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[1] We use regionally available digital elevation models and land cover data, calibrated
with ground- and photo-based landslide inventories, to produce spatially distributed
estimates of shallow, translational landslide density (number/unit area). To discern effects
of land use, we focus on resolving landslide density relationships with forest cover.
We account for topographic variability between sites and landslide detection bias in air
photo mapping. Even so, for sites in the Oregon Coast Range, we find great variability in
the ratios of landslide density in forest classes among sites. We present strategies for
subsampling available data to quantify this variability. For these data, we find that
older forests, when sampled over tens of square kilometers, commonly exhibited the
highest landslide densities but over hundreds of square kilometers always exhibited the
lowest densities, averaging 30% of that in recently harvested areas and 79% of that in
younger, managed forests.
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1. Introduction

[2] Landslides are an important process for sediment
delivery to mountain streams [Hovius et al., 2000; Kelsey,
1980]. In forested terrain, timber harvest and road building
can alter landslide characteristics [Montgomery et al., 2000;
Swanson and Dyrness, 1975], with potentially adverse
effects on aquatic ecosystems. Degradation of aquatic
habitat associated with increased landsliding [Hartman et
al., 1996; Hicks et al., 1991] is a factor implicated in
reducing, and even extirpating, culturally and economically
important populations of Pacific salmon and trout [Nehlsen
et al., 1991]. This has motivated interest in examining
effects of land management on landslide processes [Collins
and Pess, 1997; Dunne, 1998] and spurred federal and state
agencies to assess and monitor landslide occurrences [Bush
et al., 1997; Robison et al., 1999] with consequent regula-
tory constraints to limit human influences on landsliding
[Oregon Department of Forestry, 2006; U.S. Department of
Agriculture and U.S. Department of the Interior, 1994;
Washington Department of Natural Resources, 2005].
[3] Although any type of landslide can affect stream

channels, here we focus on landslides that are likely to
initiate debris flows, specifically rainfall-triggered transla-
tional landsliding of shallow soils [Iverson et al., 1997].
Debris flows are of particular importance because they can
travel long distances to and through stream channels [Benda
and Cundy, 1990]. By creating a debris flow, a small
landslide can affect stream channels far downslope, both
by scouring accumulated soil and organic debris from steep,

low-order channels [May and Gresswell, 2003] and by
depositing the scoured material into larger, fish-bearing
streams [May and Gresswell, 2004]. Landslide-triggered
debris flows thus play two important and related roles in
river environments. One is creation of persistent geomor-
phic features: their deposits create distinct valley floor fan
and terrace landforms [Benda, 1990; Miller and Benda,
2000; Wohl and Pearthree, 1991]. The other is dynamic:
they link forest disturbances, which can increase landslide
susceptibility [Schmidt et al., 2001], to downslope stream
and riparian disturbances [Cenderelli and Kite, 1998; Gomi
et al., 2002; Miller, 1990; Nakamura et al., 2000]. Together,
these persistent and transient debris flow influences affect
the spatial and temporal distribution of habitat and biota in
mountain river networks [Benda et al., 2004; Lamberti et
al., 1991; Montgomery, 1999; Pabst and Spies, 2001; Rice
et al., 2001] and both must be recognized to anticipate
effects of land management in these aquatic ecosystems
[Reeves et al., 1995].
[4] A first step in efforts to discern land management

effects on debris flow influences to regional ecosystems is
identification of sites susceptible to debris flow initiation
and assessment of forest disturbance on the degree of
susceptibility. Topographic attributes (i.e., slope gradient
and convergence) are recognized as primary factors con-
trolling susceptibility of shallow soils to landsliding [Chen
and Jan, 2003; Hack and Goodlett, 1960; Niemann and
Howes, 1991; Reneau et al., 1990]. Hillslope topography
thus sets the stage for the spatial distribution of debris flow
effects. Overprinted on the topographic template is the
modulating influence of forest cover, acting through root
reinforcement [Burroughs and Thomas, 1977; Schmidt et
al., 2001] and perhaps also through smoothing of rainfall
intensity [Keim and Skaugset, 2003], on the initiation of
shallow landsliding [May, 2002; Montgomery et al., 2000;
Sidle and Ochiai, 2006; Swanson and Dyrness, 1975].
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[5] Spatial variability in landslide susceptibility is influ-
enced by topographic and forest cover characteristics at a
relatively fine spatial resolution (of order 102 m2); however,
land management and conservation planning decisions for
many stream-dwelling species, particularly salmon and
trout, can benefit from knowledge of landslide susceptibility
across large spatial extents (of order 105 km2). Spatial
variability in landslide susceptibility is also affected by
variability in numerous factors other than topography and
forest cover [Dunne, 1998]. These include variability in site
conditions, such as soil depth and geotechnical properties
[Hammond et al., 1992; Wu, 1996] and spatiotemporal
variability in landslide triggers, such as rainfall intensity
[Mark and Newman, 1988]. Data are typically lacking to
explicitly address these other pertinent factors in high-
resolution, regionally applicable models of landslide sus-
ceptibility. Therefore a modeling approach that minimizes
sensitivity of results to spatial variability in these factors
while capitalizing on widely available 10-m digital eleva-
tion models (DEMs) [Gesch et al., 2002] and forest cover
mapping from satellite imagery could be of great value.
[6] One approach is to empirically associate mapped

landslide initiation sites with topographic and forest cover
characteristics [e.g., Coe et al., 2004; May, 2002]. Field
surveys and interpretation of aerial photography are com-
mon sources of landslide mapping. However, each source
presents problems for use in regional modeling of landslide
susceptibility. Inventories from field surveys can reasonably
include only relatively small areas, yielding landslide counts
or densities by forest cover class that may vary substantially
from site to site [Robison et al., 1999]. In contrast, inven-
tories from aerial photographs may include a larger area to
discern regional trends in the relative density of landslides
between forest cover classes, but small landslides are more
visible in unforested areas on aerial photographs, which
introduces bias in landslide counts between forest cover
classes [Brardinoni et al., 2003; Pyles and Froehlich,
1987]. Weaknesses in each type of inventory can be
overcome by combining information from the two sources.
The proportion of small landslides missed in an air photo
inventory can be estimated from landslide size distributions
from a field inventory. Consequently, the air photo inven-
tory can be used to evaluate variations in landslide density
as a function of the area over which it is measured and to
estimate uncertainty in measured values.
[7] In this paper, we describe methods to identify and

characterize initiation sites of rainfall-triggered translational
landslides in shallow soils and then demonstrate these
methods for areas in the Oregon Coast Range, USA. Our
objectives are to (1) characterize topographic influences on
landslide density (in terms of number per unit area) using
regionally available, high-resolution (10-m) DEMs;
(2) specify methods to estimate, and potentially reduce,
bias between different forest cover classes in counts of
landslide initiation points mapped on aerial photographs;
(3) determine ratios in densities of landslide initiation points
between forest cover classes when corrected for bias from
variable topography and air photo interpretation; and
(4) evaluate variability in densities of landslide initiation
points between different forest cover classes measured over
a range of spatial extents. We also use these techniques to
account for effects of forest roads on landslide density.

Although results from this study are based on observations
that span only a portion of the Oregon Coast Range, they
provide the means to extrapolate a spatially distributed
estimate of landslide susceptibility across the entire region.
Additionally, the methods are readily applied with similar
data elsewhere and the results offer insights for interpreting
and designing other studies.

2. Methods

2.1. Overview

[8] Research spanning decades has guided development
of conceptual and empirical models of landslide occurrence
in mountain environments [see reviews by, e.g., Dunne,
1998; Guzzetti et al., 1999; Sidle et al., 1985; Swanson et
al., 1987]. Terrain attributes may be associated with meas-
ures of landslide susceptibility based on geomorphic map-
ping and professional judgment [Wieczorek, 1984], a
quantitative statistical assessment relating attribute values
with landslide locations [Brenning, 2005; Guzzetti et al.,
2000; Soeters and van Westen, 1996], or a combination of
these [Rollerson et al., 2002; van Westen et al., 2003]. We
take the second approach and seek to empirically relate the
probability of encountering a mapped landslide initiation
point within any specified area as a function of topographic
and forest cover attributes, to the degree possible with
regionally available data. This probability provides a mea-
sure of susceptibility. Landslide density provides a natural
metric from which to infer spatial probability. We derive
methods to fully capitalize on the spatial resolution of
available topographic data, while still incorporating infor-
mation from lower-resolution data on forest cover and
geology.
[9] We characterize topographic influences in terms of a

topographic weighting, which indicates the degree to which
local topography, resolved over DEM pixel length, alters
mean landslide density. We then estimate the appropriate
landslide density to apply for different forest cover classes.
This approach benefits from the higher resolution of avail-
able topographic data, but relies on the assumption that the
relative effects of topography are the same for each forest
cover class and also for other factors, such as geology. This
is the simplest and most easily implemented scenario; we
will examine the implications of this assumption using data
from the Oregon Coast Range.
[10] We find the applicable landslide density for different

forest cover classes by counting the landslides and measur-
ing the area in each class. Use of a topographic weighting
term allows us to account for differences in topography
between different mapping units, so that if one forest class is
situated on steeper slopes than another, for example, the
influence of the steeper slopes can be removed. We are
particularly interested in the relative difference in landslide
density between different forest cover classes so that we can
assess the aggregate effects of timber harvest on landslide
susceptibility. For this purpose, the magnitude of the mea-
sured landslide densities is immaterial; it is the relative
difference in density between forest cover classes that is
important. We seek values to apply regionally, yet regional
studies may indicate a large range in landslide densities and
the forest cover classes with the highest and lowest densities
are in some cases inconsistent from site to site [Robison et
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al., 1999]. Reasons for such variability include unresolved
or unaccounted for variability in site conditions, such as
topography, soil properties, and tree spacing [Dengler et al.,
1987; Dunne, 1998; Roering et al., 2003]. We expect,
however, that there is some spatial extent over which
variability from these sources can be averaged out and a
persistent trend in the ratio of densities between forest cover
classes identified [Miller et al., 2003]. Evaluation of this
hypothesis requires a large sample area, necessitating land-
slide mapping from aerial photographs, which introduces a
source of bias in landslide counts between forest cover
classes [Brardinoni et al., 2003; Pyles and Froehlich, 1987].
[11] Spatiotemporal variability in landslide triggers, par-

ticularly rainfall intensity [Mark and Newman, 1988], can
also create variability in measures of relative landslide
density. In general, there are few data sources to evaluate
this source of variability. If variations in rainfall intensity
typically occur over spatial extents greater than variations in
forest patch size (e.g., a harvest unit, which typically spans on
the order of 101 hectares), then the ratio in landslide density
between forest cover classes should be relatively consistent,
even though rainfall intensities associated with landslide-
triggering storms may vary dramatically across a region.

