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ABSTRACT

The mechanical response of a fault zone during an
earthquake may be controlled by the diffusion of excess heat
and fluid pressﬁres generated by frictional heating. In this
study a numerical model is formulated which incorporates the
effects of frictional heating on the thermal, hydrologic, and
mechanical response of a small patch of the failure surface.
This model is used to examine the parameters that control the
fault response, and to determine their critical range of
values where thermal pressurization is significant. The
problem has two time scales; a characteristic slip duration
and a characteristic time for thermal pressurization. The slip
duration is set by the fault geometry.lThe characteristic time
for thermal preésurization is set by the slip rate, friction
coefficient, and the thermal and hydraulic characteristics of
the medium. Results suggest that the fault width, and
hydraulic characteristics of the fault zone and adjacent
medium are the primary parameters controlling the ﬁechanical
response. For narrow zones with a low porous medium
compressibility (<10-% Pa-') and permeability (<10-'8 m?),
frictional heating can cause fluid pressures to approach
lithostatic values and the temperature rise to stabilize at a
maximum value dependent on the pore-dilatational and transport
properties of the porous medium. Moderate slip events where
shear strains exceed two cause substantial strain-weakening of
the fault and, consequently, large stress drops,

accelerations, and displacements. Both the dynamic stress drop
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and total displacement decrease for zones with larger
compressibility, pérmeability or width. The diffusion of
excess pore pressures during the latter stages of slip causes
strain hardening and a decline in slip velocity. Whether the
patch experiences substantial strain-weakening or acts as a
barrier depends on the shear strain across the fault. Thus it
is possible for the patch to act as a barrier for small
earthquakes but not for large ones. If the compressibility or
permeability exceed 10-® Pa-' or 10-1'% m?, or the shear strain
is less than one, then the effects of frictional heating may
be negligible and the fault will exhibit no strain-weakening
characteristics. Consequently, the patch acts as barrier that
halts or resists further fault motion regardless of shear
strain. Extrapolation of these results suggests that spatial
variations in fault width and hydraulic characteristics will
cause a heterogeneous stress drop and fault slip over the
failure surface, explaining many of the features of active
faulting (e.g., barriers, non uniform slip, rupture stoppage,
random ground accelerations, strong motions, and

frequency-magnitude relations).
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CHAPTER 1

OVERVIEW OF THE STUDY

Most rocks within and adjacent to fault zones are porous
and, under crustal conditions the pores are likely to contain
water. Because the pressure of pore waters influences the
mechanical properties of rock, stresses and strains are
coupled to fluid flow within the porous medium. Furthermore,
shear heating within a fault zone during deformation can lead
to thermal expansion, pressurization and flow of pore fluids,
thereby coupling the thermal field to the fluid-pressure field
and, consequently, to the stress and strain fields. This
coupling can lead to decreases or increases in the strength of
a fault as well as in the strength of the adjacent medium.
Thus the behavior of pore waters is of considerable importance

in the mechanics of fault zone processes.

Numerous models have been proposed to explain how pore
fluids might affect deformation processes. The majority of
these models have been concerned with dilatancy in the
presence of pore fluids. In this context, dilatancy is the
process whereby the pore volume expands because of an applied
differential stress. Nur and Booker (1972) discussed possible
changes in fluid pressure arising from earthquake-induced
stress drops, and the potential of these changes to act as
triggering mechanisms for aftershocks. Scholz er al/. (1973)

suggested dilatancy could delay seismic failure by reducing



fluid pressure on a fault, and then trigger failure when the
pore pressure is recovered. Rice and Simons (1976) examined
how the coupling of dilatancy with pore-pressure diffusion
could provide a mechanism by which a propagating shear fault
could be stabilized against seismic failure. In this case the
decrease in fluid pressure caused by dilatancy would tend to
inhibit further inelastic deformation. In additional work,
Rice and Rudnicki (1979) and Rudnicki (1979, 1980) examined
the precursory creep behavior that such coupling could lead
to. Simpson (1976) and Nur and Bell (1978) suggested that
increases in fluid pressures induced by reservoir loading
could act as a mechanism triggering increased seismic
activity. These studies have examined the role of pore fluids
either before or after seismic failure. Melosh (1979)
suggested that during a seismic event a transient increase in

fluid pressure could occur due to acoustic fluidization.

Hubbert and Rubey (1959) have discussed the importance of
pore-fluid pressures in the mechanics of slip for low-angle
overthrust faults. They suggested that the movement of a large
thrust sheet posed a serious mechanical problem because
friction along the base would seem to reqguire either
impossibly high shear stresses in the sheet or an unreasonably
steep siope. Their hypothesis that high fluid pressures can
reduce the frictional resistance along fault surfaces to
near-zero values is a major contribution to fault mechanics.
According to the Hubbert-Rubey hypothesis, the frictional

resistance to motion is given by a simple modification of the



friction law. For this modification the shear stress required
for slip is given by the product of the coefficient of
friction and the effective normal stress acting across the
fault surface. Because the coefficient of friction is
reasonably constant for a variety of rock types and a wide
range of normal stresses (Byerlee, 1978; Morrow et al., 1982),
the resistive shear stress can be reduced to very small values
only by lowering the effective normal stress across the fault.
Because the effective stress is equal to the total stress
minus the fluid pressure, a reguirement for low shear strength
is that the fluid pressures adjacent to the fault surface must
be close to lithostatic values. Hubbert and Rubey concluded
that high fluid pressures play a vital role in low-angle
thrust faulting. If overthrusting and other styles of faulfing
are initiated and sustained by abnormally high flﬁid
pressures, then a mechanism for generating and maintaining
that pressure poses a fundamental problem in fault mechanics.
One such mechanism, a transient increase in fluid pressure due
té thermal expansion of pore fluids caused by frictional

heating within a fault zone, is the subject of this thesis.

Assuming that the failure surface is established and that
the shear stress required for slip is given by the friction
law, many investigators have shown that shear heating could
play an important role in the dynamics of fault processes.
Jaeger (1942), McKenzie and Brune (1972), Richards (1976),
Cardwell et al. (1978), Scholz (1980), and Sibson (1980)

suggested frictional heating could lead to partial melting on



the fault surface with a subsequent reduction in dynamic shear
strength. These studies have neglected the presence and
possible effect of pore water. If water is present, the
dynamics are more complicated. The response of fluid pressures
to shear heating can be described by the following two extreme
cases. If the hydraulic diffusivity is much greater than the
thermal diffusivity, then the thermal expansion of pore fluids
is accomodated by fluid flow from the heated region. In this
case the fluid pressure and dynamic shear strength remain
unchanged during slip. Because the advection of heat is
generally small, the fault is é large source of frictional
heat and partial melting may occur. This is the response
expected for high;permeability material. If the hydraulic
diffusivity is less than the thermal diffusivity and if the
medium is rigid, then there is no appreciable loss of fluid
mass within the heated region due to transport from, or pore
dilatafion withiﬂ, that region. In this case the heating
process takes place at constant fluid mass and substantial
increases in fluid pressure can occur during deformation. The
resulting thermal pressurization causes the effective
compressive stress to decrease, promoting inelastic
deformation mechanisms such as frictional sliding past grain
boundaries and microcracking. If fluid pressures approach
lithostatic values the dynamic shear strength will become
small, and the material within the fault zone will lose
cohesion and deform as a viscous fluid. This is the response

expected for media with low permeability that have undergone



an initial phase of consolidation. In addition, dilatancy
recovery due to shear strain release in the region adjacent to
the fault zone can further enhance increases in fluid
pressures (Sibson, 1973; Scholz et al/., 1973; Rice and

Rudnicki, 1979).

Sibson (1973; 1977) showed that if watef is present in
interconnected pores adjacent to a fault surface, the
temperature rise cause by frictional heating can result in a
rapid increase in fluid pressure. The thermal pressurization
of pore-fluids would cause the two sliding surfaces to lose
cohesion, and consequently, reduce the dynamic shear strength
and the rate of frictional heating to virtually zero. In such
a case the maximum temperature attained on the fault surface
would be substantially less than that required for partial
melting. In additional work, Sibson (1975) presented evidence
for frictional melting on the outer Hebrides thrust zone and
suggested such contrast in behavior might depend upon whether

slip occurred under "wet" or "dry" conditions.

Without attempting to solve the coupled equations,
Lachenbruch (1980) wrote down the governing equations for heat
and fluid flow, and analyzed for special cases the interaction
of controlling parameters and their critical range of values.
The concepts discussed in this work form the basis and
starting point for this study. For his analysis he assumed
that the width and relative slip velocity across the fault

zone are constant during deformation, that the strain 1is



independent of position in the fault zone, and that the shear
stress required for slip is given by a friction law.
Lachenbruch showed that a reduction in fault strength due to
thermal pressurization requires the tandem operation of three
processes: shear heating must cause a significant temperature
rise, the temperature rise must cause a significant
fluid-pressure increase, and the fluid-pressure increase must
cause a significant reduction in shear strength. Failure of
any of these conditions can lead to decoupling of the thermal,
pore fluid pressure and stress fields, and thereby a failure
to reduce the shear strength of a fault. He concluded that if
permeability or pore-dilatational rate exceed 10°'3 m? or 2%,
respectively, then coupling of thermal, hydrologic, and
mechanical effects could pfobably be heglected, with fluid
pressure and dynamic shear strength remaining constant during
slip. Raleigh and Everden (1981), assuming no transport of
fluid or heat, calculated the maximum fluid pressure increase
for various displacements, displacement velocities, and fault
zone widths., They used these calculations as evidence for low

ambient shear stresses in the crust.

While these studies have served to illustrate pertinent
features of the response, they have considered only a fault
zone of constant width and fixed strain rate, for the
following two limiting cases: those cases where the fluid
transport is so large it nullifies thermal pressurization, and
those cases where the transport of heat or fluid, or both, are

so small they can be neglected. In addition, changes in the



pore-dilatation rate during slip have not been considered. For
these cases, it is possiblelto analyze the system using simple
analytical models. For intermediate conditions, these studies
do not provide an adequate description of the transient
increase in temperature within a fault zone during slip, and

its effect- on the fluid pressure and stress fields.

By assuming a friction law to describe the shear stress
required for slip, it is not possible to examine the evolution
of inelastic deformation across a fault zone. Since this law
describes only the gross resistance between two sliding
.surfaces, .the shear stress is only influenced by the effect
that the strain rate has on the rate of heat generation and,
consequently, on the fluid pressure and effective stress. This
approach decouples the equations describing motion within a
fault zone from the equations describing the fluid pressure
and temperature. Thus it is necessary to make a priori
assumptions about the width of deformation and the strain rate
across the fault zone to calculate the fluid-pressure and
temperature fields. In order to solve for deformations a
rheological law is needed to define the way in which shear
stress is related to strain rate, effective stress, and
temperatufe for the material within a fault zone. By
considering the rheology of fault-zone material, no arbitrary
assumptions are invoked with respect to any of its mechanical

characteristics.



For the purposes of this thesis a fault zone is defined
as a region of intensely deformed material that is flanked on
both sides by relatively undeformed material. The fault zone,
perhaps a few centimeters to tens of meters wide, undergoes
strains that are finite and largely irrecovable. The
surrounding crustal rocks experience infinitesimal strains
which store the elastic energy that has risen slowly because
of long-term tectonic movement. During deformation this strain
energy is primarily released by transfer to the fault zone
where it is dissipated into heat and the kinetic energy of
motion. Because deformation may not occur across the entire
fault zone, a distinct fault zone boundary is an artifice.
Conceivably the boundary will vary both in time and space.
During slip, deformation across the fault zone resembles the
flow of a viscous fluid under an applied shear stress. In this
case, inelastic shear deformations dominate the elastic
response and the fault zone can be described with a rheology
that is dependent on the effective stress and temperature. For
a constant shear stress, this formulation implies that fault
material behaves as a visco-plastic material which at failure

yields and undergoes inelastic deformation.

Such fluid-mechanical formulations exist for non-porous,
single-constituent materials with a temperature-dependent
rheology. Turcotte and Oxbaugh (1968) modeled the deep
structure of dip-slip fault 'zones using a fluid dynamical
theory which included shear heating and a

temperature-dependent rheology. Sukanek and Laurence (1974)



discussed the rate of heat dissipation within some simple
shear flows. Yuen et al. (1978) presented a time-dependent
analytical model of temperature, velocity, viscosity, and
shear stress in a fault zone. For their analysis a kinematic
model was adopted where the relative slip velocity across the
zone is constant. Because their model consisted of two-half
spaces sliding past each other on a thin planar surface, it is
independent of the style of faulting. The model was applied to
a hypothetical fault zone, and to fault zones located along
descending oceanic slabs and along major transform faults.
They showed that an initially planar fault zone would widen as
slip progresses, eventually stabilizing at a width that is
dependent on the ambient temperaéure conditions. The maximum
témperatures associated with shear heating were always less
than those required for partial melting. They concluded that
thermomechanical coupling, through shear heating, a strongly
temperature-dependent viscosity and the diffusion of heat, are
the principal factors controlling fault zone structure.
Similiar results have been obtained by Fleitout and Froideaux
(1979), Lockett and Kusznir (1982), and Brun and Cobbold
(1982).

These studies on deformation across a fault zone have
also neglected the presence and possible effect of pore
waters. If pore waters are present, thermal pressurization can
cause the porous medium to loose cohesion, promoting a net
reduc;ion in the shear strength of the region adjacent to the

failure surface. This loss of shear strength could cause an



initially planar zone to broaden as slip progesses.
Conversely, an initially broad zone would tend to contract
about the region where the initial strain rate and,
consequently, fluid pressure and temperature rise happened to
be the greatest. Whether or not the zone will widen (or
contract) to halt (or enhance) the thermal pressurization
process, or stabilize at a certain width and shear strength,
depends upon the rheological relation which links the shear
strength to the deformation rate, effective stress and

temperature.

Currently, very little is known about the rheological
behavior of a fault zone at any depth. For disaggregated fault
gouge it is probable the rheology would follow a frictioﬁ law
behavior; that is the shear strength approaches zero as the
fluid pressures appoach lithostatic values (e.g., Handin et
al., 1963; Jaeger and Cook, 1969; Savage, 1977; Lachenbruch,
1980; Hanes and Inman, 1985). It is assumed that the shear
stress required for slip across the fault is given by the
friction laﬁ

T, = ugz(r, -P) ‘ ' (1.1)

where 7 _is the resistive shear stress, g is the dynamic
coefficient of friction, r 1is the total normal stress acting
across the fault, and P is the pore-fluid pressure. A
principal métivation for using this law is its wide-spread

applicability in describing the results of laboratory

10
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experiments for a variety of rock types. For most rocks My is
insensitive to composition and hardness, and has values
between 0.4 and 1.0 (Byerlee, 1978). For surfaces separated by
a thin clay-rich layer of fault gouge, Morrow et al/. (1982)
reported values for u, that ranged from 0.2 to 0.6. In
general, the coefficient of friction is dependent on the
effective normal stress and deformation history of the fault
zone (e.g., Dietrich, 1979a, 1979b; Rice, 1983; Ruina, 1983,
1984; Rice and Tse, 1986). Because this law describes the
gross resistance between two sliding blocks, the shear stress
is influenced only by the effect that frictional heating has
on the fluid pressure and slip rate. This approach decouples
the equations describing motion within the fault zone from the
equations desqribing fluid pressure and temperature. Thus it
is not possible to examine the evolution of inelastic
deformation, and a priori assumptions about the width of
deformation and the strain rate across the zone must be made
to calculate the fluid-pressure and temperature fields.
Whatever the rheological relation may be, however, it is
likely that it follows a friction law behavior (1.1). If that
were so, then initially broad zone would tend to contract
about the plane where the fluid pressure rise was the
greatest. Without a rheological law relating the shear
strength to effective stress, temperature and deformation
rate, it is simply noted when these calculations imply that
deformation would expand or contract about the edges of the

zone,
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Thermal pressurization has been considered in several
other geologic situations. Habib (1976), Voight and Faust
(1982), and Anderson (1980) examined frictional heat
generation within the fluid-saturated basal zones of large
landslides. Modeling of this problem resembles the analysis of
-of pore-pressures changes due to fault generated frictional
heating. Barker (1972) and Bradley (1972) examined thermal
pressurization within an isolated volume of sediments that are
subjected to a temperature rise during burial. Domenico and
Palciauskas (1979a; 1979b) examined how high geothermal
gradients in combination with a rapid rate of sedimentation
could lead to excess pore pressures. They showed that thermal
pressurization of pore fluids could be of a sufficient
magnitude to initiate inelastic deformation, and thereby, the
development of fracture porosity in compacting basins.
Palciauskas and Domenico (1982) examined the hydromechanical
response of crystalline rock to heating, and showed that the
response can be characterized by the four isothermal elastic
parameters of Biot (1941), in combination with nonisothermal
parameters related to the fluid and solid phases, and the
thermal expansivity of the medium. Delaney (1982) carried out
a detailed analysis of fluid flow and heat transfer induced by
heating along the contact with a planar intrusion. Parameter
values for material properties were identified for which

substantial increases in pore pressures could be generated.

The objectives of this thesis are threefold. First, the

equations governing fluid pressure, temperature, and stress



are developed to explicitly include expansion or contraction
of the fluid and solid phases due to changes in fluid pressure
and temperature. This development is necessary to examine the
parameters that govern the rate of fluid pressurization and
pore dilatation due to an arbitrary rise in temperature, and
to examine their critical range of values where thermal
pressurization is significant. Second, using both analytical
and numerical models, an examination was made of how the
thermal expansion of pore fluids due to frictional heating on
a fault surface affects the temperature and dynamic shear
strength of the fault during slip. Third, this model is
expanded to account for fault zones of finite width aﬁd a
variable resistive stress. The aim of this thesisvis to
examine the full ﬁonlinearlbehavior of fault motion, and to
determine limits to fault behavior for various ranges of the
controlling parameters. Generalizations are formed describing
the importance of thermal and hydrologic effects during fault
motion, dimensionless measures of their importance, and
characteristics time scales for thermal pressurization. In
addition, an examination is made of how thermal pressurization
affects the shear strength of the adjacent medium and thereby
the style of deformation. The results are independent of the
style of faulting and can be applied to strike-slip, thrust
and normal fault iones. The analysis presented here removes
some of the limitations of previous studies, and develops a
better understanding of the role of frictional heating and

thermal pressurization in the physics of fault zone processes.
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The text of this thesis is divided in three main parts.
Each part consists of a paper written to be published in a
scientific journal. Conseguently, each chapter is
self-contained, with an introduction, text, appendices,

references, tables, and figures.

Chapter II outlines the derivations of the field
equations and discusses the material properties that are
necessary for a quantatitive study of fault processes. The
theory in Chapter II is not new. The purpose of the
derivations is four fold. First, the requirement for
conservation of solid mass is used to develop a compatibility
constraint for porosity. This constraint determines the
pore-dilatation rate arising from deformations caused by
changes in pore-fluid pressure, temperature and total
stresses. Second, the fluid flow equation is developed to
explicitly include expansion or contraction of the fluid phase
due to changes in fluid pressure and temperature. This
development is necessary to examine the parameters that govern
the rate of fluid pressurization due to an arbitrary rise in
temperature and examine their critical range of values where
thermal pressurization is significant. Third, previous studies
for porous media have assumed that the rate of heat generation
due to mechanical work is negligible. For fault processes,
however, a significant amount of heat can be generated by
mechanical deformation of the solid matrix. Consequently,
mechanical forms of energy must be considered. Fourth, the

equations set out here form the foundation for examining the

14
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thermal, hydrologic and mechanical response of a fault zone
during deformation. These equations are developed in three
dimensions, however, in Chapters III and IV the fault zone is
assumed to deform by simple shear. In this case, heat and
fluid flow occur at right angles to the centerline of the
faiult zone. Thus only the one-dimensional forms of these

equations are used in subsequent chapters.

In Chapter III, the effects of frictional heating and
fluid flow on the thermal, hyrologic, and mechanical response
of a fault surface are examined. The results of this chapter
illustrate how the effects of heat transfer and fluid flow
influence the thermohydromechanical response of a fault

surface during slip, and lead to the following conclusions:

i) For rigid media with low permeébility, only a small
temperature increase is required for the thermal expansion of
pore fluids to pressurize the fluids and to maintain the fluid
pressure on the fault surface at near-lithostatic values. This
result is in agreement with the earlier analysis by
Lachrnbruch (1980). For media with greater permeabilities or
porous medium compressibilities, or both, large temperature
rises are required on the fault surface for the thermal
pressurization of pore fluids to overcome fluid losses due to
fluid flow or fluid-volume changes due to pore dilatation, or
both. Temperatures on the fault plane stabilize at the point
where there is a dynamic balance between the temperature and

pressure fields, with the increase in fluid volume due to
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thermal expansion equal to fluid loss due to flow and

fluid-volume changes due to pore dilatation.

ii) The dynamic shear strength remains close to its initial
value until the fault surface is heated to a temperature
required for thermal expansion of pore fluids to exceed
substantially fluid losses due to flow and fluid-volume
changes due to pore dilatation. Once this condition is
established, the shear strength diminishes rapidly to a value
sufficient to maintain the thermal pressurization process. For
media with greater permeability or compressibility, or both,
the shear strength will remain close to its initial value over
greater displacements. If either the permeability exceeds
10-'5 m?2 or the porous medium compressibility exceeds 10-8
Pa-', then frictional melting may reduce the dynamic shear
strength before the effects of thermal pressurization become

significant.

iii) The main effect of varying the depth to the fault
surface is to change the initial conditions at the onset of
slip. Because increases in the initial effective stress lead
to an increase in the maximum fluid pressure, the temperature
required to sustain fluid pressures at near-lithostatic values
depends on the initial effective stress. If fluid pressures
are initially hydrostatic, then the final temperature attained
on the fault surface increases with depth. However, because
the transient rate of decrease of the shear strength depends
primarily on the material properties of the porous medium, and

on the coefficent of friction and the slip velocity on the



fault surface, changes in initial conditions do not

significantly change the rate of decrease in shear strength.

iv) The coefficient of friction and slip velocity determine
the rate at which thermal pressurization proceeds, but not the
final outcome. However, if the coefficient of friction is less
than 10-' and if the slip velocity is less than 10°2 ms- !,
then it is doubtful that either thermal pressurization or
frictional melting could reduce the dynamic shear strength of
the fault surface. In these conditions frictional heating 1is
small, and the temperature rise would be minimal for an

earthquake event with realistic displacement.

Chapter IV examines the effect of fault width, the
dynamics of a variable resistive stress, and the physical
parameters that control the thermal and hydrologic fields. A
one-dimensional model is formulated for an earthquake which
incorporates the effects of frictional heating on the thermal,
hydrologic, and mechanical response of a fault. This model has
been used to examine the parameters that control the fault
reéponse, and to determine their critical range of values
where thermal pressurization is significant. In addition, an
important parameter, the thermal pressurization coefficient,
is discussed. This parameter controls the rates of pore
dilatation and fluid pressurization due to a temperature rise.

The main conclusions of this chapter are:

i) Motion of the fault blocks can be characterized by two

time scales, a characteristic slip duration for the release of
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elastic strain energy and a characteristic time for thermal
pressurization due to frictional heating. These time scales
depend primarily on the fault geometry, and the hydraulic
characteristics of the féult zone and adjacent medium. Because
of the wide variations in these parameters, a wide variety of

fault behavior is possible.

ii) For earthquakes occurring across narrow zones comprised
of stiff material with low permeability (<10-'® m?), the
characteristic time for thermal pressurization is much less
than the characteristic slip duration. Consequently, during
slip the resistive stress decreases more rapidly than the
shear stress applied by the elastic region, and the fault
blocks rapidly accelerate. This behavior would lead to
earthquakes of relatively short durations with large stress
drops, accelerations and displacements, and provide an

explanation for strong motions.

iii) For earthquakes occurring across zones where shear
strains are less than one, or the porous medium
compressibility and permeability exceeds 10-8 Pa-' and 10-'%
m?, the characteristic time for thermal pressurization is much
greater than the slip duration. Because thermal pressurization
would be negligible, the fault would retain its initial shear
strength and resist further motion. This behavior would lead
to earthquakes with relatively small stress drops,
accelerations and displacements, and provide an explanation

for the presence of barriers along faults.



iv) The style of deformation across a fault zone may be
controlled by the hydraulic characteristics of the zone and
adjacent wall rock. If the hydraulic diffusivity of the wall
rock is greater than that of the fault zone, deformation would
tend to contract about the central region where the fluid
pressure rise and, consequently, the decline in shear strength
is greatest. In this case it is not unreasonable to expect
very narrow deformation zones for large earthquakes.
Conversely, if the hydraulic diffusivity of the wall rock is
less than that of the zone, the wall rock acts to confine the
excess fluid pressure within the zone. In this case the
diffusion of excess pore pressufes from the fault could cause
a progressive weakening of the adjacent wall rock, and thereby

a widening of the deformation zone.

v) The spatial variations in fault width and hydraulic
characteristics could readily explain a heterogenous stress
drop, and thereby an irregular rupture propagation and slip
rate over the fault. Because these parameters can endure
through many earthquake cycles, earthguakes recurrent on a
given fault may have the same set of characteristic
displacements and magnitudes. Variations within the set would
depend on the relative magnitudes of the fault length, and the
characteristic length scales for the fault width and hydraulic
characteristics. If the characteristic length scales for these
parameters are much less than the fault length, then
variations in the displaceménts and magnitudes would be large.

I1f, however, the characteristic length for these parameters is

19



on the order of the fault length, then the fault block model
would apply and the variations would be small. This scale
dependency would conform to the frequency-magnitude relations
observed for many faults (e.g., Nur, 1978; Aki 1984; Stuart et
al., 1985). Thus the spatial distribution of these parameters
may play an important role in the dynamics and statistical

characteristics of earthquakes.

The results of this thesis suggest that the nature of
fault motion depends critically upon the characteristic time
scales for thermal pressurization and slip duration. In turn,
these parameters depend upon the fault geometry, and the
hydraulic characteristics of the fault zone and the adjacent
medium. Because of the wide variations possible in these
parameters, a wide variety of fault behavior is possible.
Knowledge of these parameters appears essential to
understanding the dynamics of fault motion, and to open the

possibility of quantitative prediction of earthquake behavior.
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CHAPTER 11

FIELD EQUATIONS

A guantitative framework for studying fault processes can
be built on the differential equations describing conservation
of mass, energy, and momentum. The development of these
equations in porous media requires a continuum approach where
the solid and fluid phases are regarded>as coexisting
continua, with the field variables and medium parameters
representing average values over a representative elementary
volume of the porous medium. This approach is justified
provided that the pore spaces and fractures through which the
flow takes place are much smaller than the distance over which
there is a resolvable change in fluid pressure, temperature

and stress.

