  = 3.0×104 are 

considered to compare the results with available experimental and computational results, to highlight the thrust 

enhancement mechanism associated with spanwise flexible plunging wings in forward flight. The grid and time step 

sensitivity studies are shown in Appendix A.2. 

The vertical displacements of the wing tip from the computations and the experiments for the Flexible and Very 

Flexible wings are shown in Figure V-6. The displacement is normalized with respect to the amplitude of prescribed 

wing root movement. For the Flexible wing, in comparison to the tip response presented in previous studies 

(experiment: [65]; implicit Large Eddy Simulation (iLES) computation [66]), the tip response of current 

computation shows good correlation. For the Very Flexible wing, however, the tip response of the current 

computation exhibits slight larger amplitude and phase advance compared to the measurements [65]. 
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(a) tip displacement (b) thrust coefficient 

Figure V-6 Time history of (a) tip displacements and (b) thrust coefficient of a plunging spanwise flexible 

wing at  = 3.0×104 for different wing stiffness, wing density, and motion frequencies. The experimental 

data are extracted from Ref. [65] and the implicit LES from [66]. 

 

(a) pressure coefficient contour levels: 2; range: -2.5 to 2.5 ∗ = 0.01, St = 0.1,  = 1.82, ∗ = 2.25 

(left)  = 212, ∗ = 7.8; (right)  = 38, ∗ = 2.7 

(b) vorticity contour levels: 20; range: -3 to 3 ∗ = 0.01, St = 0.1,  = 1.82, ∗ = 2.25 

(left)  = 212, ∗ = 7.8; (right)  = 38, ∗ = 2.7 

Figure V-7 Pressure coefficient ∞ ⁄ ref) and vorticity contours at 75% span location for Flexible 

and Very Flexible wing configurations. The arrow indicates the direction of the airfoil motion. 
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Time histories of thrust coefficient for the Flexible and Very Flexible wings are shown in Figure V-6. For the 

Flexible wing the thrust in the current computation is underpredicted and has some phase advance compared to the 

measurements [65]. However, the agreement in terms of the magnitude and the timing of thrust peaks compares well 

with the thrust prediction using the iLES [66] coupled with a geometrically nonlinear beam solver. Furthermore, the 

measured thrust is assymetric in the donwstroke and upstroke while in both computations the thrust has symmetric 

behaviour. For the Very Flexible wing, the computed thrust history is in a reasonable agreement with the 

experimental measurements in terms of the amplitude and the trend of thrust. It is worth to point out that the 

measurements include higher frequency components, while the waveforms of the computed thrust are smooth for all 

cases. As shown in Figure V-6, there is no evidence of high frequency behaviour in the tip response. The 

experimental flow field measurements [65] also did not indicate flow features that may be attributed to these high 

frequency contents. Therefore this difference may have risen from uncertainties in the experimental setup or in the 

computational modelling. To further quantify these uncertainties comparisons of instantaneous three-dimensional 

wing shapes and flowfields near the leading-edge are recommended between the experiments and computations. 

Furthermore, more detailed documentation of the torsion and the natural frequencies measurements of the wing 

would be helpful for computational modeling. 

Vorticity and pressure contours for the Flexible and the Very Flexible wing configurations at the mid-span 

section at time instant ∗ = 0.25, when the wing is at the center of downstroke, are shown in Figure V-7. The 

dominance of leading edge suction in the Flexible case and the reduction of it in the Very Flexible case are visible in 

that figure. The phase lag between the prescribed motion and the deformation of the wing is could be used to explain 

the thrust generation in flexible flapping wings [6]. For the Very Flexible case the cross sectional motion is in the 

opposite direction of the imposed kinematics at the wing root. The phase lag at the wing tip with respect to the 

prescribed motion for the Flexible and Very Flexible cases are, -26 deg, and -126 deg, respectively. As a result of the 

substantial phase lag in the Very Flexible case, the wing tip and root move in opposite directions during most of the 

stroke resulting in lower effective angles of attack and consequently lesser aerodynamic force generation, see also 

the direction of the arrow in the contour plots that denotes the direction of the wing movement. 

 

Figure V-8 Time-averaged thrust coefficient of a plunging spanwise flexible wing at  = 3.0×104 for different 

wing stiffness, wing density, and motion frequencies. The experimental data are extracted from Ref. [65]. 

 

Figure V-8 shows the time-averaged thrust coefficients for the two different materials for various frequencies of 

 = 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, and 1.82. At higher motion frequencies the time-averaged thrust of the Flexible 

wing is underpredicted by the current computational results, whereas those of the Very Flexible wing is being 

overpredicted, which again may be ascribed to the uncertainties in the computational modeling or experimental 

setup. However, the qualitative trend of the thrust response to the variation of the motion frequency is well-captured. 

When the plunging motion is slow, i.e.  < 1.2 the thrust generation is similar for both materials. For higher motion 

frequecies the Flexible wing benefits more from the flexibility than that of the Very Flexible wing: the thrust 

saturates for the Very Flexible wing with increasing  Furthermore, similar trends are observed: increasing motion 

frequency enhanced thrust and decreasing the effective stiffness doesn't necessarily lead to higher thrust. 
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(a) Tip displacement (b) Relative tip deformation 

Figure V-9 Tip deformations of a plunging spanwise flexible wing at  = 9.0×103 for different wing stiffness, 

wing density, and motion frequencies.   , ∗ . ; ♢ , ∗ .  

 

The structural response is depicted in Figure V-9. For the Flexible wing, the phase lag between the prescribed 

motion and the tip response for  > 1.4 is from 17.6 deg to 23.8 deg, whereas for the Very Flexible wing, Φ varies 

from 108.8 deg to 125.9 deg, see Figure V-8. The wing tip of the Very Flexible wing moves in opposite direction as 

the root for the most of the stroke for higher motion frequencies, while for the Flexible wing, the wing root and the 

tip are in phase. This is confirmed in Figure V-9 where all Flexible wing cases show a phase lag of the wing tip 

relative to the wing root, Φ, less than 90 deg, while for  = 1.6 and  = 1.82 Φ > 90 deg for the Very Flexible wing. 

Again, the correlations of the dynamics from the root to tip play a key role for the tip displacement as shown in 

Figure V-9, where the relative tip displacement is shown to be monotonic to Φ. Moreover, the relationship between 

the time-averaged thrust and the relative tip displacement is discussed in Section V.1.D. 

V.1.C Hovering Isotropic Zimmerman Wing in Air 

The previous two cases were proposed by Heathcote and Gursul [64] and Heathcote, Wang, and Gursul [65] to 

assess the effects of chordwise and spanwise flexibilities, respectively, on the thrust generation of plunging wing in 

forward flight at low density ratio. Motivated by the experimental studies on the three-dimensional Zimmerman 

wing planform [31], a three-dimensional hovering flapping isotropic wing in air is considered. The wing is a flat 

plate wing of m = 0.0196 m and  = 3.825 with a thickness ratio of ∗ = 2.0×10-2 having a Zimmerman planform, 

see Figure V-10, hovering in air at  = 1.5×103. A sinusoidal flapping motion is introduced at the rigid triangle at 

the leading edge at the wing root following, Eq. (3) with  = 0.25 and  = 0.56. The flapping axis is parallel to the 

wing root. Note that in the axes definition by Wu et al. [6] the wing flaps up-and-down to generate thrust due to 

wing flexibility, however in the current study the flapping wing axis has been rotated so that the flapping axis is 

parallel to the lift direction, such that the any flexibility in the wing leads to lift generation. The triangular rigid 

region near the root at the leading edge undergoes prescribed motion and is constrained in all degrees of freedom in 

the structural solver, since the flapping mechanism in the experiment [67] is actuated at this region on the wing. The 

grid and time step sensitivity studies are shown in Appendix A.3. 
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Figure V-10 Geometry of the Zimmerman planform. 

