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Abstract

Genomic “scans” to identify loci that contribute to local adaptation are becoming increasingly 

common. Many methods used for such studies have assumed that local adaptation is created 

by loci experiencing antagonistic pleiotropy (AP) and that the selected locus itself is assayed, 

and few consider how signals of selection change through time. However, most empirical data 

sets have marker density too low to assume that a selected locus itself is assayed, researchers 

seldom know when selection was first imposed, and many locally adapted loci likely experience 

not AP but conditional neutrality (CN). We simulated data to evaluate how these factors affect 

the performance of tests for genotype–environment association (GEA). We found that 3 types of 

regression-based analyses (linear models, mixed linear models, and latent factor mixed models) 

and an implementation of BayEnv all performed well, with high rates of true positives and low 

rates of false positives, when the selected locus experienced AP, and when the selected locus 

was assayed directly. However, all tests had reduced power to detect loci experiencing CN, and 

the probability of detecting associations was sharply reduced when physically linked rather than 

causative loci were sampled. AP also maintained detectable GEAs much longer than CN. Our 

analyses suggest that if local adaptation is often driven by loci experiencing CN, genome-scan 

methods will have limited capacity to find loci responsible for local adaptation.

Subject area: Genomics and gene mapping
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Genomic data enable studies that use population genetic analy-
ses to identify genes responsible for local adaptation. Identifying 
the genetic basis of local adaptation can advance our understand-
ing of selective constraints, the genetic basis of naturally occurring 
variation, how geographically variable selection has shaped genomic 
diversity, and can provide insight into the tempo and mode of local 
adaptation (Savolainen et al. 2013; Tif�n and Ross-Ibarra 2014).

The most commonly used statistical approaches for identifying 
locally adapted loci use F

ST
 or other variance partitioning meth-

ods to identify loci with elevated among-population divergence 
(Lewontin and Krakauer 1973; Beaumont and Nichols 1996; Vitalis 
et al. 2001; Excof�er et al. 2009b; Bonhomme et al. 2010; Günther 
and Coop 2013); or they test for strong genotype–environment 
associations (GEA) (Joost et  al. 2007, 2008; Poncet et  al. 2010). 
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Evaluating the performance of these tests under biologically realis-
tic scenarios is important for understanding the analysis of empiri-
cal datasets, and a number of recent studies have used simulated 
data to achieve this goal (De Mita et al. 2013; Jones et al. 2013; 
De Villemereuil et  al. 2014; Lotterhos and Whitlock 2014, 2015; 
Frichot et al. 2015). DeMita et al. (2013) compared the statistical 
performance of regression models and F

ST
-type tests to identify tar-

gets of local adaptation under various sampling schemes for both 
sel�ng and outcrossing species; Jones et al. (2013) compared differ-
ent regression and classi�cation-based tests for GEA under differ-
ent strengths of selection; Lotterhos and Whitlock (2014) examined 
various F

ST
-type tests for identifying targets of selection in stable 

and expanding populations with different population structures. 
Finally, De Villemereuil et al. (2014) tested the robustness of GEA 
and F

ST
-like tests to hierarchical population structure, and selection 

acting on highly polygenic traits.
These simulation studies, together with an extensive earlier 

literature (e.g., Teshima et al. 2006; Jensen et al. 2007; Meirmans 
2012), have identi�ed the potential pitfalls and power of these tests. 
For example, when the strength of selection is weak or population 
structure co-varies with environmental variation that drives local 
adaptation, tests can be plagued by false positives (Meirmans 2012; 
De Mita et  al. 2013; De Villemereuil et  al. 2014). Similarly, the 
power of local adaptation tests can be highly dependent on demo-
graphic history, with both false positives and false negatives being 
more likely in expanding populations (Lotterhos and Whitlock 
2014, 2015) or when the underlying assumptions of the test do not 
�t the population structure to which they are applied (Excof�er 
et  al. 2009a; De Mita et  al. 2013; Frichot et  al. 2015; Lotterhos 
and Whitlock 2015). The power of landscape genomic tests can also 
depend on sampling scheme. De Mita et  al. (2013) showed that 
when populations are distributed across a continuous environmen-
tal gradient, linear-model-based tests perform well when sampling a 
single individual from each of many populations; but can have very 
high false positive rates when sampling is concentrated in a few 
discrete populations. When sampling a few discrete populations, 
methods that model allelic diversity within populations can pro-
vide better performance. Moreover, Lotterhos and Whitlock (2015) 
found that GEA tests and F

ST
-like tests had more power to detect 

weakly selected loci when samples were drawn from pairs of sites 
in contrasting environments, rather than collected along transects 
spanning environmental gradients.

The biological relevance of simulation studies depends on the 
assumptions made when simulating data. Here, we examine sev-
eral assumptions made in previous analyses that may not correctly 
capture the reality of empirical data. The �rst of these assump-
tions is that, at a biallelic locus under spatially variable selection, 
one allele will be favored in one part of the range and the alter-
native allele will be favored in the other part of the range—that 
is, the phenotypic effects of the alleles exhibit antagonistic plei-
otropy (AP) for �tness in different environments (e.g., De Mita 
et al. 2013; de Villemereuil et al. 2014; Lotterhos and Whitlock 
2015). Empirical studies have found some evidence that alleles 
responsible for local adaptation show tradeoffs across contrasting 
environments (Anderson et al. 2011; Ågren et al. 2013). However, 
it also is clear that many alleles contributing to local adaptation 
experience conditional neutrality (CN), contributing to higher (or 
lower) �tness in one environment while having no �tness effect in 
other locations (Schnee and Thompson 1984; Thompson 2005; 
Gardner and Latta 2006; Verhoeven et  al. 2008; Lowry et  al. 
2009; Fournier-Level et  al. 2011; Anderson et  al. 2013, 2014a; 