2.2. Topographic Influences on Landslide Density

2.2.1. Topographic Index
[12] Landslide-initiated debris flows are associated with

rainfall-triggered failure of shallow soils in specific topo-
graphic locations. These landslides are generally confined
to steep slopes [Chen and Jan, 2003; Sidle et al., 1985]
and tend to occur in topographic hollows [Dietrich and
Dunne, 1978; Hack and Goodlett, 1960; Reneau et al.,
1990], although soil failures on planar slopes also occur
[e.g., May, 2002]. These and other studies point to slope
gradient, topographic convergence, and contributing area as
potentially important topographic factors. We therefore
choose a topographic index (IT) that is a function of these
attributes. This index is calculated for each pixel of the
DEM. Mapped landslide initiation points are then overlain
to obtain a cumulative frequency distribution of landslide
points for the index function. We use this distribution to
derive a topographic weighting term (wT) to estimate local
topographic influences on landslide density.
[13] The basis for a topographic index was a model

presented by Montgomery and Dietrich [1994] that includes
the attributes we were interested in to characterize topography.
Although the model also contains variables to parameterize
soil properties, we used only the topographic factors. This
does not imply that soil properties are unimportant in
determining landslide locations, only that data are not
available to characterize their spatial variability, whereas
data are available to characterize topographic variability.
The model [Montgomery and Dietrich, 1994] is a simple
representation of slope failure that assumes steady state
hydrology and uses topographic factors of slope gradient
and contributing area per unit contour width. The model is
derived from the infinite slope approximation for failure of a
thin soil overlying a more competent and less permeable
substrate, with the assumption of surface-parallel flow of
soil pore water in the saturated zone. Iverson [2000] raises
objections to these assumptions for groundwater flow and
presents an alternative, dynamic model for rainfall-triggered
soil failure. In both cases, the important topographic vari-

ables are slope gradient and some measure of the area
contributing to subsurface flow. The Montgomery and
Dietrich [1994] model has been shown effective at identi-
fying landslide-prone locations at sites throughout the
Pacific Northwest and elsewhere [Borga et al., 2002;
Dietrich et al., 2001; Montgomery et al., 1998].
[14] With the assumptions stated above, conditions for

failure of a cohesionless soil occur at a critical steady state
rainfall intensity qcr given by [Montgomery and Dietrich,
1994, equation (5)]

qcr ¼
T sin q rS=rW

� �
a=b

� �
1� tan q

tanf

� �
; ð1Þ

where T is soil transmissivity, q is gradient of the ground
surface, rS is wet bulk density of the soil, rW is the density
of water, a is the area contributing subsurface flow across a
soil column of width b perpendicular to the flow direction,
and f is the friction angle of the soil. By holding all soil
parameters constant, equation (1) becomes a function solely
of the topographic variables q and a/b, and serves as a
topographic index, i.e., IT = qcr with T, rS/rW, and tan f held
constant. Using a f value of 45 degrees, we have

IT ¼ C sin q
a

b

� ��1

1� tan qð Þ; ð2Þ

where C = T(rS/rW), which can be set to a constant value
appropriate for soils in the area of interest, so that values
from equation (2) can be compared with those from other
studies using Montgomery and Dietrich’s [1994] model, or
simply set to unity and ignored. For slopes steeper than
45 degrees, equation (2) gives negative index values. For
plotting purposes (e.g., use of a logarithmic scale), we
translated negative IT values to positive values via the
equation 0.1/(1 + 0.1 � IT).
[15] To calculate contributing area a, we use the D1 flow

direction algorithm described by Tarboton [1997], which
allows downslope dispersion. The D1 algorithm calculates
flow direction for a pixel using each of eight triangular
facets defined by a DEM grid point and the eight adjacent
points. For each facet having flow out of the pixel, we use
the projection of flow direction on the exterior facet edge as
a measure of contour length crossed by flow exiting the
pixel from that facet. These projection lengths are summed
over all edges with outgoing flow to provide an estimate of
contour length b for flow exiting the pixel. Contour length
for planar flow is one pixel width, for divergent flow it is
greater than one pixel width, and for convergent flow it
is less than one pixel width. The specific contributing area,
a/b, thus incorporates effects of topographic convergence.
2.2.2. Topographic Weighting
[16] The correlation between the topographic index and

landslide locations was obtained empirically on the basis of
the index values found where landslides occurred. We
express this correlation as a topographic weighting term.
Because it is calibrated, the weighting is independent of the
soil parameters used in equation (2).
[17] We expect the frequency distribution of topographic

index values associated with landslide initiation points to
differ from the frequency distribution of index values over
the DEM as a whole. For the index defined in equation (2),
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we expect that landslides are preferentially associated with
small index values, which represent steeper sites with larger
specific contributing area, whereas we expect only a small
proportion of DEM area to occupy these small-index-value
locations. The likelihood ratio quantifies this relationship
[Coe et al., 2004; Wieczorek et al., 1988]: for a given range
of index values, the proportion of landslides divided by the
proportion of DEM area provides a normalized measure of
landslide density that varies with the topographic index.
This ratio serves as a measure of landslide susceptibility
[Chung and Fabbri, 2005].
[18] An index value, IT from equation (2), can be calcu-

lated for every pixel of the DEM and overlain with digitized
landslide initiation points. Empirical cumulative distribution
functions are then constructed for landslides and for DEM
area, giving the proportion of landslides and DEM pixels
with an IT value less than or equal to a specified limit
(Figure 1a):

FLS xð Þ ¼ nLS xð Þ=NLS ð3Þ

FA xð Þ ¼ nA xð Þ=NA; ð4Þ

where FLS is the cumulative distribution function for
landslides, nLS(x) is the number of pixels containing a
landslide initiation point with IT values less than or equal to x,
and NLS is the total number of landslide initiation points.
Similarly, FA is the cumulative distribution function for
DEM area; nA(x) is the number of pixels with IT values less
than or equal to x, and NA is the total number of pixels in the
DEM. Because we are interested in landslide initiation
points, we associate each landslide in an inventory with a
single pixel. However, both FLS and FA may be defined in
terms of area (in which case landslide density would be
defined as landslide area per unit area):

FLS xð Þ ¼ ap nLS xð Þ
� �

= ap NLS

� �
FA xð Þ ¼ ap nA xð Þ

� �
= ap NA

� �
;

where ap is the area of a single pixel and both nLS and NLS

refer to pixels encompassed by mapped landslide scars.
[19] Plotting FLS against FA shows the proportion of DEM

area required to encompass a given proportion of the
mapped landslide initiation points (Figure 1b). The FLS

versus FA (number versus area) curve provides a measure
of the extent to which landslide initiation locations are
resolved by the topographic index with the elevation and
landslide-mapping data used. It also defines a weighting
function for landslide density. For a given small increment
DIT there are corresponding changes DFLS and DFA that
determine the rate of change (the tangent, Figure 1b) along
the FLS versus FA curve. We refer to this rate of change as f,
a function of IT given by

f xð Þ ¼
DFLS xð Þ

.
DIT

� �
DFA xð Þ

.
DIT

� � ¼ NA

NLS

DnLS xð Þ
.
DIT

� �
DnA xð Þ

.
DIT

� � ¼ r�1
0

DnLS xð Þ
DnA xð Þ : ð5Þ

Here r0 is the mean landslide density (the number of
landslides divided by the total number of pixels), and DnA

Figure 1. Illustrative sketches showing (a) cumulative
distribution functions, equations (3) and (4), for landslides
(FLS) and DEM area (FA) as functions of topographic index
IT; (b) number-versus-area curve derived from the cumula-
tive distribution functions (points labeled IT1 and IT2
correspond to similarly labeled points in the cumulative
distributions); the tangent at any point along the curve gives
the value of function f, equation (5); and (c) the topographic
weighting term, from equations (5) and (11), obtained from
the tangent along the number-versus-area curve as a
function of the topographic index.
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is the number of pixels and DnLS is the number of landslide
initiation point pixels with IT values in the increment x ±
DIT/2. From equation (5) we have

DnLS xð Þ ¼ r0 f xð ÞDnA xð Þ; ð6Þ

the number of landslides associated with an increment DIT
is equal to the mean density times the area (in terms of DEM
pixels) with area adjusted by the value of f at IT = x, which
increases the effective area for landslide-prone terrain, thus
giving a larger number of landslides with equation (6), and
decreases the effective area for stable terrain. In the limit, as
DIT approaches zero (or as pixel size approaches zero),
equation (5) is expressed as a differential:

f ITð Þ ¼ r�1
0 dnLS=dnAð Þ; ð7Þ

where we have eliminated the dummy variable x and
allowed both nLS and nA to represent an infinitesimal portion
of a pixel. The differential, dnLS /dnA, indicates the change
in the number of landslides associated with a change in area
for a given IT value, from which the number of landslides is
found by integrating over area. The fractional number of
landslides associated with a single pixel is:

dnLS ¼ r0fp;

where the pixel value fp is the value of f (IT) calculated using
the IT value of the pixel. Thus the number of landslides
expected over any arbitrary portion of a DEM is calculated
as a sum over pixels:

DnLS ¼
X

r0fp
� �

: ð8Þ

The weighting function f (IT), obtained from the empirical
cumulative distribution functions for landslides and DEM
area ranked by topographic index, provides a pixel-by-pixel
adjustment fp that accounts for effects of topography on
landslide density (Figure 1c). If summed over all pixels,
equation (8) must give NLS, the total number of landslides,
which with the definition of mean landslide density (r0 =
NLS/NA), indicates that

X
NA

fp ¼ NA ð9Þ

or that the mean value of fp over the DEM of a study area
used for calibration must equal one.
[20] Factors other than topography are incorporated into

r0, the mean landslide density. The mean density may be
defined as an average over the study area or may be used to
resolve differences between specific portions of the area
delineated by mapping units for forest cover and, for
example, rock type. To accommodate differences in density
between these areas, we write equation (5) as

f xð Þ ¼ r�1
0

P DnLSi xð Þ
.
DIT

� �
P

DnAi xð Þ
.
DIT

� � ¼ r�1
0

P
fi xð Þri DnAi xð Þ

.
DIT

� �h i
DnA xð Þ
DIT

� � :

