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Abstract

Background: Geolocators are useful for tracking movements of long-distance migrants, but potential negative
effects on birds have not been well studied. We tested for effects of geolocators (0.8–2.0 g total, representing 0.1–
3.9 % of mean body mass) on 16 species of migratory shorebirds, including five species with 2–4 subspecies each
for a total of 23 study taxa. Study species spanned a range of body sizes (26–1091 g) and eight genera, and were
tagged at 23 breeding and eight nonbreeding sites. We compared breeding performance and return rates of birds
with geolocators to control groups while controlling for potential confounding variables.

Results: We detected negative effects of tags for three small-bodied species. Geolocators reduced annual return rates
for two of 23 taxa: by 63 % for semipalmated sandpipers and by 43 % for the arcticola subspecies of dunlin. High
resighting effort for geolocator birds could have masked additional negative effects. Geolocators were more likely to
negatively affect return rates if the total mass of geolocators and color markers was 2.5–5.8 % of body mass than if tags
were 0.3–2.3 % of body mass. Carrying a geolocator reduced nest success by 42 % for semipalmated sandpipers and
tripled the probability of partial clutch failure in semipalmated and western sandpipers. Geolocators mounted
perpendicular to the leg on a flag had stronger negative effects on nest success than geolocators mounted parallel to
the leg on a band. However, parallel-band geolocators were more likely to reduce return rates and cause injuries to the
leg. No effects of geolocators were found on breeding movements or changes in body mass. Among-site variation in
geolocator effect size was high, suggesting that local factors were important.
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Conclusions: Negative effects of geolocators occurred only for three of the smallest species in our dataset, but were
substantial when present. Future studies could mitigate impacts of tags by reducing protruding parts and minimizing
use of additional markers. Investigators could maximize recovery of tags by strategically deploying geolocators on
males, previously marked individuals, and successful breeders, though targeting subsets of a population could bias the
resulting migratory movement data in some species.

Keywords: Breeding success, Geologger, Global location sensor (GLS), Research impacts, Return rates, Tracking methods,
Waders

Background
Delineating connectivity among breeding, stopover, and

nonbreeding sites is necessary to fully understand the

biology of migratory species and relevant conservation

threats [1]. Efforts to describe long-distance movements

have historically been limited to recovery data from indi-

vidually marked birds, but this approach is useful only

for species or areas with large numbers of tag recoveries,

such as hunted species or large-scale networks of study

sites, and is subject to reporting biases [1, 2]. More

recently, devices that record location data and can be

carried by animals through a full annual cycle are pro-

viding valuable new information on animal movements.

Satellite tags and GPS loggers are useful for tracking

movements anywhere on the globe, but are still too large

to be carried by many small-bodied animals [3]. In con-

trast, geolocators collect light data used to estimate an

animal’s geographic location by the timing of sunrise

and sunset relative to an internal clock [4] and have re-

cently been miniaturized to a size that can be carried by

small birds [5, 6]. Compared to other devices, geoloca-

tors have typically provided relatively poor precision

(±130–300 km), but location errors are diminishing as

analysis techniques improve [7] and may be small rela-

tive to the scale of global migratory movements [8, 9].

Geolocators record data worldwide with no tracking ef-

fort, but must be physically retrieved for the data to be

accessed. The technology is thus particularly useful for

tracking long-distance migrants that show site fidelity at

some stage of the annual cycle, and identifying the sub-

set of individuals in a population with the strongest site

fidelity could further improve tag recovery [10, 11].

Carrying a tracking device can negatively affect ani-

mals [12], which is ethically undesirable and could affect

movements and thus bias conclusions drawn from the

tracking data. In birds, effects of tracking tags may

include higher energy expenditure and stress, shorter

flight range, and reduced survival or reproductive output

[10, 12, 13]. Behavior may also be strongly affected, even

when demographic rates are not, which could affect in-

terpretation of movement data obtained from tracking

tags [14]. Most studies and permitting agencies follow

guidelines that the relative mass of tags should not

exceed 3–5 % of body mass [12, 15–17]. However, drag

produced by a protruding device may be as detrimental

to flight performance as the additional mass [13], so ef-

fects of tags may not be predictable based solely on rela-

tive mass [18]. Moreover, the 3–5 % guidelines were

developed primarily for tags attached by harness to the

back of the bird, but other attachment types may have

different impacts on balance, drag, and locomotion.

Body size, migration distance, habitat use, and foraging

method also may influence effects of tags on a particular

species [10, 11].

A recent meta-analysis reported an overall negative ef-

fect of geolocators on birds, especially for smaller spe-

cies, aerial foragers, and projects where geolocators were

attached to the leg [10]. The focal studies were primarily

on seabirds and songbirds, and effects of tags on other

groups of birds are not well known. Better data on mi-

gratory routes are urgently needed to inform conserva-

tion efforts for shorebirds, as nearly half of shorebird

populations worldwide have shown long-term declines,

including 61 % of populations in North America and

88 % of species that use the East Asian-Australasian Fly-

way [19–22]. However, concerns have been expressed

about applying tags to shorebirds, especially small-

bodied and declining species that may show poor resili-

ence to additional energetic costs [23]. Moreover, many

species of shorebirds make long migratory flights over

water, where stopping is not possible [24–27], and thus

may incur particularly high costs from excess weight or

drag. Last, leg attachments have been recommended

over harnesses for shorebird species that lose and gain a

large proportion of their body mass over the course of

their annual migration [23, 28]. Tags attached by har-

nesses have had strong negative effects on return rates

of red knots [29] and dunlin [AT & RBL, unpubl.]. Leg-

mounted geolocators are more likely to have negative ef-

fects than tags attached by harnesses in other taxa [10],

but the mechanism for effects of the leg attachment re-

mains unknown, so it is unclear whether shorebirds

would also be harmed by tags attached to the leg.

To date, biologists have not reported any negative

effects of geolocators on reproduction or return rates

for migratory shorebirds [30–38]. However, the small
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sample sizes and short duration typical of geolocator

studies may hinder detection of impacts. A comprehen-

sive assessment of effects of geolocators on a broad

range of shorebirds is needed to test for negative

effects and identify methods to minimize impacts of

geolocators.

Here, we report effects of geolocators on demographic

rates of 16 species of Arctic-breeding shorebirds, includ-

ing five with 2–4 subspecies each, that were captured at

23 breeding and eight nonbreeding sites across the

globe. The total of 23 shorebird taxa represents a broad

range of body masses (26–1091 g), taxa (eight genera),

and migration distances (9–108° latitude). We had four

objectives for this study. First, we quantified species-

specific effects of geolocators on nest success, partial

hatching of clutches, return rate, interannual breeding

movement, and change in body mass. We compared

birds fitted with geolocators to control birds marked

with color bands at the same sites for each taxon in our

dataset using hierarchical models that accounted for ran-

dom effects. Second, we tested for differences between

two types of leg-mounted attachments in effects on re-

turn rate, nest success, and partial hatching of clutches.

Third, we conducted a meta-analysis across the shore-

bird taxa in our dataset to test whether effects of geolo-

cators on return rates would be more negative for taxa

that were smaller or had longer migration distances.

Last, we developed general recommendations for de-

ployment of geolocators to minimize impacts on individ-

uals and maximize geolocator retrieval rates in future

studies. Our multi-species analysis is one of the most

comprehensive tests of tag effects on wildlife and is the

first of its kind for shorebirds.