Yoder et al. 2014). We do not know how often local adaptation 
in natural populations evolves by AP or under CN. A  review of 
phenotypic studies of local adaptation conducted by Anderson 
et al. (2011) found greater evidence for CN than AP, but also cau-
tion that there may be an ascertainment bias in favor of �nding 
CN using paired tests of selection in contrasting environments. 
The reason for this bias is that experiments with limited statistical 
power are less likely to detect signals of selection in two environ-
ments (as is required to conclude AP) rather than only one envi-
ronment. Loci identi�ed as responsible for adaptation in only one 
environment may be CN alleles, or may be AP loci that have not 
been properly characterized.

Contrasting selection in different parts of a species range is 
expected to maintain variation at AP loci. By contrast, CN alleles are 
expected to be driven to �xation in one part of the range by selection 
but will eventually �x throughout the range through via gene �ow 
and drift. For this reason, CN alleles may harbor weaker signals of 
local adaptation than AP loci. Moreover, the signals of local adapta-
tion at CN loci may be expected to decay through time—as the allele 
that is favored in one part of the range drifts to �xation in the non-
selected portion of the range.

Previous simulation studies of local adaptation scans also have 
assumed that the causative locus, or a marker in complete linkage 
disequilibrium (LD) with it, is among those sampled (e.g., De Mita 
et al. 2013; Lotterhos and Whitlock 2014). Whole-genome sequence 
data for samples from multiple populations or from across a species 
range, which are necessary to ensure that causal loci are likely to be 
sampled, are available for relatively few species. Even for these, the 
complexity of mapping sequence reads to reference genomes means 
that whole-genome “resequencing” is unlikely to produce complete 
coverage of all variable sites. Empirical genome scans rarely assume 
that they are sampling causal loci, but rather that they are at best 
able to �nd markers or regions in close linkage with causal vari-
ants (Savolainen et al. 2013). Marker density is important because 
as marker density decreases, LD between assayed markers and 
the true targets of selection will weaken, and with it the ability to 
identify those targets of selection (Caballero et al. 2012; Tif�n and 
Ross-Ibarra 2014). Therefore, simulations that assume sampling of 
causal variants will overestimate the sensitivity of landscape genom-
ics methods.

Tests of species-wide adaptation have much less power to detect 
selection that has acted on standing variation than selection acting 
on a new mutation (Hermisson and Pennings 2005; Przeworski et al. 
2005). Selection on standing variation may be particularly important 
in the evolution of CN alleles, because they may drift in the neutral 
part of the range before migrating into the selected part of the range. 
Selection on standing variation may also greatly weaken the power 
to detect selection acting on linked loci, given that the further away 
an assayed marker is from the selected variant, the more opportunity 
there will be for recombination and the breakdown of LD.

The objective of this study is to better understand what land-
scape genomic scans can reveal about the genetics of local adap-
tation under scenarios that likely re�ect the biological reality of 
many systems and datasets. Speci�cally, we 1)  evaluate the power 
of 4 methods commonly used for genomic scans of local adapta-
tion to detect AP and CN loci, and when selection acted on either 
new mutations or standing variation; 2) examine the effects of time 
between the onset of selection and the time at which a population is 
sampled, and 3) look for a population-genetic signal in linked loci 
that might be used to differentiate AP from CN loci and selection 
acting on standing variation or new mutations.
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Methods

We used QuantiNEMO (release 1.0.4; Neuenschwander et  al. 
2008)  to simulate a landscape of 100 populations arrayed in a 
10  ×  10 grid, each containing 100 diploid, hermaphroditic indi-
viduals. Each simulated individual carries a number of biallelic 
loci, arranged along a single set of homologous chromosomes; one 
of these loci is under geographically varying selection as described 
below, while the others are selectively neutral. QuantiNEMO simu-
lates nonoverlapping generations, with mating occurring within 
populations, between pairs of individuals drawn at random with 
replacement. The number of offspring produced by each mating was 
determined by a single biallelic locus. We set the strength and direc-
tion of selection on this locus to vary across the landscape according 
to 1 of 4 geographic patterns (Figure  1). After reproduction, off-
spring migrated to adjacent populations with a probability of 0.01, 
in a “stepping-stone” model of migration. We ran simulations for 
10 000 generations and analyzed results at 1, 2, 4, 6, and 10 thou-
sand generations after selection was imposed. The QuantiNEMO 
con�guration �les, scripts used for analysis, and the output of 
analyses are available in the Dryad Digital Repository, http://dx.doi.
org/10.5061/dryad.p12q4).

Simulated Genotypes

We imposed selection on either new mutations or on standing vari-
ation. In stochastic forward simulations such as QuantiNEMO, 
creating a true hard sweep with an origin in a single sequence is 
challenging, because a single allele will often be lost to drift, even 
when it has a strong selective advantage. When variation at a locus 
is lost, QuantiNEMO reintroduces variation by forcing a single 
mutation event in the next generation. To achieve adaptation from 
new mutations, then, we started simulations with one allele at each 
selected locus having a frequency of 2 × 10−4 in the half of the land-
scape where it was selectively favored, and kept only simulations 
in which this allele was either not lost or lost and reintroduced as 
a single new mutation within the �rst 1000 generations of simula-
tion. For selection on standing variation, we set global starting allele 
frequencies based on expectations from a standard neutral model 
at equilibrium (Ganapathy and Uyenoyama 2009). To evaluate 
the effects of adaptation on genetic diversity in regions linked to 
selected loci, we simulated 4 clusters with 20 neutral biallelic loci 
each, at recombination distances of 0, 0.01, 0.1, and 1 centimor-
gans (cM) away from the selected locus, plus another 20 neutral loci 
on a separate chromosome. For these linked loci, we drew starting 