ð10Þ

Here the subscript in the sums refers to the ith map unit of
the DEM (e.g., a specific forest cover class), equation (6)
was substituted for DnLSi, and the numerator reflects the
sum of DnA over all map units. If topographic influences
are invariant over all map units, then f(x) will be the same
for all of them, i.e., fi(x) = fj(x) = wT(x) for all map units
i and j, i 6¼ j, and we can use equation (10) to correct for
the effect of variations in mean landslide density on
function f. Using wT to refer to the corrected value, fi in
equation (10), and moving it outside the sum, we define

wT xð Þ ¼ f xð Þ
r0

DnA xð Þ
.
DIT

� �
P

ri DnAi xð Þ
.
DIT

� �
0
@

1
A: ð11Þ

Then wT provides a composite weighting term, applicable to
the entire DEM, used to weight mean landslide density to
account for local topographic influences. If a single landslide
density r0 applies over the entire area, equation (11) reduces
to equation (5). In the limit, as DIT approaches zero, the
change in area associated with a small change in IT can be
expressed as a differential:

wT ITð Þ ¼ f ITð Þ
r0

dnA

.
dIT

� �
P

ri dnA

.
dIT

� �
i

0
B@

1
CA; ð12Þ

and wT can be calculated for each pixel on the basis of the
pixel IT value. The term in the large parentheses adjusts the
value of the empirical function f(IT) to account for variable
mean landslide densities across the area covered by the
DEM.
[21] If we compare two map units delineated by different

forest cover classes, one encompassing steep, highly dis-
sected terrain and the other lower-gradient, smoother ter-
rain, the densities obtained by dividing landslide numbers
by area may primarily reflect differences in topography, not
forest cover. Equation (12), together with the definition of
nLS given above, provides a means of accounting for
topographic differences when estimating mean landslide
density for each map unit:

nLSi ¼ ri
X

wT ; ð13Þ

where the subscript refers to the ith map unit. The number
of landslide initiation points, plotted against topographically
weighted area (the summed wT values), lie along a line
intersecting the origin with a slope given by mean landslide
density, or even more simply, ri = nLSi /

P
wT: landslide

density for the ith map unit is given by the number of pixels
with landslide initiation points divided by the summed wT

values, which serve as a topographically adjusted measure
of map unit area.
2.2.3. Evaluating the Topographic Weighting Term
[22] Landslide predictions can be evaluated by subsam-

pling the landslide data, using some portion to calibrate the
model and the rest to assess the results [Chung and Fabbri,
2003]. We would like to use all the data to estimate a level
of confidence in the predictions. Repeated subsampling
with replacement (a bootstrap sample) from the landslide
data is one option [Gershenfeld, 1999] to estimate a
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probability density distribution for the composite weighting
term. Another alternative, which we use here, is to generate
synthetic landslide inventories for Monte Carlo simulations
from the composite weighting term (wT).
[23] As a first-order approximation, we assume that

landslide locations in any homogenous area (e.g., a map
unit) are independent of each other and follow a Poisson
distribution, from which the probability PLS that a landslide
initiation point was mapped in any DEM pixel is given by

PLS ¼
e�r0wT ap r0wTap

� �
1!

� r0wTap; ð14Þ

where ap is the area of a single pixel. For landslide densities
r0 of order 1 per km2, r0wTap is of order 10

�4 and e�r0wTap

is of order one. Hence the probability that any pixel contains
a landslide initiation point is given approximately by
r0wTap. To generate a synthetic landslide inventory, we
proceed pixel by pixel through the DEM, generating a
sample from a uniform distribution between zero and one
for each pixel. If the sample is less than the PLS value for
the pixel, we assign one landslide to that pixel. This
generates a new set of landslide locations for the DEM
consistent with the empirically calibrated topographic
weighting term and mean density. We use this synthetic
inventory to generate a new number-versus-area curve.
Each synthetic inventory yields a different curve, all created
with the same topographic weighting term. Repeated many
times, this provides an approximate probability density
distribution of number-versus-area curves. This simulation
procedure indicates the range of variability expected for a
given weighting term and a given DEM. We can compare
the range of number-versus-area curves to the curve
obtained for a set of mapped landslides. The degree to
which the curve for the observed landslides falls within the
expected range indicates how well the weighting term
represents observed landslide locations.
[24] For simplicity, we are interested in applying a single

composite topographic weighting term for all forest cover
and geologic map units. Monte Carlo simulations applied
over each set of map units separately show how well a
single characterization of topographic influences applies in
each case.

2.3. Detection Bias in an Air Photo–Based
Landslide Inventory

[25] The proportion of landslides missed in photo map-
ping can be large and is influenced by a number of factors,
including: photo scale, quality, and type (e.g., black and
white or color); the shape, position and age of the landslide
scars; and the experience of the photo interpreter [Guzzetti
et al., 2000]. Even if bias from these sources is minimized,
some landslides under forest cover may be hidden by
shadow and tree canopy [Pyles and Froehlich, 1987]. Air
photo analyses can thus be substantially biased toward low
landslide densities in forested areas, because a greater
proportion of small landslides are missed in forested areas
than in unforested areas [Brardinoni et al., 2003; Robison et
al., 1999]. However, above a certain size threshold, virtually
all landslides are visible on aerial photographs [Reid and
Dunne, 1996]. Mapping from 1:12,000- and 1:15,000-scale
aerial photographs, Brardinoni et al. [2003] found these
thresholds to be 150 m2 for landslides in recently clear-cut

areas and 650 m2 in forested areas for field sites in western
British Columbia. Mapping from 1:24,000-scale aerial pho-
tographs, Bush et al. [1997] resolved landslide scars as
small as 160 m2, but estimated the smallest landslide size
reliably visible in forested areas as at least 2000 m2.
[26] Landslide areas obey a negative power law frequency

distribution over a large portion of their size range [e.g.,
Brardinoni and Church, 2004; Hovius et al., 1997], thus
offering a means for estimating the number of smaller
landslides missing from a landslide inventory [Malamud
et al., 2004]. The frequency distribution of landslide sizes
larger than the visibility threshold provides a relatively
unbiased estimate for the large-size portion of the distribu-
tion, which can be reliably estimated using landslide inven-
tories from aerial photographs. If we know the shape of the
entire frequency distribution, perhaps from a less-biased,
field-based inventory [Brardinoni et al., 2003], we can then
extrapolate the distribution obtained from the air photo
inventory to smaller sizes and estimate the number of small
landslides that were missed. The negative power law
distribution fits the large-size portion of the distribution
well. There is, however, a lower bound to landslide size, so
even for inventories considered complete and unbiased, the
number of small landslides deviates from the negative
power law distribution, producing a rollover effect
[Malamud et al., 2004; Stark and Hovius, 2001]. Stark
and Hovius [2001] present a double pareto distribution that
describes observed distributions over the full range of
landslide sizes:

p sð Þ ¼ h
1þ m=tð Þ�að Þ

b=a

1þ s=tð Þ�að Þ1þ
b=a

" #
s

t

� ��a�1

: ð15Þ

Here p(s) is the probability density of landslide size s; m is
the upper limit of landslide size; a, b, and t are empirical
parameters; and

h ¼ b
t 1� dð Þ ;

where

d ¼ 1þ m=tð Þ�a

1þ c=tð Þ�a

� �b=a

;

with c being the lower limit of landslide size. Values for
c and m may be estimated from the smallest and largest
landslides included (or expected) in an unbiased inven-
tory. Values for a, b, and t are estimated from the shape
of the observed distribution; a corresponds to the
exponential decrease in frequency with increasing size
for large landslides, b corresponds to the exponentially
decreasing frequency with decreasing size for small
landslides, and t corresponds to the rollover point where
the distribution shifts between these two types.
[27] An empirical probability density of landslide sizes

can be estimated for a landslide inventory by plottingDn(s)/
Ds, where Dn(s) is the number of landslides with sizes in
the increment s ± Ds/2. Because there are many more small
landslides than large, it is useful to expand the increments
with size so that all bins contain some landslides. Values for
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a, b, and t can then be adjusted to minimize the absolute
difference between the analytic (equation (15)) and empir-
ical density functions. The resulting values can be used in
equation (15) with landslide counts from an air photo
inventory to estimate the number of landslides missed in
the photo mapping for each forest cover class. The number
of landslides n in size range s1 to s2 is

njs2s1¼ NT

Z s2

s1

p sð Þds; ð16Þ

where NT is the total number of landslides. Using p(s)
determined for a field inventory, for example, and the
number of landslides counted between sizes s1 and s2 from
an air photo inventory, we can solve for the total number of
landslides NT in the study area. If either s1 or s2 extend into
a biased portion of the air photo inventory, where small
landslides are undercounted because they are not visible or
where the chance of encountering a large landslide is low
because there are so few of them, the number of landslides n
will be undercounted and NT will be underestimated. Thus
the most unbiased size range for the photo inventory is that
giving the maximum estimate for NT. The correction for the
landslide density calculated for the air photo inventory from
equation (13) is then

r ¼ gr Photoð Þ; ð17Þ

where r is the corrected landslide density, r(Photo) is the
density measured from the aerial photographs, and g is the
ratio

g ¼ NT=NC ; ð18Þ

and NC is the number of landslides counted in the air photo
inventory.
[28] Samples from a population of landslides will exhibit

variability in the observed distribution of landslide sizes
arising solely from random differences in the number of
small and large landslides included in each sample. Some
uncertainty therefore arises in the total number of landslides
NT associated with a given number of counted landslides
NC. The magnitude of this uncertainty depends on the shape
of the size distribution of the entire population, the proba-
bility that a landslide is visible in the photographs, and the
number of landslides included in the sample (NC). We can
estimate this uncertainty by approximating the probability
that a landslide is visible in a photo using a discrete size
threshold. If all landslides larger than a certain size sV are
visible and all smaller are not, then the probability that any
single landslide is counted is given by

P visibleð Þ ¼
Z m

sV

p sð Þds ¼ 1

g
; ð19Þ

where p(s) is the probability density of landslide size, estimated
with the double pareto distribution in equation (15), and m
is the upper limit of landslide sizes. As indicated in
equation (19), the probability that a randomly chosen
landslide is counted is given by NC/NT, or 1/g from
equation (18). P(visible) may also be estimated as the
proportion of landslides larger than sV in an unbiased

inventory. For a given total number of landslides NT, to the
extent that each has a probability P(visible) of being
counted that is a function solely of its size, the probable
number counted is described with a binomial distribution,
from which uncertainty in NC may be estimated. The same
approach can be used to estimate the uncertainty in NT

associated with a given number NC of landslides counted.
Alternatively, we estimate uncertainty in NT for a given NC

with Monte Carlo techniques by taking NT samples with
replacement (a bootstrap sample) from a relatively
unbiased (e.g., field mapped) inventory and counting
landslides larger than sV to obtain one realization of NC.
Repeated iterations provide an estimated distribution for
NC from which estimates of variability (e.g., variance,
confidence intervals) can be obtained.