Methods

Most of the data included in this analysis were collected

as part of field studies conducted by the authors. Move-

ment data and tag impacts from have been published for

some of these studies [28, 32, 34, 39–42], but the ana-

lyses we present here used additional unpublished data

on individual covariates. Where possible, we also in-

cluded data from previously published studies of shore-

birds that provided a direct comparison between control

and geolocator birds captured at the same site(s) in the

same years [33, 35–37, 43]. Published studies included

in our meta-analysis reported the number of birds

marked and returned for control and geolocator groups

by year, but we could not test for effects of individual

covariates on return rates for those studies.

Study species

We tested for effects of geolocators on 16 species of

Arctic-breeding shorebirds, including five species with

2–4 subspecies each for a total of 23 study taxa (Table 1).

Our dataset was composed of six small-bodied species,

including four sandpipers, one phalarope, and one small

plover (<100 g); seven medium-sized species, including

seven sandpipers, two turnstones, one plover, and a

snipe (100–200 g); and three large-bodied species, in-

cluding a godwit and two curlews (300–1100 g; Table 1).

Study sites

We marked control birds and deployed geolocators on

treatment birds in 2007–2013 at 27 field sites

(Additional file 1: Table S1). Previously published studies

collected data at four additional sites in 2009–2013, for

a total of 31 study sites included in our analysis. We

refer to sites by codes based on location: “B” for breed-

ing sites and “N” for nonbreeding sites, with each num-

bered sequentially from west to east (Fig. 1). At most

sites, geolocators were deployed in only a subset of years

(Additional file 1: Table S1), with control birds marked

concurrently. We also included control birds marked in

years when geolocators were not deployed. Including

control birds from additional years reduced biases due

to seasonal differences in timing of capture which arose

when some field crews deployed geolocators on birds

captured early in the season until all devices were de-

ployed, after which control birds were marked. For both

groups, we included data on resighting and recapturing

efforts through the 2014 breeding season and the 2014–

2015 nonbreeding season. All sites were included in the

analysis of effects of geolocators on return rates, but

only breeding sites were used in analyses of effects of

tags on components of reproductive performance.

Capture, marking, and resighting

At breeding sites, we located shorebird nests by rope-

dragging or systematically searching study areas, and

trapped the attending adults with a bownet or walk-in

trap at the nest. At nonbreeding sites, we trapped birds

with cannon nets at foraging or roosting locations. Each

bird in the control group received a metal band and a

unique combination of color markers, while geolocator

birds received a geolocator instead of or in addition to

color markers. Up to seven color bands (usually 1–4)

and one colored flag with or without a field-readable

alphanumeric code were applied to each individual, with

total mass of markers (metal band, color bands, and flag)

ranging from 0.2 to 2.1 % of body mass (Table 1). At

some sites, geolocator and control birds were sampled

for blood and feathers, and body mass and other mor-

phometrics were recorded. Within each field study, cap-

ture and handling methods were consistent between

geolocator and control birds, aside from application of

the geolocator. All capture, handling, and tagging

methods were approved by regulatory committees for

animal welfare and permitting agencies for wildlife
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Table 1 Characteristics of Arctic-breeding shorebirds included in our analysis of geolocator effects

Species code Common name Scientific name # sites # captures Mean
body
mass
(g)

Mean
migration
(° latitude)

Geolocator Max %
body
mass of
markers
+ geo

Control Geo-locator Attachment typea Total mass (g)b % mean body mass

SESA Semipalmated sandpiper Calidris pusilla 7 949 224 26 65c PEF, PAB 0.8–1.0 3.3–3.9 5.8

WESA Western sandpiper C. mauri 1 276 21 27 49c PAB 1.0 3.7 5.2

RNPHd Red-necked phalarope Phalaropus lobatus 1 21 7 38 66 LLH 1.0 2.6 NA

DUNLsch schinzii dunlin C. alpina schinzii 1 64 30 46 45d PAB 0.8 1.8 2.5

SANDrub Sanderling C. alba rubida 1 55 44 53 111e PEF 0.8 1.5

DUNLhud hudsonia dunlin C. alpina hudsonia 1 133 35 57 20e PEF 1.1 1.9 2.9

DUNLpac pacifica dunlin C. alpina pacifica 3 57 124 57 27 PEF 1.1 1.9 2.9

DUNLarc arcticola dunlin C. alpina arcticola 3 255 104 58 30e PEF 1.1 1.9 3.3

SANDalb Sanderling C. alba alba 3 434 30 59 60 PEF 0.8 1.4 2.3

GSAP Greater sand plover C. leschenaultii 1 289 59 87f 58e PEF 0.9 1.0 1.8

GTTA Gray-tailed tattler Tringa brevipes 1 160 19 104 88 PAF 1.3 1.3 2.0

RUTUint interpres ruddy turnstone Arenaria interpres interpres 1 112 77 105 113e PEF 0.9 0.9

RUTUmor morinella ruddy turnstone A. i. morinella 3 62 46 109 70e PEF 0.9 0.8 1.6

BLTU Black turnstone A. melanocephala 1 51 30 123 9 LLH 2.0 1.6 2.3

REKNrog rogersi red knot C. canutus rogersi 1 11 26 125 108 PAB 1.4 1.1 1.8

REKNrufg rufa red knot C. c. rufa 2 711 87 132 100 PAB 1.4–1.7 1.1–1.3 1.6

AMGP American golden-plover Pluvialis dominica 5 55 129 146 94c PEF 0.9–1.3 0.6–0.9 1.6

GRSNh Great snipe Gallinago media 1 34 45 160 64 PAB 1.3 0.8 NA

GRKN Great knot C. tenuirostris 1 126 64 195 81e PEF 0.8 0.4 0.8

BTGO Bar-tailed godwit Limosa lapponica 1 16 58 342 105 PAB 1.8 0.5 1.6

WHIMhud hudsonicus whimbrel Numenius phaeopus hudsonicus 1 31 25 378 54e PAF 1.0 0.3

WHIMisl islandicus whimbrel N. phaeopus islandicus 1 56 23 438 58e PAF 1.0 0.2

FECU Far eastern curlew N. madagascariensis 1 7 23 1091 90e PEF 1.0 0.1 0.3

Species codes follow alpha codes used by the American Ornithologists’ Union. Species and subspecies are sorted by mean body mass. Data are from the authors unless a reference is indicated.

NA not available
aPAB parallel-band, PEF perpendicular-flag, PAF parallel-flag, LLH leg-loop harness (Fig. 2)
bIncludes attachment materials. Where a range of values is given, multiple models or attachments were used across sites or years
cFrom Thomas et al. [76]
dFrom Smith et al. [37]; total mass of geolocator package is estimated based on our data
eEstimated from range maps in Hayman et al. [77] following the methods of Thomas et al. [76]
fPublished body-mass estimates [78, 79]
gFrom Niles et al. [36] and Burger et al. [33]
hFrom Klaassen et al. [43] and Lindström et al. [35]
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research. Details for the field methods used by each

study are provided in references cited in Additional file

1: Table S1 and Supplementary methods.

Geolocators were usually tied and glued to a plastic

leg flag or band for attachment to the shorebirds in our

dataset. Leg-mounted geolocators were applied on the

tibia; some were oriented parallel to the leg on a flag or

band, while others were perpendicular on a flag (Fig. 2).