Figure 1. The models of geographically varying selection we simulated. Top panel: We conducted all simulations in a landscape consisting of a 10 × 10 array of 

populations linked by migration in a stepping stone pattern. The selection differential s acting on the A allele of the selected locus changed from the western 

half of the landscape to the eastern half. For discrete selection, the change was discontinuous (left graph); for gradient selection, s varied continuously from the 

westernmost column of populations to the easternmost column (right graph). Bottom panel: For all analyses, we used samples of genotypes drawn from the 

simulated populations in 1 of 2 ways. For “dispersed” samples, we drew 100 genotypes at random from across the entire western half of the landscape, and 100 

from the east; in “clustered” samples, we drew 25 genotypes from each of 8 nonadjoining pairs of populations, highlighted.
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allele frequencies from the equilibrium distribution of frequencies 
for a standard neutral model, as for the selected locus understanding 
variation. Because QuantiNEMO assembles starting populations by 
creating individuals’ multi-locus genotypes at random based on the 
speci�ed starting allele frequencies, these loci began each simulation 
in complete linkage equilibrium (i.e., LD, as measured by r2 = 0) with 
the selected locus.

Selection

We ran 100 simulations each for each of 8 possible combinations of 
(1) new mutations or standing variation experiencing either (2) AP 
or CN that varied across the landscape as (3) either 2 discrete envi-
ronments or a gradient (DS or GR; Figure 1). As a standard for com-
parison, we also ran 100 simulations each with no selection (neutral, 
or NT), starting from either new mutations or standing variation. 
We parameterized the directional selection option in QuantiNEMO 
to create selection differentials that conformed to each of these 
forms of selection. Given 3 possible genotypes at a biallelic focal 
locus, AA, AB, and BB, we de�ned the selection differential s so that 
the relative �tness of each genotype, wAA, wAB, and wBB was equal to 
1, 1 − s, and 1 − 2s, respectively. We chose selection differentials that 
resulted in clinal distributions of allele frequencies in each popula-
tion after 2000 generations in trial simulations; QuantiNEMO’s out-
put of global F

ST
 in these trials also indicated that 5000 generations 

were usually suf�cient for the landscape to achieve mutation-drift-
selection-migration equilibrium.

To create discrete and gradient selective landscapes, we varied 
the selection differential s in different columns of the 10 × 10 land-
scape grid (Figure 1). For discrete (DS) selection on AP alleles, we set 
the selection differential (s) to 0.025 in the 5 “western” columns of 
populations in the 10 × 10 landscape grid, s = −0.025 in the 5 “east-
ern” columns. For DS on CN alleles, we set s = 0.05 in the 5 west-
ern columns, and s = 0 in the 5 eastern columns. For gradient (GR) 
selection on AP, we varied the value of s linearly from 0.05 in the 
westernmost column to −0.05 in the easternmost column; for GR 
selection acting on CN alleles, we varied s from 0.10 in the �rst col-
umn to 0 in the sixth column, and set s = 0 for the remaining 4 col-
umns (Figure 1). The different maximum values of s in each of these 
4 scenarios ensured that the selected alleles experienced roughly the 
same strength of selection, averaged across the entire landscape, in 
all scenarios.

Analysis

We analyzed all QuantiNEMO output using the R statistical com-
puting environment (R Core Team 2014). For each time point (1, 2, 
4, 6, and 10 thousand generations after selection commenced) we 
sampled 200 diploid individuals (400 alleles) according to 1 of 2 
sampling schemes intended to capture the sampling used in typical 
landscape genomic studies. In the �rst, which we term “dispersed 
sampling,” we drew 100 individuals at random from each side of the 
landscape, without respect to their population of origin (Figure 1). 
We also examined “clustered sampling” in which we drew 25 indi-
viduals from each of 4 pairs of adjacent populations in the center of 
the western and eastern halves of the landscape (Figure 1). This was 
intended to introduce cryptic population structure into the analysis, 
and it approximates sampling schemes used in studies that attempt 
to estimate local allele frequencies by sampling multiple individu-
als at each site (e.g., Eckert et  al. 2010; Cheng et  al. 2012; Jones 
et al. 2012; Pyhäjärvi et al. 2013). For all population sampling, we 
checked that the selected locus was polymorphic in the sample and 

took new samples if this was not the case. In all downstream analy-
sis, we only tested for signals of local adaptation at loci for which the 
frequency of the less-common allele was greater than 0.05, following 
standard practice in empirical studies, which typically exclude loci 
with rare minor alleles as part of genotyping procedures or later 
analysis.

GEA Tests

We conducted 4 tests for GEA, each with different forms of control 
for the confounding effect of population structure. In all GEA tests, 
the “environment” was the landscape column number (Figure  1). 
First, we �tted a simple linear model (LM) using genotype as a pre-
dictor of the environment from which individuals were sampled (i.e., 
environment–genotype). This method had no control for population 
structure, and served primarily as a standard for comparison to the 
other methods.