 

 

Figure V-11 Time histories of horizontal displacement at the wing tip of a flapping isotropic  Zimmerman 

wing hovering at  = 1.5×103,  = 0.56, and  = 0.25, made of aluminum. 

 

To validate the numerical computation the Zimmerman wing made of aluminum is compared to the available 

experimental data [67] in terms of the wing tip displacement in horizontal direction in Figure V-11. The predicted 

tip response shows reasonable agreement with the measured displacement and captures the main qualitative trends 

of the response of wing tip. The current computation exhibits a more symmetric response between the downstroke 

and the upstroke in comparison to the experimental measurements. The reason for the asymmetry in the 

measurements might be due to uncertainties in the experimental setup related to the driving system of the flapping 

device, or cycle-to-cycle variations in the measurements.  

To assess the effects of different wing properties: the effective stiffness Π  and the density ratio ∗, on the 

resulting lift and wing deformations, surrogate models are constructed to qualitatively explore their implications. 

Surrogate models offer methods to efficiently organize the data measured as objective functions and give global and 

reliable qualitative trend as function of design variables [58]. The range for these variables in the design space is 

chosen to cover wide range of applications as shown in Table V-1. To effectively assess the order of magnitude of 

the design variables a logarithmic scaled design space will be populated. 

 

Table V-1. Range of the design variables  and ∗ with representative examples. 

Parameter Minimum Maximum Π  102 (High density polyethylene in air)  105 (steel, aluminum in air) ∗ 101 (water to steel, aluminum)  104 (air to steel, aluminum)  

 

The objective functions are (a) the lift coefficient averaged over one motion cycle between the second and the 

third cycle, i.e.  = 2.5 in Eq. (6), (b) the twist angle  given as 

 

 max acos ⋅ . (19) 
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where  is the unit vector in the direction from the leading edge to the trailing edge at the section 3 of the wing (see 

Section A.3) and  is the unit vector in the lift direction. So  gives the degree of the lift favorable projectional area 

of the wing due to the deformation, and (c) the bending angle  that is defined as  

 

 max atan . (20) 

 

to measure the wing deformation in spanwise direction  as the maximum tip displacement angle relative to the 

imposed flap angle . For simplicity lift will be referred as the time-averaged lift coefficient from now on.  

 

Figure V-12 Design of experiment in logarithmic scale for the design variables  and ∗. The training points 

are indicated by cicles and the training points by crosses. 

 

The design of experiments use a face centered cubic design (FCCD) and then the remainder of the design space 

is filled evenly in the design space with the cases 8 and 10 together with the testing points are generated by the latin 

hypercube algorithm. In total 14 training points are selected. A tabulation of the training points are found in Table 

B-1 in the Appedix B. The design space with logarithmic bias towards the softer Π  and lighter ∗ structures are 

shown in Figure V-12. The region where log ∗ log Π 2 is out of the scope of the current study as this 

region showed largely unstable behaviour of the wing motion because the imposed frequency of 10 Hz is close to 

the natural frequencies, see 0. 

 

 

(a) 〈 〉 (a)  (a)  

Figure V-13 Surrogate model responses for (a) lift, (b) twist, and (c) bending angles for a flapping isotropic 

Zimmerman wing, hovering at  = 1.5×103 and  = 0.56. 

 

The resulting surrogate models are shown in Figure V-13 for the lift, twist, and bending angle. Notice that the 

time-averaged lift for the rigid wing would be zero due to the symmetry in the hovering kinematics without pitching 

motion. The lift, twist, and bending are at the maximum at the case 4 and these three objective functions have 

qualitatively similar trend in the design space suggesting that there exists a correlation between the resulting time-

averaged lift force and the maximum deformations. Furthermore, it is not only the effective stiffness Π , or the 

density ratio ∗, but the balance between these two parameters that determine the resulting deformation and the lift 
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generation. The region of increased objective functions between log Π  = 4 and 5 and log ∗ = 1 to 2 is caused 

by the error in surrogate model due to high gradient near the resonance region, yet wide region of almost zero values 

at more stiffer and lighter portion of the design space.  

As the sinusoidal rigid-body motion is imposed at the triangular rigid part near the wing root (see Figure V-10), 

the wing inertia and the resulting aerodynamic load are balanced out by the elastic force. Since the wing is made of 

isotropic material the structure will respond in both spanwise bending as well as twisting. 

For the chordwise flexible airfoil in Section V.1.A and spanwise flexible wing in Section V.1.B the thrust 

generation in forward flight was shown to be dominantly dependent on the resulting tip motion relative to the 

imposed kinematics at the wing root. For the flapping Zimmerman wing in hover in air, maximum horizontal tip 

displacement  normalized by the prescribed amplitude sin  is plotted against the phase lag with respect 

to the top of the stroke of the rigid body motion in Figure V-14. The higher tip amplitude corresponds with larger 

phase lag compared to the imposed kinematics, while the tip motion is in phase. The cases with the lowest Π ∗⁄  

ratio have larger deformation consistent with the surrogate model responses shown in Figure V-13. 

 

Figure V-14 Tip deformations of a flapping isotropic Zimmerman wing hovering in air at  = 1.5×103 and  

= 0.56 for different ∗ and . The numbers shown next to the markers indicate their case numbers. 

 

V.1.D Scaling Parameterfor the Force Generation  

From the results presented in Section V.1.A, V.1.B, and V.1.C for the three different cases we have observed the 

followings: i) time-averaged force increased with increasing motion frequency; ii) the effects of change in structural 

properties, such as the thickness ratio, Young's modulus, or wing density (mass), led to non-monotonic response in 

the force generation; iii) for the hovering isotropic Zimmerman wing the ratio between the density ratio and the 

effective stiffness was monotonic with the time-averaged lift generation. To explain the observed trends we will 

mainly analyze the physics based on Eq. (2) with simplifying approximations for the fluid dynamic force, ∗ (see 

also Section IV.1), based on scaling arguments. The flow field and the structural displacement field should 

simultaneously satisfy Eq. (1) and Eq. (2) and among these two Eq. (2) will be considered, which has the advantage 

that this equation is linear except for the fluid dynamic force term as opposed to the Navier-Stokes equation which is 

nonlinear in the convection term. Subsequently, we will establish a relation between the time-averaged force and the 

maximum relative tip displacement by considering the energy balance. 

 

 
Figure V-15 Schematic of the wing approximated as beam and the definitions of the wing deformation ∗, 
prescribed motion at the root ∗, and the spatial coordinate ∗. 

 



22 

 

To capture the essence of the mechanism involved in the force enhancement due to the flexibility, the interplay 

between the imposed kinematics, the structural response of the wing, and the fluid force acting on the wing are 

analyzed. The derivation leading to the relation between the time-averaged force acting perpendicular to the wing 

motion, 〈 〉 and the maximum relative tip deformation max, where ∗ ∗, ∗ ∗ ∗, ∗ ∗  is the 

displacement of the wing is relative to the imposed kinematics motion, see Figure V-15, is lengthy and many of the 

steps are similar to those discussed in classical textbooks (e.g. [68]), however to account for the approximations 

involved full derivation is presented. Such treatment involving simplifying approximation is helpful, enabling the 

analysis, but mainly serves to elucidate the scaling analysis, not meant to offer complete solutions. Consider Eq. (2) 

in one-dimension in space with 0 ∗ 1 and time ∗ 0 for the vertical displacement ∗ with the wing 

approximated as a linear beam, i.e.  