The perpendicular-flag attachment was used after the

parallel-band attachment appeared to cause calluses on

the lower legs of some birds (see Results). In two studies,

geolocators were glued to the rump and secured with an

elastic leg-loop harness (see Additional file 1: Supple-

mentary methods for details). Seven models of geoloca-

tors were used depending on the site and year: Lotek

MK5780 (1.5 g), British Antarctic Survey (BAS) MK14

(1.4 g), BAS MK10B (1.1 g), Biotrack MK5093 (1.1 g),

BAS MK20A (0.8 g), Swiss Ornithological Institute SOI-

GDL2 v2.3 (0.67 g), and Intigeo W65A9 (0.65 g). The

total mass of the geolocator and attachment represented

0.1–3.9 % of body mass depending on taxon, geolocator

model, and attachment materials (Table 1).

We included both initial captures of unmarked birds

and recaptures of previously marked birds as “capture

events.” Each individual could therefore have more than

one capture record, and could transition from the con-

trol group to the geolocator group if it had a tag applied

in a year after the first year of marking. However, once a

geolocator bird had its device removed, we did not in-

clude the individual in the control group to avoid

potential bias from any long-term effects. We also ex-

cluded all birds marked as juveniles, because Arctic-

breeding shorebirds have low natal philopatry [44] and

juveniles marked at nonbreeding sites may delay migra-

tion to breeding areas until at least their second year

[45].

Reproduction

Nest success

If geolocators are a handicap, we predicted that nest suc-

cess would be lower for geolocator birds than for control

birds. For example, geolocators could present an ener-

getic handicap, increase the probability of parents aban-

doning a nest, or change nest attendance behavior such

that the nest would be more vulnerable to predation

[46]. For this analysis, we restricted our sample to a sub-

set of nine breeding sites with both geolocator and con-

trol groups and without differences between groups in

date or nest age at which birds were captured (t-test by

species and site, p ≥ 0.05). Following capture of a geolo-

cator or control bird, we monitored the nest at which

the bird was captured and recorded nest fates as suc-

cessful, failed, or unknown. We considered a nest to be

successful if at least one newly hatched chick was ob-

served in the nest, or if eggshells indicative of hatching

were found in the nest within 4 days of the expected

hatch date [47]. We classified nests as failed if all eggs

disappeared with no evidence of hatching, and recorded

fate as unknown if evidence of nest fate was unclear or

conflicting, or if the nest was not monitored until the

Fig. 1 Capture sites included in our analysis of effects of geolocators on Arctic-breeding shorebirds. “B” codes indicate breeding sites and “N” indicates
nonbreeding sites. Map was created with package “ggmap” [80] in R [57]
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expected hatch date [47]. We excluded nests from the

nest fate analysis if nest fate was unknown. A nest was

included in the geolocator group if at least one attending

parent carried a geolocator; to maximize statistical

power, we did not differentiate between nests with one

(N = 142 nests across all species) versus two (N = 64)

parents with geolocators.

Based on observations of egg laying or egg flotation

data [48], most nests were found early in the incubation

period for both groups (geolocator: median = 19 % of

incubation period, SD = 24 %; control: median = 14 %,

SD = 21 %), across species, sites, and years. We therefore

used apparent nest success as our response variable, ra-

ther than calculating daily nest survival with known-fate

models. Assessing apparent success enabled us to make

use of our full dataset, including nests for which we had

no estimate of initiation date. For each species, we esti-

mated the effect of geolocators on the binomial response

of nest success with a generalized linear mixed model

(GLMM) and model averaging (see Statistical methods

below). We included site and year as random effects to

control for spatial or temporal variation.

Cause of failure

For species that showed an effect of geolocators on nest

success, we tested for a relationship between geolocators

and the cause of failure to investigate a potential mech-

anism for reduced nest success. We used a GLMM (logit

link) and included site and year as random effects. Re-

corded causes of failure included predation, abandon-

ment, failure to hatch, egg damage, or unknown [47].

Partial hatching

For successful nests that hatched at least one egg, we

tested for an effect of geolocators on the probability that

at least one egg from the clutch would remain un-

hatched. If geolocators damaged eggs or changed paren-

tal incubation behavior, the incidence of unhatched eggs

could be higher relative to control nests. Not all sites re-

corded whether eggs remained unhatched in successful

nests, so we used a subset of eight sites for this analysis.

We included only nests in which at least one egg was

known to have hatched, which further reduced sample

sizes. We therefore tested for a fixed effect of geoloca-

tors on the presence or absence of unhatched egg(s) as a

binomial response in one GLMM with random effects of

species, site, and year. If an egg was known to be dam-

aged by research activities other than presence of a geo-

locator, such as disturbance when the nest was found or

when the eggs were measured, we excluded the nest

from this analysis.

Return rates

We recorded which birds returned in the year after cap-

ture by resighting or recapturing marked individuals at

the capture sites. Effort to retrieve geolocators was typic-

ally highest during the year following deployment, so we

used the 1-year return rate as a binomial response vari-

able rather than estimating apparent survival and detec-

tion probabilities from multi-year datasets [49]. We

excluded the few geolocator birds that returned without

their geolocator.

To recover geolocators and obtain movement data,

resighting or recapturing effort was typically higher for

geolocator birds than for control birds. Geolocator birds

were more conspicuous than control birds, and thus

were likely resighted more frequently, especially at non-

breeding sites. However, resighting effort was not re-

corded in most of our studies, so we were unable to

model observer effort explicitly. Higher search effort for

birds with geolocators could mask negative effects or

generate apparent positive effects of geolocators on re-

turn rates.

Fig. 2 Geolocator attachment methods used in our field studies of
Arctic-breeding shorebirds. a Mounted on leg band or closely
trimmed leg flag, parallel to leg (“parallel-band” attachment), on a
semipalmated sandpiper (left) and red knot (right); (b) leg-flag
mounted, perpendicular to leg (“perpendicular-flag”), on a sanderling
(left) and semipalmated sandpiper (right); (c) leg-flag mounted, parallel
to leg (“parallel-flag”) on a gray-tailed tattler; (d) mounted on the back
with leg-loop harness (“harness”) on a black turnstone. Images are not
to scale
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Species-specific effects on return rates

We expected that return rates would be lower for geolo-

cator birds if carrying the device increased the risk of

mortality due to energetic stress or predation, or re-

duced site fidelity, breeding propensity, or ability to

compete for foraging or breeding territories or mates.

For five species, body mass and migration route varied

among 2–4 subspecies: pacifica, arcticola, hudsonia, and

schinzii dunlin, rubida and alba sanderlings, interpres

and morinella ruddy turnstones, rogersi and rufa red

knots, and hudsonicus and islandicus whimbrel (Table 1).

We therefore modeled return rates separately for each

subspecies. Our sample sizes were lower for other ana-

lyses, so we pooled subspecies within each species in all

other analyses for dunlin and whimbrel. Only one sub-

species of sanderling or ruddy turnstone was captured at

breeding sites and included in other analyses, whereas

red knots were captured only at nonbreeding sites and

were not included in analyses of breeding performance.

For each species or subspecies, we estimated the ef-

fect of geolocators on return rate as a binomial re-

sponse with a GLMM and model averaging (see

Statistical methods). We included random effects of

site, year, and individual where necessary to control

for pseudoreplication. For the analysis of return rates,

we had sufficient sample sizes to include additional

variables as fixed effects (Table 2), both to control for

potential confounding variables and to identify char-

acteristics of individuals that could be targeted to

maximize geolocator recovery rates in future studies.