The theory presented here is not new. The heat-transfer
eguations for a fluid continuum (e.g.; Landau and Lifshitz,
1959; Slattery, 1972; White, 1974; Plattern and Legros, 1984)
and a thermoelastic solid continuum (e.g.; Nowacki, 1975;
Nowinski, 1978) are well known. For porous media numerous
papers on heat and mass transfer can be found in the
literature (e.g.; Stallman, 1960, 1963; Brownell et al., 1977;
Faust and Mercer, 1979; O'Neil and Pinder, 1981:; Bear and
Corapcioglu, 1981; Sharp, 1983). For isothermal flow Biot
(1941), Cooper, 1966; De Weist (1966), Bear (1972), and Rice

and Cleary (1976) have examine deformation of porous media due
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to changes in effective stress. Detailed and extended
discussions can be found in the work by Bear (1972). The
purpose of the derivations presented here is four fold. First,
we shall use the requirement for conservation of solid mass to
develop a compatibility constraint for porosity. This
constraint determines the pore-dilatation rate arising from
deformations caused by changes in pore-fluid pressure,
temperature and total stresses. Second, the fluid flow
equation is developed to explicitly include expansion or
contraction of the fluid phase due to changes in fluid
pressure and temperature. This development is necessary to
examine the parameters that govern the rate of fluid
pressurizétion due to an arbitrary rise in.temperature and
examine their critical range of values where thermal
pressurization is significant. Third, previous studies for
porous media have assumed that the rate of heat generation due
to mechanical work is negligible. For fault processes,
however, a significant amount of heat can be generated by
mechanical deformation of the solid matrix. Consequently,
mechanical forms of energy must be considered. Fourth, the
equations set out here form the foundation for examining the
thermal, hydrologic and mechanical response of a fault zone
during deformation. These equations are developed in three
dimensions, howevef, in subsequent chapters we assume that
heat and fluid flows only at right éngles to the failure
surface. Thus only the one-dimensional forms of these

equations are used in subsequent chapters.
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Two different methods are widely used to describe the
mechanics of motion in a continuum. The first is the Eulerian
approach where motion is described with respect to a fixed
spatial reference frame. The second is the Lagrangian approach
where the history of a particular particle, or group of
particles, that is specified by its original position at some
reference time is followed. Because we wish to express fluid
and heat motion in terms of volume-averaged fluxes and have
little interest in describing them as particle displacement
fields, the Eulerian approach has the advantage of allowing
one to work with independent variables that are natural for
interpreting fluid and heat transport. For this reason the
differential equations for conservation of mass, energy, and
momentum are conceptualiy simpler to develop using an Eulerian
description. That is the framework we shall adopt for their
development. For solution of the field equations, however, it
is mathematically simpler to use a Lagrangian description to
characterize the deformations of the solid matrix. That is the

framework we shall adopt when solving the field equations.

All equations in this chapter, and subsequent chapters,
are developed with respect to a Cartesian coordinate system
(xy,%2,x3). In addition, boldface symbols are used to indicate

vector fields (e.qg., U, Vf)' the tilde to denote tensor

~

fields (e.g., k, :), and subscripts to designate vector and

tensor components (e.g., V

5. Tij)' The gradient operator V is
Si

defined as a/axiﬁi, where the circumflex is used to denote a



unit vector. Scalar products are given as V-Vf. Overdots are
used to indicate time derivatives (e.g., éij=

dseij/dt). The summation convention for repeated subscripts is
followed throughout (e.g., €;;= ey1te,,te33), and frequent use
is made of the Kronecker delta function 5ij, where 5ij=0 for

i#j and 51j=1 for i=j.

CONSERVATION OF SOLID MASS

The Eulerian form of the mass balance equation for the

solid phase of a porous medium is given by

- g - = :
v-lO-n)p, v, ] + &[(1-n)p, ] =0 (2.1)
wvhere V_ is the velocity vector for the solid matrix with
respect to a fixed coordinate system, [ is the density of the
solid phase, and n is porosity. Employing the Eulerian form of

the. material derivative for following the motion of the solid

matrix, defined as
— = 37 + vV -V ‘ (2.2)

yields the following form of the continuity equation:

d
L (£ n= vev, + p—1 (=2 o) (2.3)
(1-n) d: s dt

Because the density of the solids is related to temperature
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and pressure we may decompose the second term on the righthand

side to obtain

d d d
i s 1 9 s = 1 0 s
— = p = — p = 7 + = P - T (2.4a)
Ps ar ° Ps a7 ST ar ps OT Uslz g,
d d
= f, L7 - 4, 2T (2.4b)
d: d:

where B, and y, represent the coefficients of isothermal
volumetric compressibility and isobaric volumetric thermal
expansivity of the solid phase, fespectively, T is the average
vélue of effective normal stress acting on the solid grains,

and T is temperature.

Combining equations (2.3) and (2.4) yields the following

compatibility equation for porosity:
d d
< n = (1-n)[ Vv, + B, 2T - 4, 2T ] (2.5)

where V-Vs represents the volumetric dilatation rate (dse/dt),
which is a function of the evolving stress field and the
constitutive equations relating stress to strain rate (Biot,
1941; De Wiest, 1966; Rice and Cleary, 1976). Equation (2.5)
states that the pore-dilatation rate (dn/dt) is given by the
rate at which solids are leaving a unit volume minus the rate
at which they are expanding due to decreases in the average

effective normal stress or increases in the temperature within
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the volume. Equation (2.5) provides an important relationship
for determining the change in porosity due to deformations
induced by changes in effective stress and temperature. The
inclusion of this porosity constraint is necessary because a
porous medium is not a simply connected body; it is a multiply
connected body with cavities. These cavities represent
porosity, and they may either increase or decrease in volume

as deformation progresses.

CONSERVATION OF FLUID MASS

Assuming the pores are fully saturated with a single
phase fluid, and that the solid and fluid phases are
mechanically separate and distinct, .the Eulerian form of the

fluid mass balance equation is
Ve(np V) + Zr(np,) = 0 (2.6)

where Vf is the pore-fluid velocity with respect to a fixed
coordinate frame (Eulerian coordinates), and p, is the density
of water. Because we wish to express fluid velocity in terms

of the volume-flux density (Darcy flux)

a = n(Vf -Vv.) - (2.7)

N

defined as the relative flux of pore fluids with respect to

the solid matrix, we rewrite equation (2.6) as
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d d
Veln(V,~v )] + nvev. + £, + n_-/f p. =0 (2.8)
fos s dat Py d: e
where
Ei = 9 + V, .V (2.9a)
= W f . Ja
d:
d
= =+ Eé-v (2.9b)
at

is the Eulerian form of the material derivative for following
the motion of the pore fluid. Substitution of the
pore-dilatation rate (2.5) into equation (2.8) yields the

Eulerian form of the mass-balance equation

d d
V-qf + VeV, o+ (1-n)( B gi T - gi T ) +
t t
d
n _f
— p = 0 (2.10)
Py d: v

Because the density of water is related to fluid pressure and
‘temperature through equations of state, we may decompose the

last term of equation (2.10) to obtain

d d d
_n=f - 12 —f 12 -
Py o Py, n(pw 3P Pw - o P+ 5, OT P,y » T) (2.11a)
d a
= n(B L p - v L 1) (2.11b)
w w
dt dt

where §  and v, are the coefficients of isothermal volumetric



compreésibility and isobaric thermal expansivity for water,
respectively, P is the pore-fluid pressure, and T is
temperature. Equation (2.11) shows that increased pore
pressure compresses fluid into the pores, while increased

temperature expands fluid out of the pores.

Combining equations (2.10) and (2.11), and expanding the
material derivative with respect to the fluid, yields the
final form of the continuity equation for fluid mass in

Bulerian coordinates,

d
“Veqy - qp-(B,VP -y, VT) + [ny, + (1-n)7sJ Ef T =
dS ds —
Vovs + [ nﬁw — P + (1—n)ﬁs = 7 ] (2.12)
dt d:

The terms on the lefthand side are, in order, the rate of
fluid transport, the change in fluid mass due to pressure
contraction or thermal expansion of fluids along the flow
path, and the change in fluid mass due to the difference in
thermal expansivities of the fluid and solid phases. The terms
on the righthand side are the change in fluid mass due to
volumetric dilatation of the porous medium, and the change in
fluid mass due to the difference in the compressibilities of
the fluid and solid phases or changes in total stress. We can
see from the last term on the lefthand side that changes in
temperature act as a source of fluid. In particular, increases

in temperature will expand fluid out of the pores and tend to
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increase fluid pressure, while decreases will contract fluid
into the pores and tend to decrease fluid pressures. Because
the thermal expansion of water is large, a temperature
increase can cause a significant increase in fluid pressure.
For isothermal conditions and incompressible solid grains,
equation (2.12) takes the familiar form of Biot's (1941)

eguation.

Equation (2.12) is completed by expression of the

volume-flux density (Bear, 1972)

tr
T =

q (VP + p,9) (2.13)
where ; is the permeability tensor of the porous medium, u, is
the dyhamic viscosity of water, and g is the gravitational
acceleration field. The form of equation (2.13) reflects the
assumption that there will be no fluid flow when the pressure
gradient is hydrostatic (i.e., VP=—p g). For equation (2.13)

to be valid fluid flow through the pores must be laminar..This
constraint is satisfied provided that inertial forces and slip
phenomena are negligible, and the Reynolds number for fluid
flow is small (i.e., Re=dpw|qf|/nuw<<1, where d is a

characteristic grain diameter).

HEAT TRANSFER EQUAT ION

The Eulerian form of the energy balance equation for a

saturated porous medium is



V-[qh + npwerf + (1-n)psvses] + %T[npwef + (1—n)pses] =

T7.VV_ + uw¢ +

s Py (2.14)

bF
T ™
2|0

where q, is the conductive heat-flux vector, ) and e

represent the internal thermal energy of the fluid and solid
phases, respectively, :’ is the total stress tensor, and ¢ is
a viscous dissipation function for the fluid. For details on
the development of equation (2.14) see Appendix 2A. In
equation (2.14) thermal forms of energy appear on the lefthand
side and mechanical forms of energy on the righthand side. The
terms on the lefthand side are, in order, the rate of heat
transport by conduction and convection of the fluid and solid
phases, and the rate of internal heat storage in the fluid and
solid phases. The terms on the righthand side are the rate of
heat generation due to deformation of the solid matrix,

viscous heat dissipation within the pore fluids, and the rate

of heat addition due to pressurization of the pore fluids.

Applying the chain rule to the lefthand side we can

rewrite equation (2.14) as

Veg, + npw(%Tef + Vf-Vef) + (1-")95(%763 + VS-Ves) +

e[V (np, o) + Sonp )1 + e {V-[(1=m)p v ] + S [(1-n)p 1} =
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W+ u b+ BE_L, (2.15)

The last two expressions on the lefthand side are identically
zero by the conservation equations for fluid and solid mass.
Expressing the second and third terms on the lefthand side in
terms of their respective material derivatives, equation

(2.15) can be written as

_v-qh + ‘r’cvv

s w dt w
d d
ne,, =L ep v (1om)p = e (2.16)
dt dr

We now replace the internal thermal energy of the fluid and

solid phases with the enthalpy per unit mass of fluid hf and

solid hs, where
= _P

hf = ef + pw (2.17a)
= T

hs = e ¢t 7, (2.17b)

Using equation (2.17), the rate of change in internal energy

d a
___l_LP+_£._1_£pw (2.18a)
dt
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= 7 + 3: — 3 P (2.18b)
s di s

These equations aré a convenient form when solving problems
that involve two phases (liquid and steam) of the fluid
component (see e.g.; Faust and Mercer, 1979). Usually,

however, we must write them in terms of temperature so that

boundary conditions given in terms of temperature can be

incorporated into the solution.

For a pure substance in the absence of surface tensions
and motion, there are only two independent properties,

pressure and temperature. Hence,

dh _ dh| 4P , dh| QT

= . : (2.19)
de P T dr rys p dr

Substituting the specific heat at constant pressure, defined

as

C = 'E'T (2.20)

into equation (2.19) yields

dh _ 03k dapr ar

dc T oP|p.dr T Spar (2.21)

The first term on the righthand side can be evaluated by means

of the thermodynamic relation
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dh = Tds +‘3—P (2.22)

where s is entropy. We can rewrite this relation as

dh ds 1

We now apply this relation to a representative elementary
volume at thermodynamic equilibrium. Since thermodynamic

equilibrium implies constant temperature, equation (2.23)

yields

ahl - si T s 1 (2.24)
oP T oP T D
Recall from the Maxwell relations of thermodynamics that

O0s _ 1,1 0 _

74 s = -3 (2.25)

where vy is the thermal expansivity of the material. Insertion
of equation (2.25) into (2.21) yields the relationship for

enthalpy as a function of pressure and temperature

dr _ ar (1-47) drP
I - cpa_t—+—%—37 (2.26)
Employing equation (2.26) we can rewrite the equations for the
internal thermal energy of the fluid and solid phases as a

function of pressure and temperature, where
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S| a ~.T @ d ’ .
_Lef = cw —L T - —’;;— —L P + p—’i—(p—1 —'£ pw) (2.273)
dt dt w dt w "w dg

d d ¥y. T 4 = d

Se = ¢, _sT__%__s-T-+.p_T(p_1_§. o) (2.27b)
dt dat s dt s s dr

where ¢ . and ¢, are the isobaric specific heat of the solid
and fluid phases, respectively. These equations indicate that
the change in internal thermal energy is equal to the change
in internal heat storage pius the rate of heat addition due to
pressurization of the fluid or solid phase. In equation (2.27)
local thermal equilibrium between the pore fluids and the
solid grains is assumed. This approximation is satisfied if
the pore spaces and fractures through which heat transport
takes place are much smaller than the distance over which
there is a significant temperature change. A significant
temperature change may be 10-' or 10 °C depending on the

nature of the problem.

In applications to solid-earth physics the heat addition
due to pressurization of the solid phase is likely to be
unimportant. With that assumption, combining equations (2.16)
and (2.27), and expanding the material derivatives for the
convective terms we can rewrite the energy balance equation in

terms of temperature as
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-V-q, - [npwcwvf + (1—n)pscsVs] VT +

~ a
T W + u,® + ny, T gf P = (pc)sf %% (2.28)

where (pc)sf is the heat capacity of the solid-fluid

composite, defined as
(pC)Sf = np,ec, + (1-n)p c (2.29)

Because we need to express fluid motion in terms of the Darcy

flux q; we rewrite the convective terms of equation (2.28) as
[npwchf + (1—n)pscsvs] VT =
{pwcw[n(vf—vs)] + (pc)sts}-VT (2.30)

Replacing the convective terms of equation (2.28) with (2.30)

and insertion of the Darcy flux yields

a
+u®+ ny T Lp =

“Vedy = pyc,qpeVT * 7 VV p
t

N

(pe) (8L + v .vr) (2.31)

Expanding the material derivative using equation (2.9b), and
noting that the term within the brackets on the righthand side

can be written as the Eulerian form of the material derivative
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of temperature with respect to the solid matrix, yields the
final form of the equation describing heat transfer in

Eulerian coordinates

d q ~
S ’ _
- V-qh - pwcwqf-VT + n7w(5? P + —%-VP)T + 7 .Vvs + u P =

(pc) Ei T (2.32)
Pelss dat )

The terms on the the lefthand side are, in order, the rate of
conductive heat transfer, the rate of convective heat
transport by the fluid phase, the rate of heat addition due to
pressurization of the pore fluid, heat generation due to
deformation of the solid matrix, and viscous heat dissipation
within the fluid. The righthand term represents the rate of
internal heat storage and the rate of convective heat
transport by the solid. For groundwater flow problems viscous
heat dissipation within the fluid is negligible, provided that
the conditions for use of the Darcy flux are satisfied (e.g.;
Garg and Pritchett,v1977; Brownell et al., 1977). Hence, we
will neglect that term in subsequent use of the heat transfer
equation. In Appendix 2B, we summarize the conditions where
heat addition due to pressurization of the pore fluid is

negligible,

Equation (2.32) is completed by expressing the conductive

heat flux by Fourier's law



a, = —Esf-VT (2.33)

where st is the thermal-conductivity tensor of the

solid-fluid composite.

THE EQUATIONS OF MOTION

Deformation of the porous medium is governed by the
effective stress Tij (Biot, 1941), which is defined as

Tij = T;j - £P6ij (2.34)
where stresses are defined as positive when compressive, § is
a proportionality constant between pore and bulk volume
changes, and Gij is the Konecker.delta function. This law
states that the strain response of a saturated medium is
identical to that of a solid continuum if one uses the
effective stress Tij instead of the total stress Tfj' To apply
equation (2.34) the effective stress is defined as an average
over some finite area that is sufficient to cover a number of

grains and pores. In addition, deformation of the porous

medium can be described by the strain of the solid matrix e;je

From stress-strain measurements Biot and Willis (1957),

and Nur and Byerlee (1971) have suggested that

E = —— (2.35)
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where k_ and ksf are the bulk moduli of the solid grains and
porous medium, respectively. From equation (2.35), ¢ is the
ratio of fluid volume expelled to the volumetric dilatation
for drained conditions at constant temperature. For media with
appreciable porosity, ks/ksf<<1, with (=1, and the fluid
volume expelled is .equal to the volumetric dilatation. This is
the conventional assumption in compaction theory. In this
case, equation (2.34) reduces to Terzaghi's simple effective

stress law.

The components of the total stress tensor r;j at a point

within the porous medium satisfy the equations of motion

J
where F is the body force per unit mass, Psf is the density of
the solid-fluid composite, and the summation convention is

invoked. Expressing equation (2.36) in terms of the effective

stress yields

) + 0 = -5

If the effects of inertia are neglected, then equation (2.37)
reduces to the well-known stress equlibrium equations for a
porous media (Biot, 1941; Verruijt, 1969). Equation (2.37)
alone is not sufficient to establish unique relations between

stress, deformation rate, fluid pressure, and temperature. In



addition, some description of the medium which defines the way
that stress is related to deformation, fluid pressure, and
temperature is essential. Such a relation is expressed by the
-constitutive equations for the porous medium. The weakest link
in the application of equation (2.37) is the constitutive

equations relating stress to strain.

The strain response of a porous medium consists of both
elastic and inelastic responses. For example, a fault zone
consists of a region of intensely deformed material that is
flanked on both sides by relatively undeformed material. The
fault zone, perhaps a few centimeters to tens of meters wide,
undergoes strains that are finite and largely irrecoverable.
During deformation the fault zone behaves as a visco-plastic
material. The surrounding crustal rocks, however, experience
infinitesimal strains which store the elastic energy that has
risen slowly because of long-term téctonic movement. During
deformation this strain energy is primarily released by
transfer to the fault zone where i£ is dissipated into heat
and the kinetic energy of motion. Thus the region surrounding
the fault zone behaves as a linear-elastic body. Because
deformation may not occur across the entire fault zone, a
distinct fault zone boundary is an artifice. Conceivably the
fault-zone width and, consequently, the boundary between
visco-plastic and elastic deformation will vary both in time
and space. Furthermore, the fault-zone material may behave
elastically in hydrostatic compression and as a viscous fluid

in shear. In such a case, if the shear stress across the zone
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exceeds the yield strength, the zone will constantly creep.
Chénges in fluid pressure, however, may cause an elastic

consolidation or extension perpendicular to the zone.

For a thermoelastic porous medium the stress—-strain

relationships are
T. . = Cijklekl + 7sflj® (2'38)

where € are the strains of the solid matrix, Cijkl is a
tensor of elastic coefficients, 7sfij are the thermal
expansion coefficients of the solid-fluid matrix, and © is the
incremental temperature increase from the initial value. In
employing equation (2.38) we have assumed that these
coefficients, which are strictly valid for a solid continuum,
are also valid for a saturated porous medium. Thus the elastic
coefficients represent coefficients of the porous medium to be
determined experimentally. In general, they are dependent on
total stresses, fluid pressure, and temperature. For a linear

isotropic elastic medium equation (2.38) reduces to (after

Biot and Willis, 1957)

i i (vt 22) Tsf ®5ij (2.39)

where A and u are the Lame” constants, and Tsf is the
volumetric thermal expansion coefficient of the porous medium.
Note the sign change on the strain term in equation (2.39).

This change arises because in equation (2.34) stresses were



defined as positive when compressive, that is, in the negative
directions of the axes. To have solid-matrix displacements
follow the convention that positive displacements correspond
to positive stresses, displacements must be positive when in
the negative direction. This is the conventional sign notation
used in continuum (Jaeger and Cook, 1979, pg. 10). In the
equations for pore dilatation, fluid flow, and heat transfer,
however, displacements are positive in the positive directions
of the axes. Thus to retain that convention the signsbon the
strain terms in equation (2.38) and the inertial terms in
equations (2.36) and (2.37) have to be changed. This change of
convention leaves all formulae unaltered, but when comparing
displacements to stress it should be remembered that positive
displacements correspond to decreases in the compressive

stress. Using the relationship between the strain e, . and the

tJ
solid-matrix displacement U,
1,90 0
€;; = ( U + ve ) (2.40)
ij 2'%x; S 37}. 5 :

equation (2.37) can be solved in terms of the solid-matrix
displacements U, (Biot, 1941; Verruijt, 1969; Rice and

i
Cleary, 1976).

During slip, deformation within the fault zone resembles
the flow of a viscous fluid under an applied shear stress. In
this case, inelastic shear deformations dominate the elastic

response and the porous medium can be described effectively as

a viscous fluid. Thus deformations within a fault zone can be
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described by a rheology that is dependent on the effective
stress, deformation rate and history, and temperature. For
constant shear stress, this formulation implies that fault
material behaves as a visco-plastic material which at failure

yields and undergoes deformation at a constant rate.

Such fluid-mechanical formulations exist for
single-constituent, non-porous material with a temperature
dependent rheology. For instance, thermal softening in ductile
shear zones (Turcotte and Oxburgh, 1968; Yuen et al., 1978;
Fleitout and Froidevaux, 1980; Lockett and Kusznir, 1980; Brun
and Cobbold, 1982), and asthenosphere and mantle convection
(Weertman and Wertman, 1975; Melosh, 1976; Murrell et al.,
1976; Yuen and Schubert, 1979) have been described sucessfully
with this formulation. These studies suggest that the behavior
of porous media within the fault zone during slip under shear
can be written in terms of a rheological law relating the
deformation rate tensor e;, to the effective stress:

Ly

o= - (stekkaij + 2"sfeij) (2.41)

{

where s and Ky are the dynamic and second coefficients of
viscosity for the porous medium, respectively. Since Kgf is
associated only with volume expansion, it is customary to call
it the coefficient of bulk viscosity. The terms B f and Ksf
are analogoué to the Lame” coefficients u and X for linear
elasticity. In general, the dynamic and bulk viscosities are

non-linear functions of the deformation rate, effective



stress, and temperature. For example, as fluid pressures
increase the effective stress decreases-in compression
promoting inelastic deformation mechanisms such as frictional
sliding past grain boundaries and microcracking. If the fluid
pressures approach lithostatic values, the solid grains will
lose frictional cohesion and the shear strength will decrease.
This behavior would be similiar to that of a material with a
temperature dependent rheology ( Weertman and Weertman, 1975;
Yuen et al., 1978). Using equations (2.40) and (2.41) the
equations of motion can be solved in terms of the solid-matrix
velocities Vsi.

EULERIAN VERSUS LAGRANGIAN COORDINATES

In the previous sections the Eulerian approach has been

used to discuss field variables (P, T, 7 \' and Us) as a

ijr s’
function of position x and time ¢ . .The displacement U, is
taken to be the displacement of a solid particle at x and time
t from its initial position at x, and time t,, and P, T, Tij
and V. to be the pore-fluid pressure, temperature, effective
stress and solid-matrix velocity at (x,t). Because we wish to
express fluid and heat motion in terms of volume-averaged
fluxes and have little interest in describing them as particle
displacement fields, this approach offers the advantage of
allowing one to work with independent variables that are
natural for interpreting fluid and heat transport phenomena.

This approach, however, has-the disadvantage of cumbersome

expressions for the rate of change of material properties with
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respect to the solid matrix. For example, the solid-matrix
velocity v, at (x,t) is difficult to express in terms of the
solid-matrix displacement field Us(x,t). Consideration of the

distance traveled in time 6t yields

vV (x,t) &t = U, (x+V _6r,t+8t) - U. (x,t) (2.42)
i i § Si

Taking the Taylor series expansion of the first term on the
righthand side, dividing by ét, and taking the limit as 6&¢

approaches zero yields the solid-matrix velocity

v, (x,0) = U, (x| +v, (x,0) LU, (x,1) (2.43)
L i X J Jj i t

which is an impiicit equation to be solved for Vsi(x,t), where
components of V. appear on both sides of the equation. One can
readily see that insertion of equation (2.43) into the field
eqguations will yield cumbersome expressions for the material

derivative with respect to the solid matrix.

For numerical solutibn of the field equations, we adopt a
Lagrangian description of the porous medium, where the
features of the deformed solid matrix are described with
respect to the original undeformed state. The distinction
between Eulerian and Lagrangian approaches, however, is not
necessary if the spatial variations in the pore-fluid
pressure, temperature, and stress fields have length scales

much greater than the magnitude of solid-matrix displacements.
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In this case, it makes no practical difference whether a
spatial gradient is evaluated at a fixed position (Eulerian)
or for a solid-particle (Lagrangian). The Lagrangian
description is now adopted because it yields simple
relationships for the solid-matrix displacement, the material
derivative with respect to the solid matrix, and the

solid-matrix velocity, given as

Ug(xg,t) = x.(1) — x; (x) (2.44a)
3 .

= = & - | (2.44b)
dt _

volxg, 1) = Su(xg,1) (2.44¢)

where Xg and x  are the position of a particular solid
particle at time t=0 and time ¢. Note that once the particle

has been chosen and labeled, x U_. and V., are functions of

s’ )

time only. Thus in Lagrangian coordinates the convective terms
with respect to the solid matrix are dropped from the Eulerian
forms. Furthermore, the Lagrangian approach has the advantage
for following the history and process of deformation from the
undeformed to the deformed state, whereas the Eulerian
approach is most useful in removing the effects of deformation
processes. For example, in the Lagrangiaﬁ approach we allow
the fault zone to deform and track the motion of the deforming

solid-matrix as illustrated in Figqure 2.1 for a fault zone

where the deformations are described by progressive simple



shearing. For this illustration the solid-matrix displacement
is measured with respect to the centerline of the fault zone
and is constant for any line parallel to the centerline. From
- Figure 2.1 we can see that deformation of the porous medium
produces a convection-like effect in the field variables and
medium properties, and introduces moving boundary conditions.

For simple shear within the fault zone, we assume that heat

and fluid flow occurs at right angles to the centerline of the

fault zone. Thus in subsequent chapters, we consider the
one-dimensional problem, and model fluid and heat transport
along a line perpendicular to the centerline of the fault

zone.

LANGRANGIAN FORM OF THE FIELD EQUATIONS

We now summarize the Lagrangian form of the fieldv
equations. These equations are outlined below. All equations
are expressed in a Lagrangian reference frame with respect to
the solid matrix of the porous medium. The Lagrangian form of
the heat transfer equation is obtained from the Eulerian form
(2.32) by replacing the material derivative with respect to
the solid matrix by equation (2.44b). Thus the equation
describing the transient temperature distribution in a

saturated porous medium is given by
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op , &
Ve (K VT) = p,c,a, VT + ny, (38 + ZL.vp)T +
7T W o= (pe) g 5 (2.45)

The terms on the lefthand side of (2.45) are, in order, the
rate of conductive heat transport, the rate of advective heat
transport, the rate of heat addition due to pressurization of
the fluid, and the rate of shear heating within the fault
zone. The term on the righthand side represents the rate of
internal heat storage. Local thermal equilibrium between the

so0lid matrix and the fluid i1s assumed.

The Lagrangian form of the fluid flow equation is
obtained form the Eulerian form (2.12) by replacing. the
material derivative with respect to the solid matrix by
equation (2.44b). Thus the equation describing the transient
fluid flow within a saturated porous medium is given b;

~

V-[ZE-V(P + p,9)) *+ ;e (B,VP = %, V1) + [ny, + (1-n)y 1§L =
w

vev, + [ng, 38+ (1-mp, 3T (2.46)

The terms on the lefthand side of (2.46) are, in order, the
rate of fluid transport, the change in fluid mass due to
pressure contraction or thermal expansion of fluids along the
flow path, and the change in fluid mass due to the difference

in thermal expansivities of the fluid and solid phases. The
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terms on the righthand side are the change in fluid mass due
to volumetric dilatation of the porous medium and the change
in fluid mass due to the difference in the compressibility of
the fluid and solid phases. For water the density Py
compressibility B,, thermal expansivity 7v,, and dynamic
viscosity u, coefficients are strongly temperature dependent.

This dependence is shown in Figure 2.2.

The Lagrangian form of the equations describing motion of
the so0ild matrix is obtained form the Eulerian form (2.37) by
replacing the material derivative with respect to the solid
matrix by equation (2.44b). Thus the equations describing

motion of the solid matrix are given by

3 ‘ d _ )

where stresses are defined as positive when compressive and
displacements are defined as positive in the positive
directions of the axes. For equation (2.47), the solid matrix

displacements and velocities are as given by equations (2.44a)

and (2.44c).