The second GEA method was the mixed linear model (MLM) 
framework implemented in the programs TASSEL and GAPIT (Yu 
et al. 2006; Zhang et al. 2010; Lipka et al. 2012), which is widely 
used for genome-wide association studies, and which we applied in a 
previous landscape genomic analysis (Yoder et al. 2014). The MLM 
approach �ts a model for each locus with the observed allele as the 
predictor variable and environment as the response (i.e., as in the 
LM, environment–genotype), with a pairwise kinship (K-) matrix as 
a covariate to control for confounding effects of population struc-
ture. We calculated the K-matrix as a similarity matrix, using geno-
types at 1000 unlinked neutral loci for 200 individuals simulated 
separately under the same demographic history as the genotypes 
used for analysis (i.e., equivalent to loci from additional chromo-
somes beyond the one carrying the selected locus in the simulations 
of local adaptation).

We also tested for association using the latent factor mixed 
model (LFMM) framework of Frichot et al. (2013), as implemented 
in the R package LEA (http://membres-timc.imag.fr/Olivier.Francois/
LEA). This method uses a Markov chain Monte Carlo algorithm 
to �t a LFMM, in which individual genotypes are predicted by a 
mixed model with an environmental variable as a �xed effect and 
population structure modeled as a set of K latent factors. That is, 
LFMMs �t a model of the form genotype–environment whereas LM 
and MLM methods �t a model of the form environment–genotype. 
Following Frichot et  al. (2013) and the procedure outlined in the 
LEA manual, we wrote a script to run LFMM analysis using utili-
ties in the LEA package. As with the MLM test, we used genotypes 
from 1000 unlinked neutral loci simulated independently under the 
same demographic conditions, and sampled in the same manner, as 
the genotypes used for analysis, to estimate appropriate values of K 
for each simulation scenario. Our script then �t LFMMs with K − 1 
through K + 2 latent factors (or 1 through K + 2 if the initial approx-
imation found K = 1), and selected the �tted LFMM with an opti-
mal genomic in�ation value (Devlin and Roeder 1999). The script 
�t LFMMs by running the MCMC algorithm for 10−4 iterations, 
with the �rst 5000 iterations discarded as burn-in. For each locus, 
the script recorded the value of K for the optimal LFMM, the raw 
z-score from the LFMM, a P-value adjusted for the genomic in�ation 
value, and whether or not that P-value achieved statistical signi�-
cance at P < 0.05 with correction for false discovery (Benjamini and 
Hochberg 1995).

Finally, we tested for association using the BayEnv method 
(Günther and Coop 2013) as implemented in the program BayPass 
(Gautier 2015). The BayEnv method calculates among-population 
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genetic differentiation from allele count data, and tests for associa-
tion between genetic differentiation at each locus and between-site 
environmental differences, controlling for the effects of among-
population covariance in allele frequencies, using an allele-frequency 
covariance matrix calculated from putatively neutral control loci 
(Günther and Coop 2013). We wrote a script in R to run the BayEnv 
analysis on our simulated data. The script �rst called utilities pro-
vided in BayPass to estimate an allele frequency covariance matrix 
based on genotypes from 1000 unlinked neutral loci simulated under 
the same demographic conditions, and sampled in the same manner, 
as the genotypes used for analysis. It then called BayPass to run the 
BayEnv analysis, using the estimated covariance matrix, to estimate 
the strength of association between allele frequencies at each locus 
and the environment.

We calculated the sensitivity of each GEA test as the proportion 
of simulations in which the selected locus was positively identi�ed as 
having a greater GEA than expected by chance, and the false positive 
rate as the proportion of simulations in which a focal neutral locus 
was identi�ed as having a greater GEA than expected by chance. 
For the LM, MLM, and LFMM tests, we expressed the probability 
of greater-than-expected GEA returned by each test as a LOD score 
(the −log10(P)) and assessed sensitivity at LOD cutoff values up to 
9 (or P ≤ 10−9). The BayEnv test implemented in BayPass expresses 
con�dence in GEA for each locus not as a P-value, but as a Bayes 
factor (BF) scaled in dB units equal to 10 × log10(BF); we assessed 
BayEnv sensitivity using cutoff values up to 9 for this scaled Bayes 
factor as well.

Population Genetic Statistics

Because recombination and drift are expected to be differ between 
AP and CN loci and also between selection acting on new alleles and 
standing variation, we calculated 2 population genetic parameters 
that may provide some ability to differentiate between these types 
of alleles and differences in selection. First, we calculated the H12 
index of haplotype frequency distortion (Messer and Petrov 2013; 
Garud et al. 2014). H12 is calculated from the ranked frequencies 
of the n unique haplotypes in a sample, as (f

1
 + f

2
)2 + f

3
2 + … + f

n
2, 

where f
i
 is the frequency of the ith-most-common haplotype (Garud 

et al. 2014). H12 varies between 0 and 1, where values approaching 
1 indicate a population dominated by 1 or 2 haplotypes, and lower 
values indicate a population with more haplotypes at low to inter-
mediate frequencies. H12 provides a haplotype-frequency-based test 
for a recent selective sweep that can be robust to scenarios in which a 
selectively favored allele occurs on multiple haplotype backgrounds, 
which may often be suitable for putative cases of local adaptation 
(Yoder et  al. 2014). We calculated H12 on haplotypes assembled 
from each individual’s genotype at the selected locus and 10 loci 
drawn randomly from the set of 20 neutral loci simulated at each 
recombination distance, to provide estimates of those statistics given 
different degrees of physical linkage to the selected locus. To directly 
evaluate LD between the selected locus and the linked loci, we cal-
culated r2, a measure of LD that is equivalent to the correlation coef-
�cient between the allelic state at one locus and the allelic state at a 
second locus.

