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In this study, the influence of slip flow and temperature jump on the entropy gen-
eration rate are investigated in rectangular microducts. The Knudsen numbers are 
considered in the range between 0.001 and 0.1, and the aspect ratio lies between 0 
and 1. The dimensionless governing equations are solved numerically using Che-
byshev spectral collocation method, and the dimensionless velocity and tempera-
ture gradients are employed in the entropy generation model. The influences of 
the dimensionless numbers including Bejan number and irreversibility distribution 
ratio on the entropy generation rates are investigated and discussed through sur-
face plots and contour diagrams. It is demonstrated that the minimum entropy 
generation rate exists corresponding to an optimal aspect ratio for each dimen-
sionless number. This minimum entropy generation rate depends upon the nature 
of dimensionless numbers.
Key words: Knudsen number, Bejan number, entropy generation rate, 

irreversibility, microducts, slip flow

Introduction 

Enhancement in the overall performance in different mechanical and engineering 
process always been the topic of interest for the engineers and scientists. Still, no such equip-

ment has launched which convert the input energy into the valuable body of work without any 
loss. However, these losses can be minimized to get maximum overall performance. Various 
techniques are available to minimize these losses. However, the best practical method, to get 
the optimized results in thermodynamically systems, is the use of entropy generation mini-
mization. Entropy generation is the primary concern in different engineering equipment like 
energy storage systems, geophysical fluid dynamics, heat exchangers and cooling of electron-

ic devices. Gouy-Stodola in his theorem states that the rate of loss of exergy (irreversibility) 
is proportional to the entropy generation. However, method of entropy generation minimi-
zation (EMG) was first discussed by the Bejan [1]. According to him, the energy loss of 
thermodynamic systems can be controlled if the factors which cause the irreversibility can be  
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controlled, and thermodynamic optimization of the system can be attained. Minimization of 
entropy generation enhances the efficiency of a thermal system and leads to the reduction of 
the energy lost. That is for input energy to get maximum work done. The method of EGM 
is well described by Bejan [2-4] for the optimized results in various thermal systems. Car-
rington et al. [5] performed the entropy analysis in heat and mass transfer. The established a 
control volume solution for their model, and they consider in internal and external flows for 
heat and mass to apply this phenomenon to validate their findings. Nag et al. [6] carried out 
second law analysis through a duct assuming constant heat flux at the wall. They found that 
entropy generation during the process is directly proportional to lose in available energy and 
entropy generation can be minimized for an optimal value of the initial temperature differ-
ence. Sahin [7], considered various duct geometries to study the irreversibilities by assuming 
the constant heat flux at the wall. Demirel et al. [8] performed entropy analysis through a 
rectangular duct filled with spherical particles. They also assumed fluxes at the top (heated) 
and bottom (cooled) wall and calculated irreversibility distribution and entropy generation. 
Tasnim et al. [9] performed rational analysis inside two parallel isothermal plates placed in 
vertical direction saturated in a porous medium. They assumed that magnetic force is acting 
in transverse direction and expression of irreversibility distribution ratio and entropy genera-

tion number is also calculated analytically. Hooman [10] et al. performed first and the second 
law analysis through a rectangular duct saturated with porous medium and results are found 
analytically. Further notable studies [11-21] on entropy analysis are also carried in various 
geometries. 

Study of fluid-flow and heat transfer rate through microscale has received much im-

portance owing to their vast applications in chemical separation, micro-thermal technology, mi-
cro-propulsion, inkjet printheads, cooling of computer chips and in the field of biomedical. At 
microscopic scale (100 microns, etc.) and low pressure, gaseous flow does not follow the law 
continuum physics. In this situation, fluid velocity and temperature near the solid boundaries 
is different from an actual temperature of the boundaries. In the literature, this phenomenon is 
commonly known as velocity slip and thermal slip (temperature jumps), which is the primary 
source of change in flow characteristics.

The studies in the micro-channel with slip flow and temperature jumps have been car-
ried out by most of the researches [22-29], and they carried out useful findings. Hooman [30] 
performed entropy analysis under various boundary conditions through duct geometry and used 

a numerical technique. He concluded that heating for the 
flow of gases through microducts of rectangular cross-sec-

tion are essential and can change heat transfer. However, 
the study of entropy generation in rectangular microducts 
with the gaseous slip and temperature jumps has not been 
considered yet. Our present investigation majorly empha-

sizes on entropy generation minimization under velocity 
slip, and temperature jumps in microducts. A study is per-
formed numerically by using spectral method and results 
are obtained for different emerging parameters. 