In addition the porosity in equations (2.45) through
(2.47) must satisfy the Lagrangian form of the compatibility

equation:
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For these equations the dependent variables and media
parameters represent average values over a representative
elementary volume of the porous medium. As seen from above,
the field equations governing heat transfer, fluid flow, and
motion are coupled through the dependent variables of
temperature and fluid pressure, the éonstitutive'equations
relating stress to solid-matrix displacement (or velocity),
the compatibility equation for porosity, and the equations of
state for water. These equations along with initial and
boundary conditions provide the mathematical framework for

studying the physics of fault zone processes.

TEMPERATURE AND PRESSURE DEPENDENT PARAMETERS

Solution of the field equations requires that the
density, dynamic viscosity, thermal conductiyity, and specfic
heat of water be expressed as state functions of pressure and
temperature. These properties are illustrated for pure water
as a function of temperature for selected pressures in Figure
2.2, For the density of liquid water at tempertures less than
the critical temperature (374.15 °C) the analytic expression
of Myer er al. (1967) is used. The derivatives of density with
respect to temperature and pressure for that region are
obtained directly from differentiation of the analytic

expression, For temperatures greater than the critical



temperature and for the steam field, the analytic expression
of Keenan et al/. (p. 128, 1978) is solved for density by means
.of a Newton-Raphson iterative technigue. The iterative
technique is employed until the normalized density change
between sucessive iterations is less than a specified
tolerance (10-7)., The compressibility and thermal expansivity

are calculated using the finite-difference approximations:

By L — Py PR T 7 o8 (2.49a)
p,,(P,T) AP

R

-1 pw(PrT+AT) - pw(PrT)

p,,(P,T) AT

R

(2.49b)

Tw

where AP = 10-' MPa, and AT = 10-2 °C for Figure 2. Once the
density is determined for a specific temperature and pressure,
the dynamic viscosity, thermal conductivity and specific heat
afe calculated as state functions of density and temperature
using the analytic expressions given by Keenan et al. (p. 130,
1978) for isobaric specfic heat, Watson et al/. (1981) for

viscosity, and Kestin (1978) for thermal conductivity.

Figures 2.2a through 2.2f are useful for determining when
the variations in the thermodynamic and transport properties
of water are an important consideration in solution of the
field equations. For example, for liquid water at temperatures
less than 250 °C the variation in water properties with
respect to pressure is negligible. For that temperature range

we may treat the compressibility, specfic heat and thermal

50



51

conductivity as constants, and the density, thermal
expansivity and viscosity as functions of temperature only. In
such a case the simplified expressions of Sorey (1978) for
density, and Huykorn and Pinder (1977) for viscosity could be
used. In addition, if the change in temperature is not
significant (<10%), then it is possible to linearize the
equations by assuming constant water properties. If the
temperatures exceed 250 °C, however, we can readily see from
these figures that consideration of the variation in water
properties with pressure and temperature is essential. For
example, the compressibility bf water can change by almost two
orders of magnitude between 250 °C and 400 °C depending on
pressure. While variations in other water properties are not
as large, they are significant. Furthermore, the influence of
pressure on water properties in this temperature range is
quantitatively smaller than that of temperature but
nonetheless it is far from negligible. For temperatures
greater than 400 °C the influence of pressure is more
important than that of temperature. A further evaluation of
the effects of pressﬁre- and temperature-dependent properties
of water on the thermal convection of water in pofous media is

discussed by Straus and Schubert (1977).

Because the range of values for the density,
compressibility, expansivity, thermal conductivity, and
specific heat of the solid grains is considerably smaller than
that of variations in water properties and the hydraulic

characteristics of porous media, they are approximated as
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constants. The thermal conductivity of the solid-fluid
composite st may be approximated by (Woodside and Messmer,

1961; Sass et al., 1971)

= x(I=n)g n
Kip = K K, (2.50)
where K, and K, are the thermal conductivity of the solid and
water, respectively. In equation (2.50), the thermal

conductivity of the solid matrix is assumed to be isotropic.

We finally need to describe the way in which permeability
changes during deformation. Permeability is generally
considered to be a function of effective stress and, to a
lesser extent, temperature. Because there is no one
permeability for a given temperature or effective stress,
there exists no equation of state which relates them. It
follows that a parameter must be determined which has a
one-to-one correspondence with permeability. It seems
reasonable that permeability should increasé (or decrease) as
porosity increases (or decreases). Numerous relations have
been either proposed or derived (e.g.; Snow, 1968; Brace,
1977; Bear, 1979, p. 67; Bernabe et al/., 1982) to explain how
porosity affects permeability. One such relationship is given

by Walder and Nur (1984):

(2.51)
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where ko is the initial value of permeability, no is the
initial value of porosity, n, is the critical porosity for
fluid flow, and m is some exponent. The advantage of this
formulation is that as porosity becomes vanishingly small so
does permeability. With m=3, Nur and Walder point out that
equation (2.51) is similiar to the Kozeny-Carmen equation,
which describes the relationship between k and n for some
porous media. In cases where permeability is allowed to vary

with effective stress and temperature equation (2.51) is used.

SUMMARY

The mathematical framework for modelling the evolution of
temperature, fluid pressure, and deformation across a fault
zone is complete. The field equations outlined above are
complex and must be solved numerically in terms of the
dependent variables temperature, fluid pressure and
solid-matrix displacement (or velocity). For the Lagrangian
approach there are both moving boundary conditions and a
deforming grid. The numerical approach to solve the fiéld
eguations is to use a finite element grid which deforms during
simulation. The displacement U, of any point in the grid is
governed by the simultaneous solution of the field equations
for temperture, porosity, fluid pressure, and motion. Large
deformations and deformation rates can, therefore, be
accomodated. This strategy is not perfectly general. There may
be simulations which lead to unacceptable grid deformations,

at which time rezoning of the grid is required. This solution



method enables the simulation of configurations where the
character of the displacements cannot be specified

conveniently beforehand.

To model temperature, fluid pressure, and stress within a
fault zone during simple shear, we neglect the
three-dimensional effects of inhomogeneities and assume that
the transfer of fluid and heat occurs at right angles to the
fault surface. In this framework the mathematical problem
involves finding solutions to the one-dimensional equations
describing heat transfer, fluid flow, and stress. This is the

framework adopted in subsequent chapters.
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APPENDIX 2A: DERIVATION OF THE EULERIAN FORM

OF THE ENERGY EQUATION

In this appendix we will develop the differential
equation describing heat transfer in a deforming porous
medium. We start from the first law of thermodynamics and
proceed to develop the Eulerian form of the energy equation
where mechanical forms of energy are included. For this
development we assume a continuum approach where the fluid and
solid phases are regarded as coexisting continua, with the
field variables and medium parameters representing average
values over a representative elementary volume of the porous

medium.

The differential equation describing energy transfer in a
porous medium is a statement of the first law of
thermodynamics. Its expression can be derived as soon as all
forms of energy and work are listed. In mathematical terms the
first law of thermodynamics, expressed as a time rate of

change, is given by

d d - d aw
a'z‘UT+HTUK“a'tQ+aT , (2.a1)

where Up and Ug are the internal thermal and kinetic energy,
respectively, Q the net rate of heat transfer into a volume,
and W the rate of work done on the volume. No heat sources due
to radioactive decay or chemical reactions are considered, and

the energy consumed in creating new failure surfaces is
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assumed to be negligible (see e.g.; Richards, 1976;
Lachenbruch and Sass, 1980). Because the potential energy due
to the presence of a body force (e.g. gravity) is considered
to be the result of work done by the body force, it does not
appear explicitly in equation (2.A1). In addition, stored
strain energy is implicitly included in the coupling between
the rate of work done on the volume and the equations of

motion.

The rate at which the internal thermal energy of a fixed

volume of porous medium changes can be expressed as
d_py. = 2 (yyl + (1=n)p.e.ldv (2.A2)
dt Tt - 9t d nPyef nipg€s .

where € s and €, are the internal thermal energy per unit mass
of the fluid and solid phases, respectively. The rate of

change in kinetic energy within the volume is.
oy, = & gislge, VoV, + dno, (VY ) (V=Y ) 1dy (2.A3)
dr “K dr ! 2PsfVs Vs 2Py VTV f Vs .

where the second term within the brackets represents the
excess kinetic energy of the fluid phase with respect to the
motion of the solid matrix. The net rate of heat transfer into
the volume is the sum of the conductive heat flux through the
solid-fluid composite plus the convective flux of the fluid

and solid phases. It can be expressed as



57

%g = - f{[qh tonpyegVy + (mndpge Vol fids (2.24)

where fi denotes a unit normal vector to the surface element
ds. The divergence theorem permits the surface integral to be
cast as a volume integral, giving

S 5 S

gg = - f{fV-[ qQy * o,V + (1-n)p_e_V_1ldv (2.A5)

The second term on the righthand side of equation (2.A1)
represents the rate at which work is done by surface tractions
and interio; body forces in deforming the solid-fluid
composite and in moving the fluid through the pores relative
to the solid matrix. For the solid-fluid composite the force
acting on a surface elemeﬁt and an interior volume element

are, respectively,

7 «fids ’ (2.A6a)

psFdv ‘ (2.A6b)

The rate of work is given by

(r*-fds)+ (7 x,) (2.A7a)
(pg Fdv) - (§r %) (2.A7b)

where x_ is the position of a particular solid-matrix particle

at time 1. Hence, the rate at which work is done on the
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solid-fluid composite of the volume is

a _ = A

ar st = II(T -Vs)-nds + fffpsfF-Vsdv (2.A8)
S v

Applying the divergence theorem to the surface integral we

obtain

- Wep = f{f[v'(f"vs) + pgfFV 1dv (2.A9)
Similiarly, we can show that the rate at which work is done in

moving the fluid relative to the solid matrix is

S o= SIERIV-(TpeV,) + ooV, 1> (2.210)
where Tf is the stress tensor within the moving fluid, and

A Vf-vs is the relative velocity of the fluid with respect to

r._

the solid matrix.

Combining equations (2.A3), (2.A9) and (2.A10) we obtain
the rate of change of work done on the volume minus the rate

of change in kinetic energy of the volume

~ V.V
g¥ - gT Uy = JIILVv-(r7evy) + PsfE-Vs * b5y %T Sz -+
v :
~ 3 v,..v,
n(Ve(rpeV,) + p,FeV, + p g7 1 }dv (2.a11)

which we rewrite as



I - T Up = f{j‘{ TV onT VeV 4
~ _ 3
vs'[v°7 * psfF Psf ar vs] *

nVr-[V-rf + p,F - p, %T Vr] Ydv (2.A12)

The last two terms within the brackets are identically zero by
the equations of motion for the solid-fluid composite and the
fluid with respect to the solid matrix. Physically this means
that part of the work done on the volume by tractions on the
~surface and body forces is converted into kinetic energy with
the remainder dissipated into thermal energy. Hence, the rate
of energy addition due to mechanical work is

gg - gT Up = fjj[:’-vvs + n:f-VVr]dv (2.A13)
v

Since the fixed volume is arbitrary, the resultant

- integrand obtained by substitution of equations (2.A2), (2.A5)
and (2.A13) into eguation (2.A1) must be equal to zero for any
point within the volume. Thus we obtain the differential
equation describing energy transfer within a porous medium

%T["pwef + (1-n)pses] + Velq, + npwerf + (1—n)psvses] =

~ ~

T’~VVS + nrf-VVr (2.214)

For a Newtonian fluid we can rewrite the last term of equation
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(2.A14) as (Landau and Lifschitz, 1959)

~ e, _ 0 0 i) _ 2 -
an'VVr = nuw[ WjV’i(ﬁjV i+ ﬁiV j) 3‘(V‘V,.)2]

nPv-vV_ (2.A15)

The first term of equation (2.A15) is always positive and
hence always acts as a thermal source. In contrast nPv-v_
represents the rate of heat addition due to pressure work done
by expanding, or contracting, the fluid mass inside the pore

volume. From the fluid continuity equation (2.8) we may write
d a
Lo+ 1L, (2.A16)
d: dt
Substitution of equation (2.A16) into (2.A15) yields

. 4

n'rf-Vr = n,P + o Y Py (2.A17)

where & is defined as

- J 0 i) _ 2
@ = H[HJV'_I (ﬁerl+ 'a';lVrj) §(V'V’_)2] +
d
L(nv.v. + L p) (2.A18)
My 5 d: ‘

and is referred to as the viscous dissipation function for the
fluid. This term characterizes the irreversible conversion of
mechanical energy into thermal energy as the fluid flows

through the pores. Insertion of equation (2.A17) into (2.A14)"
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yields the Eulerian form of the energy balance equation for a

saturated porous media

%T["pwef + (1-n)pses] + V-[qh + npwvfef + (1—n)psvses] =

~

d
’ nP
TV o o gt[ o, (2.A19)

where thermal forms of energy appear on the lefthand side and
mechanical forms on the righthand side. This is equation
(2.14) in Chapter 2. If mechanical forms of energy are
negligible, then the righthand side of equation (2A.19) is

Zero.
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APPENDIX 2B: CONDITIONS WHERE HEAT ADDITION DUE TO

PRESSURIZATION OF WATER ARE SIGNIFICANT

To evaluate the rate of heat addition due to the
pressurization of pore water, we rewrite its contribution to

the heat transfer equation (2.31) as

ny,T p - ny, T ($5) & r | (2.B1)
dt de
Since the maximum fluid-pressure increase occurs for undrained
conditions (k=0), if pressure work is negligible for those
conditions, then it must also be negligible for drained
conditions (k>0). For undrained conditions where there is no
transport of pore fluids (k=0) it can be shown from equation

(2.46) that

oP Yy * (1_n)7s T Vst
k=0 ﬂﬁw - (1'")Eﬁs + Bsf

n

(2.B2a)
= r (2.B2b)

where I' is defined as the thermal pressurization coefficient
of the porous medium, and ﬁsf is the compressibility of the
porous medium. The term Bsf characterizes the volumetric
dilatational strain that will take place for a unit change in
effective stress in a freely dilatating medium (e.g., Biot,
1941; Gambolati, 1974). The term I' characterizes the increase
in fluid pressure per unit change in temperature for undrained

conditions. Substituting equations (2.B1) and (2.B2) into
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equation (2.32) yields the heat transfer equation for

undrained conditions

VK VT + :’-vvs = (=50 (pc) s gf T (2.B3)
where §{  is defined as the pressure-work coefficient for water
and is given by

nwaT

5, = ——— (2.B4)

(pc)sf
This term characterizes the ratio of the rate of heat addition
by pressurization of water to the rate of heat storage within
the porous medium. If §,<<1, then heat addition dueto
pressurization of pore water is negligible. For the porous
medium properties listed in Table 2.1, Figure 2.3 illustrates
the pressure-work coefficient §, as a function of temperature
for selectéd fluid pressures and porous medium
compressibilities 6sf‘ These figures show that for
compressibilities less than 10-7 Pa-' heat addition due to
pressurization of water is not negligible, in general. In such
a case the temperature and compressibility must be considered
before the thermal effects of pressurization can be neglected.
For example, if temperatures are less than 250 °C or greater
than 600 °C, then the thermal effects of pressurization may be
neglected. If temperatures lie between 250 °C and 600 °C,
however, then heat addition due to pressurization of water is

not negligible. In addition, the variation in §, with pressure
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and temperature must be considered. For media with
compressibilities greater than 10-7 Pa-'! the pressure-work

term can be neglected.

Furthermore, if the permeability exceeds 10 -'® m2?, then
the hydraulic Aiffusivity is much greater than the thermal
diffusivity and the heating of water ié accomodated by fluid
expansion and flow instead of fluid pressurization. In such a
case the fluid pressure rise with temperature will be small.
Hence, for drained conditions with permeabilities greater than
10-'® m? heat addition due to pressurization of water is
negligible irregardless of the temperature and porous medium
compressibility. For permeabilities less than 10-'6 m? the
nature of the problem to bé solved, and the range in
permeability, compressibility, temperature and pressure must
be considered before deciding whether the heat addition due to

the pressurization of water can be neglected.
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coefficients of elasticity.

specific heat at constant pressure

isobaric specific heat of the solid grains.
isobaric specific heat of water.

volumetric strain (dilatation) e, *e;,+e33.
solid matrix strain.

solid matrix strain rate.

as a subscript denotes fluid.

body force acting on the porous medium.
gravitational acceleration,

fluid enthalpy.

solid enthalpy.

porous medium permeability.

permeability tensor.

initial permeability.

" bulk modulus of the solid grains.

bulk modulus of the porous medium.

thermal conductivity of the solid grains.

thermal conductivity of water.

thermal conductivity of the solid-fluid composite.
porosity.

initial porosity.

critical porosity for fluid flow.

fluid pressure increase above ambient conditions.
pore fluid pressure.

rate of heat transfer into a region.

fluid specific discharge relative to the solid matrix.
conductive heat flux.

as a subscript denotes solid.

time, ,

thermodynamic temperature.

internal kinetic energy

solid-matrix displacement relative to a fixed

coordinate system.
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components of the solid-matrix displacement.

internal thermal energy

fluid velocity relative to a fixed coordinate system.
components of the fluid velocity.

fluid velocity relative to the solid matrix Vf-Vs.
components of the fluid velocity relative to the solid
matrix.

solid-matrix velocity with respect to a fixed
coordinate system.

as a subscript denotes water.

rate of work done on a system.

rate of work done in moving the pore fluid relative to
the solid matrix.

rate of work done on the solid-fluid matrix.

fixed coordinate position (x;,x,,x3).

solid particle position with respect to a fixed
coordinate system.

thermal pressurization coefficient of the porous
medium.

isothermal compressibility of the solid grains.
porous medium compressibility.

isothermal compressibility of water.

gradient operator ﬁia/axi.

Kronecker delta function.

fluid internal thermal energy per unit mass.

solid internal thermal energy per unit mass.

isobaric thermal expansivity of the solid grains.
linear thermal expansion coefficient of the porous

medium,

isobaric thermal expansivity of water.

bulk viscosity of the porous medium,

a Lame' constant.

shear modulus.

dynamic viscosity of the porous medium.

dynamic viscosity of water.

viscous heat dissipation function for the fluid.
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(PC)sf

® 1
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S, S

Jre

density of the solid grains;

density of the solid-fluid composite.

density of water.

heat capacity of water.

heat capacity of the solid.

heat capacity of the solid-fluid composite.

total stress tensor.

effective stress tensor.

stress tensor within the moving fluid.

average effective normal stress (7,,+7,,%+733)/3.
components of the effective stress tensor.

components of the total stress tensor.

temperature increase over ambient conditions.
proportionality constant between pore and bulk volume
changes.

pressure-work coefficient for water.

over a letter, denotes unit vector.

between two vectors or two tensors, denotes scalar dot

product; between a tensor and a vector, denotes vector
dot product.

over a letter, denotes tensor quantity.
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TABLE 2.1. Parameter Values for Porous Medium Properties

Held Constant for Calculation of Sw.

Property Value
Porosity n : 0.20
£ : . 1.0
Thermal expansivity of the porous medium s f 10-5%5 °¢Cc-!
Density of the solid P 2.6x103% kg m~3

Specific heat of the solid cg 10 J kg-! °K-!

Thermal conductivity of the solid K 2.5 Wm-' °Kk-?
Compressibilty of the solid fg 10-'" pa-!

Thermal expansivity of the solid 7, 2.5x10-3% °c-1
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FIGURE CAPTIONS

Figure 2.1. Lagrangian description of a fault zone where the
deformations are describe by progressive simple shearing. For
a homogeneous medium, the transport of heat and fluid occurs
perpendicular to the centerline of the fault zone. Thus it is
necessary to consider only the one-dimensional problem along a

line perpendicular to the centerline of the fault zone.

Figure 2.2. Thermodynamic properties of pure water as a
function of temperature T for selected fluid pressures P: (a)
density p, based upon the the analytic expressions by Myer et
al. (p. 23, 1967) and Keenan et al/. (p. 128, 1978); (b)
isothermal volumetric compressibility B,; (c) isobaric thermal
expansivity v,; (d) dynamic viscosity u, (Watson‘et al .,
1980); (e) thermal conductivity kK, (Kestin, 1978); and (f)
isobaric specific heat ¢, (Keenan et al/., p. 130, 1978). The
fluid pressure increment between curves is 5 MPa for 5-20 MPa,
10 MPa for 20-40 MPa, and 20 MPa for 40-100 MPa. The
liquid-steam transition is indicated by the dashed lines. For

further explanation see text.

Figure 2.3. The pressure-work (PW) coefficient for water §,
calculated as a function of temperature T for selected fluid
pressures P and porous medium compressibilities Bsf using the
porous medium properties summarized in Table 2.1. The fluid

pressure increment between curves is 5 MPa for 5-20 MPa, 10



MPa for 20-40 MPa, and 20 MPa for 40-100 MPa. The liquid-steam
transition is indicated by the dashed lines. For further

explanation see text.
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CHAPTER 111

PORE-FLUID PRESSURES AND

FRICTIONAL HEATING ON A FAULT SURFACE

Most rocks within the vicinity of shallow earthquakes are

porous and, within the upper crust, the pores are likely to

contain water. Because the pressure of pore waters influences

the mechanical properties of rock, stresses and strains are

coupled to fluid flow within the porous medium. This coupling

can decrease or increase the strength of a fault as well as
the strength of the adjacent medium. Furthermore, frictional

heating on a fault surface can lead to thermal expansion,

pressurization, and flow of pore waters, coupling the thermal

field with the stress, strain, and fluid fields. Consequently,

the behavior of pore waters before and during slip is of
considerable importance in the mechanics of earthquake

processes.

Assuming the fault surface is established and that the-
shear stress required for slip is given by the friction law,
many investigators have shown that frictional heating could
play an important role in the dynamics of fault processes.
Jaeger (1942), McKenzie and Brune (1972), Richards (1976),

Cardwell et a!/. (1978), Scholz (1980), and Sibson (1980)

suggested that shear heating could lead to partial melting on

the fault surface with a subsequent reduction in the shear

strength. These studies have neglected the presence and
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possible effect of pore water., If water is present, the
dynamics are more complicated. The response of fluid pressures
to frictional heating can be described by the following two
extreme cases. If the hydraulic diffusivity of the adjacent
medium is much greater than the thermal diffusivity, the
thermal expansion of pore fluids is accomodated by fluid flow
from the heated region adjacent to the fault surface. In such
a case the fluid pressure and dynamic shear strength remain
unchanged during slip. Consequently, the fault surface is a
large source of frictional heat and partial melting may occur,
This is the response we would expect for high-permeability
material. If the hydraulic diffusivity is less than the
thermal diffusivity and if the medium is rigid, then there is
no appreciable fluid explusion from the heated region during
slip and the heating process takes place at constant fluid
mass. In this case the resulting thermal pressurization causes
the effective stress.to decrease, promoting a net reduction in
the dynamic shear strength of the fault surface. If fluid
pressures approach lithostatic values the two sliding surfaces
will loose cohesion, and the rate of frictional heating and
the dynamic shear strength will approach zero (Sibson, 1973;
1977). For this case the maximum temperature attained on the
fault surface would be substantially less than that required
for frictional melting. This is the response we would expect
for media with low permeability that have undergone an initial

phase of consolidation.
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Without attempting to solve the coupled equations,
Lachenbruch (1980) wrote down the governing equations for heat
and fluid flow, and analyzed for special cases the interaction
of controlling parameters and their critical range of values.
He concluded that if permeability exceeds 10°'° m? then
coupling of thermal, hydrologic, and mechanical .effects could
probably be neglected, with fluid pressure and dynamic shear
strength remaining constant during slip. Raleigh and Everden
(1981), assuming no transport of fluid or heat, calculated the
maximum fluid pressure increase for various displacements,
displacement velocities, and fault zone widths. While these
studies have served to illustrate pertinent features of the
response they have considered only two limiting cases: those
where fluid transport is so large it nullifies thermal
pressurization, and those where the transport of heat or
fluid, or both, are so small they can be neglected. For these
cases, it is possible to analyze the system using analytical
models. For intermediate conditions, these studies do not
provide an adequate description of the transient increase in
temperature on a fault surface during slip, and its effect on
the fluid pressure and stress fields. In addition, changes in

the pore-dilatation rate during slip were not considered.

The purpose of this paper is to bridge that gap in
existing work. Using a numerical model, we examine how the
thermal expansion of pore fluids due to frictional heating on
a fault surface affects the temperature and dynamic shear

strength of a fault during slip. This approach permits



consideration of the fully coupled behavior of the thermal,
fluid pressure, and stress fields. Variations in the
thermodynamic properties of water and pore-dilatation rates
are incorporated in a straightforward manner. The analysis
presented here removes some of the limitations of previous
studies, and develops a better understanding of the role of
frictional heating and thermal pressurization in the physics

of fault processes.

A MATHEMATICAL MODEL FOR SLIP ON A NARROW FAULT

Figure 3.1 shows a simplified geometry for a narrow fault
zone. The model consists of two elastic blocks which slide
past each other on a planar surface. The width of the elastic
blocks is determine by width of the thermal and hydrologic
fields ;aused by frictional heating during slip (of the order
of a few centimeters to several meters). A kinematic model is
assumed where the slip velocity across the fault surface
remains constant with time. This approach has the advantage of
allowing us to characterize the response in terms of average
slip velocities. The fluid-pressure changes that might arise
from effects at the propagating ends of the failure surface
(e.g.; Rice and Simons, 1976; Rice and Rudnicki, 1979) are
assumed to be negligible in comparison to changes in fluid
pressure arising from frictional heating on the failure
surface. This assumption is reasonable for events where the
propagation velocities of the fault tips are several orders of

magnitude greater than the relative slip velocities across the
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failure surface.

The shear stress required for slip on a fault surface is

given by the friction law
7, = uy(r-P) (3.1)

where 7, represents the total normal stress acting on the
sliding surface, T, is the resistive shear stress, Hy is the
dynamic coefficient of friction, and P is the pore-fluid
pressure. The principal motivation for using this law is its
wide spread applicability in describing the results of
laboratory measurments for a variety of rock types. For most
rocks Mg is insensitive to composition and hardness, and has
values between 0.4 and 1.0 (Byerlee, 1978). According to
Byerlee, frictional sliding is well described by “d=0'85 for
effective normal stresses in the range 5-200 MPa. For surfaces
separated by a thin clay-rich layer of fault gouge, Morrow et
al. (1982) reported values for uy that ranged from 0.2 to 0.6.
From equation (3.1) the average rate of frictional heating on
the fault surface is given by

pylrr-P)V_, (3.2)
where ¥V, is the relative slip velocity across the fault. For
the case where pore pressure remains constant, equation (3.2)
has been used to predict high temperatures during slip

(McKenzie and Brune, 1972; Richards, 1976; Cardwell, 1978;
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Lachenbruch, 1980).

The large scale mechanical response of the fault is
determined by the average temperature over the failure
surface. Presumably the frictional heat represented by
equation (3.2) is not generated uniformly over the fault
surface but is localized to asperity contacts. During stable
sliding experiments, at rates of 10°* ms-' and confining
pressures of 50 MPa, Teufel and Logan (1978) and Logan(1979)
measured maximum temperatures at asperity contacts in excess
of 1000 °C. However, the average surface temperature did not
exceed 125 °C. Measurements of frictional heating in granite
by Lockner and Okubo (1983) suggest that equation (3.2) gives
a good representation of the average temperature generated on
the ‘fault surface, but yields little information about local
maxima at asperity contacts. If these results can be extended
to crustal conditions, they support the assumppion that a
significant amount of frictional heat should be generated on
an active fault surface and that (3.2) can be used to

determine the thermohydromechanical behavior of the fault.