2.4. Spatial Variability in Landslide Densities

[29] Variability in landslide densities estimated from air
photo mapping arises from four sources: spatial variability
in the actual landslide density associated with variable
terrain and triggering factors, insufficient sample size to
average out random variations in landslide spacing, uncer-
tainty in g (equations (17) and (18)) from random variations
in sampled landslide sizes and visibility, and discrepancies
introduced by the human mapper [Ardizzone et al., 2002].
Uncertainty in a quantity q, a function of n independent
variables xi, each with their own uncertainty dxi, can be
estimated as [J. R. Taylor, 1997]

dq2 ¼
X @q

@xi
dxi

� �2

: ð20Þ

From equations (17) and (20) we can thus express the
uncertainty in r(Photo) as

dr Photoð Þ

� �2
� 1

g2
drð Þ2þr2 d

1

g

� �2

¼ 1

g2
drð Þ2þ g2r2Photoð Þ d

1

g

� �2

;

ð21Þ

from which we isolate the variability in the corrected
landslide density (r in equation (17)) as

drð Þ2� g2 dr Photoð Þ

� �2
� g2r2Photoð Þ d

1

g

� �2
" #

: ð22Þ

Using a binomial distribution for NC, with equation (19) to
estimate the probability of successfully seeing a landslide in
an aerial photograph, dg is proportional to NC

�1/2. Estimates
for dr(Photo) and r(Photo) are obtained by subsampling (with
replacement) over a large study area. An area of given size
is delineated on the DEM and the number of mapped
landslides within the area counted, from which a single
topographically corrected value for r(Photo) is obtained with
equation (13). These values are then corrected for photo
bias using equation (17). Repeated many times, this
procedure gives a set of r(Photo) values from which to
estimate dr(Photo). Because the distribution of values is
positively skewed, we use the median as an estimate of
central tendency for r(Photo) in equations (21) and (22).
Repeated for sampling areas of different size, we see how
variability in measured densities changes with the size of
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the study area, up to some portion of the total area available
for subsampling.
[30] Because of bias in landslide counts, the ratio in

landslide density between forested and open (unforested)
areas calculated from air photo–based landslide inventories
differs from the actual (unbiased) ratio by an amount gF /gO:

rF photoð Þ

rO photoð Þ
¼ gOrF

gFrO
; ð23Þ

where the subscript F refers to forested areas and O refers to
open areas. Variability in this ratio arises both from
uncertainty in gF and gO and from variability in the ratio
rF/rO. We can estimate the relative contributions as above:

d
rF Photoð Þ

rO Photoð Þ

" # !2

� d
gO
gF

� �� �2 rF
rO

� �2

þ d
rF
rO

� �� �2 gO
gF

� �2

� d
gO
gF

� �� �2 gF
gO

� �2 rF Photoð Þ

rO Photoð Þ

 !2

þ d
rF
rO

� �� �2 gO
gF

� �2

;

from which

d
rF
rO

� �� �2

� gF
gO

� �2

d
rF Photoð Þ

rO Photoð Þ

" # !2
0
@

� d
gO
gF

� �� �2 gF
gO

� �2 rF Photoð Þ

rO Photoð Þ

 !2
1
A: ð24Þ

Subsampling of a study area provides a set of rF(Photo)/
rO(Photo) values from which to estimate both the variability
of this ratio and a median value. Values for gF and gO can
be estimated by subsampling with replacement from an
unbiased landslide inventory with appropriate lower size
cutoffs for landslides visible in forested and open cover
classes.
[31] Results provide the range in landslide-density ratios

to expect as a function of study area size. This can guide the
level of confidence to place in landslide density measure-
ments for a region based on the area encompassed by a
study. It also provides the means to develop confidence
intervals for the number of landslides predicted with our
approach for any delineated area.

3. Model Demonstration

3.1. Study Area

[32] The Oregon Coast Range (Figure 2), extending over
approximately 29,000 km2, is an actively uplifting region
[e.g., Mitchell et al., 1994] with a maritime climate charac-
terized by wet winters and occasional long-duration storms
[Taylor and Hannan, 1999]. It is underlain by shallow water
marine sedimentary rocks and scattered basaltic volcanics
and intrusives [Orr et al., 1992]. The resulting landscape is
of relatively low relief (elevations range from sea level to
1200 m) but highly dissected, with soil-mantled ridge-
and-valley terrain of steep slopes. Rainfall-triggered transla-
tional landslides of shallow soils that cause debris flows are

a primary process driving sediment flux from upper slopes
to valley floors [Dietrich and Dunne, 1978], with persistent
effects on valley and channel morphology [Benda, 1990].
Although not addressed in this study, streamside landslides
triggered by bank erosion at slope toes and deep-seated
earth-flows [Roering et al., 2005] are other potentially
important processes in the region. Both affect stream
channels, but a connection with forest disturbance is not
as well documented as that for shallow, debris flow–
triggering landslides and these other types of landslides
have associated topographic characteristics that may differ
from the translational landslides we consider.
[33] The Oregon Coast Range is predominately covered

by conifer and hardwood forests. Past disturbance regimes
included intense, but infrequent, wild fires and windstorms.
Current regimes are characterized by extensive timber harvest
and fire suppression [Franklin and Dyrness, 1988]. These
disturbance processes alter the spatial distribution of forest
cover classes, and the mean landslide densities we obtain
for each class characterize their effects on landslide
susceptibility.

3.2. Data

[34] Five data sets were used to demonstrate the modeling
approach in the Oregon Coast Range. Three of these span
the entire region: (1) a 10-m grid DEM developed from

Figure 2. Location of landslide inventories in the Oregon
Coast Range. The Siuslaw National Forest (SNF) inventory
used aerial photographs taken in the summer of 1996. The
Oregon Department of Forestry (ODF) inventory used five
sites, including three sites surveyed in the summer of 1996
and the Scottsburg and Elk Creek sites surveyed in the
summer of 1997.
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contours and blue line streams on US Geological Survey
1:24,000-scale digital line graph (DLG) data [Clarke and
Burnett, 2003]; (2) a vector map of roads, also from US
Geological Survey 1:24,000-scale DLG data; and (3) a
forest cover classification based on 25-m grid Landsat
Thematic Mapper satellite imagery from 1996 in conjunc-
tion with topographic, climatic, geologic, and extensive
field plot data [Ohmann and Gregory, 2002]. Two other
data sets, field-based landslide inventories collected by the
Oregon Department of Forestry (ODF) [Robison et al.,
1999] and an air photo–based landslide inventory collected
by the Siuslaw National Forest (SNF) [Bush et al., 1997]
span only portions of the Oregon Coast Range (Figure 2).
[35] Forest cover effects on landslide density were

explored using the forest cover data set. We grouped the
10 forest cover classes of Ohmann and Gregory [2002] into
three broad classes approximating those used by the ODF
[Robison et al., 1999]: (1) open (<10 yrs age), unforested
and recently clear-cut harvested areas, remnant forests, and
very-small-diameter (<10 cm diameter at breast height
(dbh)) conifer and hardwood/conifer forests; (2) mixed
(10–80 yrs), hardwood forests, and small- and medium-
diameter (10–50 cm dbh) conifer and hardwood/conifer
forests; and (3) large (>80 yrs), large- and very large–
diameter (>50 cm dbh) conifer and hardwood/conifer
forests. Because the forest cover raster data were of a
different resolution than the DEM (25 m versus 10 m),
forest classes for each DEM pixel were determined using a
nearest-neighbor algorithm. We delineated a 50-m buffer on
both sides of all roads in the 1:24,000-scale DLG data. We
assumed that this width was sufficient to include all land-
slides related to the mapped roads and thereby removed
them from our analysis of landslide density under forest
cover. The DLG data include forest roads visible on the
photographs used to construct and update the US Geolog-
ical Survey topographic maps, but omit old roads that are no
longer visible and new roads built after the photos were
taken.
[36] The ODF and SNF landslide data sets were collected

to capitalize on numerous landslides triggered by intense
winter storms in 1996 [Hofmeister, 2000], in part to look for
differences in landslide density between forest cover classes
that reflect the effects of timber harvest. Each landslide data
set offered certain benefits. Although landslide locations
were mapped on 1:24,000-scale base maps in both studies,
the field mapping of ODF included small landslides that
were not visible in the aerial photographs, and so provided a
relatively unbiased sample of landslide sizes and an accurate
measure of stream-affecting landslide densities. The air
photo mapping included landslides over a relatively large
area, sufficient to obtain regionally applicable values of
landslide density by forest class and to analyze spatial
variability in measured ratios of landslide density between
forest cover classes. With both data sets, we characterized
each landslide at the inferred initiation point, rather than
over the entire area encompassed by the landslide scar (see
discussion by Dietrich et al. [2001]), because our goal was
to identify conditions likely to be associated with debris
flow initiation.
[37] The ODF data set included five sites in the Oregon

Coast Range, encompassing a total area of 77 km2

(Figure 2). These data consisted of two landslide inventories

collected through extensive field mapping by the Oregon
Department of Forestry (ODF) in the summers of 1996 and
1997 [Robison et al., 1999], following major storms in
February and November 1996 [G. Taylor, 1997]. Four of
these sites were chosen because of the large number of
landslides they contained; the Dallas site (Figure 2) was
chosen randomly without reference to the number of land-
slides. Each site encompassed about 15 km2. The Elk Creek,
Scottsburg, and Mapleton sites are within the Tyee
formation, a thick sequence of gently dipping sandstone
and siltstone beds (map unit Tt of Walker and MacLeod
[1991]). The other two are in igneous lithologies; the
Tillamook site overlies basalts of the Tillamook Volcanics
and the Dallas site is predominately within the basaltic
Siletz River Volcanics (map units Ttv and Tsr of Walker and
MacLeod [1991]). At each field site, the ODF attempted to
document every landslide that delivered material to stream
channels [Robison et al., 1999]. All channels up to 40%
gradient were surveyed and any landslide identified in the
channel was traced to its source. The ODF collected a
variety of information about each landslide, including
location and dimensions of the initiating failure and of
subsequent runout. Locations were recorded on US Geo-
logical Survey 1:24,000-scale base maps and later digitized,
with mapped initiation locations stored as points. Landslide
initiation locations were also documented using GPS
receivers where feasible. We used data only from landslides
classified by ODF as ‘upslope.’ Thus we intentionally
omitted landslides triggered by stream undercutting because
forest cover and topographic influences on initiation pro-
cesses for streamside landslides may differ from those that
are the focus of this study. The ODF inventory excluded
landslides that did not runout to stream channels. We did not
view this as constraining our use of these data because we
were interested in characterizing landslides that enter stream
channels.
[38] The SNF landslide inventory was mapped in March