We also included an estimate of the approximate

total mass of all markers per individual, including

color bands, leg flags, and metal bands, to assess

whether markers affected return rates in combination

with geolocators. Even for tags of the same size and

type, mass varied by the material used to construct

the tags, and we did not have information on what

material was used for every individual. Therefore, we

used estimates of marker mass for each band size and

tag type to estimate total marker mass per individual.

Not all explanatory variables were recorded for

every individual, depending on species, site, and year.

We included unsexed birds and birds with unknown

nest fate, despite the effects of unknown states on re-

turn rate being biologically uninterpretable, to

maximize sample sizes and thus more precisely esti-

mate the effects of geolocators. After developing the

top model set (see Statistical methods below) for the

subset of birds with complete data for all variables,

we dropped any fixed effects that were not important,

added back in the birds that were missing data for

the dropped variables, and re-ran the model selection

procedure to maximize the final sample size used to

estimate the geolocator effects.

Table 2 Explanatory variables tested for effects on demographic rates of Arctic-breeding shorebirds

Explanatory variable Type of variable Response

Nest
success

Partial hatching of
clutches

Return
rate

Breeding
movements

Change in
body mass

Geolocator Fixed (binomial) X X X X X

Sex Fixed (categorical) – – X – –

Nest successa Fixed (categorical) – – X – –

Previously markedb Fixed (binomial) – – X – –

Body mass Fixed (continuous) – – X – –

Capture date Fixed (continuous) – – X – –

Blood sample Fixed (binomial) – – X – –

Marker massc Fixed (continuous) – – X – –

Difference between capture and
recapture date

Fixed (continuous) – – – – X

Difference between capture and
recapture nest age

Fixed (continuous) – – – – X

Site Random on intercept and slope of
geolocator effect

X X X X X

Year Random on intercept X X X X X

Individual Random on intercept – – X – –

Species Random on intercept – X – X X

Geolocator was the primary variable of interest, but other variables were included (denoted by “X”) in species-specific GLMMs to control for potential confounding

factors and identify subsets of the population that could be targeted to improve recovery rates of geolocators in future field studies.
aFor individuals with multiple nest attempts in 1 year, we used the fate of the final attempt as a potential explanatory variable of return rate
bWhether the current capture record is a recapture of an individual that was previously marked at the capture site
cTotal mass of color markers and metal band applied to each individual, not including the geolocator or attachment
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Cross-species meta-analysis of return rates

We expected that effects of geolocators on return rates

would be more negative when geolocators represented a

higher percentage of the tagged individual’s body mass.

Most geolocators applied in our study were of similar

mass (Table 1), so the percent mass of the geolocator

was closely related to shorebird body mass. We also

predicted that return rates would be more negatively

affected by geolocators for long-distance than for short-

distance migrants, because we expected that the physio-

logical cost of carrying a geolocator would increase with

distance traveled. Percent mass and mean migration dis-

tance for each taxon are provided in Table 1. We used

meta-analytical techniques (detailed in Statistical

Methods) to calculate an overall mean effect of geoloca-

tors on return rates and test whether the geolocator ef-

fect sizes estimated from the species-specific GLMMs

were related to each of these explanatory variables. We

did not test for cross-species patterns in geolocator ef-

fect on other demographic rates, which used more re-

stricted datasets.

Sublethal effects

Even when birds successfully reproduce and survive,

geolocators and other tags may cause sublethal effects

such as higher stress levels or differences in behavior

[14, 50]. For birds that returned to our capture sites, we

tested for effects of geolocators on two interannual sub-

lethal responses: breeding movement and change in

body mass.

Breeding movements

We used hand-held GPS units to record nest locations

(±5 m) at 11 breeding sites that marked both geolocator

and control birds. For each bird that returned in the year

following capture, we calculated the distance in meters

between nest locations in consecutive years to estimate

interannual breeding movements. We tested whether

geolocator birds moved farther than control birds, which

could result from individuals avoiding the capture site

following geolocator deployment or being unable to de-

fend their former territory in the following year while

they carried a geolocator.

Sample sizes were limited to birds that had known

nest locations in two consecutive years, so to maximize

statistical power for our test of geolocator effects, we

pooled species in one GLMM with a continuous re-

sponse and Gaussian errors, and included random ef-

fects of species, site, and year. We also included three

fixed effects: sex, banding history, and nest fate in the

capture year (Table 2), as each of these factors can have

strong effects on nest-site fidelity in birds [51–53]. For

this analysis, we included only nests located on estab-

lished study plots in both the capture and return year

for both groups of birds. Field crews sometimes made

special effort to find nests outside study plots for geolo-

cator birds but not control birds, so excluding off-plot

nests constrained recorded movements to the same

spatial scale for both groups. Movement estimates were

therefore biased low but directly comparable between

the two groups.

Change in body mass

For each individual that was recaptured and weighed at

a breeding site, we calculated the percent change in

mass between consecutive capture and recapture years.

We did not include nonbreeding sites, where body mass

was affected by day of the season when birds prepared

for or recovered from long-distance migratory flights.

We tested whether individuals carrying geolocators lost

body mass relative to control birds, which might be ex-

pected if carrying the device was energetically costly or

if the birds reduced their body mass to compensate for

the mass of the geolocator. Only a fraction of individuals

were recaptured, so we pooled species in one GLMM

with a continuous response and Gaussian errors, and in-

cluded random effects of species, site, and year. We in-

cluded the difference between Julian dates of capture

and recapture as a variable to account for seasonal

changes in body mass. We likewise included the differ-

ence in the age of the nest, as estimated by egg flotation

[48], at recapture versus capture to account for changes

in body mass over the incubation period [54].

Leg attachment method

We compared effects of two leg-mounted attachment

methods, a parallel-band attachment (Fig. 2a) and a

perpendicular-flag attachment (Fig. 2b), on reproduction

and return rates. Both leg attachments were used on

semipalmated sandpipers at site B03 and on American

golden-plovers at site B16. Attachment method was con-

founded with year at each site, and at site B03, the geo-

locator groups also differed by the presence of an

engraved flag with the perpendicular-flag attachment but

not with the parallel-band attachment. All other sites

used only one type of geolocator attachment on each

species, so no other direct comparisons were possible.

Our dataset included only two studies that used harness

attachments, so we did not test for differences in effects

of harness versus leg-mounted geolocators.

We used a GLMM with a random effect of year to

test for an effect of attachment method on nest fate

for semipalmated sandpipers, but did not have

enough records of nests with known fate for Ameri-

can golden-plovers at site B16 to test for a difference

there. We also tested for an effect of attachment

method return rate for each species. Nest fate was af-

fected by geolocators in semipalmated sandpipers (see
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Results) and may affect return rate in shorebirds [55],

so we included a fixed effect of nest fate as an ex-

planatory variable in the return rate model. We did

not include other variables as sample sizes were

small.

Statistical methods

Generalized linear mixed models

We used generalized linear mixed models (GLMMs) to

produce standardized estimates of effect sizes of geoloca-

tors that were comparable across taxa. The GLMM frame-

work enabled us to combine information across sites and

years, each of which may have had a small sample size,

while including random effects to control for spatial or

temporal variation that may have otherwise confounded

geolocator effects. We standardized the scale of explanatory

variables by subtracting the mean and dividing by two

standard deviations with function “standardize” in package

“arm” [56] in R version 3.1.3 [57]. We then used function

“glmer” in R package “lme4” [58] to build the full model for

each species. Full models are described in Table 2, but not

all indicated variables were available for some species.