To model the system shown in Figure 3.1, we neglect the
three-dimensional effects of inhomogeneities and assume that
the transfer of fluid and heat occurs at right angles to the
fault surface. In this framework the mathematical problem
involves finding solutions to the one-dimensional equations
describing heat transfer, fluid flow, and stress. These

equations are outlined below. All equations are expressed in a



Lagrangian reference frame with respect to the solid matrix of

the porous medium.
Heat Transfer Equation

The equation of heat transfer describing the transient
temperature distribution in a saturated porous medium is given

by

q9
FKop 2 - Py B0+ I5F - DT -

g (TP 8(x) = (pe) 3L (3.3)

where T is temperature, st and (pc)sf the thermal
conductivity and heat capacity of the solid-fluid composite,

respectively, and v, the heat capacity and thermal

PywCw
expansivity of water, respectively, n the porosity, g, the
Darcy flux, and 6(x) the Dirac delta function. For
mathematical convenience the position of the fault is fixed at
x=0. The terms on the lefthand side are, in order, the rate of
conductive heat transport, the rate of convective heat
transport, the rate of heating addition due to pressurization
of the fluid and the rate of frictional heating on the fault
surface. The term on the righthand side represents the rate of
internal heat storage. No heat sources or sinks are considered
other than frictional heating on the fault surface, and local

thermal equilibrium between the solid matrix and the fluid is

assumed. The thermal conductivity of the solid grains is
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assumed to be independent of pressure and temperature. The
thermal conductivity of the solid-fluid composite is given by
a geometric mean where st = Kgl_")Kx (Woodside and Messmer,

1961).
Fluid and Solid Mass Conservation Equations

Assuming the pores are fully saturated with water, and
that the solid and fluid phases are separate and distinct, the

equation for conservation of fluid mass is

_.g_f(qx) - qx[ﬁw('gé) - 'YW(%)] + [n’yw + (‘I-n)'ys]-gTT =

de

where ¢, is the Darcy flux, n and e the porosity and
volumetric dilatation of the porous medium, B, and v, the

compressibility and thermal expansivity of water, B and v

N
the compressibilty and thermal expansivity of the solid phase,
and 7 the averége value of effective normal stress acting on
the solid grains. The terms on the lefthand side are, in
order, the rate of fluid transport, the change in fluid mass
due to pressure contraction or thermal expansion of fluids
along the flow path, and the change in fluid mass due to the
difference in thermal expansivities of the fluid and solid
phases. The terms on the righthand side are the change in

fluid mass due to volumetric dilatation of the porous medium

and the change in fluid mass due to the difference in the

2 4 [np, 38+ (1-mp, £T) (3.4)
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compressibility of the fluid and solid phases. Equation (3.4)

is completed by expression of the Darcy flux,

where k is the permeability and u, is the dynamic viscosity of
water. In equation (3.5) fluid flow due to gravitational
forces is assumed to be negligible over the time scale of

interest.

The condition for conservation of the solid mass requires

the following compatibility constraint for porosity:
2= (1-m)[§5r,) + B §F - v, §E | (3.6)

where Vx is the velocity of the solid matrix, and an/ax
represents the volumetric-dilatation rate (de/9t). Eguation
(3.6) states that the pore-dilatation rate (dan/3t) is given by
the rate at which solids are leaving a unit volume minus the
rate at which they are expanding due to decreases in the
average effective normal stress or increases in temperature

within the volume.
Equilibrium Equations for Stress

Deformation of the porous medium is governed by the

effective stress TP which is defined as



T T 'rl'j - EPBl.j (3.7)
where stresses are defined as positive when compressive. This
law states that the strain response of a saturated medium is
identical to that of a solid continuum if one uses the
effective stress i instead of the total stress r{j (Biot,
1941). From stress-strain measurements Biot and Willis (1957),

and Nur and Byerlee (1971) have suggested that
E =1 - ks/ksf (3.8)

where k. and ksf are the bulk moduli of the solid grains and
porous medium, respectively. Hence, ¢ is a proportionality
constant between pore and bulk volume changes for drained
conditions at constant temperature. It is the ratio of fluid
volume expelled to volumetric dilatation. For media with
appreciable porqSity, ks/ksf<<1, with ¢(=1, and the fluid
volume expelled is equal to the volumetric dilatation. This is
the conventional assumption in compaétion theory. In this
case, eguation (3.7) reduces to Terzaghi's simple effective
stress law. With equation (3.7) the equilibrium equations for

~

a one-dimensional system are
L(r, )+ &GP) = 0 (3.9a)

3%(7xy) = 0 » (3.9b)
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Equilibrium in the absence of body forces requires that Txy is
independent of x and is a function of time only. 1f total
stresses remain constant, then changes in fluid pressure are

responsible for all deformations of the porous medium,

The weakest link in the application of equation (3.9) is
the stress-strain relationships.‘The strain response of porous
media consists of elastic and inelastic responses which can be
divided into two components: compaction or extension of the
medium in response to changes in effective stress, and
dilatation arising from shear deformation. Because we have
assumed a kinematic model and have confined shear deformation
to the fault surface, shear deformation adjacent to the fault
must be zero. Consequently, only compaction or extension can
occur in the adjacent region. Most of the inelastic
deformation probably occurs during the initial stages of
compaction. After the initial cycle of compaction-extension,
the medium follows an elastic hysteretic response (Holcomb,
1977, 1981; Jorgensen, 1981). As most earthquakes occur in
regions where other earthquakes have occurred, the medium will
have been repeatedly loaded and unloaded. We assume the region
surrounding the fault surface has undergone an initial
compaction cycle and thus its response to changes in effective

stress can be approximated as elastic.

For a linear-elastic porous medium the constitutive
equation for stress and strain is (after Biot and Willis,

1957)
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- | 4 _
Ty = - 2“[T7:77Tekkaij + eij] + oy (T T°)6ij (3.10)

where u is the shear modulus, » Poisson's ratio, and Tsf the
linear thermal expansion coefficient of the porous medium. In
employing a linear stress-strain relationship we have assumed
that these coefficients, which are strictly valid for a solid
continuum, are also valid for a saturated porous medium. Thus
the elastic coefficients represent coefficients of the porous
medium to be determined experimentally. In general, they are
dependent on total stress, fluid pressure, and temperature.
Substitution of equation (3.10) into (3.9) and integration
over the flow domain, with the position of the fault fixed at

x=0, yields

U, (x,0) = g% 1 UZ200E piq ) 4y @ (n,0) ] dn (3.11)
o]
2u(1-»)
where U, is the extension or consolidation of the region
exterior to the fault, p=(P-P,) is the fluid pressure increase
above the initial value P,, and ©=(T-T,) is the temperature
increase above the initial value T,. The corresponding

volumetric-dilatation rate 1is

u(1-v)

Because the quantity in front of the pressure term has units

of compressibility, it is identified as
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By, = Lm2p)E (3.13)
2u(1-»)

where Bsf is the compressibility of the porous medium. This
parameter measures the relative volumetric reduction that will
take place as the medium is compressed and the fluid allowed
to drain. Because u, v, &, p, Tsf ¢ and ©® are nonlinear
functions of U, and e, equations (3.11) and (3.12) represent

implicit equations for U, and e.
Solution Technique

Substituting the Darcy flux and the volumetric strain
rate into equations (3.3) and (3.4), and assuming that the
total stresses remain constant during slip yields the final

form of the equations gdverning the temperature increase,

Lk, 8D+ oy, ﬁ§><%§)<g%) + ny, (32 - iﬁ;(%§)21(9+ro) +
palr ~Po-p)V  &(x) = (pc)sf %? (3.14)

and the pressure increase,
S 38 ¢ e, (30 - 7, (RGBT + [ay, + (1-n)y 15D

Srtrgs @ = np, 32 - (1-m)pg Tr(6p) + §7(8,, p) (3.15)

In addition, the porosity in equations (3.14) and (3.15) must
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satisfy the compatibility equation:

= O-n) G718 ~EB)p + (v =7,)0] (3.16)

Equation (3.14) to (3.16) can be solved by a Galerkin
finite-element technique to give an approximate solution to
this coupled system of equations. Details of the approach are

summarized in the Appendix.

For all simulations, we assume a uniform temperature T,
and fluid pressure P, for the initial conditions, and that the
solutions remain bounded as |x| approaches infinity. The
latter condition is satisfied by placing the boundaries of the
finite element mesh far enough from the fault surface so that
they experience no temperatﬁre or fluid pressure
perturbations. For all simulations of the fault plane model,
the permeability and porous medium compressibility are assumed
to be independent of changes in fluid pressure and
temperature, and to be uniform and equal on both sides of the
fault. Although these assumptions may be relaxed easily, they
are retained in order to clarify their separate effects in the

thermal-pressurization process.



RESULTS

Presentation of Results

In general, it is convenient to solve a problem and
present its results in terms of dimensionless parameters and
variables; but because of the strong cross-coupling and
nonlinearity of the equations, and because the parameters are
solution dependent, superposition is not applicable in this
thermal pressurization problem. In addition, any attempt to
linearize or scale the equations with parameters taken at some
initial value, or intermediate fluid pressure and temperature
values, will fail because of product terms. This behaviof
poses a dilemma for presenting results in a manner that can be
readily generalized for a variety of parameters and initial

conditions.

This situation is exemplified by means of the fluid-flow
equation (3.15). From that equation, the fluid pressure
increase is governed by a diffusion equation where the balance
between pressurization and flow is determined by the hydraulic
diffusivity,

ah = k (3.17)

u,lnB, = (1=n)gp. + B (]

When the porous medium is homogenous, the solution can be
expressed in terms of a characteristic diffusion length

n=x/V4aht (Lachenbruch et al., 1976; Lachenbruch, 1980;
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Delaney, 1982). Expressing the solution in terms of 7
generalizes the results for the full range of possible values
of a,. For frictional heating, however, the thermal

pressurization and flow of pore fluids are driven by the term

ro- T T vy (3.18)
ng, - (1=n) £ + B,

where I' is defined as the coefficient of thermal
pressurization for the porous medium. This term characterizes
the increase in fluid pressure per unit change in temperature
for undrained conditions. The numerator and denominator
represent the rate of fluid volume expansion due to changes in
temperature and fluid pressure, respectively. From equations
(3.17) and (3.18), it is apparent that an increase in Bs s will
cause a decrease in both a, and I'. The decrease in T results
in a decrease in the rate of thermal pressurization, and
thereby a reduction in the rate of fluid-pressure increase.
The decrease in a,, however, suggests an enhancement in the
rate at which thermal pressurization occurs. Furthermore, if
we increase ﬁsf, it is possible to manipulate & such that a,
remains constant as I' decreases, or increases. This behavior
implies that for a fixed value of a, there is a range of
possible responses in the fluid pressure, and that aj,, by
itself, is insufficient to characterize them. The competing
effects between the rate of thermal pressurization and the
balance between pressurization and flow make it is necessary

to specify explicitly the permeability, compressibility, and



expansivity of the porous medium, to characterize fully the
fluid-pressure response. Because of this behavior we must
examine the influence of porous-medium properties for a set of

initial conditions representative of a given depth.
Solutions for Limiting Cases

The numerical solutions have been compared with
analytical solutions for two limiting cases. First, for large
permeabilities or compressibilities thermal pressurization is
nullified by the transport of pore fluids or by pore
dilatation, respectively. In this case, the fluid pfessure and
shear strength remain unchanged during slip, and the

temperature increase is as given by (McKenzie and Brune, 1972)

u (12-P)V Via, 1
Ox, 1) = L2 5¥ [ L exp(gzEr) -
Zst ‘/ﬂ' !
|x|erfe(—2l )] (3.19)
_ Véa, t

where at=st/(pc)sf is the thermal diffusivity. Second, for
permeabilities less than 10-2° m? there is no appreciable

transport of pore fluids and the fluid pressure increase is
p(x,t) = T o(x,t) : (3.20)
The temperature increase @ is obtained by considering the

equivalent half-space problem and by assuming that heating due

to pressurization of the fluid is negligible. In this case,
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the rate of frictional heating enters the solution by the

boundéry condition,

- K 32 = Ly l(rj-Po) - TOW,,  at x=0 (3.21)

which can be regarded as a boundary with linear heat transfer
into a medium at temperature (7 -P,)/T. The solution is given

by (after Carslaw and Jaeger, 1959, p. 72)

,(T "Po)
O(x,t) = —— [erfc(—*—) -
r V4att
exp(¢x + ¢?a,1) erfcl X + o/a, 1) ) (3.22)
V4att
where
u, Vv
6 = 2 sV rp (3.23)
2st

The dynamic shear strength of the fault surface is given by

r,(d) = 7, exp(¢?a,d/V;,) erfc(o/a, d7vV ) (3.24)

where Tro is the initial shear strength and d is the
displacement across the fault surface. For intervening values
of permeability, the numerical solutions will lie between
these two limits. If the compressibility exceeds 10-° Pa-?!,

however, then the thermal pressurization coefficient is



proportioﬁal to the ratio of the thermal expansivity of water
to the compressibility of the medium. In this case large
temperature increases cause large increases in the thermal
pressurization coefficient (see Figure 3.2), and equation
(3.22) will overestimate the maximum temperature obtained on
the fault surface and equation (3.24) will underestimate the
rate of reduction in shear strength. Furthermore, the rate of
heat addition due to pressurization of pore waters can
significantly enhance the rate of thermal pressurization (see

Appendix 2B and Figure 2.3).
Fault Surface Depth of 2 km

To illustrate several basic effects attributable to
thermal pressurization, we first consider frictional heaping
on a fault surface at a depth of 2 km. For this example we
have assumed the following parameter values: a dynamic
coefficient of friction, By of 0.6, a slip velocity st of 1
ms-', a porosity n of 0.2, and a initial temperature T, of 80
°C. The total normal stress 7, acting on the fault surface is

45 MPa, due solely to the lithostatic pressure for a rock
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column with a specific bulk density of 2.3. The ambient fluid

pressure P, is 19 MPa, equal to the hydrostatic head. For

these conditions, the initial effective normal stress

r;-Po acting on the fault is 26 MPa, and the initial resistive

shear strength r_ of the fault surface is 15.6 MPa.

Figure 3.2 shows the transient increase in temperature on

the fault surface as a function of displacement for media with
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various permeabilities. Each of the four diagrams corresponds
to a different value of porous medium compressibility. If the
compressibility is less than 10-'' Pa-', the medium is
essentially rigid (ﬁsf=0) and fluid flow is the only mechanism
for accomodating the thermal expansion of pore fluids. For
permeabilities less than 10-2° m? there is essentially no
transport of fluid during the slip event, and the response
occurs at constant fluid mass. In this case the coefficient of
thermal pressurization is approximated by the ratio of the
thermal expansivity to the compressibility of water. Because
the rate at which water pressurizes is large (7w/6w=1.6 MPa
°C-'), only a small temperature increase is required for the
thermal exbansion of pore fluids to pressurize the fluids and
to maintain the fluid pressure on the fault surface at
near-lithostatic values. For media with greater permeability,
there is an increase in the rate of fluid loss due to
transport. If the fluids are to pressurize, there must be an‘
increase in the fluid-expansion rate in the porous medium
adjacent to the fault surface. For this to occur, there must
be a greater temperature increase on the fault surface. If
permeabilities exceed 10-'5 m?, however, the hydraulic
diffusivity greatly exceeds the thermal diffusivity and the
movement of fluid away from the fault surface can nullify
thermal pressurization of the fluids. In such case the slip
event occurs at constant fluid pressure and the large
temperature rise reflects frictional heating due to the large

resistive shear strength.



Similarly, if the medium is compressible, thermal
pressurization will initiate a pore-volume expansion,
providing a second mechanism for accomodating the thermal
expansion of pore fluids. The greater the compressibility of
the porous medium, the larger the temperature rise that is
required for the thermal expansion of pore fluids to exceed
substantially fluid volume changes due to pore dilatation, and
thus pressurize the fluid. As shown in Figure 3.3, when there
is no transport of fluid (k=0), a larger femperature rise
occurs with a given displacement in a medium which is more
compressible. For larger permeability values even greater
temperature increases are required to overcome fluid losses

due to flow and pore-volume changes due to dilatation.

The response shown in Figure 3.2 indicates the fault
surface stabilizes at a constant temperature that is dependent
on the transport and pore-dilatation characteristicé of the
porous medium. This behavior can be explained by examining the
rate of frictional heating and its relation to fluid
pressurization., At the initiation of slip the fault surface is
a strong frictional heat source; this leads to a rapid
increase in temperature. As slip progresses, the region
adjacent to the fault surface is heated until the rate of
thermal expansion of pore fluids substantially exceeds the
loss of the fluid due to transport and volume éhanges due to
pore dilatation. Once this condition is achieved, the pore
fluids start to pressurize, causing the shear strength and

frictional heating to diminish rapidly and the fault surface
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to stabilize at a constant temperature. At this point there is
a dynamic balance between the temperature and pressure fields,
where the rate of fluid-volume increase due to thermal
expansion equals the loss of fluids due to transport and
fluid-volume changes due to pore dilatation. The temperature
increase necessary to sustain fluid pressures at
near-lithostatic values and to maintain this balance is
dependent primarily on the fluid and thermal transport
properties and the pore-dilatation characteristics of the

adjacent medium.

Eigure 3.3 shows the shear strength of the fault surface
as a function of displacement. Note that the shear strength
has been normalized by its initial value (Tr/Tro) and that
each of the four fiéures correspond to the same values of
porous medium compressibility as in Figure 3.3. The 1000 °C
isotherm is shown in Figure 3.4 to delineate the region where
partial melting may occur. If the medium is rigid (ﬁsfs10"‘
Pa-'), then for permeabilities less than 10-2° m? the total
displacement needed to cause a significant reduction in shear
strength is small (<10-% m). This behavior can be explained in
terms of the frictional heat source acting on the fault
surface. From equation (3.2), frictional heat is directly
proportional to the shear strength of the fault surface. Large
reductions in shear strength coincide with large reductions in
frictional heating. For low permeabilities the strong initial
source is maintained only for a short displacement before the

thermal expansion of pore fluids substantially exceeds fluid



loss due to transport and pressurizes the fluids. Once thermal
pressurization of pore fluid starts, the fault surface
stabilizes at a constant temperature and the shear strength
diminishes rapidly to a level that is necessary only to
maintain the temperature required to sustain thermal
pressurization of pore fluids at near-lithostatic values. For
higher permeabilities, the temperature rise needed to overcome
the loss of pore fluids due to transport increases. The shear
strength will remain at its initial value, creating a strong
frictional heat source until the thermal expansion of fluids
substantially exceeds the loss of fluids due to transport. If
the permeability exceeds 10-'5 m?, then frictional melting on
the fault surface may reduce the dynamic shear strength before
the effects of thermal pressurization become significant

(McKenzie and Brune, 1972).

Similarly, for the case where there is no transport of
fluids, increases in porous medium compressibility require the
initial shear strength to be m;intained over a greater total
displacement. Once the fault surface is heated to the
temperature required for the thermal expansion of pore fluids
to exceed substantially the pore dilatation rate, the shear
strength diminishes rapidly. As the compressibility increases,
the rate at which the shear strength decreases is enhanced.
This behavior occurs because for compressibilities that exceed
10-° Pa-', the coefficient of thermal pressurization is given
approximately by anyw/ﬁsf. If the porous medium

compressibility is independent of changes in fluid pressure,
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then large temperature increases lead to large increases in
the thermal expansivity of water and thereby large increases
in the thermal pfessurization coefficient. Thus, for large
compressibilities when the temperature rises rapidly, the

thermal pressurization coefficient will also rise rapidly.

The results from Figures 3.2 and 3.3 indicate that if the
permeability exceeds 10-'5 m?, then, regardless of the porous
medium compressibility, thermal expansion of pore fluids is
accomodated by the transport of fluids from the heated region
adjacent to the fault surface. Conversely, if the porous
medium compressibility exceeds 10-® Pa-', then, regardless of
the permeability, pore dilatation accomodates the thermal
expansion of pore fluids. In both cases the pore fluids expand
at constant pressure. Hence, there is no feedback of fluid
pressure into the reduction of shear strength, and the fault

acts as a strong source of frictional heat.

For undrained conditions (k<10-2° m2?) the temperature
increase on the fault surface is obtained by setting x=0 in
equation (3.22) and is given as a function of displacement by

(Tn"Po)

0,(d) = — [ 1 -

exp(¢2atd/st) erfcl(eva,d/V, ) 1 (3.25)

For large displacements the second term within the brackets

vanishes and the maximum temperature rise is as given by the



ratio of the initial effective stress to the thermal
pressurization., Thus the maximum temperature rise needed to
- sustain fluid pressures at near-lithostatic values is
independent of the coefficient of friction, My, and the slip

velocity V and thereby independent of the rate of

sv!
frictional heating on the fault surface. This behavior implies
that the coefficient of friction and slip velocity determine
only the rate at which thermal pressurization proceeds, but

not the final outcome. If either my or Vs decrease, then the

)
total displacement required for an equivalent reduction in
shear strength is increased. Furthermore, if either the
coefficient of friction or the slip velocity deviates from its
initial value during slip and such deviation is small in
comparsion with the average value over the slip event, then

the rate of thermal pressurization will not be altered

significantly.

It is possible to extend this argumént to drained
conditions (k>10-2° m2?), To balance fluid-volume loss due to
pressurization and flow by the thermal expansion of pore
fluids, there must be an additional temperature rise on the
fault surface. The magnitude of the temperature rise will
depend on the fluid and thermal transport properties of the
porous medium, but not on the rate at which this temperature
increase is achieved. This behavior will be discussed in
further detail in Chapter 4. Suffice it to say here that under
the conditions just discussed as fluid pressures approach

lithostatic values the fault surface stablizes at a
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near-constant temperature. Once the temperature has
stabilized, fluid pressures are maintained at lithostatic
values by the diffusion of heat from a constant temperature
fault surface into the adjacent medium. Thus the maximum
temperature for drained conditions is also independent of the
coefficient of friction and the slip velocity. On the other
hand, the rate of temperature increase and the rate of shear

strength reduction, are dependent on my or V The results of

sv*

Figures 3.2 and 3.3 can be generalize for other values of Ky

and Vs provided we maintain the same initial porcsity and

vl
thermal properties of the solids. For other values of u, and

Vi, the displacement scales in Figures 3.2 and 3.3 can be

adjusted by multiplying by

(3.26)

uy? v

where the primed values denote the new values, and the
unprimed values represent the reference values ud=0.6 and st
=1 ms-', For example, consider an event with 1 m displacement
in a rigid medium. For uy;=0.6 and V =1 ms-' permeabilities
less than 10-'% m? are required for a significant reduction in
shear strength, but for u,;=0.19 and ¥  ,=10""' ms~' the
displacement scales are be multiplied by 100, and
permeabilities less than 10-'7 m? are required for an
equivalent reduction in shear strength to occur. Furthermore,

if uy is much smaller than 10-' or stis much less than 102

ms-', then it is doubtful thermal pressurization could reduce
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significantly the dynamic shear strength of a fault during an

earthquake event unless the porous medium were rigid.
Effect of Depth

The results presented in the previous section apply for a
fault surface at a depth of 2 km. The effect of locating the
fault at any other depth will be to change the initial
conditions on the fault (i.e., total normal stress, ambient
fluid pressure, and background temperature). If the initial
fluid pressures are hydrostatic, then as the depth of the
fault surface is increased the initial effective stress r;—Po
on the fault surface will increase. An increase in effective
stress leads to a corresponding increase in the maximum
possible fluid pressure, and thereby, an increase in the
temperature needed to sustain fluid pfeséures at

near-lithostatic wvalues,

For undrained conditions, equation (3.25) shows that
there is a linear relationship between the maximum temperature
rise and the initial effective stress. The rate at which the
maximum temperature is achieved is independent of the initial
effective stress and depends only on the ccefficient of
friction, slip velocity, thermal pressurization coefficient
and thermal transport properties. If these values remain
fixed, then we can scale the temperature in Figure 3.2 by the
ratio of the new value for initial effective stress to the
reference value (24 MPa). For example, if the initial

effective stress is 12 MPa and the fluid pressure is
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hydrostatic, then the temperature scale would be halved. For
drained conditions and compressibilities that exceed 10-'°
Pa-', this scaling factor holds provided the initial value of
the thermal pressurization coefficient T' is equal to the value
for the figure. When this is not the case, this scaling factor
cannot be used. Although equation (3.25) suggests we could
scale linearly with respect to the thermal pressurization
coefficient, this is not the case, because of the temperature
and pressure dependency of the thermal expansivity and

compressibility of water.

Similarly, equation (3.24) shows that for undrained
conditions the transient decrease in the normalized shear
strength (rr/rro) is independent of the initial effective
stress. Thus Figure 3.3 is representative of the transient
decrease in shear strength for any given depth. For drained
conditions and compressibilities that exceed 10"° Pa-', this
behavior holds provided the initial thermal pressurization
coefficient is egual to the value for the figure. The position
of the 1000 °C isotherm is, however, dependent on the initial
effective stress. If the initial effective stress is increased
(or decreased), then the isotherm will shift towards decreased

(or increased) displacements.

For a further illustration of such results, consider the
temperature rise and reduction in shear strength for a fault
at a depth of 1 km. In this case the total stress and initial

hydrostatic fluid pressure are halved, and the temperature



scale in Figure 3.2 is multiplied by 0.5. For a 10" ' m
displacement event, occurring in a medium with a permeability
of 10-'7 m? and a compressibility of 10-'%° Pa-', the
temperature rise is approximately 150 °C and the final
normalized shear strength is approximately 0.20. Recall that
the displacement scales'in Figures 3.2 and 3.3 can be adjusted
for other values of the coefficient of friction and slip
velocity by using equation (3.26). If we change the
coefficient of friction My and slip velocity st from their
reference values, 0.6 and 1 ms-', to 0.19 and 10-' ms~ ',
respectively, then the displacement scales in Figures 3.3 and
3.3 are multiplied by 100. For the new values the same event
at a depth of 1 km would have a temperature rise of 50 °C and

a final normalized shear strength of 0.80.

Because the transient decrease in shear strength depends
on the material properties of the porous medium and on the |
coefficient of friction and slip velocity on the fault
surface, changes in the initial conditions do not change the
rate of decrease in shear strength. The temperature required
to sustain fluid pressures at near-lithostatic values,
however, is dependent on the initial conditions because
changes in the initial effective stress lead to changes in the
maximum fluid pressure. Thus fhe primary effect of changes in
depth is to increase (or decrease) the final temperature

obtained on the fault surface.
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DISCUSSION

These results suggest that the permeability and
compressibility of the porous medium are the most important
parameters céntrolling the thermohydromechanical response of
the fault. This result is in agreement with the earlier
analysis by Lachenbruch (1980) and is comparable with the
results obtained by Delaney (1982). If the values of these
parameters are small, then the thermal expansion of pore
fluids caused by frictional heating during an earthguake event
can result in thermal pressurization and a subsequent decrease
in the dynamic shear strength of the fault surface. In Figure
3.4 we summarize the conditions of permeability and
compressibility which lead to a substantial reduction in the
shear strength of the fault surface. The shaded region of .
Figure 3.4 represents the region where large reductions will
occur for events with a total displacement greater than 10!

m, a slip velocity Ve, of 1 ms-', and a coefficient of

v
friction, uy, of 0.6. For permeability and compressibility
values lying outside the shaded region the thermal expansion
of pore fluids is not effective in reducing the shear strength
of the fault surface. For st=10‘1 ms-', or uy=0.2, the
boundary of the shaded region moves inward to curve (i); for

st=10'1 ms-' and uy=0.2 to (ii).

Figure 3.4 shows that the upper limit of permeability
required for a substantial reduction in shear strength is

lower than the value of 10-'3 m? suggested by Lachenbruch
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(1980). The results presented here indicate that 10°'% m? is a
better estimate of the upper limit for a rigid medium. If the
medium is compressible, then this limit must be lowered even
further. This discrepency can be explained by considering the
various assumptions on which these two analyses are based. In
obtaining a first estimate of the upper permeability limit,
Lachenbruch neglected the effect of an increase in fluid
pressure on the reduction of shear strength and, consequently,
on the frictional heat source. Furthermore, he assumed a fault
zone of finite width, so that thermal transport could be
neglected. With these assumptions, fluid-volume increases due
to thermal expansion remain constant during slip, creating a
favorable environment for a large increase in temperature and

fluid pressure.