 

 Π ∗∗ Π ∗∗ ∗, (21) 

 

where ∗ is the fluid force on the wing. A plunge motion Eq. (4) is imposed at the leading edge at ∗ = 0. At the 

trailing edge at ∗ = 1 is considered as a free end, i.e. with the boundary conditions  

 

 

∗ 0, ∗ ∗ cos 2 ∗ ,    ∗ 0, ∗∗ ∗ 1, ∗∗ ∗ 1, ∗∗ 0 

(22) 

 

and the initial conditions  

 

 ∗ ∗, 0 , ∗ ∗, 0∗ 0, (23) 

 

where the factors involving m⁄  become unity for the chordwise flexible airfoil case. For the spanwise flexible 

wing and the isotropic Zimmerman wing cases which are discussed in Section V.1.B and Section V.1.C, 

respectively, Π  and Π  need to be corrected as m⁄  = . Following the procedure described in Mindlin and 

Goodman [69], a PDE with homogeneous boundary conditions can be found by superimposing the plunge motion on 

the displacement ∗, ∗ ∗, ∗ ∗ , which gives  

 

 Π ∗∗ Π ∗∗ ∗ Π ∗∗  (24) 

 

for the PDE and  

 

 ∗ 0, ∗    ∗ 0, ∗∗ ∗ 1, ∗∗ ∗ 1, ∗∗ 0, (25) 

 

and the initial conditions  

 

 ∗ ∗, 0 ∗ ∗, 0∗ 0. (26) 

 

The consequence of having a sinusoidal displacement at the root is that the vibrational response of the wing is 

equivalent to a sinusoidal excitation force, which is the inertial force. The dynamic motion given by Eq. (24) is 

coupled to the fluid motion via the fluid force term ∗ which cannot be solved in a closed form due to its 

nonlinearities. For high density ratio FSI systems, Daniel and Combes [70] and Combes and Daniel [71] have shown 

that the inertial force arising from the wing motion is larger than the fluid dynamic forces. In this study to cover 

wider range of density ratios the fluid dynamic forces are included by considering the added mass effects. The 

motivation stems from the scaling discussed in Section IV.1 that for high  the added mass terms due to an 

accelerating body (see also [72]) contribute more on the wing than the fluid dynamic forces from the hydrodynamic 

impulse, see Table V-2 for a summary of the non-dimensional numbers considered in this study. Hence, the wing 
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dynamics is modeled with external forces depending on the imposed wing acceleration as  

 

 ∗ ∗ 2 cos 2 ∗ , (27) 

 

hence the external force on the structural dynamics does not have spatial distribution explicitly accounted for and the 

external force is being simplified in temporal form. Combined with the inertial force the total external force ∗  

becomes  

 

 ∗ ∗ Π ∗∗ 2 1 4 ∗ ∗ cos 2 ∗ . (28) 

 

Table V-2  Range of the non-dimensional parameters considered in this study. The aspect ratio of the two-

dimensional chordwise flexible airfoil is set to 1 for the reasons discussed in Section II. The representative 

Section numbers are shown in the parentheses. 

Case Chordwise (Section V.1.A) Spanwise (Section V.1.B) Isotropic (Section V.1.C) 

 [103] 9.0 30 1.5 

 1 3.0 3.825 ∗ [10-3] 0.56 ~ 4.23 10 20 ∗ 7.8 2.7~ 7.8 101 ~ 104Π /  0.3 ~ 129 7.9, 1.4 1.794 ~ 1794

 1.2 ~ 6.5 0.4 ~ 1.82 0.56

 [10-2] 7.5 ~ 40 2.0 ~ 10 25 

 

Equation (24) can be solved using the method of separation, i.e. , , resulting in 

 

 ∗ 0, (29) 

 

 ∗ ∗ , (30) 

 

where ∗  is a Fourier coefficient of a unit function in the spatial modes  satisfying, 

 

 

1, 
∗∗, (31) 

 

where we have normalized , i.e. 

 

 ∗ 1. (32) 

 

The equation and the boundary conditions for  is the same as for a free vibrating cantilever beam, of which 

the solution is given numerous textbooks, e.g. [68]. The natural frequency is given by 

 

 
11 ΠΠ 2 , (33) 
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where  is the natural frequency of the beam, i.e., 

 

 2 11 , (34) 

 

where  is the moment of inertia,  is the cross sectional area of the wing represented as a beam, and  is the 

eigenvalue belonging to the spatial mode  that satisfies the transcendental equation 

 

 cos cosh 1, (35) 

 

and can be approximated by the formula [68] 

 

 
12 . (36) 

 

where 1.875 and finally the spatial modes are given by 

 ∗ 12 cos ∗ cosh ∗ cos coshsin sinh sin ∗ sinh ∗ . (37) 

 

The initial position of the beam is consistent with the imposed boundary condition. The solution for the temporal 

equation in ∗  is 

 

 ∗ 2 1 4 ∗ ∗ ⋅ ⋅ ⋅Π ⁄ 1 cos 2 ∗ cos ∗ , (38) 

 

which means that there is an amplification factor of 1 ⁄ 1⁄  depending on the ratio between the natural 

frequency  of the beam and the excitation frequency . The full solution is ∗ ∗, ∗ ∗ ∑ ∗ ∗ . The amplitude of the tip deformation, , for the first mode ( 1) is 

given as 

 

 
1 4 ∗ ∗ ⋅ ⋅Π ⁄ 1 , (39) 

 

relative to the imposed rigid body motion normalized by the chord. The parameter  can be rewritten as 

 

 ⁄ 4 1 4 1~ 1 1, (40) 

 

where ⁄ 2⁄  the inverse frequency ratio and 4⁄  is the ratio between the acceleration-

reaction force (added mass) and the wing inertia. Depending on the order of this ratio either the acceleration-reaction 

force term or the wing inertia force can be neglected. Equation (40) gives the relative wing tip deformation 

normalized by the plunge amplitude, which can be related to the Strouhal number based on the deformed tip 

displacement. Note that when  is sufficiently large, the inertia force term can be neglected and  is then 

proportional to ∗~ ⁄ . 

The proposed scaling parameter to estimate the resulting force on the flapping wing follows the observation that 

there exists a correlation between the dynamic deformation of the wing at the tip, , given by Eq. (39), and the static 

tip deflection which is 〈 〉/Π . To consider the non-dimensional energy equation, first  multiply Eq. (24) with the 

relative wing velocity ∗  ∗⁄  yielding,  
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∗∗  Π ∗∗ ∗∗ Π ∗∗ ∗∗ ∗  (41) 

 

where for simplicity the external force acting on the wing is abbreviated with ∗ . Substituting the separation 

variables, ∗, ∗ ∗ ∗ , considering only the first mode, in Eq. (41) gives  

 

  Π Π ′′′′ ∗ , (42) 

 

where  denotes the time derivative and ′ the spatial derivative. Integrating Eq. (42) in  from the wing root 

to the tip results in 

 

 Π   ∗ Π ′′′′ ∗ ∗. (43) 

 

The second integral can be partially integrated using the boundary conditions to  

 

 ′′′′  ∗ ∗ ΠΠ  (44) 

 

where the normalization proporty of , Eq. (32), is used. Inserting Eq. (44) into Eq. (43) yields,  

 

 Π Π ∗ , (45) 

 

where   ∗ as before, see Eq. (31). Now, Eq. (45) can be integrated as  

 

 Π d Π d d , (46) 

 

or, 

 

 d 12Π 12 Π d 〈 〉 , (47) 

 

where we have assumed that there exists a time-averaged value 〈 〉 with corresponding proportinality value , such 

that  

 

  d 〈 〉 d d 〈 〉 . (48) 

 

The value  is approximated as a constant in this study, however in general  depends on time. Integration of Eq. 