For each species and response, we tested all pos-

sible submodels using function “dredge” in R package

“MuMIn” [59]. When multiple submodels were well

supported (∆AICc < 2), we used model averaging with

function “model.avg” in “MuMIn” to estimate effect

sizes for variables in the top model set while account-

ing for model uncertainty. We used the natural aver-

age method of model averaging [60], which has been

recommended when one or more variables are of par-

ticular interest [61], such as the geolocator effect in

our study. We then evaluated the relative importance

(RI) of each variable, which was calculated as the sum

of the Akaike weights of the top models in which the

variable was present divided by the sum of the

weights of all top models [60]. When covariates are

uncorrelated, as in our analysis, the RI value is a valid

metric of variable importance [62, 63] and is not af-

fected by the choice of averaging method [60]. When

RI is close to 1.00, the variable is present in most

models in the top model set. We used RI ≥ 0.80 to

indicate a variable with high relative importance.

If we found group effects on demographic rates, we

used the GLMMs to predict the expected rate for each

group of interest while controlling for random effects

and holding other variables at their means. We provide

estimates of expected rates to indicate the biological sig-

nificance of our results.

Meta-analysis

We used meta-analytical techniques to test for cross-

species patterns in the effect of geolocators on return

rates as estimated by the species-specific GLMMs. Coef-

ficients from GLMMs for effects of geolocators (βgeo)

were estimated while controlling for confounding vari-

ables and were directly comparable among shorebird

taxa.

First, we estimated an overall mean (M) and standard

error of the geolocator effect on return rate across all 23

species and subspecies, following Borenstein et al. [64].

We weighted the effect size for each taxon by the num-

ber of capture events using the “method of moments”

assuming a random effect of taxon on the geolocator ef-

fect. We also estimated the proportion of variance

among taxa that was real rather than a product of ran-

dom variation within each group with I2 as a metric of

the signal-to-noise ratio.

Second, we tested for effects of 1) percent mass of the

geolocator, and 2) mean migration distance, on βgeo for

each taxon. The magnitudes of the mean and standard

error of βgeo were correlated, so we transformed each

taxon-specific βgeo to Fisher’s z scale to obtain a zi value

for the ith taxon [64, 65]. For each explanatory variable,

we calculated the contrast weight, λi, for each taxon

[65]. We calculated wi as Ni−3, where Ni is the number

of capture events for taxon i [65]. We then calculated

the X-statistic for each explanatory variable as:

X ¼

X

n

i¼1

λizi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

λi
2

wi

s

where n is the number of taxa. We compared the X-

value to a standard Z distribution to obtain a p-value

and determine whether percent mass or migration

distance explained patterns across taxa in geolocator

effects on return rates. We used a Bonferroni correc-

tion for the significance level because we were separ-

ately testing two explanatory variables, and concluded

that either variable was significantly related to the

geolocator effect when p < 0.025.

If the meta-analysis indicated a relationship between

βgeo and percent mass of the geolocator or migration

distance, we used a weighted least squares linear regres-

sion to further assess the nature of the relationship. We

used the “lm” function in R and weighted each taxon by

the total number of captures. We also calculated where

the fitted line intersected zero to identify the threshold

for percent mass or migration distance beyond which

geolocator effects were likely to be negative.

Results
Our full dataset included 4935 individuals of 16 species

(23 species and subspecies) of shorebirds captured at 31
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sites (Additional file 1: Table S2). We captured 7 % of in-

dividuals in more than year, for a total of 5308 capture

events (1–669 captures per site for each species). We de-

ployed 1328 geolocators at 25 % of capture events (5–77

deployed per site for each species; Additional file 1:

Table S2).

Reproduction

We tested for an effect of geolocators on nest success for

1278 nests of six species at nine breeding sites (Additional

file 1: Table S2). Sixteen percent of nests (N = 206) were

attended by one or two parents with a geolocator.

Nest success varied by site and typically was higher for

parents without geolocators than if one or both parents

carried a geolocator (Additional file 1: Figure S1a). How-

ever, the effect of geolocators on nest success had mod-

erate to low RI for all species except semipalmated

sandpipers, where RI = 1.00 and the geolocator effect

was strongly negative (Fig. 3; Additional file 1: Table S3;

top model sets are given in Additional file 1: Table S4).

Controlling for random effects and other variables, the

GLMM predicted that 77 % of semipalmated sandpipers

control nests but only 45 % of geolocator nests were ex-

pected to successfully hatch. Eight-four percent of the

168 semipalmated sandpiper nests known to fail were

depredated, with abandonment being the next most

common cause of failure for both groups (Additional file

1: Figure S2). There was little support for an effect of

geolocator on the cause of nest failure (βgeo = 0.24, SE =

0.62, RI = 0.27; Additional file 1: Table S5). The effect of

geolocators was also strong and negative for whimbrel,

but the importance of the effect was ambiguous (RI =

0.56).

We had information on presence or absence of un-

hatched eggs remaining in the nest cup for successful

nests of six species at eight breeding sites (Additional file

1: Table S2). In the two smallest-bodied species, semi-

palmated and western sandpiper, unhatched eggs were

frequently recorded in geolocator nests but rarely in

control nests (Additional file 1: Figure S1b). Four larger

species showed no evidence of a geolocator effect

(Additional file 1: Figure S1b), so we pooled only semi-

palmated and western sandpipers to test for an effect of

geolocators on the probability of unhatched eggs

remaining in a hatched nest (N = 37 geolocator nests,

304 control nests). The model containing an effect of

geolocators was strongly supported (intercept = −1.88;

βgeo = 1.49, SE = 0.29; wi = 1.000) over the constant

model (∆AICc = 19.36, wi = 0.000). The top model pre-

dicted that unhatched egg(s) were expected to remain in

49 % of successful nests attended by a parent with a geo-

locator, but only 14 % of successful control nests.

Return rates

Across our full dataset of capture events, 41 % of control

birds and 43 % of birds with geolocators were detected

as having returned in the year following capture. Return

rates ranged from 4 to 89 % by species and were typic-

ally higher for larger-bodied species than for smaller-

bodied species, but also varied by site (Additional file 1:

Figure S3).