This numerical analysis incorporates both thermal
transport (conductive and convective) and the feedback of pore
pressures in the reduction of shear strength and frictional
heating. If pore pressures increase, the rate of frictional
heating decreases, and the fluid volume increase due to
thermal expansion decreases. This behavior requires a lowef
permeability to limit fluid flow and to sustain pressurization
of the pore fluids. In addition, in estimating an upper limit
for the permeability, Lachenbruch allowed the central
temperature in the fault zone to increase linearly with
displacement. This analysis shows that the fault would
stabilize at a constant temperature, with the rate of

fluid-volume expansion decreasing to near-zero values. At this



point thermal pressurization is maintained by diffusion of
heat from the constant temperature fault surface into the

surrounding medium.

Four major assumptions may limit the generality of these
results. First, we have simplified the physical situation by
assuming the transfer of fluid and heat occurs at right angles
to the fault surface. This approach requires uniformity of
material properties along the fault and leads to a temperature
increase and reduction in shear strength that is uniform over
the fault surface; but if there are lateral variations in
material properties , especially those of permeability and
porous medium compressibility, then the temperature increase
and reduction in shear strength will not be uniform over the
fault surface. In such case the slip velocity will not be
uniform in time or space and will lead to oscillatory slip
behavior (e.g.; Nur,1978). The influence of spatial variations
in material properties will probably be of second order, and
the velocities used earlier represent the average of the
oscillatory slip velocity. In addition, because geologic
formations are nop-uniform, it is doubtful that a complete
reduction in shear strength, as suggested by Figure 3.4, could

occur.

Second, a kinematic description is incomplete if a rapid
decrease in shear strength occurs. The onset of such a
reduction will act as a mechanism triggering the release of

strain energy stored in the region exterior to the fault,
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causing the slip velocity to increase. In this case inertial
terms in the stress equations cannot be neglected. The dynamic
problem must be considered to understand how slip across the
fault relieves strain energy that has risen slowly because of
long-term tectonic movement. In addition, the recovery of
dilatancy accompanying the release of shear strain can cause a
net decrease in pore volume in the adjacent medium and inhibit
the migration of fluid from the fault (Scholz et al/., 1973;
Sibson, 1973; Lachenbruch, 1980). The combination of these two
effects would cause a further enhancement in the rate of

thermal pressurization,

Third, deformation has been confined to a planar surface,
so that the friction law can be used to describe frictional
heat generation. In fact, as fhe thermal pressurization of the
adjacent region progresses, the effective stress will decrease
in compression and thereby promote inelastic-deformation
mechanisms such as frictional sliding past grain boundaries
and microfracturing. As microfracturing generally occurs at
fluid pressures below the minimum principle stress, some sort
of inelastic response would occur prior to a complete
reduction in shear strength. This behavior will cause a loss
of cohesion and a net reduction in the shear strength of the
porous medium adjacent to the fault surface. The loss of
cohesion could cause an initially planar zone to broaden as

slip progresses.
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Fourth, we have assumed that fluid pressures could
approach lithostatic values. However, if the least principle
stress is less than the lithostatic stress, then
hydrofracturing may intervene and act to stabilize the fluid
pressure at the value of the least principle étress. In such
case, the shear strength of the fault surface will not be
reduced to near-zero values but will asymptotically approach

the value
ud(T;—TQ) (3.27)

where 75 is the least principle stress. The temperature rise
will no longer approach a maximum value but will continue to
rise at a reduced rate determine by equation (3.27). This
behavior could lead to extensive fracturing of the region
adjacent to the fault surface. It is not clear, however,
whether such hydrofracturing could be important én the timé
scale of an earthguake event (Lachenbruch, 1980). In any case,
~ the influence of microfracturing will probably not change thé
conditions required for thermal pressurization to reduce the

initial shear strength.

The third and fourth assumptions pose the greatest limit
on using the results presented here. For low values of
permeability (<10-'%® m?) high pore pressures will be confined
to a narrow zone. For high values of permeabilities (>10-1'%
m?), the pore pressure rise will be insufficient to affect the

strength of the adjacent medium. Thus, for these two extremes



the approximation of a planar fault surface should hold,
provided that the surface was initially planar. For
intermediate permeabilities, however, the migration of pore
fluids will cause a progressive weakening of the region
adjacent to the fault surface and a widening of the zone of
deformation. Lachenbruch (1980) showed that if the fault zone
width is greater than the displacement, or if the
pore-dilatation strain exceeds 2 or 3% of the shearing strain,
then coupling of thermal, hydrologic, and mechanical effects
is unimportant. Whether or not the zone will widen
sufficiently to halt the thermal pressurization process, or to
stabilize at a certain width and shear strength, depends upon
the constitutive relation between shear strength and effective
stress. Furthermore, the formation of new microfractures and
improved interconnectivity of these fractures can lead to a
substantial increase in permeability. This behavior leads to
enhanced fluid flow, which may arrest the thermal
pressurization process and cause a restoration of the shear

strength.

CONCLUSIONS

This paper illustrates how the effects of heat transfer
and fluid flow influence the thermohydromechanical response of
a fault surface during slip. The analysis leads to the

following conclusions:

1. For rigid media with low permeability, only a small
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temperature increase is required for the thermal expansion of
pore fluids to pressurize the fluids and to maintain the fluid
pressure on the fault surface at near-lithostatic values. This
result is in agreement with the earlier analysis by
Lachrnbruch (1980). For media with greater permeabilities or
porous medium compressibilities, or both, large temperature
rises are required on the fault surface for the thermal
pressurization of pore fluids to overcome fluid losses due to
fluid flow or fluid-volume changes due to pore dilatation, or
both. Temperatures on the fault plane stabilize at the point
where there is a dynamic balance between the temperature and
pressure fields, with the increase in fluid volume due to
thermal expansion equal to fluid loss due to flow and

fluid-volume changes due to pore dilatation.

2. The dynamic shear strength remains close to its initial
value until the fault surface is heated to a temperature
required for tﬁermal expansion of pore fluids to exceed
substantially fluid losses due to flow and fluid-volume
changes due to pore dilatation. Once this condition is
established, the shear strength diminishes rapidly to a value
sufficient to maintain the thermal pressurization process. For
media with greater permeability or compressibility, or both,
the shear strength will remain close to its initial value over
greater displacements. If either the permeability exceeds
10-'5 m? or the porous medium compressibility exceeds 10§
Pa-', then frictional melting may reduce the dynamic shear

strength before the effects of thermal pressurization become
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significant.

3. The main effect of varying the depth to the fault surface
is to change the initial conditions at the onset of slip.
Because increases in the initial effective stress lead to an
increase in the maximum fluid pressure, the temperature
required to sustain fluid pressures at near—lithostaéic values
depends on the initial effective stress. If fluid pressures
are initially hydrostatic, then the final temperature attained
on the fault surface increases with depth. However, because
the transient rate of decrease of the shear strength depends
primarily on the material properties of the porous medium, and
on the coefficent of friction ahd the slip velocity on the
fault surface, changes in initial conditions do not

significantly change the rate of decrease in shear strength.

4. The coefficient of friction and slip velocity determine the
rate at which thermal pressurization proceeds, but not the
final outcome. However, if the coefficient of friction is less’
than 10-' and if the slip velocity is less than 10-2 ms-',

then it is doubtful that either thermal pressurization or
frictional melting could reduce the dynamic shear strength of
the fault surface. In these conditions frictional heating is
small, and the temperature rise would be minimal for an

earthquake event with realistic displacement.
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APPENDIX: NUMERICAL SOLUTION OF EQUATIONS

Equations (3,14) and (3.15) are solved numerically using
a Galerkin finite-element technique with linear basis
functions and deforming coordinates. Temperature, fluid
pressure, and material and fluid properties vary linearly
across each of the elements. Time derivatives are approximated
by a fully implicit backward difference scheme. The
thermodynamic properties of water are incorporated as state
functions of fluid pressure and temperature using relations
given by Keenan et al. (1978) for density and specific heat,
Watson et al. (1981) for dynamic viscosity, and Kestin (1978)

for thermal conductivity.

The heat flux from the fault surface can be considered as
a surface discontinuity in the heat flux aéross the region,
giving rise to a Dirac delta function. Thus frictional heating
on a fault surface at an arbitrary location Xy can be

described as
lef = I-ld(T;l‘P) st5(x—xf) (3.A1)

This equation is handled easily using finite element
techniques. Because of the properties of the Dirac delta
function, the frictional heat flux is simply added to the
righthand side of the finite-element equation for node Xfo
This approach has the advantage of allowing non-uniform

material properties on either side of the fault surface or
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multiple faults with varying coefficients of friction and slip

velocities, or both.

For all simulations the grid spacing increases with
distance from the fault surface, with the smallest grid
spacing adjacent to the fault. For problems that are symmetric
about the fault surface, the equivalent half-space problem is
modeled. The discretization error caused by lumping the
frictional heat flux, equation (3.A1), into a single node was
minimized by running several simulations of the same problem,
reducing the grid spacing until identical results were
obtained for two successive runs. The minimum grid spacing
required to insure numerical stability was 105 m and 10-% m

for slip velocities of 1 ms~' and 10°' ms~', respectively.

A solution procedure is employed where the heat-transfer
and fluid-flow equations are solved sequentially for a given
time step. An iterative technique is used to couple the
heat-transfer and fluid-flow equations. The size of the time
step is adjusted automatically following a procedure that
limits the magnitude of changes in pressure and temperature to
some specified value which.will insure rapid convergence.
Initial time steps were on the'order of 10°% s. The first step
in the procedure ié to solve for the temperature field using
the fluid pressure, and material and fluid properties from the
previous time step. The fluid-flow equation is then solved
using the newly calculated temperature field to estimate the

fluid-volume changes due to thermal expansion. Porosity is
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updated by using the analytical solution of equation (3.16)

over the time step

n, = 1 - (1‘”1_At)exP[ -(Bsf_ms)(pl—Pt-At)

(7, 77,0 (0,-0, _p,) ] (3.a2)

where the porosity is assumed to be linearly independent of ©
and p, and the bar denotes the average value of the variable
over the time step. The fluid and material properties are then
updated usihg the new estimate of the temperature, fluid
pressure and porosity fields, and equation (3.11) is
integrated over the flow domain to obtain the displacement of
the nodes from their position at the previous time step. An
iterative sequence is then empioyed until the maximum pressure
and temperature change between successive iterations is less
than a specified tolerance (10-2 MPa and 10-2%2 °C,
respectively). Once this criterion is met, the model proceeds

to the next time step.
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NOT AT ION

isobaric specific heat of water.

volumetric strain (dilatation) e, +ez,*e;;.

solid matrix strain.

as a subscript denotes fluid.

porous medium permeability.

bulk modulus of the solid grains.

bulk modulus of the porous medium.

thermal conductivity of the solid grains.

thermal conductivity of water.

thermal conductivity of the solid-fluid composite.
porosity.

fluid pressure increase above ambient conditions.
pore fluid pressure..

initial fluid pressure.

fluid specific discharge relative to the solid matrix.
as a subscript denotes solid. '
time. |

temperature,

initial temperature.

displacement of the solid matrix from its initial
position.

solid-matrix velocity with respect to a fixed
coordinate system.

relative slip velocity across the fault surface.
as a subscript denotes water.

hydraulic diffusivity.

thermal diffusivity.

thermal pressurization coefficient.

isothermal compressibility of the solid grains.
porous medium compressibility.

isothermal compressibility of water.

Kronecker delta function.

characteristic diffusion length.
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7 isobaric thermal expansivity of the soild grains.

Tsf linear thermal expansion coefficient of the porous
medium.

Ty isobaric thermal expansivity of water.

u shear modulus.

g dynamic coefficient of friction on the fault surface

i, dynamic viscosity of water.
Poisson's ratio

Py density of the solid grains.

Py, density of water.

(pc)sf heat capacity of the soild-fluid composite.

T average effective normal stress (7,,+7,,+753)/3.

Tij components of the effective stress tensor.

;j components of the total stress tensor.

Th effective normal stress acting on the fault surface.

r; total normal stress acting on the fault surface.

T, resistive shear strength of the fault surface.

Treo initial resistive shear strength of the fault surface.

e temperature increase over ambient conditions.

£ proportionality constant between pore and bulk volume

changes.
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TABLE 3.1. Parameter Values for Porous Medium and Solid

Properties Constant for All Simulations.

Property Value
Porosity n 0.20
3 1.0
Thermal expansivity of the porous medium Vs f 10-% °Cc-1
Compressibilty of the solid B 10-11 pa-1
Density of the solid p 2.6x10% kg m~3
Specific heat of the solid 102 J kg-' °K-!
Thermal conductivity of the solid X 2.5 Wm ' °K-!
Compressibilty of the solid By 10-11! pa-!

Thermal expansivity of the solid v 2,5x10-% °c-!




FIGURE CAPTIONS

Figure 3.1. Conceptual model of planar fault zone.

Figure 3.2, Temperature rise during displacement on a fault
surface with a uniform coefficient of friction uy=0.6,
constant-slip velocity ¥ ,=10"" ms~', and initial effective
stress r =24 MPa acting on the fault surface. The k& (m?) and
Bsr (Pa-') are the permeability and compressibility of the
surrounding porous medium. The initial thermal pressurization
coefficient is: (a) I'=1.4x10% Pa °C-'; (b) I=6.6x10% Pa °C-';
(c) I'=1.1x10% Pa °C-';

(d) I'=1.1x10*% Pa °C-'.

Figure 3.3. Change in the dynamic shear strength T, with
displacement on a fault surface with a uniform coefficient of
friction p,=0.6, constant-slip velocity Ve,=10"" ms-', and
initial effective stress T,=24 MPa acting on the fault
surface. The k (m?) and Bsr (Pa-') are the permeability and
compressibility of the surrounding porous medium. The initial
thermal pressurization coefficient is: (a) I'=s1.4x10% Pa °C-';
(b) I'=6.6x10% Pa °C-'; (c) I'=1.1x105% Pa °C-';

(@) r=1.1x10% Pa °Cc-',

Figure 3.4, Summary of constraints on permeability and
compressibility of the porous medium for a substantial

reduction in shear strength to occur. Region where large
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reductions will occur for earthguake events with a total
displacement greater than 10-' m, a slip velocity Ve, of 1

ms~ ', and‘a coefficient of friction, p,, of 0.6. For
permeability and compressibility values lying outside the
shaded region the thermal expansion of pore fluids is not
effective in reducing the shear strength of the fault surface.
For st=10‘1 ms-', or uy=0.2, the boundary of the shaded
region moves inward to curve (i); for ¥  =10"" ms~' and uy=0.2

to (ii).
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CHAPTER IV

THE EFFECTS OF FRICTIONAL HEATING ON THE THERMAL, HYDROLOGIC,

AND MECHANICAL RESPONSE OF A FAULT DURING SLIP

Hubbert and Rubey (1959) were the first to suggest that
the movement of a large thrust sheet requires a low frictional
resistance to motion along its base. Given that the
coefficient of friction is reasonably uniform for a variety of
rock types and a wide range of normal stresses, if the
resistive shear stress is small, then high fluid pressures are
fundamental to the Hubbert-Rubey theory of thrust faulting. If
thrusting and other forms of faulting are initiated and
sustained by abnormally high fluid pressures, then mechanisms
for generafing and maintaining that préssure pose a
fundamental problem in fault mechanics. One such mechanism, a
transient increase in fluid pressure due to thermal expansion
of pore fluids caused by frictional heating within a fault

zone, is the subject of this paper.

Assuming the failure surface is established, many
investigators have shown that frictional heating could play an
important role in the dynamics of fault processes. Jaeger
(1942), McKenzie and Brune (1972), Richards (1976), Cardwell
et al. (1978), Scholz (1980), and Sibson (1980) suggested
frictional heating could lead to partial melting on the fault
surface with a subsequent reduction in dynamic shear strength.

These studies have neglected the presence and possible effect
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of pore water. If water is present, the dynamics are more
complicated. Sibson (1973) showed that for an impermeable
medium frictional heating could result in lithostatic fluid
pressures causing the dynamic shear strength to approach
near-zero values. Lachenbruch (1980) discussed the governing
equations for heat and fluid flow, and analyzed for special
cases the interaction of parameters controlling thermal
pressurization and their critical range of values. The
concepts discussed in this work form the basis for our
analyses. Lachenbruch concluded that if permeability or
pore-dilatation rate exceed 10-'3 m? or 2%, respectively, then
coupling of thermal, hydrologic, and mechanical effects could
probably be neglected, with fluid pressure and dynamic shear
strength remaining constant during slip. Raleigh and Everden
(1981), assuming no transport of fluid or heat, calculated the
maximum fluid pressure increase for various displacements,
slip velocities, and fault widths. While these studies have
illustrated the basic features of the response, they have
considered only a fault zone of constant width and fixed
strain rate, for the following two limiting cases: those cases
where fluid transport is so large it nullifies thermal
pressurization, and those cases where transport of heat or
fluid, or both, are so small they can be neglected. For
intermediate conditions, these studies do not provide an
adequate description of the transient increase in temperature
within a fault zone during slip, and its effect on the fluid

pressure and stress fields.
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In a previous paper (Mase and Smith, 1985), we examined
these intermediate conditions using numerical modeling
techniques, and discussed the temperature and fluid pressure
rise on a fault surface for a simple kinematic model of slip.
It was shown that the response of fluid pressures to
frictional heating could be described by the following two
limiting cases. If the permeability or compressibility of the
porous medium are greater than 10-'®> m? or 10-% Pa-', then the
thermal expansion of pore fluids is accomodated by fluid flow
from or pore dilatation within the heated region adjacent to
the fault surface. In this case the fluid pressure and dynamic
shear strength remain unchanged during slip. Conseqﬁently, the
fault is a large source of frictional heat and bartial melting
may occur. Thislupper limit for permeability is lower than the
10-'3 m? limit of Lachenbruch because of coupled thermal and
hydrologic effects, and our assumption of a planar fault. If
the permeability and compressibility of the porous medium are
less than 10-'® m2 and 10-'' Pa-', then the heating process
takes place at constant fluid mass and substantial increases
in fluid pressure can occur. If fluid pressures approach
lithostatic values, the sliding surfaces will lose cohesion
and the rate of frictional heating and the dynamic shear
strength will approach zero. In this case the maximum
temperature attained on the fault surface is substantially

less than that required for frictional melting.

In this study we expand this model to account for both

fault zones of finite width and for the dynamics of a variable
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resistive stress. We examine the physical parameters that
control the thermal and hydrologic fields, and discuss an
important parameter, the thermal pressurization coefficient.
This parameter controls the rates of pore dilatation and fluid
pressurization due to a temperature rise. We describe the
thermal and hydrologic effects during fault motion,
dimensionless measures of their importance, and characteristic
time scales for thermal pressurization. The aim of this paper
is to examine the full nonlinear behavior of fault motion, and
to determine limits to fault behavior for various ranges of
the controlling parameters. A list of mathematical symbols is

given in the notation list at the end of the paper.

A MATHEMATICAL MODEL FOR SLIP ACROSS A FAULT ZONE

Most models concerning earthquakes are based on elastic
rebound theory (e.g., Reid, 1910, 1911; Mavko, 1981). In this
theory elastic strain energy arising from long-term tectonic
movement is abruptly released during earthquakes. This process
of strain buildup and release repeats itself in a roughly
cyclic fashion, and is commonly referred to as stick-slip
behavior (e.g., Brace and Byerlee, 1966; Walsh, 1968;
Dietrich, 1974, 1979a, 1979b). Figure 4.1a shows a schematic
model of this behavior for a strike-slip fault. The fault is
represented by a vertical zone of finite width that is
comprised of patches of relatively high strength rock
(barriers) surrounded by weaker intervening areas. This zone

accomodates the relative motion between the two fault blocks.
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Long-term tectonic motion causes the adjacent elastic region
to deform and the stress at the barriers to increase. At the
instant of failure a barrier ruptures and slip spreads through
the locked portion of the fault until fault motion is halted
by a barrier (e.g., Das and Aki, 1977; Mikumo and Miyatake,
1978; Aki, 1979, 1984; McGarr, 1981; Das and Scholz, 1981;
Papageorgiou and Aki, 1983a, 1983b; Rundle et al., 1984;
Stuart et al., 1985). We do not propose to solve for the
temperature, fluid pressure, slip distribution, and stress
drop over the entire fault. Rather, we examine only the
thermal, hydrologic and mechanical response of a small patch
of the fault that is arbitarily located on the failure
surface, and consider the physical parameters that control its
response. We will assume the inétial material properties
within and adjacent to the patch are uniform. In a later
section we return to the topic of spatial heterogeneities, and
discuss their effects on the spatial variability of the stress

drop, slip rate, and displacement over the fault.

Figure 4.1b shows a simplified geometry for such a patch.
The patch consists of two elastic blocks which slide pést each
other on a narrow planar zone. The width of the elastic blocks
is defined by the characteristic length between barriers. This
length may be bn the order of hundreds of meters to tens of
kilometers, whereas the width of the fault zone is on the
order of hundreths of meters to several meters. The fault zone
deforms by simple shear in the presence of uniaxial

compression normal to the fault, and undergoes strains that



139

are finite and irrecoverable. Prior to slip quasi-static
stress conditions apply within the blocks, with the shear
stress at the initiation of slip given by the static shear
strength of the fault. We assume that fault rupture starts
suddenly with a uniform stress drop and slip velocity over the
entire patch. The failure surface may be a preexisting fault
zone or a new fracture caused by failure. Energy consumed in
breaking cohesive bonds or creating new fracture surfaces is
assumed to be negligible (e.g., Richards, 1976; Lachenbruch
and Sass, 1980). In addition, fluid-pressure changes that
might arise from effects at the propagating ends of the
failure surface (e.g.; Rice and Simons, 1976; Rice and
Rudnicki, 1979) are assumed to be small in comparison to
changes in fluid pressure arising from frictional heating.
These assumptions are reasonable for earthquakes where the
propagation velocities of the fault tips are several orders of
magnitude greater than the relative slip velocity across the
failure surface. During slip the width of the thermal and
hydrologic fields caused by frictional heating is negligible
in comparison to the width of the elastic blocks.
Consequently, the effects of thermal pressurization can be
regarded as a transient drop in stress on the boundaries of
the elastic blocks. In this case the slip velocity of the
blocks is determined by the decrease in the shear strength of
the fault patch. Using this approach, it is possible to
characterize how the decrease in shear strength during slip

relieves the elastic strain energy that has risen slowly
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because of long-term tectonic movement.

Any calculation of the thermal and hydrologic fields
depends upon the rheolbgical relation which links the shear
strength to deformation rate, fluid pressure, and temperature.
Currently, little is known about the rheological behavior of a
fault zone at any depth. For disaggregated fault gouge it is
probable the rheology would follow a friction law behavior;
that is the shear strength approaches zero as the fluid
pressures appoach lithostatic values (e.g., Handin et al.,
1963; Jaeger and Cook, 19€69; Savage, 1977; Lachenbruch, 1980).
We assume that the shear stress required for slip across the

fault is given by the friction law

T, = p.d('rn-P) (a.1)
where T, is the resistive shear stress, By is the dynamic
coefficient of friction, r, is the total normal stress acting
across the fault, and P is the pore-fluid pressure. A
principal motivation for using this law is its wide-spread
applicability in describing the results of laboratory
experiments for a variety of rock types. For most rocks Hy is
insensitive to composition and hardness, and has values
between 0.4 and 1.0 (Byerlee, 1978). For surfaces separated by
a thin clay-rich layer of fault gouge, Morrow et al. (1982)
reported values for u, that ranged from 0.2 to 0.6. In
general, the coefficient of friction is dependent on the

effective normal stress and deformation history of the fault
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zone (e.g., Dietrich, 197%a, 1979b; Rice, 1983; Ruina, 1983,
1984). Because this law describes the gross resistance between
two sliding blocks, the shear stress is influenced only by the
effect that frictional heating has on the fluid pressure and
slip rate. This approach decouples the equations describing
motion within the fault zone from the eguations describing
fluid pressure and temperature. Thus it is not possible to
examine the evolution of inelastic deformation, and a priori
assumptions about the width of deformation and the strain rate
across the zone must be made to calculate the fluid-pressure
and temperature fields. Without a rheological law relating the
shear strength to fluid pressure and deformation rates, we
simply note when these calculations imply that deformation

would expand or contract about the edges of the zone.

If we assume a width 2w for the fault zone, then the rate

of shear heating within the zone is given by

uylr ~P) - Kl (4.2)
w

where 2Vy is the relative slip velocity of the elastic blocks.
This relationship assumes that deformation is not continuous
across the zone, but is comprised of a number of slip planes
with a spacing such that frictional heat generated on the
planes acts as a distributed heat source for the time scale of
interest. Measurements of frictional heating in granite and
sandstone suggest that (4.2) gives a good representation of

the average temperature generated on the fault surface, but



142

yields little information about local maxima at asperity
contacts (Teufel and Logan, 1978; Logan, 1979; Lockner and
Okubo, 1983). For the case where fluid pressures remain
constant, equation (4.2) has been used to predict high
temperatures during slip (McKenzie and Brune, 1972; Richards,

1976; Cardwell, 1978; Lachenbruch, 1980).

In this framework the transfer of fluid and heat occurs
at right angles to the fault, and the mathematical problem
involves finding solutions to the one-dimensional equations
describing heat transfer, fluid flow, and stress. These
eqguations are outlined below. All equations are expressed in a
Lagrangian reference frame with respect to the solid matrix of

the porous medium.

Heat Transfer Equation

The equation of heat transfer describing the temperature
distribution in a saturated porous medium is given by

0_(x oT

q
ox\sf dx’ T pwcwqx(%g) + "7w[%$ * _%(%g)]T +

v
py(r,~P) —i [H(x+w)-H(x-w)] = (pc)sf %% (4.3)

where mathematical symbols are defined separately in the
notation list. For mathematical convenience the centerline of
the fault is fixed at x=0. The terms on the lefthand side are,

in order, the rate of conductive heat transport, the rate of
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advective heat transport, the rate of heat addition due to
pressurization of the fluid, and the rate of frictional
heating within the fault zone. The term on the righthand side
represents the rate of internal heat storage. Local thermal
equilib;ium between the solid matrix and the fluid is assumed.
The thermal conductivity of the solid-fluid composite is given

by K, = Kgl-")Kx (Woodside and Messmer, 1961).

Fluid and Solid Mass Conservation Equations

Assuming the pores are saturated with water, and that the
solid and fluid phases are mechanically distinct, the equation

for conservation of fluid mass is

_%f(qx) - qx[Bw(%g) - 7w(%§)] + [”7w + (1-n)7s)%% =

%% + [np %% + (1-n) By %;] (4.4a)

w

9, = - (4.4b)

F|
T |x
(S

where ¢, is the Darcy flux. The terms on the lefthand side of
(4.4a) are, in order, the rate of fluid transport, the change
in fluid mass due to pressure contraction or thermal expansion
of fluids along the flow path, and the change in fluid mass
due to the difference in thermal expansivities of the fluid
and solid phases. The terms on the righthand side are the

change in fluid mass due to volumetric dilatation of the
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porous medium and the change in fluid mass due to the
difference in the compressibility of the fluid and solid
phases. In equation (4.4b) fluid flow due to gravitational
forces is assumed to be negligible for the time scale of
interest. For water the compressibility B, and thermal
expansivity v, coefficients are strongly temperature

dependent. This dependence is shown in Figure 4.2,

The condition for conservation of the solid mass requires

the following compatibility constraint for porosity:

8n = (1-m)(ge v B, 3T -4 8T (4.5)

where ¢ is the volumetric-dilatation. Equation (4.5) states
that the pore-dilatation rate (9n/3t) is given by the rate at
which solids are leaving a unit volume minus the rate at which
they are expanding due to decreaseé in the average effective

normal stress or increases in temperature within the volume.