Mathematical formulation

Consider a rectangular duct whose semi major and minor axes are taken as a and b 

along x- and y-axes, fig. 1. The aspect ratio is ε =b/a. The gas is assumed to flow along z-axis. 
The governing equations for the flow and heat transfer in a microduct can be written:

y

b

a

x

Figure 1. Schematic diagram
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 –  and temperature jump conditions are
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where u is the fluid velocity, T – the fluid temperature, α – the thermal diffusivity, σ – the tan-

gential momentum accommodation coefficient, σt – thermal accommodation coefficient, λ – the 

molecular means free path, γ – the specific heat ratio, and Pr – the Prandtl number.
 – using following transformations
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we get the following dimensionless forms for both momentum and energy equations:
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 – with dimensionless boundary conditions
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where Kn is Knudsen number and it can be defied as the ratio of the molecular mean free path 
length to the characteristic length.

The dimensionless temperature at the boundary of the duct:
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Entropy generation analysis

Following Bejan [1], the entropy generation rate in ducts can be written:

,, Entropy generation due to fluid friction Entropy generation due to heat transfer 
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 To develop its dimensionless form, we used eqs. (3) and (4) and got the following:

2 2 2

2
0

2 2

0

1 1
4

f
G

f f p m

m m

k Q p Q p Q
S

a k b k ab c uT

u p u p
w w

T a b

ξ η

ξ η

θ θ
ρ

µ

       = + + +                 
     + +   
     

(10)



Ghaffari, A., et al.: Effects of Gaseous Slip Flow and Temperature Jump ... 
THERMAL SCIENCE: Year 2020, Vol. 24, No. 5A, pp. 3001-3011 3005

22 2 22 2
2 2 2 2 2 2

2 2 2
00

1
4

f m
G

p mf

k u pQ pS w w
bp c u TT b k bξ η ξ η

ε µε θ θ ε
ρ

      = + + + +          
(11)

0

2 22
02 2 2 2 2 2

2
0

1
4

f m fG
s

G p m

k u k TS
N w w

S bp c u T Qξ η ξ η
ε µε θ θ ε

ρ

    = = + + + +        
(12)

where

 
0

2 2

2 2
0

G

f

Q p
S

T b k
=

2 2
2 2 2 2 2 21 Br

4 Pe

h f
Ns Ns

sN w wξ η ξ η
εε θ θ ε

ω
     = + + + +        

 
(13)

where

 

( ) ( ) 2

0
Pe Re Pr , Br , ,m m m

f

u b u b u T QT
Q T k

ρ ρ µν ω
ν α α

∆
= = = = = ∆ =

In the aforementioned equation, the term Nsh is the heat transfer irreversibility and  

Nsh – the fluid friction irreversibility. Bejan number is the ratio of heat transfer irreversibility to 
the total irreversibility and can be written:

1 1Be
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h h
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= = = =
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where Φ = Nsf/Nsh is the irreversibility distribution ratio. From eq. (13), it is inferred that the 
Bejan number lies between 0 and 1. When Be = 1, heat transfer irreversibility dominates over 
fluid friction irreversibility, whereas Be = 0 confirms the dominance of fluid friction irrevers-

ibility over heat transfer irreversibility. When Be = 0.5, both heat transfer and friction irrevers-

ibilities are equally dominant.

Results and discussion

The obtained system of dimensionless eqs. (6)-(8) is simulated through Chebyshev 
spectral collocation scheme, accurate up to 10–6. The domain 0 ≤ ξ < 1 and 0 ≤ η < 1 is trans-