Results

In simulations of selection on a new mutation, AP alleles usually �xed 
within the part of the range where they were selectively favored (i.e., 
achieved a global frequency of 0.5) within 2000 generations, though 

there was heterogeneity due to the loss, through drift, of alleles with 
very low initial frequency (Figure  2). Meanwhile CN alleles that 
began as new mutations almost always �xed in the selected part of 
the range (the western half) within 1000 generations. The faster rate 
of �xation for CN alleles re�ects the stronger local selection acting 
on CN alleles within the selected region (note, across the range the 
strength of selection acting on CN and AP alleles is equal; Figure 1). 
Following local �xation, CN alleles continued to increase in global 
frequency, as gene �ow from the west increased allele frequency in 
the eastern part of the landscape (Figure 2). Evolution from stand-
ing variation resulted in more rapid �xation of the selected allele in 
all cases.

Detecting Targets of Local Adaptation

Under the conditions we simulated, the ability to identify an allele 
responsible for local adaptation was dependent on the statistical test 
applied, whether alleles at the gene were conditionally neutral or 
antagonistically pleiotropic, whether the selected SNP or a physically 
linked variant was assayed, and the time of sampling after selection 
was imposed. The ability to detect selection also was affected by 
whether selection acted on a new mutation or standing variation and 
whether the imposed selection was discrete or acted on a gradient, 
but for these factors the effects were either minor or very limited 
(Figure 3). The only case in which power to detect selection on a 
new mutation differed strongly from power to detect selection on 
standing variation was for BayPass analyses on clustered samples 
(Figure 3H); the only case in which power to detect local adaptation 
on a discrete versus a gradient landscape differed strongly was for 
LFMM analyses on dispersed samples (Figure 3C).

The 4 GEA tests we applied include 3 variations on linear model 
tests of association: a simple liner model with no correction for the 
confounding effect of population structure (LM); a mixed linear 
model (MLM) method implemented in GAPIT (Lipka et al. 2012), 
which uses a kinship matrix covariate to control for effects of popu-
lation structure, and LFMM method (Frichot et al. 2013) that incor-
porates latent factors to model population structure. The fourth 
test we applied is the BayEnv method (Günther and Coop 2013), as 
implemented in the program BayPass (Gautier 2015), which identi-
�es putative targets of local adaptation as those loci with unusually 
strong among-population covariance between allele frequency and 
environmental distance, given the genome-wide distribution of those 
covariances. Both the LM and MLM approaches had high power to 
detect true positives (at or near 100% for all selected loci in the LM 
tests and for all but selection acting on CN standing variation for 
the MLM tests; Figures 3 and 4). The LFMM test had high power to 
detect AP loci under all circumstances except for dispersed samples 
taken from simulations of selection on a new mutation; and it had 
consistently lower power to detect CN loci under all circumstances. 
From the perspective of true positives, the BayEnv/BayPass test had 
the poorest performance, presumably because it overcorrected for 
population structure. BayPass did, however, have similar true posi-
tive rates to the 3 linear model-based approaches (and with far lower 
false positive rates than LM) when selection acted on new mutations 
and the samples were clustered (i.e., 25 sequences sampled from 
each of 4 proximate subpopulations on each side of the landscape; 
Figure 1).

False Positive Rates

The performance of statistical tests is dependent not only on the 
power of those tests to identify true positives, but also their ability 
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to minimize false positives. This is especially important when analyz-
ing a large number of sites, most of which are not expected to have 
a direct role in adaptation, in a typical “genome scan” approach. 
We assessed false positives as the proportion of neutral simulations 
in which each of the 4 GEA tests identi�ed a signi�cant associa-
tion. Because neutral simulations starting from new mutations rarely 
evolved suf�ciently high allele frequency to pass our minor allele 
frequency �lter (MAF > 0.05), we used results from simulations of 
neutral evolution starting from standing variation as a standard for 
comparison to all selection scenarios. These distributions should 
accurately re�ect the range of environmental associations seen for 
neutral loci in empirical samples.

The 4 tests differed considerably in their false positive rate. 
The rate was highest for LM and very low for MLM, LFMM, and 
BayPass (Figure 3, dotted lines). It is not surprising that the LM test, 
which has no correction for population structure or demographic 
history, had the highest false positive rate; for all simulated scenarios 
more than 30% of neutral loci exceeded a LOD value = 5.0. The 
high false positive rates for the LM indicate that the LOD scores 
should not be directly interpreted as the probability of rejecting the 
null hypothesis that an allele does not contribute to local adaptation. 
However, LOD scores might still prove useful for ranking SNPs in 

a genome-wide sample, as is evident from the distributions of LOD 
scores for the selected locus in each simulation scenario (Figure 4). 
For both LM and MLM tests, the LOD scores for selected AP loci 
far exceed those from the neutral loci. For LM and MLM tests, the 
mean LOD scores for CN loci also clearly exceed those of neutral 
simulations, suggesting that using the upper tail of the distribution 
of LOD scores may be an effective strategy for identifying genetic 
variants that contribute to local adaptation.

Given that the MLM test performed well, with a high rate of true 
positives and a low rate of false positives, we focus the rest of the 
Results section on results from the MLM analyses.