Equations of Motion

Deformation of the porous medium is governed by the

effective stress Tij which is defined as

Tij T Tij T kP8 (4.6)

where stresses are defined as positive when compressive, T;j

is the total stress, and § is the ratio of fluid volume
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expelled to the volumetric dilatation for drained conditions.
From stress-strain measurements Biot and Willis (1957), and

Nur and Byerlee (1971) have suggested that
E = —_— (4.7)

where k. and ksf are the bulk moduli of the solid grains and
porous medium, respectively. For media with appreciable
porosity, ks/ksf<<1, with £=1, and the fluid volume expelled
is equal to the volumetric dilatation. With equation (4.6) the

equations of motion for the block are

%} Txx + %Y(EP) -+ psf %T VX = 0 o (4.88)
9 s +po,2 Vv =0 (4.8b)
ox "xy sf ot "y ’

For a linear-elastic porous medium the constitutive equations

for stress and strain are (after Biot and Willis, 1957)

_ v 2u(i-») _
v (1-2p)
where solid-matrix strains and displacements are positive in
extension. Substitution of (4.9) into (4.8), and writing the
strains and velocities in terms of solid-matrix displacements

yields
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ax[z‘;:i;:;(g—f Ux_7sf®) - EP] = psf -a—;-; x (4.103)
%;(u %} Uy) = by 222 U, (4.10Db)
t

where p=(P-P,) is the fluid pressure increase above the
initial value P,, and ©=(T-T,) is the temperature increase
above the initial value T,. Equation (4.10a) determines the
volumetric—dilétation rate, and (4.10b) determines the

relative displacement and slip velocity across the fault.

The tendency of the pore-volume to dilatate with
increasing fluid pressure provides a mechanism to accomodate
the thermal expansion of pore waters. As we are interested
primarily in conditions that can arrest the rate of
pressurization, we consider only extension within the thermal
and fluid pressure fields caused by frictional heating. In
this case, because the rate at which heat and fluid pressure
diffuse is significantly less than the compressional wave
velocity, we can neglect the inertial term of (4.10a).
Integration of (4.10a) over the thermal and fluid preséure

fields, with the centerline of the fault fixed at x=0, yields

Uplx,0) = g% [ U220 b0y v o o e(n,e) 1 an (4.11)
0
2u(1-»)
where U, represents the solid matrix displacement from its
‘initial position. The corresponding volumetric-strain and

pore-volume-dilatation rates are, respectively,
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ge - g qlic2i)i . 57 ©] (4.12a)
2u(1-»)
%? = (1-n) %7{{éii%%%§ “EBg)p + (v v )0] (4.12b)

The quantity in front of the pressure term in equation (4.12a)

is the compressibility of the porous medium, ﬁsf’ where:

= (1__21.)_& (4'13)
2u(1-»)

This parameter characterizes the volumetric dilatation that
will take place for a unit change in effective stress. Table
4.1 summarizes the range of compressibilities that have been
suggested for various rock types. Because p, 9, ﬁsf’ Vsfr M
v, and ¢ are nonlinear functions of U,, e and n, equations

(4.11) and (4.12) represent implicit equations for U , e and

n.

For calculation of the thermal and fluid pressure fields
we need to solve (4.10b) only for the relative slip velocity
across the fault. The initial shear stress within the elastic

blocks is given by the static shear strength of the fault

T = M

Xy s (1 ,=Po) at =0 (4.14)

where u is the static coefficient of friction (us>ud). Once
slip is initiated, the frictional resistance drops to the

dynamic value with the shear stress on the surface of the
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elastic block described by the boundary condition
wEE U, = pyl (r =Po)=p(x,1)] at x=0 (4.15)

where u is the shear modulus of the elastic block. Solving
equation (4.10b) for the slip velocity, given the initial
condition (4.14), the boundary condition (4.15) and the

position of the block fixed at x=w,, yields

v (1) = —— { (ugmuy) (1, =Po)H(t -t) +
l/Psfl-l

t
My %T !, ple-7)[H(7)-H(r=1 ) ]dr } at x=0 (4.16a)

ty = —— (4.16b)

where L is a chara;teristic slip duration, w, is the width of
the elastic region, and v is the shear wave velocity. For an
instantaneous drop in shear strength across the fault, ty is
the characteristic (or relaxation) time for the release of
strain energy within the elastic blocks. Equation (4.16) is
referred to as the elastic-block (EB) model for slip velocity.
We now modify this solution: first, to account for edge

effects due to fault propagation; and, second, to consider

only the average velocity of the elastic block.

If fluid pressure remains constant, equation (4.16)

reduces to the slip model suggested by Brune (1970). His model
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consisted of a tangential stress pulse applied uniformly and
instantaneously over one fault block, with an equal pulse
applied in the opposite direction to the other block. This
model assumes that for distances less than the block width the
shear stress is uniform and non-zero, whereas for distances
greater than the block width the stress is zero. Thus, the
slip velocity is constant for durations less than tg, and
abruptly falls to zero for greater durations. In actuality,
the stfess would peak at the fault and decline with distance.
Consequently, the decay in slip velocity would reflect the
decline in shear stress with distanée. To account for this
effect, and the effects of fault propagation, Brune suggestea

replacing the constant slip velocity with

Vy(t) = /—Z—_ exp(- TL ) (4.17)
psfu r

where o is the initial drop in shear stress across the fault
surface, and ¢, is a relaxation time constant. To use this
relationship, we assume the initial stress drop is given by

the difference in the static and dynamic shear strengths of

the fault surface. Because the stress drop and slip velocity
are affected by changes in the resistive stress, equation

(4.17) is modified to account for changes in fluid pressure:



Vy(t) = ! { (ug-uy) (r,=Polexp(- TL ) +

Vpsfu r

t A
1y %T fo plt-7)exp(- 71 YH(7) d7 } at x=0 (4.1

r

If fluid pressures remain constant and t,=tg, then both models

yield the same displacement and maximum slip velocity.

Equation (4.18) is referred to as the edge-effects (EE) model

for slip velocity.

A third model for slip is the spring-rider model where
only the average displacement and velocity of the elastic
blocks are considered (e.g.; Burridge and Knopoff, 1967;
Jaeger and Cook, 1969, p. 61; Nur, 1978; Israel and Nur,
1979). For this modél equation (4.10b) is integrated with
respect to x over the width of the elastic block and is

rewritten as

az
ot 2

p
sf e

where Uy is the average displacement of the block from its
initial position and the initial conditions are

Ey(0)=65y(0)/at=0. The terms on the lefthand side are,

respectively, the inertial force of moving the block and the

restoring force exerted by the block once motion begins. The

term on the righthand side is the force available to
accelerate the block due to a drop in the resistive stress

across the fault. Solving equation (4.19) for the average

Uy + 32U, = (ug=ng)(r,-Po) + ugp(0,1) (4.1
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veldcity of the block yields

% = 1 - - - t _
Vy(t) Y { (ug-uy) (7, Po)51n(%;)H(§zs t) + .
t
by 37 f, pl=m)sin(GR) [H(r)-H(7-Ft ) 1dr } (4.20)

e

This model is referred to as the spring-rider (SR) model for

slip velocity.

These three models are valid while the slip velocity is
greater than zero. When the slip velocity equals zero, we
assume that static friction is sufficient to prevent
backsliding and slip ceases. Figure 4.3 shows the velocity as
a function of time for each model. In this figure, the
velocity is normalized by its initial value and the fluid
pressure is constant. Both the amount and duration of slip are
dependent on the coefficients and width of the elastic region,
the difference between the dynamic and static coefficients of
friction, and the fluid pressure on the fault surface. For
each model the maximum velocity and final displacement are the
same. If fluid pressures increase during slip, however, this
may not be the case, and exact solutions for the displacement
and slip velocity must be obtained by sclution of the coupled

equations.
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Solution Techni que

Substituting the'Darcy flux and the volumetric strain
rate into equations (4.3) and (4.4), and assuming that the
total normal stresses remain constant during slip yields the
final form of the equations governing the temperature

increase,

5k 5D+ (o, 75 (321(32) + ny,[8R - K (§2)21(0T,) +
w w

vV
uy(r,-Po=p) —L [H(x+w)-H(x-w)] = (pe), §2 (4.21)

w

and the pressure increase,

g;<ﬁf 3p) 4 ﬁ§[5w<%§>2- 7, (32 (3B) 1 + [y (1-n)y -7 ;132 -
[nB,~(1-n)£B +B (132 (4.22)

Equation (4.21) and (4.22) can be solved by a Galerkin
finite-element technique to give an approximate solution to
this coupled system of equations. In addition, porosity is
determined by the compatibility equatioh (4.12) and slip
velocity is given by equations (4.16), (4.18) or (4.20).

Details of the approach are summarized in the Appendix.

For all simulations, we assume a uniform temperature T,

and fluid pressure P, as initial conditions, and that the
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solutions remain bounded as |x| approaches infinity. The
latter condition is satisfied by moving the boundaries of the
finite element mesh far enough from the fault surface so that
they experience no temperature or fluid pressure
perturbations. Thus the width of the finite element grid is
determined by the size of the thermal and hydrologic fields
caused by frictional heating. The size of these fields are
negligible in comparison to the width of the elastic blocks.
Consequently, the effect of thermal pressurization is regarded
as a transient stress drop on the boundary of the elastic
block and motion of the elastic block is determine by
numerical integration of the equations of motion; In addition,
the permeability and porous medium compressibility are assumed
to be independent of changes in fluid pressure and
temperature, and to be uniform and equal on both sides of the
fault. Although these assumptions may be relaxed easily, they
are retained in order té clarify ﬁheir separate effects in the

thermal-pressurization process.

RESULTS

Controlling Parameters for Thermal Pressurization

From equation (4.22) it can be shown that thermal
pressurization and flow of pore fluids are determined by the

parameter
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ny, + (1-n) -
r - W Vs Tsf (4.23a)
nB, - (1-n)EB + By,

I (4.23b)
B

where I' is defined as the thermal pressurization coefficient
for the porous medium, and y and f§ represent the fluid volume
expansion due to a unit increase in temperature and a unit
decrease in fluid pressure, respectively. The thermal
pressurization coefficient characterizes the increase in fluid
pressure per unit change in temperature for undrained
conditions. Hence, it is a measure of the balance between
pressurization and pore dilatation. Figure 4.4 shows that the
thermal pressurization coefficient I' is strongly dependent on
temperature and porous medium compressibility. Values assigned

to the solid properties are summarized in Table 4.2.

Whether pressurization or pore-dilatation are dominant in
response to a temperature rise will depend on the relative
magnitudes of the compressibilities for the pore water 8, and
the porots medium Bsf' For porous mediﬁm compressibilities
less than 10-'! Pa-', the thermal pressurization coefficient

can be approximated by

ﬁsf << B, (4.24)

|

R
TDlQ
2 =

In this case the porous medium is stiff, and pressurization

and fluid flow are the only mechanisms for accomodating the
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heating of pore waters. Because the rate at which water
pressurizes is large, a temperature rise of only a few degrees
could cause fluid pressures to approach lithostatic vélues.
For compressibilities greater than 10-% Pa-', the porous
medium is more compressible than the pore water and the
thermal pressurization coefficient can be approximated by
n'yw
r = E__ : ﬁsf >> B, (4.25)
sf
In this case thermal expansion and pressurization of pore
waters initiates a pore-volume expansion. Conseqguently, the
heating of pore waters is accomodated ﬁrimarily by
pore-dilatation and fluid flow. If the porous medium
compressibility exceeds 10-% Pa-!, then larée temperatﬁre
increases (>100 °C per MPa increase in fluid pressure) are

required to pressurize the fluid.

The hydraulic diffusivity characterizes the rate at which
the disturbance in fluid pressure propagates from the thermal
source. From equation (4.22) the hydraulic diffusivity is
given by

- k | |
a, = (4.26a)

n,lng, - (1‘n)£ﬁs + Bsf]

For a stiff porous medium the hydraulic diffusivity can be

approximated by



156

k

“w"ﬁw

[~

@ Bsr << By (4.26b)
In this case the hydraulic diffusivity characterizes the
balance between pressurization and fluid flow. For a

compressible medium

k
“wﬁsf

o=

a, ﬁsf >> B, (4.26¢)
and the hydraulic diffusivity characterizes the balance
between pressurization, pore-dilatation and fluid flow. The
thermal diffusivity

K
o, = —L (4.27)

(pC)sf
characterizes the rate at which a temperature perturbation

propagates from its heat source.

To compare the widths of the hydraulic and thermal fields
it is convenient to define a characteristic length for each
field (e.g., Lachenbruch, 1980; Delaney, 1982). The hydraulic

diffusion length, defined as
Ly = Va7 (4.28a)

reflects the distance a fluid pressure perturbation will
propagate from its thermal source in time ¢. The thermal

conduction length
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~
]

. Via, T (4.28b)

reflects the distance a temperature perturbation will
propagate by thermal conduction from its heat source in time
t. If the hydraulic diffusivity is much greater than the
thermal diffusivity, then the width of the hydraulic field is
much greater than the width of the thermal field (lh>>lt)'
Consequently, the heating of pore waters is readily
accomodated by fluid expansion and flow from the thermal
field. In such a case the fluid pressure rise is distributed

over a broad region and has a relatively small peak value.

The competing effects between thermal pressurization,
pore dilatation and fluid flow make it necessary to specify
explicitly the thermal pressurization coefficient and the
hydraulic diffusivity to characterize fully the fluid-pressure
response due to increases in temperature. However, both
parameters are dependent on the the thermal expansivity,
compressibility, and viscosity of the pore waters. This
dependence means it is not possible to specify unique values
for these parameters when there are large temperature
variations. The porous medium compressibility and
permeability, however, are not dependent on fluid properties.
Hence, for numerical solutions the fluid pressure response
will be expressed in terms of these two parameters. Because
the range of values for solid properties is considerably
smaller than that of variations in the hydraulic

characteristics of porous media, a subset of solid properties
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is not varied in subseguent examples (Table 4.2). Changes in
these properties will not significantly alter the results to
follow. To include the temperature-dependent properties of
water for conditions where there are large temperature
increases, we examine the influence of porous—medium
properties for a set of initial conditions representative of a
particular depth. Fof all numerical solutions, fluid pressures
are initially hydrostatic and the fault surface is located at
a depth of 2 km. Table 4.3 summarizes the initial conditions
for this depth. Unless stated otherwise, we have chosen the

dynamic coefficient of friction and relative slip velocity to

be 0.6 and 10" " ms-' for all numerical computations.

Failure Surface

In this section we examine the undrained and drained
response of a failure surface for a given average slip
velocity. For a failure surface, the rate of frictional
heating enters the equation for the temperature rise (4.21) by
the boundary condition. Analytical solutions for temperature,
fluid pressure, resistive stress, and porosity assume constant
coefficients for the fluid properties and that all nonlinear
effects are small. Numerical solutions are used to examine

nonlinear effects, and to extend the analytical solutions.
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1) Undrained conditions — Effects of pore dilatation.

If the hydraulic diffusivity is less than the thermal
diffusivity, there is no appreciable transport of fluid mass
from the heated region and the pore water responds under
undrained conditions (i.e., negligible transport of fluid over
the time scale of an earthquake). In this case pressurization
and pore dilatation are the only mechanisms for accomodating
the heating of pore waters. For undrained conditions, the

fluid pressure rise is related to the temperature rise by
p(x,t) = T 0(x,1) (4.29)

and the rate of frictional heating is determined by the

boundary condition
-k ;2 - 7 [(r-Py) - TOlV at x=0 (4.30)
sf 9x Ka n ‘o y .

where Vy and Ed represent the average slip velocity and
coefficient of friction over the event. The solution for the

temperature rise is given by (after Carslaw and Jaeger, 1959,

p. 72)
(7 _-Py)
e(x,t) = n° [erfc(—%—) -
r /4att
exp(—= + L) erfc(—= + Vi/Vs) 1] (4.31)

Vwoat Yo V4att
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The paraméter Vo, defined by

1 K .(pc)
Vo = ——e— 2L 5] (4.32)
udz vV 2 | Fz

is the characteristic time for thermal pressurization of the
fault surface. The resistive stress on the fault surface is

given by
r (t) = u, (1t -P,) exp(t/vo) erfc(Vi/V¥o) (4.33)
r d''n

For slip events with a duration equal to y,, the resistive

stress declines to approximately half its initial value.

Figure 4.5a shows the temperature and resistive stress
given by eguations (4.31) and (4.33) as a function of
nondimensional slip duration /y,. For events with a slip
duration much less than the characteristic time y,, the
effects of thermal pressurization are negligible and the drop
in resistive stress is small. As the pore fluids start to
pressuriée, the resistive stress and frictional heat
generation diminish, and the temperature on the fault surface
stabilizes. If the slip duration is much greater than y,, the
resistive stress approaches zero and the temperature on the

failure surface is approximated by



161

(Tn—Po)
ma x F“ - (4.34)

@
R

Thus the maximum temperature rise is dependent only on the
initial effective stress and the pore-dilatational
characteristics of the adjacent medium. This response occurs
because frictional heating vanishes as the fluid pressure
approaches the value of total normal stress acting on the
failure surface. Consequently, the rise in fluid pressure and
temperature is limited by the initial effective stress acting

on the failure surface.

For slip durations greater than 10%y,, the thermal and
hydrologic fields are no longer dependent on the
characteristic time ¢,, and thereby these fields are no longer
influenced by the slip velocity and friction coefficient. Thus
the slip velocity and friction coefficient act to determine
only the rate at which thermal pressurization proceeds. For
decreases in ;y or Ed, the displacement required for an
equivalent reduction in resistive stress is increased. If
either the slip velocity or friction coefficient deviates from
its average value during slip and that deviation is small,
then the characteristic time Y, and the rate of thermal
préssurization will not be altered significantly. In such a
case the rate of thermal pressurization will depend primarily
on variations in the initial effective stress and porous
medium compressibility. For porous medium compressibilities

less than that of water, pore dilatation is negligible and the



heating of pore waters causes rapid pressurization. If the
compressibility is greater than that of water, thermal
pressurization initiates a pore-volume expansion. This
expansion must be accompanied by an increase in the thermal
expansion rate of the pore waters before pressurization can
occur. Conseqguently, the resistive stress remains at its
initial value for a longer duration creating a larger
temperature rise, Thus for slip events with the same

displacement, the temperature rise is greater and the

reduction in resistive stress is smaller for media with larger

compressibilities.

These results can be used to estimate the minimum

displacement required for a significant reduction in resistive

stress. As an example, for a coefficient of friction of 0.6
and relative slip velocity 2;y of 10" ms-', Table 4.3 shows
the value of Yy, for selected porous medium compressibilities.
For a stiff medium, yYo=10-% s, and events with a duration
greater than 10-3% s (or, equivaiently, displacements greater
than 10-% m) would cause the resistive stress to decrease to
less than half its initial value. If the porous medium
compressibility is 10-® Pa-', the temperature rise increases
more than tenfold. In this case, Y,=0.4 s and displacements
greater than 0.04 m are required for the same reduction in
resistive stress. If the coefficient of friction and slip
velocity are reduced to Ed=0.2 and 2;y=10'2 ms- ', then y,=400

s and displacements greater than 4 m are required.

162
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For porous medium compressibilities greater than 10-'°
Pa-', the increase in the thermal pressurization coefficient
with temperature will limit the validity of the analytical
solutions, equations (4.31) and (4.33). Figure 4.5b shows a
comparison of analytical and numerical solutions for selected
porous medium compressibilities, and the initial conditions of
Table 4.3. Although the temperature rise increases with
compressibility, the analytical solution increasingly
overpredicts the magnitude of that temperature rise. The
larger the temperature rise, the poorer the agreement between
the analytical and numerical solutions. For compressibilities
less than 10°° Pa~', the temperature rise is small and the
analytical solutions provide good approximations for the
temperature rise and resistive stress. If the compressibility
exceeds 10°% Pa-', the temperature rise is large (>100°C). In
this case the increase in the thermal pressurization
coefficient is large, and the analytical solutions are poor

approximations.

2) Drained conditions — Effects of fluid transport.

For most porous media, pore waters diffuse more readily
than heat. In such cases the movement of pore fluids from the
thermal field can restrict the applicability of the undrained
model. To examine the effects of fluid transport, we first
consider the thermal and hydrologic fields for large slip
durations when the fluid pressure on the failure surface is

approximately lithostatic. As the fluid pressures approach
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lithostatic values, frictional heating vanishes and the
temperature on the failure surface stabilizes. Thus for large
slip durations the thermal field can be approximated by the
diffusion of heat from a constant temperature surface (e.g.,

Carslaw and Jaeger, 1959):

0,(x,1) = @, erfc(—2=) - (4.35)
/4att
where 6, . represents the temperature rise on the failure

surface needed to sustain fluid pressures at lithostatic
values. Because the advection of heat is generally small,
equation (4.35) provides a good approximation of the
temperature distribution for large times. The corresponding

fluid pressure rise is (see also Delaney, 1980)

al’®

pyix,t) = "22 [erfe(—2—) - a-erfc(—%—)] (4.36a)
(1-a?) Via,t Véa, 1
where
a
a = (=) /2 "(4.36b)
h

Because the fluid pressure rise is limited to the initial
effective stress, equation (4.36) can be used to estimate the
maximum temperature rise. Setting x=0 and equating the fluid

pressure rise to the initial effective stress yields
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Tn_Po
Opax = (4.37)

where

- al
rp = —&—- (4.38)

(1+a)

is the rise in fluid pressure per unit rise in temperature on
the failure surface. Note that Ff is valid only for the
failure surface. Substitution of equation (4.37) into (4.36)
yields the fluid pressure distribution for large slip

durations

- arerfc(—2—)] (4.39)
1-a V4aht V4att .

For a,>>a, most of the hydraulic region is isothermal and
equation (4.39) provides an excellent approximation of the

fluid pressure distribution for large times.

The coefficient Ff can be used to estimate the
temperature and resistive stress as a function of slip
duration., For drained conditions the rate of frictional
heating on the failure surface is determined by the boundary
condition (4.30), where the thermal pressurization coefficient
I' is replaced by Ff. The temperature rise is obtained from
equation (4.31) by replacing I with Ff, and the characteristic

time with
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1 (1+a)?Kk_  (pc)
Vo = —_— sf P0ss (4.40)
- 2 V 2 (aI‘)Z

where Yy, now represents the characteristié time of thermal
préssurization for drained conditions. With these changes
equations (4.31) and (4.33), and Figure 4.5a describe the
temperature rise and resistive stress on a failure surface for
drained conditions. For slip durations much greater than y,,
the temperature and fluid pressure fields are approximated by
the large time solutions. The temperature rise necessary to
sustain fluid pressures at lithostatic values depends
primarily on the initial effective stress on the fault
surface, and the fluid and thermal transport properties and
pore-dilatation characteristics of the adjacent medium. If the
temperature rise is large (>100°C), these solutions
overestimate the temperature rise and resistive stress. This
effect is due primarily to the increase in the thermal
pressurization coefficient with temperature and, to a lesser
extent, the contraction of pore fluids as they flow from the
thermal field. Equations (4.31) and (4.33), however, provide

upper limits for the temperature rise and resistive stress.

Numerical solutions for the temperature and resistive
stress on the failure surface are shown in Figure 4.6 to
illustrate the variety of fault behaviors possible for
variations in the porous medium compressibility and
permeability. An average slip velocity of 217y=10‘1 ms-' is

assumed, and the initial conditions are summarized in Table
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4.3. The 1000 °C isotherm is shown to delineate the conditions
where partial melting may occur. When the permeability is less
than 10-'® m? the response is the same as in the limit for
zero permeability and the pore waters respond under undrained
conditions. For permeabilities greater than 10-'5 m2, thermal
pressurization is nullified by the transport of pore fluids,
and the fluid pressure and resistive stress remain unchanged
during slip. This problem has been discussed by McKenzie and
Brune (1972). The temperature rise is given by (Carslaw and

Jaeger, 1959, p. 262)

-I.Id(Tn_Po)Vy [ V@azt

—y 2
o(x,t) = = exp(zafT)

st

Jxlerfe(—xly) (4.41)

V4att

In this case the temperature on the fault surface continues to
rise with displacement and partial melting may occur before

the effects of thermal pressurization become significant.

The lower figures in Figure 4.6 show the resistive stress
as a function of displacement. As the resistive stress
decreases the rate of temperature rise diminishes. Large
reductions in resistive stress coincide with large reductions
in frictional heating and, consequently, stabilization of the
temperature rise on the fault. For stiff porous media with

permeabilities less than 10-'® m?, fluid flow from the thermal
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field is negligible. In such a case the initial resistive
stress is maintained only for a short displacement (<10-2® m)
before frictional heating causes the fluids to pressurize
within the thermal field. Consequently, the temperature rise
is small, For media with larger permeabilities, heating of
pore waters can be accomodated by the thermal expansion and
flow of fluids from the thermal field. Because of this fluid
volume loss, the resistive stress remains at its initial value
and the temperature continues to rise until the thermal
expansion of fluids exceeds the loss of fluids due to
transport. Once this condition is established, the pore fluids
within the thermal field start to pressurize causing
frictional heat generation to diminish rapidly, and the
temperature on the fault surface to stabilize. Hence; for a
given displacement, the magnitude of the temperature rise
increases with permeability. Similiarly, if the medium is also
compressible, thermal pressurization will initiate a
pore-volume expansion providing a third mechanism for
accomodating the heating of pore waters. In this case the
initial resistive stress is maintained over an even greater
displacement before the thermal expansion of pore waters
exceeds the pore dilatation and flow rates, and pressurizes
the fluids. Thus the temperature rise increases with
compressibility. In addition, the rate of reduction in
resistive stress is enhanced by the increase in the thermal

pressurization coefficient with temperature.
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Figure 4.6 can be scaled for other values of initial
effective stress, average slip velocity, and friction
coefficient. For changes in the initial effective stress, the
temperature in Figure 4.6 is multiplied by the ratio of the
new value for initial effective stress to the reference value
(24 MPa). For changes in the slip velocity and friction

coefficient the displacement scales are multiplied by

(4.42)

where the primed values denote the new values, and the
unprimed values represent the reference valueslﬂd=0.6 and
217y=10'1 ms-', These scaling factors hold provided the change
in effective stress does not yield a temperature rise
considerably larger than that of the unscaled temperature
rise, If this is not the case, then the larger temperature
rise would lead to a large increase in the thermal
pressurization coefficient, and thereby a decrease in the
maximum temperature and an increase in the rate of stress
reduction. Results would have to be obtained by numerical
solution. These scaling factors, however, provide upper limits

for the temperature rise and stress reduction.

3) Thermal and hydrologic fields. -

To illustrate how the diffusion of frictional heat

stabilizes the temperature rise on the failure surface,



selected results for the thermal and hydrologic fields within
the adjacent porous medium are shown in Figures 4.7 and 4.8.
These results correspond to the eguivalent curves shown in
Figure 4.6 for the temperature and resistive stress on the
failure surface. For a stiff medium (6sf<Bw) with a
permeability of 10-'7 m?, Figure 4.7 shows the thermal and
hydraulic fields as a function of distance from the failure
surface for selected times. The distance from the fault is
non-dimensionalized by the thermal conduction length. For a
slip duration of 10 s (d=1 m), the width of the thermal and
fluid-pressure fields are 0.02 m and 0.5 m (th and.21t/a,
respectively). Figure 4.,7a shows the temperature and
fluid-pressure fields. The large-time solutions apply for
times greater than 10 s. During slip the fluid pressure front

extends well beyond the thermal front, with the fluid

pressures rising uniformly within the thermal field. Note that

in this figure, the temperature is normalized by the max imum
temperature predicted by equation (4.37), and not by the
maximum value calculated in the numerical model. The maximum
temperature rise (260 °C) is less than the temperature (370
°C) predicted by equation (4.37) due to the increase in the

thermal expansivity of water with temperature.