formed to –1 ≤ ξ < 1 and –1 ≤ η < 1 using the formula ξ = 2η/(L − 1). The node points between 
1 and –1 are calculated by using the formula ξj = cos(πj/N), j = 0, 1, 2, … N and ηi = cos(πi/N),  
i = 0, 1, 2, … N along ξ and η direction, respectively. The equal number of node points are 
considered in both directions. These node points are commonly known as Gauss-Lobatto col-
location points. The obtained results are presented through the figs. 2-9, while the value of the 
parameter σt = σ = 1 is kept fix and others are mentioned corresponding to each figure. The vari-
ation of several entropy generation rates with the aspect ratio is displayed in figs. 2-4 for differ-
ent dimensionless numbers including Peclet, Brinkman, and Knudsen numbers keeping other 
parameters fixed. In each case, the entropy generation rate due to heat transfer irreversibility is 
decreasing, whereas, the entropy generation rate due to fluid friction irreversibility is increasing 
with aspect ratio for each dimensionless number. Also, there is a minimum entropy generation 
rate corresponding to an optimal aspect ratio for each dimensionless number. 
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This minimum entropy generation rate depends upon the nature of dimension-

less numbers. The Peclet number establishes the relation between conducted and convected 
thermal energy to the fluid. The larger the Peclet number, the larger will be the convected 
thermal energy to the fluid. This is confirmed in figs. 2(a) and 2(b) for two different Peclet 

numbers. The Brinkman number demonstrates the relation between viscous heat generation 
and external heating. It increases with an increase in viscous dissipation and as a result the 
minimum entropy generation rate increases with Brinkman number. This can be observed in  
figs. 3(a) and (b). The same fact can be observed in figs. 4(a)-4(d) for increasing values of 
Knudsen numbers in the slip flow regime (0.01 ≤ Kn ≤ 0.1). The variation of entropy generation 
rates and Bejan number along axial and transverse directions are shown in surface plots, see 
figs. 5(a)-5(d). The isotherms for the same quantities are shown in figs. 6 and 7 for the fixed pa-

rameters. The isotherms of entropy generation rate due to heat and fluid friction are displayed in  
figs. 6(a) and 6(b), respectively for Kn = 0.1. The variation in magnitude with the position 

Figure 2. Variation of dimensionless entropy generation rates with aspect ratio when  
(a) Pe = 2, (b) Pe = 3

Figure 3. Variation of dimensionless entropy generation rates with aspect ratio when  
(a) Br = 1, (b) Br = 1.5
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exhibits the distribution of irreversibilities due to heat and fluid friction. It is observed that the 
effect of fluid friction irreversibility is dominant near the left and top surfaces of the duct. 

On the other side, the fluid friction irreversibility shows minimum contribution. Sim-

ilarly, contours of total entropy generation rate and Bejan numbers are shown in figs. 7(a) and 7 (b), 
respectively. Figure 7(a) demonstrates that the total entropy generation inside the duct is prac-

tically the same as the entropy generation due to fluid friction.
Figures 8(a) and 8(b) display the variation of Bejan number with aspect ratios for 

different values of Knudsen and Peclet numbers, respectively. The behavior of Bejan numbers 
is found to be the same in both cases. In case of parallel plate channel when ε → 0 the irre-

versibility due to fluid friction is higher and as the aspect ratio increases to the square duct, 
the irreversibility due to heat transfer increases and both irreversibilities become comparable 
depending upon the values of Knudsen and Peclet numbers. In both cases, the Bejan number 
decreases with increasing Knudsen or Peclet numbers for the square duct. The Second law of 

Figure 4. Variation of dimensionless entropy generation rates with aspect ratio when  
(a) Kn = 0.04, (b) Kn = 0.05, (c) Kn = 0.06, and Kn = 0.1
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thermodynamics combines the irreversibility due to fluid friction and heat transfer. In all ther-
mal systems, the entropy changes due to these irreversibilities. The higher the irreversibility 
due to fluid friction, the higher will be the irreversibility distribution ratio. Figures 9(a) and 
9(b) demonstrate the variation of irreversibility distribution ratio with aspect ratio for different 
values of Knudsen and Peclet numbers, respectively. In both cases, the irreversibility due to 
friction is higher for smaller aspect ratios and decreases with increasing Knudsen or Peclet  
numbers. For square ducts, both irreversibilities due to fluid friction and heat transfer are found 
to be equivalent.
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Figure 5. Surface plots for (a) entropy generation rate due to fluid friction,  
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Figure 6. Entropy generation contours in a microduct due to (a) heat irreversibility,  
(b) fluid friction reversibility 
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Figure 7. (a) Contours for total entropy generation rate, (b) Bejan number contours in a microduct