Timing of Selection

Variation at AP loci is expected to be maintained in a population 
because different alleles are favored in different parts of the range. 
By contrast, variation at CN loci is transient—going rapidly to �xa-
tion in the part of the range where the allele is selectively favored 
and then drifting to �xation in the part of the range that the allele is 
neutral (Figure 2). This shapes the power of GEA tests to identify AP 
versus CN loci at different times after the onset of selection. At AP 
loci, the power to identify a selected locus is high regardless of the 
time of sampling (Figure 5). The one exception to this is for sampling 

Figure 2. Evolution of allele frequency at the selected locus. (A, B) Image plots illustrating the frequency of the focal allele in each of the 10 × 10 populations in 

the simulated landscape (one cell per site) in one replicate simulation of each of the geographic selection scenarios outlined in Figure 1, with evolution from a 

new mutation or standing variation. (C, D) Plots of the landscape-wide frequency of the focal allele over time, for all replicates of each selection scenario (light 

gray lines), with the mean frequency and 95% density interval superimposed at each time point (dark points and error bars).
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at 1000 generations after selection is imposed upon a new mutation, 
in which case the power of the MLM test to detect the target of 
selection is <80% (for LOD > 5, ~50% for LOD > 9) on a discrete 
selection landscape. This reduced power re�ects the fact that selec-
tion was not great enough to always overcome the effects of drift, 
and in some simulations many generations and recurrent mutation 
occurred before the frequency of the locally adapted allele was high 
enough to be detected.

By contrast, the power to detect a CN allele responsible for 
local adaptation is greatest at the earliest sampling time and decays 
steadily with time. When samples are taken 1000 generations after 
selection is �rst imposed, 70% of selected loci (averaged across the 
selection scenarios) were identi�ed as targets of selection by the 
MLM test at LOD > 5. By 10 000 generations, only 10% of selected 
CN alleles, averaged across all scenarios, were identi�ed as targets 
of selection at LOD > 5 and only ~2% of the alleles were identi�ed 
at LOD > 9. Not only is the frequency of CN alleles identi�ed as 
targets of selection lower than the frequency of AP alleles identi�ed 
as targets, but fewer CN alleles are polymorphic at MAF > 0.05, 
at 10 000 generations all of the AP loci meet the MAF > 0.05 �lter, 
whereas <70% of CN alleles that began as new mutations and <40% 
of the CN alleles that began as standing variation are still segregat-
ing at MAF > 0.05.

Signal at Linked Loci

The four local adaptation tests performed well, for the most part, 
when the selected locus was analyzed. However, even with full 
genome sequence data uneven coverage will often mean that stud-
ies are testing for evidence of local adaptation using SNPs that are 
physically linked to the selected locus, but not themselves the target 
of selection. The power to detect targets of selection when sampling 
physically linked SNPs is clearly much weaker than when the selected 
locus itself is sampled. Because the relative performance of the 4 sta-
tistical tests on linked SNPs mirrored that of the performance when 

assaying the selected SNP, we focus our discussion of linked SNPs on 
results from the MLM test only.

When the selected locus was assayed, the MLM test with a LOD 
cutoff of >5 positively identi�ed nearly 100% of all AP alleles and 
CN alleles that began as new mutations, and identi�ed ~50% of CN 
alleles that began as standing variation alleles. By contrast, when 
physically linked neutral loci were assayed only ~40% of selected 
loci were identi�ed under the best conditions—that is, when sam-
pling linked loci that were in complete physical linkage to an AP 
allele that began as a new mutation and had been subject to selection 
for 10 000 generations. The power to detect loci linked to targets of 
selection was much lower when selection acted on standing variation 
or CN alleles, and when the selected locus was more than 0.01 cM 
away from the assayed locus (Figure 6).

Averaged across all of the sampling times, when AP loci were in 
complete physical linkage (i.e., at a linkage distance of 0 cM) with 
the selected locus, only 20% of loci had LOD > 5.0 in the MLM test 
when selection acted on a new mutation on a gradient landscape; 
and 8% when selection acted on standing variation. The power of 
the tests fell to 17% and 7% (new mutations and standing variation, 
respectively) when the assayed loci were 0.01  cM away from the 
target of selection, and to 10% and 4% when the assayed loci were 
0.1 cM away from the target of selection. For comparison, approxi-
mately 2% of neutral mutations had LOD > 5—the loci just 0.01 cM 
from the selected locus were less than 10 times more likely to show 
positive signs of GEA. When assayed SNPs were 1 cM away from 
the selected locus, the true positive rates were approximately equal 
to the false positive rates from neutral loci (2.2% and 2.3% for AP 
and CN alleles).

Signals of Selection in Haplotype Diversity and LD

In addition to evaluating the performance of tests to identify targets 
of local adaptation using genome–environment association tests, we 
examined whether linkage information might provide a signature 

Figure 3. Detection of GEAs. Proportion of simulated datasets passing the MAF > 0.05 filter in which the selected locus had greater GEAs than expected by 

chance in 4 different GEA tests, under different a priori cutoffs for statistical significance. Solid lines are data from simulations of AP; dashed lines, simulations 

of conditional neutrality; dotted lines, simulations without selection acting. For A–D, tests were done on samples collected in a dispersed manner; for E–H, on 

samples collected in clusters (see Figure 1, Methods), all taken in generation 2000.
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that could be used to differentiate selection that had acted on new 
mutations versus standing variation and differentiate AP from CN 
alleles. To do this, we compared r2 and H12 values calculated for loci 
that were in complete physical linkage (cM = 0) with selected loci 
that had been identi�ed by the MLM as being a target of selection 
with LOD > 5. Unfortunately, the distributions of both H12 and r2 
values for regions linked to CN and AP loci are largely overlapping 
(Figure 7) and thus provide no clear signal for differentiating CN 
from AP loci. Selection that acted on new mutations resulted in r2 

and H12 values that are generally higher than selection that acted on 
standing variation (Figure 7). Moreover, the distributions of r2 and 
H12 for loci linked to CN alleles are very similar to those obtained 
for neutral loci.