Presence of a geolocator was not an important predictor

of return rates for 19 of 23 taxa of shorebirds (RI < 0.80;

Table 3). Geolocators had a negative effect with high RI

for semipalmated sandpipers (RI = 1.00) and the arcticola

subspecies of dunlin (RI = 0.82; Table 3; Fig. 4a). Five of

the six sites with semipalmated sandpipers had lower re-

turn rates for geolocator birds than for control birds

(Additional file 1: Figure S3), and the averaged model pre-

dicted return rates of 35 % for the control group versus

13 % for the geolocator group. Two of the three sites with

arcticola dunlin had lower return rates for geolocator

birds than for control birds (Additional file 1: Figure S3),

and the averaged model predicted return rates of 37 % for

the control group versus 21 % for the geolocator group in

arcticola dunlin. In contrast, we found positive effects of

geolocators with RI > 0.80 in two species, with expected

return rates of 69 % for geolocator birds versus 53 % for

control birds for greater sand plovers, and 78 versus 29 %

for far eastern curlews (Table 3). A positive effect of geolo-

cators approached but did not exceed our RI threshold

(0.70 > RI > 0.80) for rubida sanderlings and great knots

(Table 3). Four other variables that affected return rates

(RI > 0.80) were sex, prior site fidelity, nest fate, and day

of capture (Table 3). Males showed higher return rates

Fig. 3 Effect size of geolocator on nest success (mean ± 95 % CI) from
species-specific GLMMs. A negative effect indicates that nests attended
by birds with geolocators were less likely to hatch than nests of control
birds. Black points indicate relative importance (RI) of the effect
size ≥0.80; gray points indicate RI < 0.80 (Additional file 1: Table
S3). Models included random effects of site and individual. Species are
ordered from smallest to largest; species codes are defined in Table 1
and sample sizes are given in Additional file 1: Table S2
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Table 3 Model-averaged effects of explanatory variables on return rates for each species and subspecies of Arctic-breeding shorebirds

Species Intercept Geolocator Nest fatea Sexb Previously markedc Day of capture Marker mass Body mass

Hatched Unknown Male Unsexed

Mean (SE) Mean (SE) RId Mean (SE) RI Mean (SE) RI Mean (SE) RI Mean (SE) RI Mean (SE) RI Mean (SE) RI Mean (SE) RI Mean (SE) RI

SESA −0.66 (0.24) −1.10 (0.45) 1.00 0.28 (0.15) 0.43 0.15 (0.20) 0.43 0 0 0 0 0.22 (0.14) 0.59 0.05 (0.11) 0.19 −0.34 (0.24) 0.49 0 0

WESA −0.80 (0.22) −0.99 (0.67) 0.52 0.43 (0.22) 1.00 −0.23 (0.33) 1.00 0.11 (0.19) 0.14 0.60 (0.32) 0.14 0.46 (0.20) 0.91 −0.12 (0.19) 0.10 −0.52 (0.32) 0.54 0 0

RNPH −0.41 (0.30) −0.79 (0.77) 0.37

DUNLsch 0.95 (0.60) −0.24 (0.44) 0.28 0.97 (0.36) 1.00 0 0 0 0

SANDrub −1.84 (0.45) 1.03 (0.46) 0.72

DUNLhud −0.62 (0.16) 0.39 (0.48) 0.22 0 0 0 0 0.15 (0.31) 0.16 −0.25 (0.25) 0.23

DUNLpac −0.11 (0.44) −0.70 (0.39) 0.60 0.33 (0.45) 0.36 −0.34 (0.55) 0.36 0.71 (0.32) 0.88 −0.47 (0.30) 0.55

DUNLarc −0.77 (0.17) −0.66 (0.31) 0.82 0 0 0 0 0.57 (0.19) 1.00 −0.22 (0.29) 1.00 0.21 (0.19) 0.36 0 0 0 0 0 0

SANDalb −1.31 (0.24) 0 0 0.32 (0.27) 0.32 0.22 (0.22) 0.22

GSAP −0.29 (0.11) 0.46 (0.20) 1.00

GTTA −0.08 (0.10) 0 0 0 0 0.23 (0.20) 0.41 0 0

RUTUint −1.17 (0.20) −0.52 (0.32) 0.58

RUTUmor −1.11 (0.77) 0.49 (0.67) 0.35 0 0 0 0 0 0 0 0

BLTU −0.38 (0.61) −0.33 (0.31) 0.11 0.89 (0.52) 0.55 1.27 (0.75) 0.55 −0.76 (0.75) 0.35 −0.25 (0.30) 0.09 −0.66 (0.34) 0.72

REKNrog 0.26 (0.21) 0 0 0 0 0.79 (0.47) 0.61

REKNruf −1.00 (0.07) 0.20 (0.19) 0.37

AMGP −1.47 (0.47) 0.44 (0.41) 0.20 0.83 (0.61) 0.24 1.01 (0.57) 0.24 0 0 0 0 −0.50 (0.54) 0.11 −0.97 (0.33) 1.00 −0.75 (0.48) 0.75 −0.55 (0.31) 0.74

GRSN −0.73 (0.28) 0.20 (0.36) 0.28

GRKN 0.19 (0.32) 0.74 (0.37) 0.73

BTGO 0.88 (0.25) −0.29 (0.38) 0.32 0 0 0 0 0 0 0 0

WHIMhud −0.09 (0.24) 0.35 (0.35) 0.24 0 0 0 0 0.43 (0.36) 0.31

WHIMisl −0.88 (0.54) 1.38 (0.46) 0.67 0 0 0 0 0.49 (0.38) 0.43

FECU −1.09 (0.71) 1.51 (0.76) 1.00

Models included random effects of site on both the intercept and the geolocator effect, and a random effect of individual when relevant. Blank indicates a variable not tested for a given species (data unavailable);

zero indicates a variable tested but not present in the final model. Species are sorted by ascending body mass, and species codes are defined in Table 1. Explanatory variables are defined in Table 2. Sample sizes are

given in Table 2; top model sets are given in Additional file 1: Table S6.
aFailed nest was the baseline
bFemale was the baseline sex
cUnmarked was baseline relative to previously marked; failed nest was baseline for nest fate
dRelative importance of the variable in the averaged model; bold text indicates RI ≥ 0.80
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than females in schinzii and arcticola dunlin. Previously

marked birds were more likely to return in pacifica dunlin

and western sandpipers. Western sandpipers that success-

fully hatched a nest were more likely to return than those

attending nests that failed, and American golden-plovers

were more likely to return if captured early in the season.

Our meta-analysis indicated that across the 23 species

and subspecies, the mean effect of geolocators on return

Fig. 4 Effects of geolocators on return rates of 23 species and subspecies of Arctic-breeding shorebirds. Values are taxon-specific standardized effect
sizes (mean ± 95 % CI) estimated from GLMMs that included random effects of site and individual. Negative values indicate that return rates were
reduced for birds with geolocators relative to control birds. A value of zero with no error bars indicates that the geolocator effect was not in the final
model for a given species. a Effect of geolocator for each taxon, ordered by body mass (smallest to largest). Black points indicate relative importance
(RI) of the geolocator effect ≥0.80 and gray points indicate RI < 0.80. Species codes are defined in Table 1 and sample sizes are given in Additional file 1:
Table S2. b Relationship between the geolocator effect and the percent of mean body mass represented by the geolocator for each species or
subspecies. c Relationship between the geolocator effect and mean migration distance for each taxon. The dashed lines in (b) and (c) are fitted lines
from weighted least squares linear regression
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rate was not different from zero (M = −0.07, SE = 0.22),

and most variance was attributed to real among-taxon

variance rather than statistical noise (I2 = 99.7 %). The

geolocator effect on return rate was more likely to be

negative when the geolocator was a higher percentage

of mean body mass (Z = 26.6, p < 0.001; Fig. 4b), with

the fitted line intersecting zero at 1.5 % (intercept =

0.78, SEintercept = 0.14; βprop_mass = −0.53, SEprop_mass =

0.06; p < 0.001; Fig. 4b). Unexpectedly, geolocator ef-

fects were also more likely to be negative for taxa

with a shorter mean migration distance than for taxa

that migrated longer distances (Z = 8.7, p < 0.001;

Fig. 4c). Linear regression indicated that geolocator

effects were likely to be negative when mean migra-

tion distance was less than 95° latitude (intercept =

−0.77, SEintercept = 0.39; βdistance = 0.01, SEdistance = 0.01,

p = 0.14; Fig. 4c).