Figure 4.7b shows the thermal expansion and pressure

contraction rates of the fluid volume. Note that the vertical

scales are normalized by time so that the large time solutions

plot as fixed curves. Both the thermal expansion and pressure

contraction rates are strongly dependent on the slip duration,
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initial effective stress, and the hydraulic characteristics of
the adjacent medium. The peaked profiles arise because of the
tandem operation of three processes. First, frictional heating
causes pressurization within the thermal field. Second,
because the porous medium is permeable, pressurization within
the thermal field causes pressurization and contraction of the
fluids within the adjacent region. Third, the contraction of
fluids within the adjacent region causes thermal expansion and
flow of fluids from the leading edge of the thermal field. For
small durations (<1 s) the thermal expansion and pressure
contraction rates are greatest on the fault surface where the
rate of the temperature and fluid pressure rise is greatest.
The large increase in the pressure contraction rate within-the
thermgl field occurs because the increase in water
compressibility with temperature is faster than the decline in
the rate of fluid pressure rise. Once the fluid pressure and
temperature on the fault stabilizes, the thermal expansion and
fluid contraction rates approach zero near the fault. For
large slip durations (>10 s), a dynamic balance is established
between the fluid pressure and temperature fields where the
decrease iq resistive stress is just sufficient for frictional
heating to maiﬁtain the temperature at the level required for
thefmal pressurization of the pore waters at near-lithostatic
values. At this stage fluid expansion within the thermal field
is accomodated by pressurization, flow and contraction within
the adjacent region, and the thermal front drives a fluid

pressure front that extends increasingly beyond it.



Consequently, for large slip durations, the maximum thermal
expansion and pressure contraction rates occur along the
leading edges of the fronts where the rates of temperature and
fluid pressure rise are the greatest. Figure 4.7c shows the
fluid flux. The flow field is characterized by the
redistribution of fluid mass from the heated region to the
adjacent cooler region. Hence the maximum fluid flux occurs

midway between the thermal and fluid pressure fronts.

Figure 4.8 shows the hydraulic and thermal fields for a
porous medium with a compressibility of 10-° Pa-'! and a
permeability of 10-'7 m?, For this case pore dilatation and
fluid flow are the primary means for accomodating the heating
of pore waters. Compared to the previous example, the increase
in compressibility results in a-decrease in the hydraulic
diffusivity ana, consequently, the hydrologic field is
considerably smaller than the field for a stiff medium. For a
slip duration of 10 s, the width of the pressure field is now
0.12 m (a-'=6). Figure 4.8a shows the temperature and fluid
pressure rise. With a higher compressibility, larger
temperature rises and greater displacements are required for
an equivalent rise in fluid pressure. Hence, the large-time
solutions now apply for slip durations greater than 102 s. The
maximum temperature (700 °C) is approximately half the value
predicted by the analytical solution, equation (4.37). Figure
4.8b shows the thermal expanéion and pore dilatation rates.
The thermal expansion rate of the fluid volume shows a peaked

value whose location coincides with the temperature for the
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peaked value of the thermal pressurization coefficient in
Figure 4.4b. The negative pore-dilatation rate corresponds‘to
expansion of the solid grains along the leading edge of the
thermal front. As in the case for a stiff medium, the spatial
configuration of these rates depends upon the tandem operation
of three processes; the generation of frictional heat,
pressurization and pore-volume expansion within the thermal
field and adjacent region, and the thermal expansion and flow
of fluids from the edge of the thermal front. Since the porous
medium compressibility is greater than the compressibility of
water, the thermal expansion of the pore waters is accomodated
by pore dilatation within a narrower region adjacent to the
thermal front. Because the pressure front is narrower, the
fluid flux shown in Figure 8c is greater than the flux for a

stiff medium,

The final strain of the pore volume can be estimated from
the solution to the compatibility constraint for porosity
(4.12b). For an arbitrary rise in fluid pressure and

temperature, the solution for porosity is approximated by

n(x,t) = 1 - (1-ny)expl- (ﬁsf-EBs)p(x,t) -

(7sf-7s)®(x,t)] (4.43)

The final strain of the pcre volume is given by
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An (1‘”0)
— = ——— {1-exp[ -N(7,-Po) 1} (4.44)
no ng
where
- - - (1+a)
A= (B mEBg) ¥ ('ysf.'ys)jf— (4.45a)
= Bgs Bsy 2 10-° pPa-' (4.45b)

reflects the change in solid volume per unit volume of porous
media per unit increase in fluid pressure. Because the
decrease in porosity due to thermal expansion of the solid
matrix is generally small, equations (4.43) and (4.44) provide
good approximations for the change in porosity. For porous
medium compressibilities greaﬁer than 10-° Pa-', the rate of
pore-volume expansion is large. In this case it is unlikely
that deformation would remain confined to the failure surface.
For example, the increase in porosity is almost twofold for a
medium with a compressibility of 10-% Pa-' and the initial
conditions of Table 4.3. This increase would suggest a loss of
cohesion and shear strength within the medium adjacent to the

fault, and thereby a widening of the zone of deformation.

Effects of Fault Zone Width

In the previous section, deformation was confined to a
failure surface. We now examine the effects of fault width. If

the fault width is less than the thermal conduction length
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(w<lt), then the width of the fault zone is negligible in
comparison to the size of the thermal field. In this case the
fault zone can be approximated by a failure surface and the
previous results would apply. If, however, deformation occurs
over a fault zone a few centimeters in width, then the rate of .
the temperature rise would be lower and, consequently, the
thermal and fluid pressure effects may differ considerably

from that of a failure surface.

1) Undrained conditions - no transport of heat.

. To examine the effects of fault width, we first consider
the response of a fault zone for undrained conditions and
negligible transport of heat. For these conditions,
Lachenbruch (1980) discussed the temperature rise and
reduction in resistive stress for a constant dilatational
strain-rate of the pore volume (n~'3n/dt=const. and I'=y,/B).
When changes in porosity occur due to fluid pressure and
temperature increases within a compressibie porous medium, the

temperature rise within the fault zone is given by

(Tn_Po)
o(t) = ———— [ 1 =~ exp(-t/¥) ] (4.46)
r

The parameter y, defined by

(4.47)
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is the characteristic time for thermal pressurization of the

fault zone. The resistive stress of the fault zone is given by
7,(t) = wy(r,-Polexp(-t/y) (4.48)

For these solutions, the conditions for negligible fluid and
heat loss are satisfied if the hydraulic diffusion and thermal
conduction lengths calculated for the characteristic time of
thermal pressurization are less than the fault width (ahxp<w2
and a,y<w?). For slip events with a duration much greater than
the characteristic time ¢, the resistive stress approaches

zero and the temperature within the zone stabilizes.

For negligible loss of heat and fluid from the zone, we
can write the equations for temperature and resistive stress
in terms of the shear strain across the fault (see also

Lachenbruch, 1980):

(1,-Po) p .
0(d) = ———[ 1 - exp(-y;' 55) ] (4.49)
r

v (d) = Tylr,-Polexp(-y;' =9 (4.50)

where d/2w is the shear strain across the zone. The parameter

Vs defined by

Y, = —= (4.51)



177

controls the rate of increase in temperature and decrease in
resistive stress per unit strain across the fault. In this
case the slip rate may vary with displacement, and equation
(4.51)'can be used to calculate the shear strain required for
a significant drop in resistive stress. As an example, from
equation (4.50) the resistive stress decreases by a factor of
e~ ! for shear strains that exceed y,. For a stiff medium,
we=3.0 and the resistive stress would decrease to
approximately one third of its initial value when the
displacement exceeded the fault width by a factor of three. If
the compressibility of the porous medium is 10-8 Pa-?!,
however, v,=40 and the displacement would have to exceed the

fault width by a factor of forty for an equivalent reduction.

The curves labeled 4 in Figure 4.9 show the temperature
and resistive stress given by equations (4.46) through (4.51)
as a function of slip duration t/y or shear strain d/2wwe. In
addition, numerical solutions are shown for selected porous
medium compressibilities, and the initial conditions of Table
4,3, For porous medium compressibilities greater than 10-°%
Pa-', the increase in the thermal pressurization coefficient
with temperature enhances the rate of decrease in resistive
stress. Consequently, the analytical solutions overestimate
the temperature rise and resistive stress.lAs with the fault
surface model for undrained conditions (Figure 4.5), the
maximum temperature rise is aependent sblely on the initial
value of the effective stress and thermal pressurization

coefficient. The fault zone width, along with the slip rate
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and friction coefficient determine only the rate at which
thermal pressurization proceeds. If the width is increased,
then the displacement required for an equivalent increase in
temperature and pore pressure also increases. Once
pressurization begins the relative rate of stress reduction
would be greater for a broad zone (w>!, ) than for a narrow

zone (w<lt).

The change in porosity within the fault zone is given by
equation (4.43), where the temperature and fluid pressure are
given by (4.46) and (4.29), respectively. Figure 4.10 shows
the dilatational strain rate of the pore volume. The
analytical solution is indicated by the dashed line. Numerical
solutions (solid lines) are shown for the porous medium
compressibilities of Figure 4,9, and the initial conditions of
Table 4.3. For slip durations less than the characteristic
time ¢, the temperature rises linearly with displacement and

the pore-dilatation rate is approximated by

k(Tn-Po)(1_no)

”o¢e

n

1 ox (4.52a)

s e

ﬂd(fn_Po) KZ

R

7w(1-no) . B f >10-°% Pa-' (4.52b)

N

(pC)sf w

Thus the pore-dilatation rate is most strongly affected by the
shear strain rate, the influence of the porous medium

compressibility on the coefficients ¢, and X\, and the initial
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effective stress. Once the pore fluid starts to pressurize,
the pore-dilatation rate approaches zero and the final strain
of the pore volume is given by equation (4.44). For.
compressibilities greater than 10-° Pa-', the pore-dilatation
rate is proportional to the thermal expansivity of water and
relatively insensitive to changes in the compressibility. Thus
large increases in the pore dilatation rate reflect the large
increase in the thermal expansivity of water with temperature.
In such cases the thermal expansion of fluid volume is matched
by pore dilatation, and the pore volume undergoes a large
volume increase as the temperature rises. This behavior could
lead to extensive microfracturing of the fault zone and
adjacent medium. The improved interconnectivity of pore spaces
caused by these fractures could lead to substantial increases
in permeability and enhanced fluid flow, which may arrest the
thermal pressurization process and cause a restoration of the
shear strength. For compressibilities greafer than 10-® Pa-',
pressurization is nullified by pore dilatation and the
resistive stress would remain unchanged for earthguakes with
realistic displacements. In this case, however, extensive
microfracturing could cause strain softening through nonlinear

material properities (e.g., Rudnicki, 1977).

2) Drained conditions - Fluid and heat transport.

If the hydraulic diffusion length calculated for the

characteristic time ¢ is greater than the fault width
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(ahW>w2), the thermal expansion and flow of fluids from the
fault zone can restrict the applicability of the undrained
model. For example, Figure 4.11 shows the temperature rise and
resistive stress at the center of a faﬁlt zone whose width 2w
and average slip rate Z;y are 10-' m and 10°"' ms-~ ',
respectively. The curves are plotted as a function of shear
strain for the initial conditions of Table 4.3. For
permeabilities less than IQ‘f7 m?, fluid flow from the zone is
negligible and the fault responds under undrained conditions.
If the permeability exceeds 10-'%* m?, the thermal expansion
and flow of fluids from the fault zone nullifies thermal
pressurization. In this case the shear strength remains
constant and the temperature continues to rise with
displacement. This problem has been discussed by Cardwell et
al . (1978) and Lachenbruch (1980), and the rise in central

temperature is given by (Carslaw and Jaeger, 1959, p.80)

uw,(r -P ); .
e(r) = d_n " °y [t - dizerfc(—¥—)] at x=0 (4.53)
(pc)sf w | V4att

I1f conductive heat loss from the zone is negligible, the
temperature rises linearly with displacement and shear strains
greater than 102 could cause melting. For permeabilities
between these two limits, the rate of the temperature rise
decreases with increasing displacement and the temperature
starts to stabilize at the maximum value for the drained

response of a failure surface. The increase in shear strength



for strains greater than 10?2 reflects the decrease in the
thermal pressurization coefficient for temperatures greater
than the critical temperature of water. For porous medium
compressibilities greater than 10-% Pa-', it is doubtful that
thermal pressurization could reduce the shear strength except
for large events. Regardless of the hydraulic characteristics,
howeve;, thermal pressurization is negligible if the

displacement is less than the fault width.

The results of Figure 4.11 are valid for a fault width
and slip velocity of 10" m and 10-' ms-', If either the fault
width and slip velocity are varied, and if the combined
variations are less than a factor of ten, then Figure 4.11
would still provide a good approximation of the temperature
rise and shear strength versus shear strain. For greater
variations in ﬂd and ;y, limits to faul; behavior can be
estimated from the controlling parameters. If the hydraulic
diffusion length is less than or equal to the fault width
(ahwiwz), then the temperature and resistive stress are
approximated by the undrained response. If, however, the
hydraulic diffusion length is greater than the fault width and
the slip duration exceeds ¢y , then the temperature rise and
resistive stress are approximately the same as that for a
failure surface. This‘similiarity occurs because the maximum
temperature rise is determined by the initial effective stress
and hydraulic characteristics of the porous medium, whereas
the fault width determines only the initial rate of the

temperature rise within the zone. Once the slip duration
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exceeds y, thermal pressurization becomes significant and the
decline in the resistive stress and rate of the temperature
rise is determined by the diffusion of excess pore pressures
into the adjacent medium. Hence the effects of thermal
pressurization can be regarded as a fluid pressure pulse at
the midpoint of the zone, and the temperature -and resistive
stress are given to a first approximation by the solutions for
a failure surface. In either case solutions would have to be
obtained by numerical methods. The above approximations,
however, provide limits to fault behavior for various ranges

of the controlling parameters.

3) Nonuniform hydraulic properties.

Thus far we have considered a fault zone with hydraulic
properties equal to those of the adjacent wall rock. With a
contrast in hydraulic properties, the fault behavior can be
approximated by examining relative ratios of the fault width
to the thermal‘conduction and hydraulic diffusion lengths. If
the fault width is small in comparison to the thermal field
(W<lt or w2<atw), then regardless of the fault zone
properties, the response is determined by the properties of
the adjacent rock and the fault zone can be approximated as a
failure surface. For negligible heat loss from the zone (w>/,
or w2>alw), the ratio of the fault width to the hydraulic
diffusion length of the fault zone material will determine
whether the hydraulic characteristics of the zone, or the wall

rock, will control the response of the fault.
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If the fault width is less than the hydraulic diffusion
length calculated for the fault zone material and
characteristic time of thermal pressurization (w2<ahw), the
diffusion of excess fluid pressure into the wall rock controls
the response of the fault. In such a case the response can be
approximated by assﬁming a uniform medium whose
compressibility and permeability are given by those of the
adjacent wall rock. Figure 4.12a shows the temperature and
fluid pressure fields for permeabilities of 10-'2 and 10-'% m?
for the fault zone and adjacent rock, respectively. For this
figure the fault width and relative slip velocity are 10-' m
and 10-'" ms-'. Both the fault zone and adjacent wall rock are
stiff, and the initial conditions of Table 4.3 are assumed. As
shown in Figure 4.12a, the adjacent wall rock acts to confine
the excess fluid pressures within the fault zone.
Consequently, the rise in fluid pressure is uniform across the
zone and the fault response is controlled by the diffusion of
excess fluid pressure into the wall rock. The rise in central
temperature and decline in shear strength are given to a good
approximation by the equivalent curves for a stiff medium with
a uniform permeability of 10-'® m2 (see Figure 4.11). The
diffusion of excess fluid pressures from the fault could cause
a progressive weakening of the adjacent wall rock. For these
conditions it is not unreasonable to expect the zone of
deformation to increase as slip progresses. Whether or not the
zoné will widen sufficiently to halt thermal pressurization,

or stabilize at a certain width and shear strength, depends
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upon the rheological relation between shear strength and

effective stress for the wall rock.

The opposite situation®occurs when the fault width is
greater than the hydraulic diffusion length (w?>a,y). For this
condition fluid loss from the zone is negligible and the
response is determined primarily by the compressibility of the
fault zone material. In such a case, however, the diffusion of
excess fluid pressure into the adjacent rock causes the shear
strength and, consequently, the temperature rise to be greater
along the edges of the zone than at the center. This in turn
could cause fluid pressures within the central region to
exceed lithostatic values. If the hydréulic diffusivity of the
wall rock is less than that of the fault zone material, the
increase in temperature is minimal and the shear strength
declines uniformly across the zone. Conversely, if the
diffusivity of the wall rock is greater, the shear strength
along the edges will remain close to its initial value and the
temperature rise will be large. For example, Figure 4.12b
shows the temperature and fluid pressure fields for
permeabilities of 10-'® and 10-'3 m? for the fault zone and
wall rock, respectively.  This is the opposite permeability
configuration to that used in Figure 4.12a. As shown in Figure
4,12b, the fluid pressure within the wall rock remains near
its initial value. Consequently, there is little loss of shear
strength along the edges of the zone and the temperature rise
there is large. The shear strength at the center of the fault,

however, is given to a good approximation by the undrained



response (equation (4.50) and Figure 4.9). For these
conditions one would expect deformation to coﬁtract about the
central region where the initial fluid pressure ;ise and,
consequently, the decline in shear strength is greatest. Thus
for large shear strains it would not be unreasonable to expect
the development of a very narrow deformation zone within the
central region of the fault zone. The width of this zone would
depend on the rheological relation between shear strengﬁh,
effective stress, and deformation rate for the fault material.
For disaggregated fault gouge it is likely such a relation
would follow a friction law behavior. If that were so, the
decline in shear strength at the center of the zone would be
approximated by the undrained response (Figure 4.9), and the
temperature rise along the edges of the deformation zone would
stabilize at the maximum temperature (4.37) for the

permeability and compressibility of the fault material.

Dynami ¢ Models - Effects of Variable Resistive Stress

The primary mechanical effect of thermal pfessurization
is to induce a loss of shear strength during slip and thereby
increase the stress available to accelerate the fault blocks.
For fault zones comprised of stiff media with low permeability
loss of shear strength can occur rapidly. In such cases events
where shear strains exceed we would cause substantial
strain-weakening of the fault and, consequently, large stress
drops, accelerations, slip velocities, and displacements. In

addition the resultant increase in slip velocity would further
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enhance the rate of thermal pfessurization and thereby the

decrease in shear strength.

1) Failure surface - Narrow zones.

For a narrow zone with significant heat loss (w<lz or
w2<atw), we can express the condition required for a rapid
loss in shear strength by comparing the temperature rise for a
failure surface with constant shear strength (4.41) to the
temperature rise required for pressurization of pore waters at
lithostatic values (4.37). Thus large decreases in shear

strength occur when

ﬁd(‘rn‘Po)Vy ‘/Iazt (1,7Po) (14a) (4.54)

v

Kop VA r

where Vy represents the average slip velocity for the initial
drop from the static to the dynamic friction coefficients at
constant fluid pressure (see Figure 4.3). Expressing this

condition in terms of displacement we obtain

Ksr? . (1+a)? 1

d 2 —
2 - 2
(G.F) Ild Vy

(4.55)

a;

From this expression, the displacement required for a large
reduction in shear strength is dependent primarily on the
hydraulic characteristics of the medium, the dynamic

coefficient of friction, and the average slip velocity for
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constant fluid pressure. If the porous medium compressibility
or permeability are increased, or if the average slip rate and
friction coefficient are decreased, then a greater
displacement will be needed for large reductions in shear
strength. For example, for a stiff medium with undrained

conditions, equation (4.55) is approximated by

g 2 20°F

(4.56)

2
Mg Vy

In such a case a few millimeters of displacement would cause a
complete loss of shear strength for earthquake events.
Consequently, we could approximate the effects of thermal
pressurization on the slip velocity by assuming that the shear
strength during slip is zero (or, equivalently, that the
dynamic friction coefficient is zero). If the compressibility
and permeability are 10-% Pa-' and 10-'¢ m?, however, then

(4.55) is approximated by

0° 7
R

d 2 (4.57)

Y

and displacements greater than 2 m are required for large
reductions in shear strength for u,=0.6 and 2Vy=10‘1 ms- ',
Hence thermal pressurization may be negligible and the dynamic
slip velocity could be calculated by assuming a constant

dynamic shear strength during slip.

For the latter case, however, frictional melting may

occur on the failure surface. The onset of frictional melting
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can be estimated by

2
a ——'—_-
t , Tn_Po u.d Vy

d

(4.58)

~N

where T, is the solidus temperature for the fault zone
material. For a solidus temperature of 103 and the initial

conditions of Table 4.3, equation (4.58) is approximated by
10-2

d 2

— (4.59)
oyt vy
Hence for the previous example, frictional melting would occur
before the effects of thermal pressurization become
5ignificant. In this case the presence of a partial melt
distributed along grain boundaries might act as a fluid phase
under pressure and thereby reduce the shear strength of the
fault (McKenzie and Brune, 1972; Cardwell et al., 1978;
Sibson, 1980). Thus for an earthguake event with moderate
displacement (21 m) occurring across a narrow zone.(51 cm)
with friction coefficients greater than 0.2 and slip
velocities in the range 0.1 to 1 ms-' (Brune, 1970), a large
reduction in shear strength should occur either by thermal
pressurization or frictional melting. In this case there would
bé a complete release of elastic strain energy within the
blocks, and the slip velocity could be approximated by
assuming the shear strength at the initiation of slip is zero.
1f, however, the coefficient of friction and slip velocity are

less than 10-' and 10-' ms-', then it is doubtful whether



thermal pressurization or frictional melting could reduce the
dynamic shear strength during an earthquake. In these
" conditions frictional heating is small and the temperature

rise would be minimal.

2) Fault zone - Effects of fault width.

For deformation occurring over a fault zone a few
centimeters in width, the rate of the temperature rise is
lower and, consequently, the displacement required for large
reductions in shear strength is greater. This behavior could
limit the stress available to accelerate the blocks and change
the dynamic characteristics of the slip velocity. To
illustrate the effects of thermal pressurization on the slip
rate, we first consider an approximate solution to the
fully-coupled equations. For this approximation we assume
negligible fluid loss from the zone, and that the shear
strength is given by equation (4.48) where the characteristic
time for thermal pressurization ¢ is determined by the maximum
slip velocity for the initial drop in shear strength at
constant fluid pressure. With these assumptions the.slip
velocity is readily calculated for each velocity model. For
example, for an initial drop of 3% in the shear strength,
Figure 4.13 shows the slip velocity for each of the three
velocity models. In this figure time is normalized by the
characteristic slip duration L (4.16b) for the release of
strain energy within the elastic blocks due to a instantaneous

drop in shear strength across the fault. The slip velocity is
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normalized by the maximum velociﬁy for a complete loss of
shear strength at the initiation of slip. The curves are
labeled in values of ts/w, which is the ratio of the
characteristic slip duration to the characteristic time for
thermal pressurization. As seen from Figure 4.13, both the
slip rate and duration are strongly dependent on the
characteristic time for pressurization. Because the value of V¥
is proportional to the fault width and compressibility, the
slip rate and displacement decrease with increasing width and

compressibility.

Since the characteristic slip duration t , depends
primarily on the geometry of the fault blocks, the ratio t /v
is a measure of the importance of thermal pressurization
during slip. If the characteristic slip duration is much
greater than the characteristic time for thermal '
pressurization (¢ >10y), then thermal pressurization dominates
the character of fault motion and a rapid loss of shear
strength accompanies slip motion. In such a case the shear
strength decreases with slip faster than the release of strain
energy from the adjacgnt blocks, and the excess stress
accelerates the block to higher slip rates. Thus the slip rate
could be readily approximated by assuming a complete loss of
shear strength at the initiation of slip, and changeé in the
friction coefficient have little affect on the character of
fault motion once that motion begins. Fault motion is arrested
when the block dynamically overshoots the equilibrium

position, defined as the state of zero stress within the
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block. At this point there is a buildup of shear stress that
resists the continued motion of the block and deceleration
occurs. Such behavior would lead to earthquakes of relatively
short duration with large stress drops, accelerations and
displacements. Conversely, if the characteristic time for
thermal pressurization is much greater than the characteristic
slip duration (w>10:s), then the effects of thermal
pressurization are negligible and the slip velocity is
determined by the initial drop in the static shear strength.
In this case the constitutive relation that links the friction
coefficient to slip rate and slip rate history will dominate
the character of fault motion (e.g., Dietrich, 1979a, 1979b;
Rice and Ruina, 1983; Rﬁina, 1983; Okubo and Dietrich, 1984;
Weeks and Tullis, 1985; Rice and Tse, 1986). For such behavior
the slip duration is approximately the same as that for a
complete drop in shear strength, however, displacements and

particle velocities are relatively small. For y=~10¢ the rate

57
of decline in shear strength approximately equals the rate of
release in elastic strain energy. Consequently, quasi-static
stress conditions exist and the fault continues to slip under
nearly steady state conditions until the shear stress within
the blocks is zero. This behavior would lead to earthquakes

with relatively large slip durations and displacements, but

low particle velocities and accelerations.,

The analytical solutions shown in Figure 4.13
underestimate the slip rate for two reasons. First, the

analysis fails to incorporate the enhancement in the rate of
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decline in shear strength due to increases in the slip rate.
Second, as slip progesses the temperature rise causes an-
inc;ease in the thermal pressurization coefficient and thereby
a decrease in the characteristic time for thermal
pressurization. In either case, the characteristic time for
thermal pressurization ¢ will decrease and the ratio ts/w will
increase once slip begins. Figure 4.13, however, provides a

- good approximation of the fault response for conditions where
tg>>y or t <<y. For r >>y, the characteristic time for thermal
pressurization is large and, consequently, any increase in the
ratio ts/w caused by increases in the slip rate or temperature
results in only a small shift of the curve. For ts<<w, the‘
slip rate remains near its initial value and the change in the
ratio ¢ /¢ with slip rate is small. If, however, y=t , Figure
4.13 provides only a qualitative description of the slip rate
and exact results would have to be obtained by numerical

solution of the coupled equations.

The restriction of negligible fluid loss from the fault
zone imposes a more severe constraint on the results of Figure
4.13. This constraint is satisfied if the fault width is
greater than the hydraulic diffusion length calculated for the
fault material and characteristic slip duration (wziahts). For
a hydraulic diffusion length that is much greater than the
fault width (a,t >>w? or a,y>>w?), the fluid pressure rise is
minimal and the slip velocity is given by initial drop in
static shear strength (see Fiqure 4.3). For intermediate

conditions the diffusion of excess fluid pressures causes a



lower rate of shear strength decline than the rate predicted
by (4.48) and Figure 4.13 will overestimate the increase in
the slip rate. For an initial 3% drop in the shear strength,
Figure 4.14 shows the slip rate and shear strength across a
fault zone as a function of time. The curves are labeled in
terms of permeability, and all calculations are for a fault
width of 10-' m, a porous medium compressibility of 10-° Pa-',
and the initial conditions of Table 4.3. For these conditions
initial and maximum slip rates (2Vy) are 0.1 and 3.5 ms~', the
initial characteristic time for thermal pressurization y is
approximately 20 s, and the initial ratio of the
characteristic slip duration to thermal pressurization time
zs/w is approximately 0.3. As shown in Figure 4.14 the
constraint for negligible fluid loss is satisfied for
permeabilities less than 10-'¢ m?, If the permeability is
greater than or equal to 10-'* m?, then thermal pressurization
is negligible and the slip rate is determine by the initial
drop in the static shear strength. For intermediate values of
permeability, the shear strength continues to decline while
the slip rate is increasing. Once the slip rate starts to
decrease, the diffusion of excess fluid pressures from the
fault causes a restoration of shear strength, and thereby a
further reduction in the slip rate. For the spring-rider model
with a permeability of 10-'%*% m?, the slip rate stabilizes
and then starts to rapidly increase due to the increase in the
thermal pressurization coefficient with temperature. The

dashed segments of the curve show the restoration of shear
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‘strength after the cessation of slip. Because the shear
strength is low at this stage, the shear stress built up
within the blocks during deceleration may exceed the static
shear strength of the fault. If this were the case, the block
would begin backsliding and experience a damped oscillation
about the equilibrium position. However, dynamic overshoot and
potential backsliding are expected to be less pronounced in a

continuous system.