(47) gives the energy balance  

 

 
12Π 12 Π 〈 〉 , (49) 

 

where  is an integration constant that will be determined. The first term in Eq. (49) is the kinetic energy, the second 

the strain energy, and the third term the work done by the external force on the wing. From kinematic relations when 0, the relative tip displacement is at maximum position, i.e. max, corresponding to tip,max∗ . On the other 

hand, if the displacement is at the neutral position, we have the maximum velocity in free-vibration max with  

 

 
12Π max . (50) 

 

Hence the energy balance Eq. (49) can be rewritten as  
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12Π max 〈 〉 max 12Π max. (51) 

 

Using the previously determined solution Eq. (38) the maximum relative tip displacement and the velocity can be 

approximated as  

 

 max (52) 

 

with  again approximated as being some constant and  

 

 max ⋅ 2 if 2 ≫ , i.e. ≪⋅ if 2 ≪ , i.e. ≫ .  (53) 

 

In the most situations the motion frequency  is lower than the natural frequency of the wing , hence with some 

other constant  not necessarily equal to , we can approximate the maximum velocity as 

 

 max (54) 

 

Inserting the approximations Eq. (52) and Eq. (54) into the energy balance Eq. (49) gives  

 

 
12Π 〈 〉 12Π , (55) 

 

which can be rewritten as  

 

  〈 〉 Π2 . (56) 

 

Finally, by factoring all constants in Eq. (56) into some constant , the resulting relation between the time-

averaged force 〈 〉 and the maximum relative tip displacement represented with the scaling factor  is  

 

 Π . (57) 

 

The resulting scaling, Eq. (57) for the three canonical cases are shown in Figure V-16. The nonlinearity 

exhibited in Figure V-16(a) is due to the approximations made for the constant  which may be a function of  or 

time. For the chordwise flexible airfoils both    and the normalized force are significantly greater than other cases. 

When plotted in the log-scale, see Figure V-16(b), the scaling for all cases considered becomes more evident. A 

linear fit on the data set with the coefficient of determination of  = 0.98 indicates that the relation between the 

normalized force and  is a power law with the exponent of 1.19. The relation originating from the dimensional 

analysis, Eq. (5), then simplifies to  

 

 〈 〉 Π Ψ  (58) 

 

with Ψ 10 .   . . The elastoninertial number, ei that Thiria and Godoy-Diana [25] proposed as the thrust 

scaling parameter in air is a special case of , i.e.  

 

 
∗ ∗≫ and ⁄ ≫ ei . (59) 

 

Important to note is that the -axis in Figure V-16 shows 〈 〉. Recall that 〈 〉 was defined as the force acting 

normal on the wing that is responsible for the wing deformation, hence 〈 〉 is normal to 〈 〉or 〈 〉 depending on 

the direction of the wing deformation. For the purely plunging chordwise flexible airfoil cases in forward flight in 

water 〈 〉 〈 〉/ ⋅  where the factor ⋅  is the ratio between ,max 〈 〉⁄ ∼ ⋅  for the added mass force 

and 〈 〉 by [68] for purely plunging airfoils. For all chordwise flexible airfoil cases parametrized by , ∗ , 
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〈 〉/Π  shows almost a linear correlation with . Recall that the inertial force term arising from the plunging 

boundary condition is small compared to the added mass term because for the plunging chordwise flexible airfoils ∗ ∗ ≪ 1. Compared to the higher motion frequency cases, the thrust generation at the lowest frequency at the five 

thicknesses shows larger variance, which are not shown in Figure V-16. A plausible explanation is that the current 

analysis breaks down due to the presence of the rigid teardrop at lower motion frequencies. When the plunging 

motion is very slow the rigid teardrop the large leading edge radius will produce time-averaged drag which 

overwhelms the thrust generation from the thin flat plate with small deflection. The airfoil produces drag at  = 

0.085 on all five thickness ratios as shown in Figure V-4, which would result in underpredicted value of 〈 〉/Π . 

For the spanwise flexible wing, although the Reynolds number and the thrust direction relative to the wing 

flexibility is different compared to the chordwise flexible airfoil, similar analysis could be made by approximating 

the three-dimensional wing as a beam with the correction factors ⁄  for Π  and Π  as discussed in Section 

II. The force coefficient is scaled with the same parameters as for the chordwise flexible airfoils for the same 

reasons, i.e. 〈 〉 〈 〉 ⁄⁄ . The time-averaged thrust coefficient from the numerical computation of the two 

flexibilities for different motion frequencies fall on top of the previous scaling obtained for the chordwise flexible 

airfoils. 

 

 

(a) linear scale (b) log-scale 

Figure V-16 Normalized time-averaged force coefficients as function of . For the insect flyers the letter 

c and s correspond to chordwise and spanwise flexibility directions, respectively.  

 

Because the wing is hovering in air for the case of flapping Zimmerman wing, the density ratio is higher than in 

water. Hence, the inertial force dominates over the added mass force as previously found [70,71]. The horizontal 

force 〈 〉 is found by normalizing 〈 〉 by ∗ because the vertical force and the horizontal force are proportional to 

the thickness ratio, if we assume that the pressure differentials are of the order of 1 . Although this is a 

simplification, for the sixteen training points the thickness ratio scaling is confirmed by taking the ratio between the 

maximum  and the maximum  within different motion cycles for all cases as shown in Figure V-17, which 

indeed show that the pressure differentials are of the order of 1 . Furthermore, the computed lift from the 

numerical framework represents only the fluid dynamic force without the inertial force of the wing. The inertial 

force that acts on the wing is estimated by multiplying the factor   ∗ ∗ ⁄⁄ , which is the ratio between the 

inertial force (∼ ∗ ∗ ) and the fluid force (∼   ) to 〈 〉. The resulting normalization for the vertical axis is then 〈 〉 〈 〉  ∗ ⁄⁄ . 
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Figure V-17  Ratio between  and  multiplied by ∗ showing the order of 

magnitudes of the pressure differentials acting on the flapping Zimmerman wing hovering in air. 

 

Even though the current case has different kinematics (plunging vs. flapping; forward flight vs. hover), different 

density ratio (low vs. high), and structural flexibilities (unidirectional vs. isotropic), the previous trend reemerges, 

suggesting the generality of this scaling parameter . The trends for the flapping isotropic Zimmerman wing 

hovering case is slightly offset in the vertical direction suggesting that the resulting lift is lower. An important aspect 

is influence of  the presence of the rigid triangle (see Figure V-10)  that constraints the tip deformation, such that the 

resulting tip deformation is less than the setup where the imposed kinematics is actuated at the root of the wing 

without the rigid triangle. 

 

Table V-3  Kinematic, geometric, fluid, and structural parameters for the hawkmoth, bumble bee, and fruit 

fly obtained from the literature [73,74,75,76,77,78]. 

Insect Hawkmoth Bumble bee Fruit fly 

 [mm] 18.2 3.22 0.96 

 [mm] 47.3 10.9 3.0 2⁄  [Hz] 26.1 181 240 

 [deg]  57.2 72 75 

 [103] 6.2 2.2 0.25 

 0.30 0.18 0.19 

 0.25 0.25 0.25 ∗ [10-3] 2.0 1.0 0.6 ∗ [103] 2.0 2.1 1.1 Π ,s [102]  0.43 1.4 26 Π ,c 0.53 2.8 211 

 

For the flapping isotropic Zimmerman wing case in hover, we could correlate the lift generation to . This result 

suggests extrapolation of the current scaling analysis for the lift generation of hovering insect flyers. The lift, in 

hover, for several insects is approximated as the experimentally measured weights of hawkmoth [73,74], bumble bee 

[75], and fruit fly [76,77]. To calculate the parameters listed in Table V-3 flapping rectangular planform with 

constant thickness has been assumed with constant thickness and density. To compute the effective stiffnesses in the 

spanwise and the chordwise directions, i.e. Π ,s and Π ,c, respectively, the flexural stiffness data presented by [78] 

along with their wing lengths have been used. The result is included in Figure V-16 with the scaling  

 

 ref Π ⁄∗ ∗ Ψ ~Π Ψ . (60) 

 

Again, the lift approximated with the weights of the insects scales with . 
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(a) Chordwise flexible:   ∗ . ;   ∗ . ; 

♢  ∗ . ;   ∗ . ;   ∗ .  