Haplotype diversity, as captured by H12, had generally lower 
power to positively identify targets of selection than did GEA tests, 
as demonstrated by comparing the distributions of MLM LOD and 
H12 (Figure 8). Except for clustered samples from simulations of 
CN loci, at least 90% of simulations on a gradient landscape had 

Figure 4. Distribution of test statistics for GEA tests. Distribution of LOD score or Bayes factor for the locus under selection in simulations of AP, CN, or neutral 

(NT) loci, starting from new mutations or standing variation, and with tests conducted on dispersed or clustered samples (Figure 1) taken in generation 2000.
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MLM LOD greater than the 95th percentile from corresponding 
neutral simulations, across different sampling methods, gene actions, 
or whether selection acted on a new mutation or standing variation. 
By contrast, at loci in complete physical linkage with the selected 
locus (i.e., at a linkage distance of 0 cM), 48% to 79% of simula-
tions of selection on a new mutation resulted in H12 greater than the 
95th neutral percentile, and at most 6% of simulations of selection 
on standing variation resulted in such H12 outliers.

Discussion

Evaluating the performance of the statistical methods used to identify 
loci responsible for local adaptation helps in the design and interpre-
tation of empirical searches for adaptive loci. Simulations are valu-
able for achieving these goals because one can control the scenarios 
in which selection is acting. The utility of simulation-based analyses 

is, however, dependent upon the degree to which the assumptions of 
the simulation capture biological reality. We compared the power of 
4 tests used in genomic scans of local adaptation in natural popula-
tions to identify loci contributing to local adaptation via AP or CN, 
when selection acted on a new mutation or standing variation, and 
when sampling linked rather than causative loci.

Previous simulations studies of GEA test performance have 
assumed that the selected site is among those assayed. However, 
many empirical studies analyze relatively sparse genome-wide 
marker data and are unlikely to have captured more than a small 
minority of selected variants (Tif�n and Ross-Ibarra 2014; Lowry 
et  al. 2016). In our analyses, all tests had high true positive rates 
when the selected site itself was assayed; however performance was 
much lower when physically linked sites were assayed, dropping 
from near 100% true-positive rates at selected sites to as low as 5% 
at a recombination distance of just 0.1 cM (Figure 6).

That the signal of adaptation is weaker at loci that are physically 
linked but not in complete LD with the variants on which selection 
is acting is unsurprising (e.g., Vilas et al. 2012; Hoban et al. 2016). 
Nevertheless, it is important to realize that when designing and inter-
preting local adaptation scans based on reduced representation data 
such as RAD-seq (reviewed by Davey et al. 2011), the ability to iden-
tify targets of selection depends upon more than tight physical link-
age between the assayed and the causative SNPs. Rather, it depends 
on the nonrandom association of alleles, or LD. Even 2 alleles in 
close physical linkage may not have strong LD given that mutations 
do not enter the population in high LD (as measured by r2) with 
adjacent variants already segregating in a population and LD can 
break down rapidly through recombination. For these reasons, even 
physically proximate SNPs segregating in genomic regions with high 
mean LD may be in low LD with one another (e.g., Remington et al. 
2001; Branca et al. 2011).

Rapid decay in the signal of selection with increasing physi-
cal distance might be viewed as a weakness because it requires the 
assayed SNPs to be very close to the target of selection; but it can 

Figure 5. Signals of local adaptation over time. Boxplots of the LOD returned 

by the MLM test for AP (dark) or CN (lighter) loci based on dispersed samples 

(Figure 1) at each time point we examined, up to 10 000 generations after the 

onset of selection.

Figure 6. Signs of local adaptation at linked loci. Proportion of simulated datasets passing the MAF > 0.05 filter in which locus at different distances from the 

selected locus had greater genotype–environment associations than expected by chance in the MLM test. Solid lines are data from simulations of AP; dashed 

lines, simulations of conditional neutrality; dotted lines, simulations without selection acting. For A–D, tests were done on samples collected in a dispersed 

manner; for E–H, on samples collected in clusters (Figure 1), all taken in generation 10 000.
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also be viewed as a strength, because it means that if a signal of selec-
tion is detected one can have fairly high con�dence that the actual 
target of selection is nearby. This proximity to the selected site is 
likely to be especially important if the goal is to identify the genes (or 
even causative variants) responsible for adaptation. Identi�cation of 
these genes is necessary if researchers seek to characterize the func-
tional basis of local adaptation or follow up with empirical work 
to provide more re�ned understanding of the process driving local 
adaptation (e.g., Anderson et al. 2013).

Although all of the GEA tests we examined had generally high 
power to detect a locally adapted locus when the selected locus was 
assayed, they differed widely in their vulnerability to false positives. 
In particular, the LM test had a very high rate of false positives. 
This high rate is not surprising given that the LM test includes no 

covariates that correct for population structure. Nevertheless, the 
difference in the magnitude of absolute LOD values between selected 
loci and neutral loci (Figure  4) suggests that even the simple LM 
test could reliably differentiate locally adapted loci from neutral loci 
if locally adapted loci are identi�ed as outliers in the genome-wide 
GEA distribution rather than based on an a priori signi�cance cutoff. 
The corrections imposed by the LFMM resulted in a low true posi-
tive rate when linked sites were assayed and a false positive rate that 
was higher than MLM. The MLM test corrects for population struc-
ture by including a kinship matrix as a covariate in the mixed linear 
model. This had 2 desirable effects. First, it resulted in a high ratio of 
true to false positives, and second the true positives it detected were 
in close physical linkage to the actual target of selection. If the goal 
of a GEA study is identify the genes responsible for local adaptation, 

Figure 7. Haplotype diversity and LD with the selected locus. (A) Distributions of the H12 index of haplotype frequency distortion and (B) LD, as r2, with AP the 

selected locus, calculated on data from neutral loci in complete physical linkage (i.e., at 0 cM linkage distance) to AP (dark) or CN (lighter) selected loci with 

MAF > 0.05 and MLM LOD > 5. Data are from dispersed samples collected at each of the time points indicated, on a discrete landscape (Figure 1).