1996 from 1:24,000-scale color aerial photographs [Bush et
al., 1997]. The mapping encompassed approximately
5,665 km2 of the Oregon Coast Range and included all
shallow debris avalanche and debris flow (torrent) land-
slides, including runout zones, interpreted as associated
with the February storm. Of the mapped landslides, 35%
reached second- and higher-order streams; of the remainder,
some reached first-order streams and some did not, but these
were not differentiated in the inventory. Block glide and
earth flow landslides were not mapped by the SNF. We
manually located initiating points for the 1,320 landslide
polygons digitized by the SNF. These polygons were
typically long and narrow, ranging from 161 m2 to
42,238 m2. Locations of the initiation points were estimated
at the head of the landslide scar after considering the
landslide polygons overlain with the 1:24,000-scale digital
raster graphics of US Geological Survey topographic maps
and the hillshade produced from the 10-m DEMs. The
initiation points typically fell within one to two pixels
below the highest elevation in the landslide polygon.

3.3. Topographic Index and Composite Weighting
Term for the ODF Study Sites

[39] Todefine a compositeweighting term (wT) for theODF
study sites, we first calculated an IT value for every DEM
pixel for all sites using equation (2) (with a = 130 m2/day
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for the Oregon Coast Range, from T = 65 m2/day, rS =
2000 kg/m3, and rW = 1000 kg/m3, taken from Montgomery
et al. [1998]). Each digitized landslide initiation point in the
ODF data set was associated with the pixel having the
smallest index value within a radius of 30 m. We obtained
a continuous approximation for FL versus FA (the number-
versus-area curve) using a maximum likelihood fit of a
logistic equation to the empirical number-versus-area
curve defined by equations (3) and (4), plotted against the
logarithm of the topographic index. Derivatives were
calculated analytically for the fitted logistic equation to give
the numerator and denominator in equation (5), which
provided a continuous function f (IT) (equation (7)).
[40] To extend f (IT) to a composite weighting function

that accommodates different forest cover classes, we started
with uncorrected estimates of the mean density (number of
landslides divided by area) for ri in equation (12), one for
each of the three forest cover classes. The differentials, dnA/
dIT, were estimated using a second-order polynomial fit over
a centered window along the DEM area versus topographic
index points. This provided an initial estimate for wT, which
was then used in equation (13) to give an updated estimate of
mean landslide density for each forest class. These new mean
density values were then used in equation (12), which gave an
updated wT. This new term was used with equation (13) to
update the mean density values and the entire process iterated
until the estimated mean densities were unchanged between
iterations.
[41] To evaluate the ability of the weighting term (wT) to

characterize topographic influences on landslide suscepti-
bility, we compared landslide number-versus-area curves
from the ODF field inventory and from 10,000 synthetic
inventories generated with Monte Carlo modeling. We did
this first with ODF data for all landslide locations com-
bined; these were the data used to obtain the wT function, so
the degree to which the synthetic curves envelope the field
data indicate how well our curve fitting techniques repro-
duce the pattern indicated by the mapped landslide loca-
tions. We then grouped landslide locations by forest cover
and rock type. In these cases, divergence of the data points
from the synthetic curves indicate systematic differences in
topographic influences for different forest cover and rock
types.
[42] We also compared the synthetic curves obtained with

DEMs for the SNF study to data from the SNF air photo
inventory to compare topographic controls inferred from
field-mapped landslide locations to those inferred from loca-
tions mapped on aerial photographs. As done with the ODF
data, each digitized initiation point mapped from the SNF
inventory was associated with the pixel having the smallest
topographic index value within a 30-m radius.

3.4. Landslide Detection Bias in Aerial Photographs

[43] Both the ODF and SNF landslide inventories included
measures of landslide size (surface area). We used mean
widths and lengths measured by the field teams for the
initiating landslide and runout track to obtain a surface area
for each landslide in the ODF inventory and used the area
encompassed by the digitized polygons for landslides
mapped in the SNF inventory. We assume that there is
no bias between forest cover types for ground-based land-
slide counts and so use all landslides in the ODF inventory
to estimate the size distribution. For the SNF inventory,

we divided landslides into three groups, one for each
forest cover type, and estimated size distributions for each
separately.

3.5. Spatial Variability in Landslide Densities

[44] We used the SNF air photo inventory to examine
how landslide density between different forest cover classes
might vary with the area over which it is measured [see also
Miller et al., 2003]. We counted landslides within many,
randomly placed subsets of the total study area, first using
sampled areas entirely within a single forest class, and then
for sampled areas that included multiple classes in order to
calculate the ratio of densities between forest classes within
the sampled area. After correcting for topographic variabil-
ity and photo bias, this subsampling yielded a range of
values of landslide density for each class and for each
landslide density ratio (mixed to open, large to open, and
large to mixed). We repeated this exercise for different
sample area sizes to see how the median value and the
width of the 90% confidence intervals changed as the area
examined increased. We adjusted these confidence intervals
for air photo detection bias (g) using equation (22) for
landslide density and equation (24) for landslide density
ratios. By examining differences between the widths of
confidence intervals before and after adjustment, we esti-
mated the proportion of the variability in measured values
arising from landslides missed on the aerial photos as a
function of sample area.

3.6. Roads

[45] Roads are ubiquitous in many forested landscapes
and, because roads can affect landslide processes, road-
related landslides need to be addressed when determining
forest cover influences on landslide density. We exclude
road-related landslides from our analyses using a buffer
around all mapped roads: DEM pixels and landslides within
the buffer are removed from subsequent analyses. However,
because available data for road locations in forested areas
are often incomplete, some roads may be missed. Effects of
undetected roads are implicitly incorporated when assessing
spatial variability in landslide densities.
[46] Where roads are mapped, landslide inventory data

can be used to assess road effects on landslide density.
Landslide counts within the road buffer can be compared to
the number of landslides predicted with equation (13). The
effects of topography are accounted for in the predicted
value through the topographic weighting term. It is not
necessary to correct for counting bias between forest cover
classes, because comparison is with the number actually
counted on the photographs.

4. Results

4.1. Topographic Index and Composite Topographic
Weighting Term

[47] All landslides mapped for the five ODF sites were
located in DEM pixels with topographic index (IT) values
that encompassed 0.74 of the total area (Figure 3a). The
landslide number-versus-area curve obtained from these
data and the fitted logistic curve are shown in Figure 3b.
The tangent to the logistic curve gives the composite
topographic weighting term (wT, equation (12)) plotted in
Figure 3c. The topographic weighting term for these data
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decreases for the smallest topographic index values, possi-
bly corresponding to hillslopes that are too steep to accu-
mulate soil [Montgomery and Dietrich, 1994]. Mean
landslide densities for subsets of the study area (e.g., for
each forest cover class) were obtained using equation (13),
as illustrated for the open forest class in Figure 3d.
[48] The spatial distribution of these IT and wT values are

shown for the ODF Mapleton study site in Figure 4. As
context, Figure 4a provides mapped landslides, forest cover
classes, and the road buffer overlain on a DEM hillshade of
the study site. Calculated values of the topographic index
(Figure 4b) show that small IT values are concentrated on
steep, convergent hillslopes. The topographic weighting
term, based on the curve in Figure 3c, is mapped in Figure 4c.
High values ofwT, corresponding to higher landslide densities
(less stable slopes), are concentrated in steeper and more
convergent locations. Curves like that of Figure 3d (from
equation (13)) were used iteratively with the topographic
weighting function to obtain topographically corrected land-
slide densities for each forest cover class. Together, the mean
landslide densities for each cover class, multiplied by the
topographic weighting term, give the distribution of landslide
densities shown in Figure 4d.

4.2. Evaluating the Topographic Weighting Term

[49] The performance of the topographic weighting term
(wT) obtained from the entire ODF data set was evaluated

first by comparing the landslide number-versus-area curve
for all landslides in the ODF field inventory to those
obtained from 10,000 synthetic landslide inventories gen-
erated with Monte Carlo modeling (Figure 5a). Values in the
curves are ranked from least to most stable, so those closer
to the origin are associated with less-stable hillslopes.
Somewhat fewer landslides than indicated by wT occur in
the least stable zones (low IT values), indicated by the data
points below area proportions around 0.02 that extend
slightly below the lower boundary of the 90% confidence
interval. Analogously, somewhat more landslides than indi-
cated by wT occur in intermediate stability zones, near area
proportions of 0.05, indicated by data points that extend
slightly above the upper boundary of the 90% confidence
interval. The logistic curve we used to fit the cumulative
distribution cannot reproduce these patterns in the empirical
curves, so our resulting model yields a smoothed estimate.
[50] Results obtained when comparing the observed and

synthetic number-versus-area curves for each forest cover
class separately (Figures 5b–5d) were similar to those for
all classes combined (Figure 5a). However, the 90% confi-
dence interval for each forest cover–specific curve was
wider than that for all ODF data combined, reflecting the
greater variability expected with a smaller sample size.
Empirical data for the three forest cover classes were not
identically distributed, but all data points fell within the

Figure 3. (a) Empirical cumulative distributions for landslides and DEM area versus topographic index
IT for composite data from the five ODF field sites from equations (3) and (4); (b) number-versus-area
curve obtained from these data (open circles) and the fit logistic curve (gray line); (c) topographic
weighting term obtained from the number-versus-area curve; and (d) plot of the summed topographic
weighting value versus mapped number of landslides for the open class at the ODF sites, which from
equation (13) gives the mean landslide density.
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range of values obtained with Monte Carlo modeling
(Figures 5b–5d).
[51] When the ODF sites were divided by rock type, data

points for sandstones (Figure 6a) fell well within the 90%
confidence interval curves generated with the weighting
term from the full data set. The majority of inventoried
landslides were in sandstones, and so this result was not
surprising. The data for sites underlain by basaltic vol-

canics, however, deviated substantially from the generated
curves (Figure 6b). Landslides were more concentrated in
topography having smaller (less stable) IT values than
indicated by the weighting term, so the model overestimated
the area in basalts required to encompass a given proportion
of all landslides.
[52] We also compared results of Monte Carlo modeling

using the weighting term developed from the ODF study

Figure 4. Maps from the ODF Mapleton study site showing the (a) topographic and land cover context
for field-mapped landslides, (b) topographic index (IT), (c) topographic weighting term (wT), and
(d) density of landslide initiation points calculated as the product of the topographic weighting term and
the mean landslide density. Study site boundary is indicated by the heavy black line.
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sites with number-versus-area curves from the DEMs and
air photo–based landslide inventory for the SNF study area.
A greater proportion of the mapped landslides fell on
hillslopes with larger IT values (more stable) than predicted
by the topographic weighting term (Figure 7) and well
outside the 90% confidence interval.