Figure 8. Variation of Bejan number with aspect ratio for different values of (a) Kn, (b) Pe

Figure 9. Variation of irreversibility distribution ratio with aspect ratio for different values of  
(a) Kn, (b) Pe 

(a) (b)ξ

0 0.2 0.4 0.6 0.8 1

ξ

0 0.2 0.4 0.6 0.8 1

η
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Be

NS

η
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.75182
0.67566

0.54873

0.47257

0.37103

0.29487

0.2
441

0.
24

41

0
.3

2
0

2
6

0
.3

7
1

0
3

0
.4

4
7

1
9

0.21871

0.21871

0.16794

0.11717

0.0663970.041011

0.054264

0
.0

8
5

7
8

9

0
.0

5
4

2
6

4

0
.0

5
4

2
6

4

0.11731

0.085789

0.18036
0.24341

0.369510.495610.653230.842389

Kn = 0.1, = 0.5, Pr = 0.7 = 1.4, = 1, Br = 1, Pe = 1ε γ, Ω Kn = 0.1, = 0.5, Pr = 0.7 = 1.4, = 1, Br = 1, Pe = 1ε γ, Ω

(a) (b)

Be

0.04

0.05

0.06

Kn
Pe

3

4

5

0.2 0.4 0.6 0.8 1

ε
0.2 0.4 0.6 0.8 1

ε

0.6

0.5

0.4

0.3

0.2

0.1

0

0.6

0.5

0.4

0.3

0.2

0.1

0

Pr = 0.7, = 1.4γ

ξ η ω= = Br = Pe = =1

Kn = 0.01

Be

ξ η ω= = Br = =1

Pr = 0.7, = 1.4γ

0.0

0.0

0.0

K

�=�=Br=P e=�

P r = 0.7, � = 1.4

(a) (b)

Φ

10
3

10
2

10
1

10
0

10
–1

0.2 0.4 0.6 0.8 1
ε

0.2 0.4 0.6 0.8 1
ε

Φ

10
3

10
2

10
1

10
0

10
–1

Kn = 0.01

1

2

3

Pe

0.04

0.05

0.06

Kn

ξ η ω= = Br = =1

Pr = 0.7, = 1.4γξ η ω= = Br = Pe = =1

Pr = 0.7, = 1.4γ



Ghaffari, A., et al.: Effects of Gaseous Slip Flow and Temperature Jump ... 
3010 THERMAL SCIENCE: Year 2020, Vol. 24, No. 5A, pp. 3001-3011

Conclusions

In this study, a model for the total entropy generation rate is developed for rectangular 
microducts. The Knudsen numbers are considered in the range between 0.001 and 0.1, and the 
aspect ratio lies between 0 and 1. The main results are summarized as follows.

 y The entropy generation rate due to heat transfer irreversibility decreases, whereas, the entro-

py generation rate due to fluid friction irreversibility increases with aspect ratio.
 y The minimum entropy generation rate exists corresponding to an optimal aspect ratio in 

each case.
 y The fluid friction irreversibility is dominant near the left and top surfaces of the duct.
 y In the case of a parallel plate channel, the irreversibility due to fluid friction is higher.
 y The irreversibility distribution ratio decreases with aspect ratio for different dimensionless 

numbers.

Nomenclature
A – cross-sectional area, [L2]
a – long length of microchannel, [L]
b – short length of microchannel, [L]
Be – Bejan number, [–]
Br – Brinkman number, [–]
Kn – Knudsen number, [–]
Ns – total entropy generation rate, [ML2T–2K–1]
Nsf – entropy generation rate due to fluid friction, 

[ML2T–2K–1]
Nsh – entropy generation rate due to heat,  

[ML2T–2K–1]
Pe – Peclet number, [–]
p – pressure, [ML–1T–2]
T – fluid temperature, [K]

u  – fluid velocity, [LT–1]
um – average fluid velocity, [LT–1]
w – fluid velocity in dimensionless form, [–]

Greek symbols

α – thermal diffusivity, [L2T–1]
ε – aspect ratio, [–]
θ – dimensionless temperature profile, [–]
λ – molecular mean free path, [L] 
σ – tangential momentum accommodation 

coefficient, [–]
σt – thermal accommodation coefficient, [–]
γ – specific heat ratio, [–]
Φ – the irreversibility distribution ratio, [–]
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