Figure 8. Relative power of the MLM test versus H12. Distribution of (A) MLM LOD score for the locus under selection and (B) H12 for loci at 0 cM from the 

selected locus, in simulations of AP (dark), CN (light), or neutral (white) loci on a gradient landscape, starting from new mutations or standing variation, and with 

tests conducted on dispersed or clustered samples (Figure 1) taken in generation 2000. In all panels, the dashed horizontal line marks the 95th percentile of the 

LOD or H12 distribution for neutral simulations.
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then close proximity of true positives to the actual target of selection 
is, of course, a desirable characteristic of a test for GEA.

Ideally, population genetic data could be used to differentiate 
whether local adaptation was due to genes with CN or AP and 
whether selection had acted on a new mutation or standing variation. 
Because of the expectation that drift and recombination would dif-
ferentially affect the genomic variants in tight physical linkage with 
CN compared to AP loci, we examined H12 and r2 among SNPs in 
the same genomic region as selected variants. H12 should be greater 
if a selected variant is on only 1 or 2 genetic backgrounds, and r2 
estimate linkage-disequilibrium between 2 variants. Unfortunately, 
neither H12 nor r2 differ greatly between AP and CN loci and thus 
do not provide a strong signal to differentiate these types of loci. 
However, differences in H12 and r2 together with the magnitude 
of the LOD scores that differentiate selected from neutral loci sug-
gest that these 2 statistical signals might be useful in differentiating 
AP and CN alleles. In particular, alleles with very high LOD values 
but r2 and H12 values that are similar to the genome wide averages 
might more likely be AP than CN alleles. H12 and r2 might also by 
themselves provide direct insight into whether selection has acted on 
a new mutation of standing variation; r2 and especially H12 in the 
regions of SNPs that the MLM test identi�es as targets of selection 
show little overlap between new mutations and standing variation 
(Figures 7 and 8).

Although our simulated data and analyses did not provide clear 
signals that could be used to differentiate AP from CN loci, our anal-
yses made it clear that CN loci will remain polymorphic in popula-
tions for far fewer generations than AP loci. The loss of variation at 
CN loci was particularly striking when selection acted on standing 
variation—by 10 000 generations after the onset of selection on a 
gradient-type landscape (Figure 1), only 37% of CN loci remained 
biallelic with a minor allele frequency of at least 0.05; on a discrete 
landscape only 31% did. The loss of diversity at CN loci is consistent 
with expectations that loci favored in part of the range and neutral 
in the other parts of the range will eventually go to �xation in all 
parts of the range due to gene �ow from the regions where they 
are favored by selection. This transient nature of polymorphism at 
CN loci suggests that if local adaptation is often driven by CN loci 
(Gardner and Latta 2006; Verhoeven et al. 2008; Lowry et al. 2009; 
Fournier-Level et  al. 2011; Anderson et  al. 2013, 2014a, 2014b), 
genetic differences between populations connected by gene �ow will 
be temporary, unless new selected alleles continue to enter popula-
tions or the selective environment changes frequently.

Of course, the results from our simulations come with the 
caveat that we analyzed populations at demographic equilibrium 
experiencing relatively strong selection on a simple landscape. 
Populations at nonequilibrium demographic conditions, experi-
encing more complex landscapes, experiencing weaker selection, 
or selection distributed across multiple loci (Kelly 2006; Pritchard 
et al. 2010; Savolainen et al. 2013; Anderson et al. 2014b), would 
all violate these assumptions and thereby both increase the risk 
of false positives and weaken the ability to identify loci respon-
sible for local adaptation (Excof�er et al. 2009a; Fourcade et al. 
2013; De Villemereuil et al. 2014; Lotterhos and Whitlock 2014, 
2015). On the other hand, natural systems in which populations 
in contrasting environments are linked by lower rates of gene 
�ow or experience stronger selection for local adaptation should 
see greater effects on neutral loci linked to locally adapted loci 
(Charlesworth et  al. 1997; Storz and Kelly 2008). Finally, the 
relative performance of the individual GEA tests examined here 
are known to vary with sampling design and the spatial structure 

of geographically varying selection (De Mita et al. 2013; Frichot 
et al. 2015). It is important to understand that many natural popu-
lations and real-world sampling designs may behave differently 
than what we see from our simulations, and we suggest the use of 
customized simulations based on prior knowledge of individual 
study systems to inform sampling design, analysis choice, and 
interpretation of results from population genomic scans.

Conclusions

Landscape genomic scans have become a common method for try-
ing to identify locally adapted loci and in order to understand how 
geographically variable selection shapes the genetic diversity within 
species (Savolainen 2011; Tif�n and Ross-Ibarra 2014). These scans 
provide a means to identify locally adapted genome regions with-
out an a priori list of genes under selection, or even a strong prior 
hypothesis as to what environmental gradients drive local adapta-
tion, or which traits are responsible for local adaptation. However, 
what population genomic scans can detect is limited by gene action, 
the time since selection began to act, and the density with which the 
genome is sampled. If local adaptation is often driven by CN, rather 
than AP, our results suggest that genome-scan methods might miss 
many loci that contribute to local adaptation.
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