(b) Spanwise flexible: , ∗ .  

♢  , ∗ .  

(c) Isotropic Zimmerman 

Figure V-18  Time-averaged force (thrust or lift) coefficient normalized by the effective stiffness plotted 

against the maximum relative tip deformations for the current computations. The numbers shown in (c) 

next to the markers indicate their case numbers 

 

The current analysis shows that the time-averaged force, such as the thrust or lift, can be related to the maximum 

relative tip displacement by normalizing the force by the effective stiffness, Π , resulting in a measure equivalent to 

the static tip displacement. Figure V-18 illustrates the static displacement, 〈 〉/Π , as function of the relative tip 

displacement for all thicknesses and motion frequencies considered. The results for the five different thickness ratios 

collapse to a single curve with higher motion frequency leading to greater thrust. Note that the relation is not linear, 

indicating that  in Eq. (57) is actually not a constant. For the spanwise flexible wing case, although the Very 

Flexible wing has larger relative deformation, the effective stiffness is 5.6 times smaller than that of the Flexible 

wing. Hence even if the static tip displacement is larger for the Very Flexible wing at the highest motion frequency, 

the force corresponding to this deformation is smaller (see Figure V-8 due to smaller effective stiffness, see Figure 

V-18. Furthermore, again, plotting the 〈 〉/Π  against the maximum relative tip deformation collapses both curves 

on top of each other. It is shown in Eq. (28) that for ∗ ∗ ≫ 1 the inertial force will have greater influence on the 

wing deformation than the force due to added mass. In air, ∗ is high, so that in addition to the normalization by the 

effective stiffness, the time-averaged force needs to be multiplied with ∗ ∗ to account for the inertial force. Figure 

V-18 again shows that the time-averaged force, in this case the lift of the flapping isotropic Zimmerman wing 

hovering, can be scaled with the maximum relative tip displacement by properly normalizing the force. 

V.2 Propulsive Efficiency of Flapping Flexible Wings 

The propulsive efficiency defined as 

 

 
〈 〉〈 〉  (61) 

 

where 〈 〉 is the time-averaged power input for purely plunging wing computed as 

 

 〈 〉 〈 〉 . (62) 

 

Note that the time-averaged power due to inertia vanishes for sinusoidal motions [64] since 

 

 〈 ,inertia〉 ~ 〈   〉 ~ cos 2 sin 2 0.  (63) 
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The propulsive efficiency for the chordwise flexible airfoils described in Section V.1.A and the spanwise flexible 

wings in Section V.1.B are plotted against the  in Figure V-19. For comparison purposes the experimental 

measurements [64,65] for both cases are included. For the chordwise flexible airfoils the efficiency increases with 

decreasing ∗. Furthermore, the efficiency first increases with increasing motion frequency, i.e.  since the plunge 

amplitude is kept constant, however then plateaus reaching some optimal efficiency. The thinnest airfoil generates 

the highest . The experimental measurements illustrated in Figure V-19(b) show a similar trend, however there is 

an offset compared to the computed values. Again, uncertainties involved in the computational modeling or 

experimental setup may play a role. Moreover, as it will be shown below, the magnitude of 〈 〉 is an order of 

magnitude smaller than 〈 〉, hence even a small uncertainty in the power input measurement will lead to large 

difference in the resulting . For the spanwise flexible wings (Figure V-19(c, d)), similar trends are found. 

Before discussing the scaling of the power input and the propulsive efficiency, the scaling for the thrust 

generation for the chordwise flexible airfoils and the spanwise flexible wings are summarized in Figure V-20 and is 〈 〉/ ~ .  with Π ⁄⁄ . The power of  has changed slightly compared to the previously determined 

value of 1.19 (Figure V-16) because the data points from the isotropic Zimmerman wing cases and the insects are 

excluded. Although the value is different, the qualitative trend of the propulsive efficiency that will be discussed 

later will remain the same. 

An interesting discussion on the power input arises from the fact that the fluid dynamic force has been modeled 

as added mass term, which is proportional to the acceleration of the wing motion. If the wing were rigid, then, 

similar to the power input due to the inertial force, 

 

 〈 , added mass, rigid〉 ~ 〈 〉 0,  (64)  

 

    ∗ . ; ♢  ∗ . ; ○ ∗ . ; ∗ . ;   ∗ .  

(a) chordwise flexible airfoil, computation (b) chordwise flexible airfoil, experimental 

measurement extracted from [64] 

  ○  , ∗ . ; ♢ , ∗ .  

(c) spanwise flexible wing, computation (d) spanwise flexible wing, experimental 

measurement extracted from [65] 

Figure V-19  Propulsive efficiency plotted against the Strouhal number for the chordwise flexible airfoil cases 

(a) – (b) and the spanwise flexible wing cases (c) – (d). 
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(a) linear scale (b) log-scale 

Figure V-20  Time-average thrust scaling plotted against . ○: chordwise flexible airfoils;  ♢: spanwise flexible 

wings.  

 

  
(a) chordwise flexible airfoil:   ∗ . ; 
♢  ∗ . ; ○  ∗ .      ∗ .    ∗ .  

(b) spanwise flexible wing ○ , ∗ .    ♢  ,   ∗ .  

Figure V-21  Time-average power input plotted against the Strouhal number ( )  

 

which is clearly not the case, see Figure V-21. For small  the power input scales as , however as the  

increases either the thickness ratio for the chordwise flexible airfoils, or the different structural properties for the 

spanwise flexible wings affect the resulting power. That the power required is non-zero, means that the resulting 

instantaneous lift on the wing should have a phase lag relative to the imposed motion. A major source for the phase 

lag is due to the wing deformation. By acknowledging for the wing deformation given in Eq. (38), the time-averaged 

power input coefficient due to added mass can be approximated as in the first mode 

 〈 , added mass〉 Π     Π1 4 ∗ ∗ ~ Π1 4 ∗ ∗  (65) 

 

where the integral is approximated as 

 cos  sin 2     2 1 cos4 4 Π4 1 4 ∗ ∗ .  (66) 
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For Π ≫ Π  the scaling for 〈 〉 reduces to 1 4 ∗ ∗/ , hence in water, such as in the experimental setup 

considered in this case [64,65] or for fixed density ratios and thickness ratios of the wing the 〈 〉~ , consistent 

with the previous literature [65] [26] and Figure V-21. 

 

Figure V-22(a) shows the time-averaged power input normalized by  given in Eq. (65) against  for both 

chordwise flexible airfoil and spanwise flexible wing cases. As the scales of 〈 〉 vary enormously, 〈 〉/  is 

plotted against  in log-scale. A linear fit with  = 0.98 indicates that the power input scales with . .  

 

(a) linear scale:  (b) log-scale:  

Figure V-22  Time-average power input normalized by  plotted against . ○: chordwise flexible airfoils;  ♢: spanwise flexible wings. 

 

The scaling for the propulsive efficiency now follows from the scaling for the thrust, i.e. 〈 〉⁄ ~ .  with Π ⁄⁄  and 〈 〉⁄ ~  with ∗ ∗  as 

 

 
〈 〉〈 〉 ~ . → ~ . ,  (67) 

 

where 
    ∗ ∗

. The resulting scaling is shown in Figure V-23. 

 

(a) linear scale: .  (b) log-scale:  

Figure V-23  Propulsive efficiency normalized by  plotted against . ○: chordwise flexible airfoils;  ♢: spanwise flexible wings. 
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V.3 Implications of the Scaling Parameters on the Aerodynamic Performance of Flapping Flexible Wings 

The time-averaged force 〈 〉 and the propulsive efficiency  could be related to the resultant force on the wing 

depending on the situation, such as fluid/inertial force, with/without freestream, or thrust/lift/weight. The current 

result enables us to estimate the order of magnitude of the time-averaged force generation and and its efficiency for 

a flexible flapping wing using a priori known parameters. 