Sublethal effects

We documented interannual breeding movements for

634 control birds and 83 geolocator birds with known

nest locations in two consecutive years, including five

species at 10 sites (Additional file 1: Table S2). Most

birds (96 %) moved <500 m between years, with seven

individuals (0.01 %) moving >1 km to a maximum of

5.7 km (median = 68 m, SD = 335 m), though it is likely

that we failed to detect long-distance movements out-

side our study plots. Geolocators did not affect breeding

movements (Table 4). Instead, movements were strongly

affected by sex and nest fate, with the distance moved

nearly double for females versus males, or when a nest

failed versus hatched (Table 4).

We had information on body mass at capture in

consecutive years for 341 control birds and 109 geo-

locator birds across five species and 10 breeding sites

(Additional file 1: Table S2). Across all individuals,

the mean change in body mass was +0.1 % (SD =

8.6 %). Geolocators did not affect the proportional

change in body mass between years (Table 4).

Leg attachment method

At site B03, semipalmated sandpipers with geolocators at-

tached perpendicular to the leg experienced lower nest

success (predicted mean = 11 %) than the control group

(69 %), whereas nest success of individuals with parallel

geolocators (70 %) showed no difference from the control

group (Fig. 5; Additional file 1: Table S8). We occasionally

observed egg damage, including holes and dents in egg-

shells, that may have been caused by the perpendicular-

flag geolocator attachment at six nests at site B03. All six

nests failed, with failure attributed to egg damage for five

nests and to predation for the sixth. In contrast, no egg

damage was noted at nests of semipalmated sandpipers

with parallel-band geolocators. Our field protocols did not

specify that eggs should be checked for damage and egg

handling was typically avoided to minimize observer ef-

fects on the nests, so instances of egg damage at other

sites that used the perpendicular-flag attachment may

have been overlooked.

The parallel-band attachment but not the perpendicular-

flag attachment reduced return rates of semipalmated sand-

pipers (Fig. 5; Additional file 1: Table S8). Expected return

rates were 34 % for control birds but 10 % with parallel-

band geolocators, while the expected return rate of 19 %

for perpendicular-flag geolocators was not significantly dif-

ferent from the control group. Some birds recaptured with

a parallel-band geolocator attachment were noted to have

calluses where the end of the geolocator contacted the

lower leg as the bird walked (Fig. 2a, left), but the incidence

of calluses or other leg injuries was not systematically

Table 4 Effects of explanatory variables on sublethal response variables

Explanatory variable Interannual breeding movementsa Proportional change in body mass

Mean (SE) RI Mean (SE) RI

Interceptb 4.07 (1.26) 0.002 (0.005)

Geolocator 0 0 −0.003 (0.007) 0.28

Nest fate: hatched −0.66 (0.13) 1.00

Nest fate: unknown −0.18 (0.17) 1.00

Sex: male −0.56 (0.10) 1.00

Sex: unknown −0.26 (0.17) 1.00

Previously marked −0.07 (0.11) 0.46

Difference between recapture and capture dates −0.001 (0.004) 0.17

Difference between recapture and capture nest ages 0.000 (0.003) 0.15

Values are from the final averaged models for five shorebird species at seven sites pooled. Models included random effects of species, site, and individual. See

Table 3 for definitions of abbreviations and bold emphasis. Sample sizes are given in Additional file 1: Table S2; top model sets are given in Additional file 1:

Table S7.
aDistances between nests in subsequent years were measured in meters and log-transformed
bFor movement, the intercept represents control females whose nest failed to hatch. For change in body mass, effects of sex and nest fate were not tested, so the

intercept represents the control group
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recorded. Neither attachment method had an important ef-

fect on return rate of American golden-plovers (RI = 0.39;

Fig. 5; Additional file 1: Table S8).

Discussion
For most of the 23 shorebird taxa in our analysis, we

found no effects of geolocators on demographic rates.

However, in contrast to previous studies of single spe-

cies, our comprehensive analysis for a broad suite of mi-

gratory shorebirds found major effects of geolocators on

a subset of species. Negative effects of geolocators in-

cluded reduced nest success, an increased likelihood of

partial hatching of clutches, and reduced return rates for

three small-bodied species of shorebirds.

Reproduction

Of six shorebird species for which we had information

on nest success, geolocators affected only semipalmated

sandpipers, reducing the chance that a nest would hatch

by 42 %. For this species, the frequency of each cause of

failure was similar between geolocator and control nests

that failed to hatch. Some nest failure may have resulted

from egg damage, as we also had evidence that geoloca-

tors may have damaged eggs: geolocators tripled the

probability that unhatched eggs remained in the nest fol-

lowing hatch of the rest of the clutch for semipalmated

and western sandpipers. A previous analysis found a

similar but nonsignificant trend for unhatched eggs to

remain in nests of dunlin with geolocators mounted par-

allel to the leg on a trimmed flag at site B23 [32]. We

conclude that relatively thin eggshells of small-bodied

shorebirds may be vulnerable to damage from leg-

mounted tags whereas the thicker eggshells of larger

species may be more robust. While complete nest failure

was attributed to egg damage for only a few nests,

additional nests with damaged eggs may have been dep-

redated before the damage was noted by observers. Fu-

ture geolocator studies should include protocols that

balance the need to minimize observer effects on nests

with systematically recording egg damage after capture

or during incubation, disappearance of eggs during incu-

bation, and presence of unhatched eggs remaining in the

nest after hatch of the rest of the clutch.

Return rates

Geolocators reduced return rates for two small-bodied

taxa: semipalmated sandpipers and the arcticola subspe-

cies of dunlin. Relative to control birds, individuals were

63 and 43 %, respectively, less likely to return if they car-

ried a geolocator. Lower return rates for geolocator birds

could have been caused by higher mortality, permanent

emigration, temporary emigration including skipping a

breeding season, or a reduced probability of resighting

the individual at the capture site in the following year

[49]. Limited data from additional years for some species

and sites indicate that some geolocator and control birds

that were not detected in the year following capture, and

thus not included in our return rate estimates, were

resighted in a subsequent year. However, we do not have

enough data from subsequent years to assess whether

geolocator birds may have been more or less likely than

control birds to be temporarily absent from the study

site. We therefore cannot distinguish among the poten-

tial underlying causes of reduced return rates for some

geolocator birds in our analysis. However, any lethal or

sublethal effects are undesirable impacts on a study spe-

cies and should be mitigated by reducing geolocator

mass and drag, improving attachment methods to avoid

egg damage, and minimizing handling time.