4.3. Landslide Detection Bias in the
Air Photo–Based Inventory

[53] Empirical probability densities for landslide sizes in
the ODF inventory are plotted in Figure 8, along with those
for landslides in each of the three forest cover classes in the
SNF inventory. We assume that in each case the landslides
from the SNF air photo mapping are from the same
underlying size distribution as the ODF field-mapped
inventory, but with some unknown proportion of the smaller
landslides uncounted. The distributions plotted in Figure 8
support this view. The slope of the curves defined by the
data are parallel for both inventories at large landslide sizes,
but the curve for each cover class in the SNF data tends to
roll over at a larger landslide size and fall off more rapidly
with decreasing size than the ODF distribution, with the
large cover class having the largest rollover point.
[54] The degree to which landslides were undercounted in

each cover class was estimated using equation (16) over a
range of upper and lower size bounds (s1 and s2). We found
that the upper and lower landslide size limits giving the

maximum NT value varied with each forest cover class. The
lower and upper limits for the open class were 3,800–
12,500m2, for themixed classwere 5,800–19,300m2, and for
the large class were 6,600–21,600 m2. The resulting NT/NC

ratios (g of equations 17 and 18) are listed in Table 1.
The proportion of landslides missed by photo mapping
(1 � NC/NT) is estimated as 0.88 for the open class, 0.92 for
the mixed class, and 0.97 for the large class.
[55] Uncertainty in the total number of landslides (NT)

based on landslides counted in aerial photographs (NC) was
estimated by plotting NT versus NC from sampling with
replacement of the ODF inventory for three visibility
thresholds: 1,250 m2, 1,625 m2, and 2,875 m2 (Figure 9a).
These threshold values give g values that are similar to
those obtained from the landslide size distributions dis-
cussed above (Table 1). On the basis of the ODF inventory,
these values would exclude 50%, 58%, and 75% of the
cumulative landslide area.
[56] Confidence in g increases with smaller visibility

thresholds and with larger landslide counts (Figure 9b).
For example, the SNF inventory included 529 landslides in
the open forest class. For a visibility threshold of 1,250 m2,
there is an estimated 90% probability that the actual number
of landslides is between 4,404 and 5,224, corresponding to
an NT/NC ratio of 9.1 ± 0.78. The SNF inventory included
only 136 landslides in the large cover class. For a visibility

Figure 5. Landslide number versus area curves for (a) composite data from all five ODF study sites and
(b) open, (c) mixed, and (d) large forest cover classes. Heavy lines show 90% confidence intervals
obtained with Monte Carlo modeling using the composite topographic weighting term shown in Figure 3.
Open dots are from mapped landslide initiation point locations. For this and subsequent figures
displaying landslide number versus area curves, the proportion-of-area axis is in a logarithmic scale to
highlight variability for landslides in the least stable terrain.
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threshold of 2,875 m2, there is a 90% probability that the
actual number of landslides is between 3,300 and 4,968,
corresponding to an NT/NC ratio of 30.4 ± 6.1.

4.4. Landslide Density by Forest Cover Class

[57] Using equation (13), mean landslide densities
were obtained by forest cover class for all ODF sites
combined (Figure 10a) and for each site individually
(Figures 10b–10f). Overall, we find the lowest density in
the mixed forest class (Figure 10a), consistent with the
ODF’s interpretation [Robison et al., 1999]. After correcting
for topographic differences, however, we found no consis-
tent trend in the relative magnitude of landslide density
between forest cover classes among the sites.
[58] For the SNF study area, the mean value of the

topographic weighting term over all pixels was 0.53, indi-
cating that a greater proportion of the area has a smaller
topographic weighting (more stable) than found in the ODF
study sites. The mean value of the weighting term for the
ODF sites was 1.0 by definition (from equation (9)), because
these provided the calibration data. The mean topographic
weighting term for the open class was 0.86 of the mean
overall for the SNF study area, the mean for the mixed class
was equal to the overall mean, and themean for the large class
was 1.4 times the overall mean. Values less than one indicate
terrain that is more stable than the average; values greater
than one indicate terrain that is less stable than average. The
lower mean weighting value for the open class indicates that
these areas tend to fall on lower-gradient, more stable terrain

than the mixed and large classes (Table 1). The larger mean
weighting for the large class indicates that these areas tend to
occupy less stable terrain.
[59] To adjust for bias from interpretation of aerial photo-

graphs, landslide densities in each forest cover class were
multiplied by the values of g in Table 1. Adjustments for
photo-bias affected calculated landslide densities much
more than adjustments for topography, with the largest
adjustment applied to the large cover class. After correcting
for topographic differences and air photo bias between
forest cover classes, results based on the SNF landslide
inventory indicate the lowest landslide density in the oldest
forests (Table 1).

4.5. Spatial Variability in Landslide Densities

[60] We subsampled over the SNF study area to examine
spatial variability in measured landslide density. For a single
forest cover class, the median of all nonzero landslide
densities obtained from sampling of the SNF inventory
decreased with increasing sample area (Figures 11a–11c).
This occurred because, at small sampling sizes, a significant
number of samples include no landslides, so the nonzero
samples are biased toward larger values [Miller et al., 2003].
As the sample area increases, beyond some point all samples
contain landslides and the median is constant with increasing
sample area. This occurs at about 20 km2 for the open class,
about 50km2 for themixed class, andbetween 75and100km2

for the large class. The range of densities also decreased
with increasing sample area, shown by the width of the
envelope containing 90% of all sampled values (Figure 11).
[61] From equations 21 and 22, we divide the range in

densities between uncertainty in g, representing variability
in air photo bias, and uncertainty in landslide density r,
representing variability in average landslide spacing (from
e.g., variations in rainfall intensity). The proportion of this
range arising from uncertainty in g is substantial at small
sample areas, decreases with increasing sample area, and
becomes negligible for areas greater than about 10 km2

Figure 6. Landslide number versus area curves for the
ODF field sites separated by rock type: (a) sandstones and
(b) basalts. Heavy lines show 90% confidence obtained with
Monte Carlo modeling. Open dots are from mapped
landslide initiation point locations.

Figure 7. Landslide number versus area curves for the
Siuslaw National Forest landslide inventory. Solid lines
show 90% confidence intervals obtained with Monte Carlo
modeling using the topographic weighting term (Figure 3)
obtained from the ODF field sites. Open dots from mapped
landslide initiation point locations.
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(Figures 11d–11f). The remaining variability in landslide
density r is relatively constant and substantial across all
sample areas (Figures 11d–11f). For each forest cover class,
the width of the 90% confidence interval (after accounting
for uncertainty in g) is about 2.3 times the median value.
[62] We also subsampled the SNF study area to examine

variability in the ratio of landslide densities between forest
cover classes within a sample area. For a set of samples of
equal specified area, the area in each forest cover class
varied among samples depending on where the samples
were located. We sampled over a range of areas from 10 to
1,000 km2 and took 10,000 randomly placed samples for
each size increment. The smallest sample size was larger
than that used previously, because each sample contains
multiple forest cover classes, whereas in the previous
example each sample contained only a single forest cover
class. Samples for both the large-to-mixed and large-to-open
ratios had median values that decreased and 90% confi-
dence intervals that narrowed as the area of the sample
increased, converging to the values obtained for the study
area as a whole (Figures 12a and 12b). The proportion of
the range of landslide densities arising from uncertainty in g
is relatively constant across the range of sample areas
examined, entailing about 15% of the variability in the
large-to-open ratio and about 33% of the variability in the
large-to-mixed ratio. The remaining variability in ratio
values is still substantial, but decreases with increasing
sample area (Figures 12c and 12d).
[63] A curious aspect in comparing landslide densities

between forest classes is that results typical for small areas
can contradict those obtained over larger areas. Excluding
areas with no landslides, the large forest cover class typically
had more landslides per unit area than the mixed cover
class, indicated by a large-to-mixed ratio exceeding one
(Figure 12a). It is only at sample areas exceeding 500 km2

that the median value of the sampled ratios drops below 1.0.

4.6. Roads

[64] For each forest cover type, we found more landslides
than predicted within the 50-m buffer on either side of

mapped roads (Table 2). The ratio of number of landslides
mapped to number predicted within the buffer ranged from
1.9 to 3.2, suggesting that the presence of mapped roads at
least doubled the probability of landslide initiation. If
desired, we can then estimate the effect of roads by
multiplying the mean landslide density for each cover class
by these ratios within a 50-m buffer of all mapped roads.
[65] Areas within the buffer for roads had a mean

topographic weighting equal to 0.53 that of the overall
mean for the SNF study area, showing that roads tend to lie
in lower-gradient, more stable areas than found on average
over the DEM. This result is crucial to our assessment of
road effects: without accounting for the topographic loca-
tion of roads, we would predict landslide numbers twice as
large (Table 2).

5. Discussion

5.1. Topographic Influences on Landslide Density

5.1.1. Topographic Index
[66] Although our topographic index was based on the

model of Montgomery and Dietrich [1994], other indices
that characterize topographic influences on slope stability
may also be used. Examples include slope gradient and the
product of slope gradient and local curvature (a measure of
convergence), which lack dependence on contributing area,

Figure 8. Landslide size distributions, given in probability density ((number in bin/total number)/bin
width), for each forest cover class in the Siuslaw inventory and for all landslides in the ODF inventory.
Solid line shows a double pareto distribution, equation (15), fit to the ODF data.