Furthermore, the scaling can guide design of flapping wing micro air vehilces. For example, to support a given 

weight body of a vehicle body in air, the scaling Eq. (60) reduces to 

 

 body ∼ . . . m.. . → ~ . . . .. . . .  (68) 

 

assuming Π ≫ Π . The condition Π ≫ Π  is satisfied when ≫  and simplifies the algebra, however it poses 

constraints on the range of the structural properties, such that the natural frequency of the wing is higher than the 

motion frequency. Relation Eq. (68) shows that either increasing the wing area, motion frequency, or the flapping 

amplitude helps to generate sufficient lift to sustain hover flight. On the other hand, by making the wing softer, i.e. 

reducing the Young's modulus or wing thickness, wing deformations will increase leading to higher lift generation. 

However, softening the wing further will violate the frequency ratio assumption: / ≫ 1. The relation given for 

the flapping frequency has similar correlation as the one identified by Pennycuick [79]. Note that the wing weight is 

assumed to be negligible compared to the body weight in this discussion. 

Another implication of the scaling is the interesting behaviour of the role of ∗ for the chordwise flexible airfoil 

cases shown in Section V.1.A. It was observed that the 〈 〉 increased first and then decreased with decreasing ∗, 
see Figure V-4. Using the current scaling, which is repeated as  

 

 〈 〉 ∼ Π   . Π Π 4 ΠΠ 1
.

 (69) 

 

consider first the situation that ∗ is large, i.e. Π ≫ Π . Then the denominator in  can be approximated as Π 1 Π  yielding  

 

 〈 〉 ∼ Π .
 (70) 

 

hence by reducing the thickness ratio, Π ∼ ∗  will decrease, leading to the observed enhanced 〈 〉. However, 

decreasing ∗ further, the frequency ratio /  will be eventually of the same order of magnitude, resulting in a 

different physical behaviour. If, say ⁄ 1 , but not in resonance region, then the denominator in  will scale 

as Π 1 Π . Then, the resulting scaling will be  

 

 〈 〉 ∼ Π . ΠΠ  (71) 

 

Since Π ∼ ∗  and Π ∼ ∗, we have 〈 〉 ∼ ∗ . . This is consistent with the trend shown in Figure V-4 that 

reducing the thickness ratio further, the thrust deterioates. 

Furthermore, the thrust scaling for flapping flexible wings in water in forward motion, Eq. (69) can be rewritten 

as 

 

 〈 〉 ∼ . 1 1
. , (72) 
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and since ∼ , ∼ , and ∼ ∼  the thrust has a maximum at the resonance frequency. In reality, there 

is damping in the system, either structural or aerodynamic [26]. Although the effects of damping is not considered in 

this study, applying the effects of damping for linear oscillators (e.g. [68]) yields the resonance frequency slightly 

below the natural frequency of the wing with finite value for the maximum relative wing tip deformation, hence the 

thrust, see Figure V-24(a, b). In Figure V-24(b) the effects of damping has been incorporated by approximating the 

denominator term as  

 

 1  (73) 

 

where  is some small damping coefficient. This finding is consistent with the previous findings that the optimal 

propulsive performance is found near the natural frequency of the wing, but slightly below [27,28,25,26]. 
The propulsive efficiency scaling Eq. (67) can be rewritten in terms of frequency ratio /  as 

 

 ∼ 1 .
1

0.34
 (74) 

 

which has a local maximum at 0.41 . Depending on the scaling of the force, the optimal frequency can be 

found as  

 

 0 → opt 1, (75) 

 

where  is the exponent of  in the force scaling, i.e. 1.17 in Eq. (67), or 1.19 in Eq. (58) which yields the optimal 

frequency of 0.41 of the natural frequency. This indicates that the optimal efficiency is not achieved at the 

resonance, however the optimal frequency is some fraction of the natural frequency of the wing, which is also 

consistent with the previous findings in the literature [33,34,80,25,26], see Table V-4. Figure V-24(c) which plots 

Eq. (74) as function of the frequency ratio shows that the efficiency increases with the increasing frequency ratio 

until the optimal efficiency and then drops to zero at the resonance frequency. Since the undamped linear oscillator 

is unable to represent the resonance behavior correctly, an arbitrary damping has to be included in the system as 

before. Figure V-24(b) shows the effects of including damping, where  is taken as 0.0, 0.2, and 0.4: the optimal 

frequency ratio increases with increasing  as well as the efficiency at the resonance frequency. Note also the 

similarity between Figure V-24(b) with the computed propulsive efficiency curves shown in Figure V-19. Finally, a 

qualitative comparison is shown in Figure V-25 where the propulsive force and efficiency as function of the 

frequency ratio is plotted based on the current scaling and the measurements reported in Ramananarivo, Godoy-

Diana, and Thiria. [26]. Although the precise detail is different, the overall qualitative trend is similar. 

For an example of a 2% thickness wing with rectangular platform made of aluminum hovering in air, the optimal 

frequency of the flapping motion is 5.4 Hz when the wing has a chord length of 20 cm and span of 50 cm with a 

flapping amplitude of 30 deg. Scaling down the geometry of the wing ten times to the chord length of 2 cm and span 

of 5 cm, keeping the aspect ratio the same, the optimal flapping frequency increases to 54 Hz. The resulting 

propulsive force coefficient and the propulsive efficiency remain the same for both cases. However, the dimensional 

propulsive force and the power required will be 100 times smaller for the smaller sized wing, proportional to the 

square of the chord. On the other hand, for the same aspect ratio and the thickness ratio, the volume of the wing is 

proportional to cubic power of the chord. Consequently, for the same material, the mass of the smaller wing is 1000 

times smaller. The current scaling shows, consistent with Shyy et al. [3] that smaller flyers need to flap faster from 

the efficiency point of view, but the relative payload capacity increases because its weight reduces at a much faster 

rate compared to a larger flyers. 

 



35 

 

 

(a) undamped force (b) force with damping 

 

(c) undamped efficiency (d) efficiency with damping 

Figure V-24 Force and propulsive efficiency plotted against the frequency ratio ⁄ . 

 

 

 

Table V-4 Comparison of the optimal frequency ratios from the values reported in the literature and the 

current study. 

Literature ω ⁄
opt

Description 

Vanella et al. [34] 0.3 Hover, 2D airfoil, Navier-Stokes equation solver coupled 

with torsion spring model 
Yin & Luo [80] 0.4-0.5 Hover, 2D airfoil, Navier-Stokes equation solver with 

membrane model 
Ramananarivo, Godoy-Diana, & 

Thiria [26] 
0.5-0.6 Self-propelled flapper experiment 

Current study 0.41 Scaling analysis 

 

Finally, the scaling parameters for diverse flow and kinematics conditions are summarized in Table V-5. For the 

forward flight in water the effective stiffness Π , the normalized plunge amplitude ∗ , the mass ratio ⁄ , and the frequency ratio ⁄  dictate the propulsive force and the efficiency. For hover in air, for the 

studied kinematics, the role of the mass ratio is taken over by the factor ∗ ∗ ∗⁄ . The efficiency for the hover 

motion in air is left as future work in this study and the resulting scaling is only predicted by following the same 

argument as for the propulsive efficiency in forward flight in air. 
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(a) propulsive force, current study (b) propulsive force, data extracted from 

Ramananarivo, Godoy-Diana, and Thiria [26] for 

the thrust power  

(c) propulsive efficiency, current study (d) efficiency interpolated from the thrust power  

and input power  extracted from Ramananarivo, 

Godoy-Diana, and Thiria [26] 

Figure V-25 Comparison of the propulsive force and efficiency from  the current study and from the 

measurements obtained by Ramananarivo, Godoy-Diana, and Thiria [26]. 