As shown in Figures 4.13 and 4.14, the fault exhibits a
complex rheology that is characterized by strain-weakening
during acceleration and strain-hardening during deceleration
of the fault blocks. The exact nature of the relation between
shear strength and deformation rate is strongly dependent on
the width and hfdraulic characteristics of the fault zone. In
addition, if the friction coefficient varies due to the
breaking and formation of new barriers along the slip planes,
then the acceleration and slip rates would be very erratic. In
such a case Figures 4.13 and 4.14 would exhibit a high
frequency oscillation superimposed on the slip rate profiles
(e.g., Nur, 1978). The magnitude and frequency of these
oscillations would depend on the constitutive relation linking
the friction coefficient to the slip rate and displacement
history. These oscillations, however, would be greatest during
the early stages of slip, and gradually decline as the
temperature rises and the fault zone pressurizes. Once the
fluid pressures approach near-lithostatic values, subsequent

changes in the friction coefficient will have little effect on
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the shear strength, acceleration and slip rate. We do not
suggest that the simple fault block models of Figures 4.13 and
4.14 can be made to correspond closely to an actual fault.
Rather the analysis is intended to provide an understanding of
how thermal pressurization influences the character of fault
motion when variable resistive stress and inertial forces are

dominant.

DISCUSSION

Our results suggest that the nature of fault motion
depends éritically upon the characteristic time scales for
thermal pressurization and slip duration. In turn, these
parameters depend. upon the fault geometry, and the hydraulic
characteristics of the fault zone and the adjacent medium.
Because of the wide variations possible in these parameters, a
wide variety of fault behavior is possible. Knowledge of these
parameters appears essential in understanding the dynamics of

fault motion.

The width of a fault zone is probably the least-well
known parameter. Field evidence from exhumed faults suggests
that within the brittle regime of the crust, fault slip may be
confined to zones a few centimeters or less in width (e.q.,
Wilson, 1970; Fiinn, 1977, 1979; Sibson, 1977, 1979; Sieh,
1978; Bustin, 1983). If the fault width is less than é few
centimeters, then for large earthquakes a substantial

reduction in shear strength should occur either by thermal



pressurization or frictional melting. If the fault width
exceeds a few centimeters, then the rate of the frictional
heating is too small to cause melting within the zone during
an éarthquake. However, thermal pressurization could still act
to reduce the shear strength. In this case, if the
displacement exceeds the fault width, then the response of the
fault zone will depend primarily upon the hydraulic

characteristics of the fault zone and adjacent wall rock.

Extensive fracturing of the wall rock could lead to
relatively high permeabilities adjacent to a fault zone.
Within the fault zone, however, the presence of a fine
cataclastic gouge with a possible high clay content would
suggest low permeabilities. Morrow er a/. (1981, 1984)
measured the permeability of both non-clay and clay-rich fault
gouges at various confining pressures and shear strains.
Permeabilities ranged from 10-%22 to 10-'® m2, The low
permeability of these fault gouges indicates that fluid loss
from a fault zone may be negligible over the time scale of an
earthquake. In this case the compressibility of fault zone
material is probably the most important parameter controlling
fault motion. Little is known about the compressibility of
fault gouge at depth. The fine grain size and low permeability
of fault gouge suggest compressibilities similiar to compacted
argillaceous sediments. Such compressibilities typically range
from 10-'° to 5x10-% Pa-' (Domenico and Mifflin, 1965; Smith,
1973; Rieke and Chilingarian, 1974; Touloukin, 1981). This

range is not unreasonable for fault gouge derived from low
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compressibility rocks at the confining pressures expected at
depths in excess of one kilometer. Nor is this range
unreasonable for fault gouge where repeated thermal
pressurization and fluid explusion oJer successive earthqguakes
would tend to compact the gouge material. Raleigh (1977)
showed that a transient rise in temperature could cause
dehydration of clays, and thereby compaction of the fault
gouge. If narrow zones with gouge of low permeability and
compressibility are typical, then thermal pressurization is

probably an important process in the dynamics of fault motion.

Various lines of evidence support the argument that shear
strength and frictional heat generation could be greatly
reduced by thermal pressurization. Lachenbruch and Sass
(1980); and Lachenbruch (1980) suggested that the lack of an
anomaly in surface heat flow across the San Andreas fault
could result from a low dynamic friction caused by thermal
pressurization. Measurements of the levels of organic
maturation within and adjacent to thrust zones by Bustin
(1983) revealed no detectable thermal metamorphism
attributable to frictionally generated heat, with the
exception of narrow films of high vitrinite reflectance
immediately adjaeent to and within the zones. These films
suggest‘that temperatures on the order of 300-650°C were
generated during thrusting and indicated that the elevated
temperatures were very short lived. Such high temperatures
along the edges of thrust zones could be generated.readily if

slip was primarily confined to the boundary between the zone
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and wall rock, or if the permeability of the adjacent rock
exceeds that of the thrust zone. Wilson (1970), and Brock and
Engelder (1977) have described a number of large fractdres
adjacent to thrust zones that have been intruded by shale
dikes. If thermal pressurization causes fluid pressures to
approach lithostatic values, fluidization of the fault gouge
could occur. Such behavior could lead to hydrofracturing and
the injection of gouge dikes into the adjacent wall rock. The
subsequent reduction in fluid pressure within the zone would
cause a restoration of shear strength, and thereby inhibit
further fault motion. Hydrofracturing during the latter stages
of slip, however, would not alter the conditions required for
thermal pressurization to reduce the dynamic shear strength.
In addition, dilatancy recovery accompanying the release of
shear strain during faulting could cause a negative pore
dilatation and thereby a further enhancement in the rate of
thermal pressurization (e.g., Nur 1972; Scholz et al., 1973;
Sibson, 1973; Lachenbruch, 1980; Holcomb,1981). If that were
the case, then the calculations of the fluid pressure rise for

a stiff medium would be on the conservative side,.

The emphasis in this study has been on a fault block
model with uniform stress and material properties over the
rupture surface. It is important, however, to consider the
role that heterogeneities could play in the dynamics of fault
motion., Fault models with uniform properties are useful for
understanding slip when the length scales over which there are

significant changes in material properties are much greater
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than the fault rupture length. Such models characterize the
low-frequency response of a fault. To explain high frequency
seismic radiation and the strong ground motions observed for
large earthquakes, a heterogeneous stress drop and an
irregular rupture propagation and slip rate are required. This
in turn requires that heterogeneities in material properties
have length scales much smaller than the rupture length. In
addition, a mechanism is required to maintain that
heterogeneity between successive earthquake cycles. Many
models proposing how heterogeneities affect the earthquake
cycle have been discussed (e.g., Das and Aki, 1977; Kanamori
and Stewart, 1978; Mikumo and Miyatake, 1978; aAki, 1979, 1984;
Mahrer and Nur, 1979; Madariaga, 1979; Das and Scholz, 1981;
Lindh and Boore, 1881; McGarr, 1981:; Rudnicki and Kanamori,
1981; Papageorgiou and Aki, 1983a, 1983b; Rundle et al/., 1984;
Stuart et al., 1985). These models are of two primary types.
The firét consists of a fault with uniform properties but an
irregular geometry, whereas the second assumes a simple
geometry but a rupture process that proceeds in the presence
of obstacles, or bafriers of various strengths. Both models
yield a heterogeneous stress drop, and thereby an irregular
rupture propagation and fault slip. We shall examine only
barrier models here, and consider the material properties that

may form them.

The term barrier applies to strong patches of the fault
that are resistive to slip (e.g., Das and Aki, 1977; Aki,

1979, 1984). Hence a barrier is characterized by the material



properties that control its strength, and its areal extent.
Barriers can initiate failure when the tectonic stress exceeds
the strength of the barrier, or slow down and halt the rupture
front as.it propagates through the barrier. It can also
contribute to an irregular fault motion by remaining unbroken
at the initial passage of the rupture front, but then break
subsequently because of increased stress -around its
boundaries. While much consideration has been given to the
mechanics of barriers, little work has been done to
characterize the conditions and material properties that form
a barrier. Models of barriers fall into two main types. The
first type are described by the spatial variability in the
friction coefficient (e.g., Burridge and Knopoff, 1968; Mikumo
and Miyatake, 1978; Israel and Nur, 1978). A limitation of
these models is that long-term slip would tend to smooth out
variations in the friction coefficient. Consequently, the
resistive stress would tend to become uniform with successive
earthquakes until all events rupture the entire fault length
and heterogenéous processes cease to become important (Nur,
1978). The second type of model employs a peak-stress
constitutive law to describe barrier strength versus fault
slip (eg., Rudnicki, 1977; Stuart 1979; Stuart and Mavko,
1979; Li and Rice, 1983; Stuart et al., 1985). Here the shear
strength is assumed to initially increase with fault slip
(strain hardening) up to a peak stress, and then to decrease
with continued slip (strain weakening). While such a law

predicts earthquakes, its form and the spatial variability of
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coefficient values are poorly known.

The results presented in this study suggest that the
spatial variations in the width of the fault zone, and in the
hydraulic characteristics‘of the fault zone and adjacent
medium could readily explain both the presence of barriers
along faults and the strong motion observed in seismic
records., Patches of the fault that act as barriers may be
characterized by relatively broad zones of deformation with
high porous medium compressibility and permeability. Because
thermal pressurization would be negligible for such patches,
they would retain their initial shear strength and resist
fault motion. Conversely, patches characterized by narrow
zones of deformation and stiff material with low permeability
would experience a rapid decrease in shear strength. In this
case.the resistive stress of the patch decreases more rapidly

than the shear stress applied by the elastic region, and the

slip velocity rapidly accelerates. Because the stress drop and

accelerations would be high across such patches, it is

" possible for an earthguake with a low average stress drop to
generate high frequency waves. This behavior provides an
explanation of the strong motions observed near the epicenter
of earthqguakes. Of course, a wide variety of transition
behaviors exist between these two limits. For small
earthguakes thermal pressurization may be negligible and the
patch may act as a barrier, whereas for large earthquakes the
shear strength may be reduced to near-zero values. This

response would depend on the relative magnitudes of the
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characteristic time scale for thermal pressurization of the

patch and the slip duration of the earthquake.

The fault patch may also exhibit a complex rheology that
could be characterized by strain weakening during the early
stages of slip when fluid loss from the zone is negligible,
and strain-hardening during the latter stages when fluid loss
may be substantial. This behavior depends not only on the
characteristic time scales, but alsoc on the relative
magnitudes of the hydraulic diffusion length and the fault
width throughout the duration of slip. A fault patéh might
also exhibit a bimodal behavior over an earthquake cycle. For
example, prior to an earthquake a patch comprised of a wide
zone of inelastically deforming rock may be driven past a peak
strength and into a strain-softening regime by far field
tectonic strains. When the shear strength of the patch
decreases more rapidly than the tectonic shear stress, static
equlibrium cannot be maintained and an earthquake occurs
(e.g., Rudnicki, 1977; Rice and Rudnicki, 1979; Stuart et al.,
1985). Once failure begins, adjacent stronger patches with
narrow zones of deformation may experience a rapid decline in
shear strength due to thermal pressurization. The wide patch,
however, may tend to remain near its initial failure strength
because heating is distributed over a broad region and is
insufficienf to cause thermal pressurization. Thus a patch
with a broad zone of deformation may initiate fault slip, but

then act to resist slip once fault motion begins.
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These results suggest that spatial variations in fault
width and hydraulic characteristics play an important role in
the dynamics and statistical characteristics of earthquake
processes. Because the spatial distribution of these
parameters can endure through many earthquakes cycles,
earthquakes recurrent on a given fault may have the same set
of characteristic displacements and magnitudes. Variations
within the set would depend on the relative magnitudes of the
fault length, and the characteristic length scales for the
fault width and hydraulic characteristics., If the
characteristic length scales for these parameters are much
less than the fault length, then variations in the
displacements and magnitudes would be large. If, however, the
characteristic length for these parameters is on the order of
the fault length, then the fault block model would apply and

the variations would be small. This scale dependency would

conform to the frequency-magnitude relations observed for many

faults (e.g., Nur, 1978; Aki 1984; Stuart et al., 1985). Thus
it may be possible to determine characteristic length scales
for these parameters from the statistics of
frequency-magnitude relations, and open the possibility of

quantitative prediction of earthquake behavior.

SUMMARY AND CONCLUSIONS

We have formulated a simple model for an earthquake which

incorporates the effects of frictional heating on the thermal,

hydrologic, and mechanical response of a fault. This model has
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been used to examine the parameters that control the fault
response, and to determine their critical range of values
where thermal pressurization is significant. The main
conclusions of this analysis are:

1. Motion of the fault blocks can be characterized by two
time scales, a characteristic slip duration for the release of
elastic strain energy and a characteristic time for thermal
pressurization due to frictional heating. These time scales
depend primarily on the fault geometry, and the hydraulic
characteristics of the fault zone and adjacent medium. Because
of the wide variations in these parameters, a wide variety of
fault behavior is possible.

2. For earthquakes occurring acfoss narrow zones comprised
of stiff material with low permeability (<10-'® m?), the
characteristic time for thermal pressurization is much less
than the characteristic slip duration. Consequently, during
slip the resistive stress decreases more rapidly than the
shear stress applied by the elastic region, and the fault
blocks rapidly accelerate. This behavior would lead to
earthquakes of relatively short durations with large stress
drops, accelerations and displacements, and provide an
explanation for strong motions.

3. For earthquakes occurring across zones where shear
strains are less than one, or the porous medium
compressibility and permeability exceeds 10-8% Pa-'! and 10- 1'%
m?, the characteristic time for thermal pressurization is much

greater than the slip duration. Because thermal pressurization
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would be negligible, the fault would retain its initial shear
strength and resist further motion. This behavior would lead
to earthquakes with relatively small stress drops,
accelerations and displacements, and provide an explanation
for the presence of barriers along faults.

4, The style of deformation across a fault zone may be
controlled by the hydraulic characteristics of the zone and
adjacent wall rock. If the hydraulic diffusivity of the wall
rock is greater than that of the fault zone, deformation would
tend to contract about the central region where the fluid
pressure rise and, consequently, the decline in shear strength
is greatest. In this case it is not unreasonable to expect
very narrow deformation zones for large earthquakes.
Conversely, if the hydraulic diffusivity of the wall rock is
less than that of the zone, the wall rock acts to confine the
excess fluid pressure within the zone. In this case the
diffusion of excess pore pressures from the fault could cause
a progressive weakening of the adjacent wall rock, and thereby
a widening of the deformation zone.

5. The spatial variations in fault width and hydraulic
characteristics could readily explain a heterogenous stress
drop, and thereby an irregular rupture propagation and slip
rate over the fault. Because these parameters can endure
through many earthquake cycles, earthquakes recurrent on a
given fault may have the same set of characteristic
displacements and magnitudes. Thus the spatial distribution of

these parameters may play an important role in the dynamics
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and statistical characteristics of earthquakes.
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APPENDIX: NUMERICAL SOLUTION OF EQUATIONS

Equations (4.21) and (4.22) are solved numerically using
a Galerkin finite-element technique with linear basis
functions and deforming coordinates. Temperature, fluid
pressure, and material and fluid properties vary linearly
écross each element. Time derivatives are approximated by a
fully implicit backward difference scheme. The thermodynamic
properties of water are incorporated as state functions of
fluid pressure and temperature using relations given by Keenan
et al. (1978) for density and specific heat, Watson et al.
(1981) for dynamic viscosity, and Kestin (1978) for thermal
conductivity. For all simulations the grid spacing increases
with distance from the fault surface, with the smallest grid
spacing adjacent to the fault. For problems that are symmetric
about the fault, the equivalent half-space problem is modeled.
Discretization error was minimized by running several
simulations of the same problem, reducing the grid spacing

until identical results were obtained for two successive runs.

A solution procedure is employed where the heat-transfer
and fluid-flow equations are solved sequentially for a given
time step. The size of the time step is adjusted automatically
following a procedure that limits the magnitude of changes in
pressure and temperature to some specified value which will
insure rapid convergence. Initial time steps were on the order
of 10-% s. An iterative technique is used to couple the

heat-transfer and fluid-flow equations. The first step in the
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procedure is to solve for the temperature field using the
fluid pressure, slip velocity, and material and fluid
properties from the previous time step. The fluid-flow
equation is then solved using the newly calculated temperature
field to estimate the fluid-volume changes due to thermal
expansion. Porosity is updated by using the analytical

solution of equation (4.12b) over the time step
ny = 1= Q-ng_pdexpl ~(B; ~EB) (py-py_p,)
(Vs r775)(0,70, _p,) ) (4.A1)

where the porosity is assumed to be linearly indepéndent of ©
and p, and the bar‘denotes'the average value of the variable
over the time step. The fluid and material properties are then
updated using the new estimate of the temperature, fluid
pressure and porosity fields, and equation (4.9) is integrated
over the flow domain to obtain the displacement of the nodes
from their position at the previous time step. The slip
velocity is computed by numerically integrating equation

(4.16), (4.18), or (4.20), respectively,

VvV (1t

—
|

1 Cugmng) (1, -Po)H(t =1 ) +

N

Vpsf“

1 (4.A2a)



209

1 t

vo(t,) = { (ug-ug) (7 -Po)exp(- £ ) +

/psfu r
n (tn_tl)
my Z Ap;expl- ———] 1} (4.A2b)
i=1 r
v = 1 - _ s (Ut T, _
Vy(tn) V { (us ud)(Tn Po)51n(w;)H(7tS ln) +
Psf#
n v(t _ti) T
iy iEI Ap;sin| W JH(t j4mt =2} (4.A2c)
where
bp; = p(x,t;) = plx,t;_,) at x=0 (4.A3)

is the fluid pressure increase on the fault surface between
successive time steps, t; is the time for the ith time step,
and ¢, is the time for the current time step. An iterative
sequence 1s then employed until the maximum pressure and
temperature change betwéen successive iterations is less than
a specified tolerance (102 Pa and 10-% °C, respectively). Once

this criterion is met, the model proceeds to the next time

step.



NOT AT ION

isobaric specific heat of water.

volumetric strain (dilatation) e, +e,,%e;3.
solid matrix strain.

as a subscript denotes fluid.

Heaviside unit step function

porous medium permeability.

bulk modulus of the solid grains.

bulk modulus of the porous medium.

thermal conductivity of the solid grains.
thermal conductivity of water.

thermal conductivity of the solid-fluid composite.

porosity.

initial porosity

fluid pressure increase above ambient conditions.
pore fluid pressure.

initial fluid pressure.

fluid specific discharge relative to the solid matrix.

as a subscript denotes solid.

as a subscript denotes solid-fluid composite.
time.

temperature.

initial temperature.

solid matrix displacements.

relative slip velocity across the fault.
average slip velocity of the event.

fault zone width.

as a subscript denotes water.

square root of the ratio of the thermal to the
hydraulic diffusivities.

hydraulic diffusivity.

thermal diffusivity.

fluid volume expansion due to a unit decrease in fluid

pressure.
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isothermal compressibility of the solid grains.
porous medium compressibility.

isothermal compressibility of water.

maximum change in porosity.

Kronecker delta function.

thermal pressurization coefficient.

fluid volume expansion due to a unit increase
temperature.

isobaric thermal expansivity of the soild grains.

volumetric thermal expansion coefficient of the porous

medium,

isobaric thermal expansivity of water.

maximum change in solid volume per unit volume of
porous media per unit increase in temperature for
drained conditions.

time constant for thermal pressurization of a fault

surface for drained conditions.

time constant for thermal pressurization of a fault

zone for undrained conditions.
shear modulus.

dynamic coefficient of friction.

average dynamic coefficient of friction over the slip

event.

static coefficient of friction.

dynamic viscosity of water.

Poisson's ratio

density of the solid grains.,

density of water.

heat capacity of the soild-fluid composite.
average effective normal stress (7,1+7T22+733)/3.
components of the effective stress tensor.
components of the total stress tensor.

total normal stress acting on the fault surface.
resistive shear strength of the fault.

initial resistive shear strength of the fault.

temperature increase over ambient conditions.
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na x temperature rise needed to sustain pore-fluid pressures
at lithostatic values.

proportionality constant between pore and bulk volume

changes.
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TABLE 4.1. Porous Medium Compressibilities for various rock

types (Domenico and Mifflin, 1965; Johnson, 1968; Smith, 1973;

Reike and Chilingarian, 1974; Touloukin, 1981),

-1
Rock Type Bsr (Pa-1')
Unconsolidated clays 10-6-10-¢8
Unconsolidated sands 10-7-10"°9
Unconsolidated gravel 10-8-10-19°
Compacted sediments 10-%-10-"1
Igneous and metamorphics rocks 10-9-10-"1

Water (at 80 °C and 19 MPa)

4,2x10-19°
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TABLE 4.2. Parameter Values for Porous Medium and Solid

Properties Held Constant for All Simulations.

Property Value
Initial porosity ng 0.1
£ 1.0
Solid density o 2.6x10% kg m-3
Solid specific heat ¢ 103 J kg'f °K-1
Solid thermal conductivity K , 2.5 Wm ! °K-!
Solid compressibilty B 10-'!" pa-!
Solid thermal expansivity =, 2.0x10-5 °¢c-1
Porous medium thermal expansivity Tsf 10-5 °c-1
Porous medium thermal con@uctivity sto 2.5 Wm ' °k-!

Porous medium thermal diffusivity a 6.65x10°7 m2?g- !

Io

Water compressibility ﬁwo 4,2x10-'° pa-!

Water thermal expansivity Tw, 6.24x10°% °Cc-!
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TABLE 4.3. Summary of initial parameter values for a fault

surface at a depth of 2 km.*

Tn_Po ( ) An

ﬁ F lllo }\ T —Po —_—

sf T n ng
(Pa-1') (MPa°C- ') (°c) (s)

10-'1 1.687 15 0.002 0.000 0.00
10-10 0.747 35 0.011 0.002 0.01
10-° 0.125 208 0.400 0.023 0.20
10-8 0.013 1945 35.00 0.231 1.90
.*Parameters held constant

— -1 - - —_
2Vy—10 ms- ! ud-0.6 us—0.6175
Po,=19 MPa T,=80 °C ne=0.10
Tn=45 MPa Tn—Po=26 MPa rr=15.6 MPa

we=10 km v=3.3 km s~ t =6.0 s
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FIGURE CAPTIONS

Figure 4.1. (a) Conceptual model for fault slip. The fault is
represented by a vertical zone that is comprised of patcﬁes of
relatively high strength rock (shaded) surrounded by weaker
intervening areas. At the instant of failure a barrier
ruptures and slip (stippled area) spreads through the locked
portion until it is halted by another barrier. (b) Uniform
strain rate model for a small patch of the failure surface.

The arrows denote the displacement field.

Figure 4.2. Isothermal volumetric compressibility 8, and
isobaric thermal expansivity v, of pure water as a function of
temperature T for selected fluid pressures Pf Curves are based
on the analytic expression by Keenan et al/. (p.128, 1978). The
filuid pressure increment between curves is 5 MPa for 5-20 MPa,
10 MPa for 20-40 MPa, and 20 MPa for 40-100 MPa. The

liquid-steam transition is indicated by dashed lines.

Figure 4.3. Slip velocity models for constant fluid pressure:
EB, elastic-block model; EE, edge-effects model; and SR,

spring-rider model.

Figure 4.4. The thermal pressurization coefficient T
calculated as a function of temperature T for selected fluid
pressures P and porous medium compressibilities ﬁsf using the

solid properties summarized in Table 2. The fluid pressure



increment between curves is 5 MPa for 5-20 MPa, 10 MPa for
20-40 MPa, and 20 MPa for 40-100 MPa. The liquid-steam

transition is indicated by dashed lines.

Figure 4.5. Temperature rise (solid) and resistive stress
(dashed) on a failure surface as a function of slip duration.
An average slip velocity and friction coefficient are assumed.
(a) Temperature and resistive stress as given by the
analytical solutions. (b) Comparison of the analytical and
numerical solutions for selected porous medium
compressibilities, undrained conditions, and the initial

conditions of Table 4.3.

Figure 4.6. Temperature rise and resistive stress during
displacement across a fault surface with an average slip
velocity Z;y=10‘1 ms-', friction coefficient ﬁd=0.6, and
initial effective stress 7,=24 MPa. The initial conditions are
summarized in Table 4.3. The ﬁsf (Pa-') and k (m?) are the
compressibility and permeability of the adjacent porous
medium. Numbers on curves represent values of permeability.

Scales are adjustable for other value of Ed, T and 2Vy (see

n'

text).

Figure 4.7. The hydrologic and thermal fields as a function of
distance from the fault surface for selected displacements.
Calculations are for a stiff medium with a permeability of

10-'7 m?, and the initial conditions of Table 4.3. Diagram (a)

224



shows the temperature (solid) and pore pressure rise (dashed);
(b) the thermal expansion (solid) and pressure contraction

(dashed) rates of the fluid volume; -and (c) the Darcy flux.

Figure 4.8. The hydrologic and thermal fields as a function of
distance from the fault surface for selected displacements.
Calculations are for a porous medium with a compressibility of
10-° Pa-', a permeability of 10-'?7 m?, and the initial
conditions on Table 4.3. Diagram (a) shows the temperature
(s0lid) and pore pressure rise (dashed); (b) thermal expansion
rate of the fluid volume (solid) and dilatational strain rate
of the pore volume (dashed); and (c) the Darcy flux. The

* .
parameter X is given by A(7r,-P,).

Figure 4.9. Temperature (solid) and resistive stress (dashed)
within a fault zone as a function of slip duration t/y or
shear strain d/2w¢e for selécted porohs medium
compressibilities. Undrained conditions and negligible loss of
heat from the zone are assumed. Analytical solutions are

labeled by A.

Figure 4.10. The dilatational strain rate of the pore volume
within a fault zone as a function of slip duration t/y or
shear strain d/2wy for selected porous medium
compressibilities. Undrained conditions and negligible loss of
heat from the zone are assumed. Analytical solution is

indicated by the dashed line.
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Figure 4.11, Temperature rise and resistive stress at the
center of a fault zone whose width 2w and average slip
velocity are 10" m and 10-' ms-', respectively. The initial
conditions are summarized in Table 4.3. The Bsf (Pa~') and k%
(m?) are the compressibility and permeability of the porous

medium. Number on curves represent values of permeability.

Figure 4.12. Temperature (solid) and pore-fluid pressure rise
(dashed) as a function of distance for slip across a fault
zone with a width of 10-'" m and a relative slip rate of 2r
=10-'" ms-', Calculations are for a stiff medium and the
initial conditions of Table 4.3. The permeability of the fault
and adjacent wall rock are: (a) 10-'2 and 10-'® m?; and (b)
10-'® and 10-'3 m?, Numbers on curves represent values of

displacement.

Figure 4.13. Analytical solutions for the slip rate as a
function of time for selected ratios of the characteristic
slip duration t, to the characteristic time for thermal
pressurization ¢. Fault motion is initiated by a 3% drop in
the static shear strength. The slip rate is normalized by the
maximum rate for a complete loss of shear strength at the
initiation of slip. Undrained conditions and negligible loss

of heat from the zone are assumed.

Figure 4.14. Numerical solutions for the slip rate and
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resistive stress as a function of time for slip across a fault
zone with a width of 10! m. Fault slip is initiated by a 3%
~drop in the static shear strength. Numbers on curves represent
values of permeability. Calculations are for a porous medium
compressibility of 10-° Pa-!, and the initial conditions of
Table 4.3. Dashed lines show the restoration of shear strength

after the cessation of slip.
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