Table 1. Results for Siuslaw National Forest Landslide Inventory

Forest Class Open Mixed Large

Area, km2 671 1592 1219
Number of mapped landslides (nLS) 529 409 136
Mean topographic weighting (wT ) 0.858 1.013 1.358
Photo-detection bias (g) 9.1 12.4 30.4
Uncorrected landslide density,

number/km2
0.788 0.257 0.112

Topographically corrected density
nLS/(Area * wT )

0.918 0.254 0.082

Topo and photo-corrected density
g * nLS/(Area * wT )

8.4 3.1 2.5
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but can perform better in some situations [Reid et al., 2001],
potentially depending, for example, on the nature of the
triggering storms [Wieczorek, 1987]. Our general approach
of calibrating an index against landslide mapping and
DEMs provides the means to compare topographic influen-
ces captured by different indices, landslide inventories (e.g.,
field mapped versus air photo–mapped landslide locations),
or elevation data (e.g., 10-m versus 30-m DEMs). The
greater the proportion of landslides captured in a given
proportion of area, expressed in landslide number-versus-
area curves (e.g., Figures 5–7), the better the index,
inventory, or elevation data is at resolving topographic
controls.
5.1.2. Landslide Initiation Points
[67] Each landslide in the ODF inventorywas characterized

in terms of a single topographic index value at the inferred
initiation point. However, some uncertainty surrounds

which DEM pixel represents the landslide initiation point,
arising both from the level of precision available from
mapping on 1:24,000-scale base maps and from ambiguity
as to where within a landslide scar the failure initiated. We
therefore chose the least stable DEM pixel (lowest index
value) within a specified radius of the mapped point. Our
choice of 30 meters for this radius was based on the
assumption that a 1.25 mm margin (the extent of 30 m on
a 1:24,000-scale map) adequately represented the uncertainty
in the mapped landslide initiation point on the base map.
The radius selected influences the resulting distribution of
index values associated with landslides. As the radius
increases, the distribution shifts to less stable values
[Dietrich et al., 2001], thereby changing the shape of the
number-versus-area curves and the resulting topographic
weighting term. It is important therefore that the same
radius be used to compare results between sites.
[68] Likewise, any bias in the placement of initiation

points, such as our choice to locate points near the highest
elevations enclosed by the SNF landslide polygons, also
affects inferred relationships with topography. Although our
procedures were systematic and well documented, differ-
ences among studies in techniques for placing initiation
points will confound attempts to compare results relating
landslides and topography.
[69] Our findings suggest that field mapping more pre-

cisely characterized landslide locations than air photo map-
ping for the data sets we used. This is indicated by the
divergence of the number-versus-area curve for the photo-
mapped landslide locations from curves predicted with a
topographic weighting term derived from the field mapped
locations (Figure 7). Such a pattern could result if landslide
initiation points mapped from the aerial photographs were
likely to be misplaced onto adjacent points on the hillslopes
with higher topographic index (IT) values, either during the
mapping or the digitizing processes. This is particularly
likely for landslides within a topographic hollow, the axis of
which has much lower topographic index values than
adjacent areas. Likewise, smaller landslides, which tend to
be missed on the aerial photographs, provide greater preci-
sion in locating initiation points simply because initiation
points are chosen from a smaller landslide scar. The pattern
we observed in the number-versus-area curves may also
have arisen if smaller landslides occurred in different topo-
graphic locations than larger landslides. In any case, the
field-mapped locations better resolved topographic controls
on landslide location, and thus provided a more reliable
weighting term than obtained from air photo mapping.
5.1.3. Topographic Weighting Term
[70] In evaluating the performance of the topographic

weighting term (wT), the logistic function we fit to the
cumulative distribution (Figure 3a) for all landslides in the
ODF field inventory generated a smoothed estimate, and so
the modeled curves were not identical to the empirical data
(Figures 3b and 5a). A different function with additional
degrees of freedom may better fit the shape of the empirical
curve. However, we were reluctant to try matching every
inflection, given uncertainties regarding the signal-to-noise
ratio of these data. We thought that the smooth form of the
logistic curve provided a good compromise; the empirical
data fell within the range of values obtained with a weight-
ing term derived from the tangent to the logistic curve.

Figure 9. (a) Total number of landslides NT (black lines),
with 90% confidence intervals (gray lines), versus the
number counted NC based on sampling with replacement
from the ODF landslide inventory for three visibility
thresholds and (b) width of the 90% confidence intervals
for g, the ratio NT/NC, for each of these thresholds.
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[71] The number-versus-area curves for the mapped land-
slides shown in Figure 5 differed slightly among the forest
cover classes, but 90% confidence intervals generated by
Monte Carlo modeling indicated that all fell within the
likely range obtained with a single composite weighting
term. A larger sample may resolve significant differences
between forest cover classes, if they exist. However, we
think that the currently available data do not justify the
added complexity of separate weighting terms for each
forest cover class.
[72] Landslide locations in the Tyee sandstone were well

characterized with the composite topographic weighting
term, but those in basalts were less so, as shown in Figure 6.
This suggested that a separate weighting term for basalts
might be warranted. However, we considered data from the
ODF field inventory insufficient to divide landslide points
by both forest cover class and rock type given that only
44 landslides were sampled in basalts. We therefore decided
to combine data across rock types, increasing the number of
landslides for calculating the composite topographic weight-
ing term and thus increasing overall confidence in our
estimates. As a consequence, this improved the model for
regional application, but landslide densities in specific

locations may be overestimated. For applications limited
to basalts, obtaining additional landslide data and calibrat-
ing a specific topographic weighting term is advisable.
[73] In part, our use of a single topographic weighting

term across different forest cover classes and geologic units
is driven by our desire for a simple model that can be
implemented across large areas. Use of a single weighting
term allows us to calculate a single topographic weighting
value for each pixel, stored as a raster file. We then multiply
this raster file by the mean landslide density to obtain a
spatially distributed estimate of landslide susceptibility
(Figure 4d). The mean landslide density is obtained from
GIS coverages of forest cover, categorized into our open,
mixed, and large classes, each with its own landslide density
(Table 1). This strategy provides a straightforward assess-
ment of topographic influences on landslide susceptibility,
given by the raster file of topographic weighting terms for
each DEM pixel, and a method for rapid assessment of
forest cover influences on landslide susceptibility. It is
certainly feasible, however, to develop a more detailed
model using separate topographic weighting terms calibrated
to specific terrain units, which may be appropriate for other
types of model applications.

Figure 10. Mean landslide densities for each forest cover class (a) for composite data from all five ODF
sites combined and (b–f) for each site individually. White bars show uncorrected landslide density; gray
bars show landslide density adjusted for topographic variability between forest cover classes at each site.
The number of landslides and area (km2) in each class are in parentheses.
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[74] Differences in mean topographic weighting among
forest cover classes may reflect the history of timber
harvests in the region. Logging of steep slopes requires
specialized equipment and costs more than timber harvest in
lower-gradient areas; thus harvested areas (open and mixed
classes) tend to occupy more stable terrain (lower mean
topographic weighting values) than unharvested areas (large
class). Likewise, it is less expensive to build and maintain
roads on lower-gradient, stable terrain than on steep, unsta-
ble slopes; thus roads tend to occupy areas with low
topographic weighting values. This is an important point
when comparing landslide densities near roads to densities
found for hillslope areas.
5.1.4. Storm Effects
[75] Topographic locations for rainfall-triggered land-

slides can differ with storm characteristics, such as intensity
and duration [Wieczorek, 1987]. Our topographic weighting
is calibrated to landslides triggered by two storms: the
February event was of high-intensity and long duration;
the November event was generally of higher intensity and
shorter duration. Calibration to landslides from a different
set of storms may have altered the performance of the
topographic index and lead to a different value for the

topographic weighting term. The large number of landslides
triggered by the 1996 storms motivated field and air photo
studies that provided an informative data set, but compar-
ison with landslide locations from other events is needed to
fully determine the generality of our results.

5.2. Bias in Aerial Photographs

[76] Our estimates of the degree to which landslides were
undercounted on aerial photographs were substantial and
differed by forest cover class. We determined that under-
counting of landslides was greater in forested than in non-
forested areas. This is consistent with direct comparisons
of landslide counts between ground-based inventories and
air photo–based inventories for the Oregon Coast Range
using 1:6000-, 1:12,000-, and 1:24,000-scale photos [Robison
et al., 1999] and for coastal British Columbia, Canada using
1:12,000- and 1:15,000-scale photos [Brardinoni et al., 2003].
[77] Regional assessments of landslide susceptibility rely

primarily on analysis of aerial photographs that yield biased
estimates of landslide density by forest cover class. The
simplest method to address such bias is restricting analysis
to one forest cover class, e.g., open areas. This was the
approach taken by Rollerson et al. [2002], which is suffi-

Figure 11. Variation in landslide density with sample size over the SNF study area. Shown aremedian and
90%confidence intervals of landslide density for subsamples from1 to 1000km2 for (a) open, (b)mixed, and
(c) large forest cover classes. Also shown is width of the 90% confidence interval from the sampled values
before and after adjustment for uncertainty in air photo detection bias (g) (equation (22)) for (d) open,
(e) mixed, and (f) large forest cover classes; differences between the curves for the 90% confidence width
and the adjusted width represent the variability due to uncertainty in detection bias.
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cient for identifying terrain attributes associated with land-
sliding after timber harvest but cannot address the effects of
logging on landslide density. In contrast, our strategy, based
on comparing landslide size distributions, estimates the bias
in density measurements for different forest cover classes
and the uncertainty around these estimates. Thus we provide
the means to consider the effects of forest disturbance on
landslide density.
[78] Our strategy is, however, based on the assumptions

that we are comparing field- and air photo–based landslide
inventories from the same underlying size distribution and
that no other sources of bias exist in the samples. These
assumptions could not be rigorously evaluated in our
analysis. For example, the ODF inventory included only
landslides that traveled to stream channels, of which we
excluded streamside landslides, whereas the SNF inventory
included all shallow landslides visible on the photos, some
of which may not have traveled to stream channels. How-
ever, data are not available to determine if landslide sizes in
the two inventories represent the same or different under-
lying populations. Additionally, the SNF inventory followed
one major storm, whereas the ODF inventory contained data
that were collected after this and another storm. We
assumed that the distribution of landslide sizes is un-
changed with storm characteristics. This is consistent with
the observation that landslide inventories from a variety
of locations exhibit similar size scaling relationships

[Malamud et al., 2004], but is unverified in our case.
Ideally, future data collection protocols will seek to mini-
mize potential sources of bias and analytical techniques will
be developed to better evaluate underlying assumptions.