 

Notice that the factor ∗ ∗ ⁄  is much smaller than ⁄  hence resulting in a much 

lower propulsion for the hovering symmetric flap/plunge motion in air, since the thickness ratio is usually only of 

the order of 0.01. This order estimation matches well with the values shown in Ref. [26]. For the hovering 

Zimmerman wing the ratio between the propulsive force  and the force required for input power, , was of the 

order of ∗, see Figure V-17. This scaling suggests that the insects may require different mechanisms, such as active 

or passive pitching motion with reinforced leading edge, which is commonly observed in many insect wings. 

Furthermore, non-symmetric motions, such as figure-8 motion where the wing experiences forward motion may 

yield higher efficiency [81]. With observations from experimental studies [78], anisotropic wing structures with 

different orders of flexibility may be essential to evince the high propulsive efficiency mechanism of insects. 

 

Table V-5  Summary of the scaling proposed. Note  is  for forward flight in water and ∗  for 

hovering flight in air, and  is 
    ∗ ∗

. 

  Forward flight, water Hover, air 

Force  .  Π ∗ . 1 1
.

 Π ∗ . 1 1
.

 

Efficiency .  

. . 1 .
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VI. Summary and Conclusions  

This study addresses modeling aspects of the fluid physics and fluid dynamic performances associated with 

flapping wings. Consistent dimensional analysis and non-dimensionalization of the governing equations for the fluid 

and the wing structure led to a system of non-dimensional parameters: Reynolds number ( ), reduced frequency 

( ), Strouhal number ( ), aspect ratio (AR), effective stiffness (Π ), effective angle of attack ( ), thickness ratio 

( ∗), and the density ratio ( ∗). Based on a control volume analysis scaling arguments were used to identify different 

regimes in the parameter space. For the two sources of forces, i.e. hydrodynamic impulse term and added mass term, 

the following scaling was found 

(i) Strouhal number is proportional to total fluid dynamic force felt on the wing: Increasing Strouhal number 

will increase both the hydrodynamic impulse and the added mass terms. 

(ii) As the Reynolds number and the reduced frequency increase, the fluid dynamic force felt on a moving 

body, such as a rigid or deforming wing in air or water, will be dominated by the added mass term, which is 

proportional to the acceleration of the body motion. 

For flexible wings flapping in water or air, the force generation and the propulsive efficiency of the wings were 

considered. Although the previous studies (e.g.  [70,71,25,26]) showed that the fluid dynamic force on the wings is 

negligible compared to the inertial force, to account for the low density ratio effects, the fluid force due to added 

mass is additionally considered. For the cases considered, where the Reynolds number is high in the order of 10 10  and high reduced frequency 1 , the followings were shown. 

(iii) The tip deformation is an outcome of the interplay between the imposed kinematics and the response of the 

wing structure dictated by the wing tip amplitude and the phase lag. The amplitude of the maximum 

relative wing tip deformation, , was obtained from the beam analysis and is only function of the a priori 

known non-dimensional paramters. By considering the energy balance of the wing the time-averaged force 

normalized by the effective stiffness was related to , and a scaling was established as 〈 〉 Π  

where 〈 〉 is the force that is responsible for the wing deformation.  

(iv) The time-averaged force 〈 〉 can be related to the resultant force on the wing depending on the situation, 

such as fluid/inertial force, with/without freestream, or thrust/lift/weight. The results of current study 

enable us to estimate the order of magnitude of the time-averaged force generation for a flexible flapping 

wing using a priori known parameters. 

Furthermore, for the propulsive efficiency, defined as the ratio between the time-averaged propulsive force and 

the power input, similar scaling analysis was performed: 

(v) The power input, which is equivalent to the work done during one motion cycle, could be scaled by 

accounting for the wing deformations which introduces a phase lag in the resulting fluid dynamic force 

with respect to the motion. 

(vi) The power input scales with  for low frequency ratio ( /  motions. For higher frequency ratio 

motions the effects of the inertia and the stiffness of the wing will influence the power input. 

(vii) The propulsive efficiency scales with 〈 〉 at low frequency ratios for forward flight. In this regime 

increasing propulsion results in higher propulsive efficiency. For higher frequency ratio motions the 

increase of the power input will overshadow the propulsion, deterioating the efficiency. 

(viii) Optimal frequency ratio for the propulsive efficiency was found to be 0.41 of the natural frequency of the 

wing. 

(ix) The current scaling shows, consistent with Shyy et al. [3] that smaller flyers need to flap faster from the 

efficiency point of view, but the relative payload capacity increases because its weight reduces at a much 

faster rate compared to a larger flyers. 

In summary, a relationship between the time-averaged force normalized by the effective stiffness and the 

maximum wing tip deformation relative to the imposed kinematics is established by considering the energy balance 

of the wing. Furthermore, the lift generation of insect flyers, approximated by its weight, largely follows the same 

scaling relationship. Similar scaling analysis are performed for the power input and propulsive efficiency. The 

chosen scaling parameters, given as a combination of a priori known wing geometry, structural properties, and 

motion amplitude and frequency, helps to gain more insight in the combined fluid and structural dynamics and is 

applicable to a wide range of scenarios involving different motion types, Reynolds numbers, and the fluid media 

regarding the magnitude of the time-averaged force, which can guide the design of flapping wing micro air vehicles. 
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Appendix A Spatial and Temporal Sensitivity Studies 

A.1 Plunging Chordwise Flexible Airfoil in Water at Re = 9×103 

Unstructured grids around an airfoil with a rigid teardrop and a flexible flatplate are utilized to solve for the flow 

field. In order to identify the suitable number of grid points and the time step, grid and time step sensitivity analyses 

are performed for the rigid airfoil at  = 0.17. From the results shown in Figure A-5, the Intermediate grid (25×103 

cells) and /  = 480 are chosen. As to the prescribed wing motion, the rigid teardrop is actuated by a sinusoidal 

plunge displacement with the normalized amplitude of 0.194. The fluid dynamics computation is assumed to be 

fully turbulent and the Menter's SST turbulence model is used. The  of the first grid spacing is set to be of the 

order of 1 . For the outer boundary conditions, located at 25 chords away from the airfoil, the freestream velocity, 

density, and turbulence quantities are assigned. On the airfoil surface the noslip condition is imposed. In order to 

compute the wing deformations, a finite element Euler-Bernoulli beam model with 51 nodes is utilized.  

 

(a) lift coefficient (b) thrust coefficient 

(c) lift coefficient (d) thrust coefficient 

Figure A-5 Temporal and spatial sensitivity analyses for a rigid plunging airfoil at . . Grid sizes are 

Coarse: 6×103,  Intermediate: 25×103, and Fine: 100×103 cells. 

 

 

 

 

A.2 Plunging Spanwise Flexible Wing in Water at Re = 3×104 

Unstructured grids around a rectangular wing of a NACA0012 airfoil with  = 3 are utilized to solve for the 

flow field. In order to identify the suitable number of grid points and the time step, grid and time step sensitivity 

analyses are performed for the rigid wing. From the results shown in Figure A-6, the Intermediate grid (0.31×106 

cells) and /  = 500 are chosen. As to the prescribed wing motion, the wing root is actuated by a sinusoidal plunge 
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displacement with the normalized amplitude of 0.175. The fluid dynamics computation is assumed to be fully 

turbulent and is solved using the Menter SST turbulence model. The  of the first cell away from the wing is set to 

be of the order of 1 . For the outer boundary conditions, located around 20 chords away in radial direction from 

the wing and 9 chords from the wing tip, the freestream velocity, density, and turbulence quantities are assigned. On 

the wing surface the noslip condition is imposed. In order to compute the wing deformations, a triangle facet shell 

finite-element discretization with 768 elements is utilized. The degrees of freedom of the node relevant to the 

chordwise displacement are constrained since Heathcote, Wang, and Gursul [65] observed that the degree of 

chordwise flexion of the wing for all wings and all motion frequencies was negligible. In addition, the contribution 

of the poludimethysiloxane (PDMS) rubber material which was used in the experimental wing configuration to the 

overall mass and stiffness properties is assumed to be negligible; therefore only the stainless steel for the Flexible 

wing with ∗ = 7.8 and Π  = 212 and the Very Flexible wing with ∗ = 2.7 and Π  = 38 is considered. Note that the 

material properties of the Very Flexible wing are based on a static bending test (private communications with Drs. 

Wang and Gursul at University of Bath).  

 

(a) lift coefficient (b) thrust coefficient 

(c) lift coefficient (d) thrust coefficient 

Figure A-6 Temporal and spatial sensitivity analyses for a rigid plunging NACA0012 wing at  = 1.82. Grid 

sizes are Coarse: 0.16×106,  Intermediate: 0.31×106, and Fine: 0.59×106 cells. 

A.3 Flapping Zimmerman Wing in Air at Re = 1.5×103 

To assess the grid size sensitivity three grids with different spatial resolutions around a Zimmerman wing are 

utilized for the fluid dynamic computation. The mesh to solve for the fluid equations consists of mixed brick near 

the wing and tetrahedral cells away from the wing. For the time step sensitivity analysis 250, 500, and 1000 time 

steps per motion cycle were chosen. The computational fluid dynamics (CFD) and the computational structural 

dynamics' (CSD) grid configurations are shown in Figure A-7. From the results shown in Figure A-8, the 

intermediate grid with 0.51×106 nodes and 500 time steps per motion cycle show grid and time step independent 

solution. The fluid flow is assumed to be laminar. The first grid spacing from the wing surface is set to 2.5×10-3 and 

the outer boundary of the computational grid is located at 30 chords away from the wing. At the outer computational 

boundary zero velocity and reference density are assigned. On the wing surface the noslip condition is applied. In 

order to compute the wing deformations, a triangle facet shell finite-element discretization with 767 elements is 

used. 
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(a) CFD mesh (b) CSD mesh 

Figure A-7 Computational grids for the flapping isotropic Zimmerman wing in hover in air. 

 

 

(a) lift coefficient (b) thrust coefficient 

(c) lift coefficient (d) thrust coefficient 

Figure A-8 Temporal and spatial sensitivity analyses for a rigid flapping Zimmerman wing in hover at  = 

1.5×103,  = 0.56, and  = 0.25. Grid sizes are Coarse: 0.34×106,  Intermediate: 0.51×106, and Fine: 0.73×106 

cells. 

 

 

 

 

Appendix B Training and Testing Points in the Design of Experiment of the Hovering 

Zimmerman Wing Case 

Tabel B-1 shows the lift of training and testing pointes in the design space for the flapping isotropic Zimmerman 

wing in hover in air (Section V.1.C). The Π  and ∗ are the design variables. In the computations the Young's 

moduli and the density of the wing are varied.  

Different weighting strategies are employed to minimize the risk of generating surrogates that fit the training 
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data well but perform less in other regions. The weighted average surrogates (WAS) use constant weights, meaning 

that a certain surrogate will have the same importance throughout the design space. The Polynomial Response 

Surface, Kriging, and Support Vector Regression are used for the individual surrogates, after which each surrogate is 

weighted in correlation to the RMS PRESS values, defined as  

 

 RMS PRESS 1 , (76) 

 

where  is the prediction at  using a surrogate model constructed with all training point except , and  is 

the number of training points. Table B-2 shows the RMS PRESS values as predicted by the individual surrogate 

models for 〈 〉, , and . The cells with underlines indicate the lowest RMS PRESS values and the surrogates that 

are weighted in the WAS.  

 

 

Table B-1  List of training points (1  14) and testing points (15, 16) in the design space for the flapping 

isotropic Zimmerman wing case.  and ∗ are the design variables. 

Case Nr. Π  ∗   

1 1.0×102 1.00×101 2.00×108 1.23×101 

2 1.04×105 1.00×101 2.00×1011 1.23×101 

3 1.04×105 1.00×104 2.00×1011 1.23×104 

4 1.00×103 1.00×103 1.92×109 1.23×103 

5 3.29×103 3.16×102 6.32×109 3.89×102 

6 1.04×105 3.16×102 2.00×1011 3.89×102 

7 3.29×103 1.00×101 6.32×109 1.23×101 

8 4.38×104 2.19×103 8.41×1010 2.69×103 

9 1.00×104 1.00×102 1.92×1010 1.23×102 

10 3.16×102 3.16×101 6.07×108 3.89×101 

11 1.00×102 1.00×102 2.00×108 1.23×102 

12 1.00×103 1.00×102 1.92×109 1.23×102 

13 1.00×104 1.00×103 1.92×1010 1.23×103 

14 1.00×104 1.00×104 1.92×1010 1.23×104 

15 5.86×102 3.06×102 1.13×109 3.77×102 

16 3.78×103 5.72×101 7.26×109 7.04×101 

 

 

 

Table B-2  RMS PRESS values as predicted by the individual surrogate models for the lift, twist, and bending 

angle. Surrogate models indicated by the underlines are used for the WAS construction. 

[10-1] KRG PRS SVR1 SVR2 SVR3 SVR4 SVR5 SVR6 〈 〉 3.56 3.57 2.93 2.23 2.54 5.57 2.44 2.38 

 3.65 6.65 2.77 2.47 2.64 2.67 1.98 2.35 

 3.63 3.62 2.63 2.05 2.51 2.53 1.32 2.47 

 

 

 

Finally, the error measured at the independent testing points defined as the relative difference between the 

constructed WAS and the actual values from the simulations with respect to the range of the objective functions 

show, see Table B-3, that for the case 15 where the high gradients in the surrogates are located has larger error than 

for the more stiffer case 16.  
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Table B-3  Relative error at the independent testing points 15 and 16. The difference in the value predicted by 

the surrogate model and the numerical computations are normalized by the range of the surrogate response 

Objective function Relative error at testing point 15 (%) Relative error at testing point 16 (%) 〈 〉 23 8 

 15 5 

 7 5 

 

 

 

Appendix C Modal analysis of isotropic Zimmerman wing 

Natural frequencies are computed using MSC.Marc and shown in Table C-1. Moreover, the mode shapes of the 

wing for each natural frequency are illustrated in Figure C-1. The first mode is related to the spanwise bending of 

the wing and the second mode the twist of the wing. Note that all the natural frequencies listed in Table C-1 are 

higher than the exciatation frequency of 10 Hz.  

 

Table C-1 First two natural frequencies in Hz based on a modal analysis for the training and testing points in 

the design space for flapping isotropic Zimmerman wing case. 

Case Nr. Mode 1 Mode 2 

1 7.46×101 3.04×102 

2 2.36×103 9.61×103 

3 7.46×101 3.04×102 

4 2.31×101 9.41×101 

5 7.46×101 3.04×102 

6 4.19×102 1.71×103 

7 4.19×102 1.71×103 

8 1.03×102 4.21×102 

9 2.31×102 9.41×102 

10 7.31×101 2.98×102 

11 2.36×101 9.61×101 

12 7.31×101 2.98×102 

13 7.31×101 2.98×102 

14 2.31×102 9.41×102 

15 3.20×101 1.31×102 

16 1.88×102 7.65×102 

 

 
Mode 1 Mode 2 

Figure C-1. Snapshots of the wing shapes for the first four modes based on a modal analysis for the training 

and testing points in the design space for the flapping isotropic Zimmerman wing case. 
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