5.3. Landslide Density by Forest Cover Class

[79] After correcting for topographic variability and
detection bias in aerial photograph mapping, we found
distinct differences in landslide density between forest cover
classes in the SNF landslide inventory, with the highest
average density in recently disturbed areas (open class) and
the lowest density in older forests (large class) (Table 1).
This result emerged only when landslide density was

Figure 12. Variation in the ratio of landslide densities with sample size over the SNF study area. Shown
are median and 90% confidence intervals for the ratio of landslide density between the (a) large and
mixed classes and (c) large and open forest cover classes. Also shown is width of the 90% confidence
interval from the sampled values before and after adjustment for uncertainty in air photo detection bias
(g) (equation (24)) for (b) large to mixed and (d) large to open ratios; differences between the curves for
the 90% confidence width and the adjusted width represent the variability due to uncertainty in detection
bias.

Table 2. Results for Road Buffer

Forest Class Open Mixed Large All

Area in buffer, km2 135 448 173 756
Summed topographic weighting

(
P

wT), km
2

63 234 104 401

Landslide density (r from Table 1),
number/km2

0.918 0.254 0.082 0.308

Number of landslides mapped 112 126 29 267
Number of landslides predicted

(r
P

wT)
58 59 9 124

Number mapped/number predicted 1.9 2.1 3.2 2.2
Number predicted with no topographic

correction (r area)
124 114 14 232
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evaluated over fairly large areas (>500 km2); over smaller
areas, older forests typically contained more landslides per
unit area than younger forests (mixed class) as we and
Robison et al. [1999] observed for the ODF field sites
(Figure 10a). Such an outcome is possible if landslides tend
to be more clumped in the large forest class and more evenly
distributed in the open and mixed classes. If so, a greater
proportion of sampled areas would include no landslides in
the large class [Miller et al., 2003]. Accordingly, since we
excluded samples with no landslides, higher densities were
observed in the large class for smaller sample areas. The
same can be expected when field inventories are purposely
focused in areas containing landslides, which is common.
[80] Although we had insufficient data to examine differ-

ences in landslide density associated with variability in rock
type or storm characteristics, our approach can still resolve
relative differences in landslide density between forest cover
classes. This is true as long as variability in forest cover
occurs over smaller spatial extents than variability in rock
type and storm characteristics. By using the cumulative
distribution functions (equations (3) and (4)) to define
topographic effects, in which the proportion of landslides
are associated with a proportion of area, calibration of the
weighting term is unaffected by spatial variations in landslide
density. Therefore, even if the absolute landslide density
varies with rock type or storm characteristics, as long as the
ratio in mean landslide density between forest cover classes is
the same in each case, the relative difference in density
between forest classes is constant. This aspect was of
particular importance to our analysis, because data were
lacking on variations in intensity and duration of the 1996
storms and to constrain landslide densities in rock types other
than sandstones. If or howmuch landslide density ratios vary
in different situations remains an issue to be resolved.
[81] Estimates of landslide density translate directly to

estimates of the probability that a landslide was mapped
within any specific area on the landscape, a DEM pixel for
example (equation 14). These estimates are subject to the
constraints of the calibration data, which in this study
reflected landslides associated with two large storm events
in a single year. This precluded using this calibration for
estimating landslide rates (number per unit area per unit
time). However, to the extent that landslides triggered by
these storms manifest characteristics of landslide locations
associated with other storms, the available data provide a
spatially distributed estimate of the relative probability for
landslide occurrence, i.e., where landslides are most and
least likely to originate.
[82] Point-to-point differences in modeled landslide den-

sities reflect the relative effect of topography and forest
cover. If relative landslide densities between forest cover
classes do not vary substantially with location or time, then
we can use the model to estimate differences in the relative
number of landslides associated with changes in forest
cover. This provides the ability to evaluate effects of past
and current timber harvest on current and future patterns of
landslide susceptibility.

5.4. Spatial Variability

[83] The ODF and SNF landslide inventories exhibited
great site-to-site variability in relative landslide density
between forest cover classes. This suggests that forest cover
effects on landslide density (and any rates inferred from

those densities) must be estimated over broad spatial extents
to be reliably extrapolated regionally. Field-based landslide
inventories, because they can include the full range of
landslide sizes, are generally viewed as better indicators
of landslide density in forested areas than are air photo
inventories. Our results support this view (e.g., Figure 9),
but also indicate that field-based estimates of landslide
density must be interpreted in light of potential variability
over the spatial extent of the field study. As shown by the
90% confidence intervals in Figure 12, a high probability
exists that relative densities measured over tens of square
kilometers will contradict those measured over hundreds of
square kilometers. The time and effort required often limit
field surveys to relatively small areas, tens of square kilo-
meters; whereas dramatic differences in landslide densities
between study sites (Figures 10 and 12) suggest that much
larger sample areas are required to obtain regionally appli-
cable averages. For results that represent regional averages,
landslide densities must be compared among forest cover
classes over large areas, typically necessitating the use of air
photo analyses. This does not preclude the need for careful
field mapping, which can help to compensate for the
potentially poorer resolution and bias inherent in mapping
from aerial photographs.

5.5. Roads

[84] The 1:24,000 DLG data for the study area incom-
pletely represent road locations and omit information on
other attributes that can influence landsliding (e.g., road
type, age, and level of use and maintenance). Although we
attempted to remove all road-related landslides from the
SNF database, some were undoubtedly retained and influ-
enced our estimates of landslide densities for the three forest
cover classes. This was another source of variability in
measured landslide densities that we could not constrain.
However, the effects of roads on landslide density were
indirectly incorporated in our analysis of variability.
[85] Although incomplete mapping of roads is an issue in

most places this modeling approach may be applied, the
effects of mapped roads on landslide densities can be
accounted for. Our approach accomplishes this within a
50-m buffer on either side of all mapped roads by multi-
plying the mean landslide density for each forest class by
the factors in Table 2. For example, in recently harvested
areas (open forest class), the mean landslide density applied
within 50 m of any road would be 1.9 times greater than the
mean density applied elsewhere (Table 2, line 6); in mature
forests (large forest class) the mean density applied within
50 m of roads would be 3.2 times greater than elsewhere.
This provides an estimate, based on observations over a
5,665 km2 area, of road effects averaged across road type,
age, and level of maintenance.

6. Conclusions

[86] Motivated by a need to assess the geomorphic and
ecological implications of timber harvest on susceptibility to
debris flow initiation, we developed methods using widely
available data (10-m DEMs, landslide inventories, and
forest cover mapping) to estimate effects of topography,
forest cover, air photo detection bias, and spatial variability
on the density (number per unit area) of rainfall-triggered
translational landslides and for specifying the confidence to
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place in those estimates. These methods rely on both field-
and air photo–based landslide inventories, which used
together capitalize on the strengths and overcome the
deficiencies in each data source. Topographic influences
on landslide susceptibility are inferred at the DEM resolu-
tion, providing a GIS-based model with sufficient detail to
identify individual debris flow source areas and with suffi-
cient data coverage to apply over large regions (e.g., the
29,000 km2 Oregon Coast Range).
[87] Our approach estimates and adjusts for uncertainty in

forest cover–specific landslide densities arising from topo-
graphic variability and from detection bias in aerial photo-
graphs. We found that regional estimates of landslide
densities among forest cover classes were affected less by
adjusting for differences in topography than for differences in
visibility of landslides on aerial photographs. The ability to
account for air photo bias is therefore critical when examin-
ing landslide densities under different forest cover classes to
evaluate logging effects on landslide initiation. However,
topographic effects cannot be ignored. Without accounting
for topography, for example, we could not accurately assess
the effect of roads on landslide density (Table 2).
[88] For the data we used, differences in landslide density

between forest cover classes varied considerably among
sample sites and the range of values varied with the size of
the area sampled. After accounting for topographic variabil-
ity, we found no consistency among sites in field-based
estimates of landslide density under different forest covers.
After correcting for both topographic variability and air
photo bias, subsampling an air photo–based landslide
inventory demonstrated that relative landslide densities
measured over small areas may contradict those measured
over large areas. In samples encompassing tens of square
kilometers, older forests tended to contain the highest
landslide densities; for samples encompassing hundreds of
square kilometers (>500 km2), all samples had the lowest
landslide densities under older forests.
[89] The methods presented here can be used to estimate

the number of initiation sites for translational landslides
expected over any delineated area, to look at how that
number might change with a change in forest cover, and to
specify the confidence to place in those results. Because the
model uses regionally available data, we can extrapolate
these results over the entire Oregon Coast Range. Predic-
tions are predicated on the data used for calibration. In this
study, data were from a series of two intense storms, so we
cannot infer landslide rates, but we can infer differences in
susceptibility to landslide initiation during a large storm for
different locations and under different forest cover classes.
As new landslide inventories and better DEMs become
available, the model can be evaluated and updated. These
methods can be applied anywhere similar data are available
and potentially adapted to accommodate different types of
data and other types of landslide processes.

Notation

Topographic weighting
IT Topographic index.

FLS Empirical cumulative distribution function of
landslides ranked by topographic index.

FA Empirical cumulative distribution function of
DEM area ranked by topographic index.

nLS Number of landslide-containing pixels.
nA Number of DEM pixels.
f Rate of change along the FLS versus FA curve

with a change in topographic index.
fp Value of F within a single DEM pixel.
r0 Mean landslide density (number per unit area).
wT Topographic weighting term, a function of

topographic index.
Topographic index

qcr Critical steady state rainfall intensity for failure
of thin, cohesionless soil in Montgomery and
Dietrich [1994] model, used here as topo-
graphic index.

T Soil transmissivity.
q Ground surface gradient, degrees.
rS Wet bulk density of soil, kg/m3.
rW Density of water, kg/m3.
a Contributing area, m2.
b Unit contour length, m.
f Friction angle of soil, degrees.
C T(rS/rW).

Landslide size distribution
s Landslide size, m2.

p(s) Probability density of landslide size, double
pareto distribution.

m Maximum landslide size, m2.
c Minimum landslide size, m2.
t Rollover point in landslide size distribution, m2.

a, b Parameters in double pareto distribution used
for landslide sizes.

Aerial photograph mapping bias
NT Actual number of landslides.
NC Number counted in photograph.
sV Lower size threshold for landslides visible on

photograph, m2.
P(visible) Probability that a landslide is larger than sV.

r On-the-ground landslide density, number per
unit area.

r(Photo) Landslide density determined from aerial photo-
graph, number per unit area.

g Ratio r/r(Photo), equal to NT/NC.
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