Negative effects on return rates were not found for the

remaining 20 taxa in our analysis, including one of the

smallest species (western sandpipers; Table 1). In two

species, we found a positive effect of geolocators on re-

turn rate that showed high RI in the model selection

process. A positive effect could indicate a true difference

between groups, potentially arising from life-history tra-

deoffs. For example, if geolocators reduce reproductive

success, birds that fail to hatch a nest could maintain

better body condition and thus experience higher sur-

vival over the following nonbreeding season. However,

we suspect that the positive effects of geolocators on re-

turn rates were likely driven by greater search effort for

geolocator than control birds in the return year, as the

main goal of each field study was to retrieve movement

data from geolocators. Moreover, during resighting

Fig. 5 Effect of geolocators with two leg attachment methods on
nest success and return rates of two species. Geolocator attachment
methods are shown in Fig. 2a. A value of zero indicates no difference
from the control group. Black points indicate relative importance (RI) of
the effect size ≥0.80; gray points indicate RI < 0.80 (Additional file 1:
Table S8)
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efforts at nonbreeding sites, the presence of a device

meant that geolocator birds were more conspicuous

than flagged control birds in foraging or roosting flocks

(see also [36]). Return rates for control birds, but not

geolocator birds, therefore could have been underesti-

mated for some species, which might explain the appar-

ent positive effect of geolocators on return rates. The

differences in search effort between groups may have

masked or reduced some negative consequences of geo-

locators, so negative effects on return rates may be

stronger and more widespread than indicated by our

data, though we cannot test this possibility with our

dataset.

Across the 23 taxa in our meta-analysis, geolocators

were more likely to negatively affect return rates when

they represented a higher percentage of body mass.

Medium to large taxa (maximum mass of all tags, in-

cluding geolocators = 0.3–2.3 % of body mass) showed

no negative effect of geolocators, while small-bodied

taxa (maximum mass of all tags = 2.5–5.8 % of body

mass) showed mixed effects. Linear regression indicated

that geolocator effects became negative, on average,

when mass of the geolocator exceeded 1.5 % of mean

body mass, suggesting it would be prudent to further re-

duce the mass of devices below the 3 % guideline most

commonly used. Guidelines developed for backpack-

style devices may be too liberal for devices attached to

the leg, or effects of tags may be species-specific based

on payload and drag in flight [18]. Mass of color bands

and flags was not negligible for some species of shore-

birds, representing up to 2 % of body mass for the smal-

lest species in our study. Studies that deploy geolocators

should avoid adding other markers to birds, especially

when mass of geolocators is close to the target threshold

for percent body mass. Still, some individuals with total

tag mass >5 % of body mass successfully carried

geolocators for a year and returned to our study sites,

providing movement data to inform conservation deci-

sions [39, 42]. Management and conservation needs

should continue to be part of the decision-making

process for applying geolocators on small-bodied species

of shorebirds, and lower return rates or nest success

may be an acceptable tradeoff against new information

on migratory movements. However, if tags affect the

demographic rates of individuals that carry them, data

obtained on migration movements and timing may not

be representative of the unmarked population.

In contrast to our prediction but consistent with a pre-

vious study [10], our cross-species meta-analysis found

that effects of geolocators on return rates were more

likely to be negative for taxa with shorter mean migra-

tion distances. Larger-bodied shorebirds in our dataset

tended to have longer migration distances, so body size

may underlie the relationship between migration

distance and the effect of geolocators on return rates.

Alternatively, contrary to our prediction, physiological

stress imposed by carrying a geolocator may not increase

with longer migration. Instead, longer-distance migrants

may be better able to handle excess mass, possibly be-

cause the mass of the geolocator is negligible relative to

seasonal fluctuations in body mass [23, 28]. Our esti-

mates of mean migration distance were coarse, as many

of the species in our analysis are distributed over a wide

range of latitudes in the nonbreeding season. The rela-

tionship we found between migration distance and the

effect of geolocators on return rates should be retested

as more movement data become available to quantify

typical migration distances for each species or

population.

No negative effects of geolocators on return rates were

observed for species captured at nonbreeding sites, but

capture region was confounded with body size, with the

smallest species in our analysis marked only at breeding

sites. The two species in our study that received harness

geolocators also showed no negative effects, similar to a

previous test of geolocators with this attachment method

in a small-bodied shorebird [30]. However, our test of

two species is not sufficient to conclude that harness at-

tachments are less detrimental than leg-mounted geolo-

cators for shorebirds. Harness attachments can cause

high mortality in shorebirds that migrate longer

distances [29; AT & RBL unpubl.] as well as other taxa

[17] and should be used with caution for deploying

geolocators.

The variation in geolocator effects that we found

among species, even shorebirds of similar body size, and

among capture sites indicates that factors not measured

by our study may be influencing the effects of tags on

shorebirds. For example, arcticola dunlin winter in East

Asia, where coastal habitat is disappearing and declines

of shorebirds are unprecedented [21]. In contrast, the

other dunlin subspecies in our analysis winter in North

America and West Africa, where land use is more stable.

For any given species, negative effects of geolocators

may be more pronounced if individuals are already af-

fected by habitat degradation or other threats.

Leg attachment method

When we compared the geolocator attachment methods,

we found that semipalmated sandpipers at site B03 with

the perpendicular-flag attachment experienced lower

nest success than those with the parallel-band attach-

ment or the control group. The difference could have re-

sulted from geolocator orientation, flag versus band

attachment, or the combination of a geolocator and a

field-readable coded flag, as each of these characteristics

differed between groups in this comparison. We suspect

eggs may have been damaged by the perpendicular-flag
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geolocators, though our evidence is circumstantial. In

contrast, the parallel-band attachment had no effect on

nest success for semipalmated sandpipers, but instead

caused calluses and reduced return rates relative to the

control group. Use of spacer bands below the geolocator

has been recommended to reduce rubbing on the leg

[23], but was apparently not fully effective in semipalm-

ated sandpipers. Additional measures such as rounding

the corners of leg flags and trimming the contact pins of

the geolocator [23, 36] may help minimize damage to

tagged birds or their eggs.

Maximizing recovery of geolocators

Aside from geolocators, four other variables affected re-

turn rates, providing new information that could be used

to maximize recovery of geolocators or other tags in fu-

ture field studies. First, males were more likely to return

than females for two subspecies of dunlin, likely because

males show greater site fidelity in male-territorial species

of shorebirds [66–69]. If differential migration of the

sexes is not a concern, future studies of male-territorial

species could maximize recovery of geolocator data by

tagging males. Second, individuals that had been previ-

ously banded at the capture site and thus had demon-

strated site fidelity were more likely to return in pacifica

dunlin and western sandpipers. Targeting previously

banded birds, when available, for deployment of geoloca-

tors may help to maximize tag recovery rates.

Third, relative to individuals whose nest failed, birds

that hatched a nest showed higher site fidelity, with

higher return rates in western sandpipers and shorter in-

terannual breeding movements for five species pooled.

An association between nest success and site fidelity has

been shown in previous studies of Arctic-breeding

shorebirds as well [55, 70–72]. To maximize tag recov-

ery, geolocators could be applied near the expected

hatch date or, if capture of adults attending broods is

feasible, after birds have successfully hatched a nest [32].

Either strategy would also minimize egg damage or nest

failure from the geolocator. Protection from predation

could also improve nest success and thus return rates,

either for the general population or for individual nests

where geolocators are deployed.

Last, American golden-plovers were more likely to re-

turn if captured early in the breeding season, which

could be driven by intraseasonal patterns in quality or

success of breeders [73]. Future field studies could

maximize retrieval of geolocators by selecting individuals

with a high probability of returning based on these re-

sults. However, any strategy for selecting individuals to

carry geolocators has the potential to bias the resulting

movement data if timing of movements, duration of

stopovers, or areas used may vary with individual char-

acteristics such as sex, age, breeding history, or quality.

Conclusions
For most species of shorebirds, we found no negative ef-

fects of geolocators. However, for some small-bodied

taxa (mean body mass ≤58 g), we found negative effects

that were substantial. Geolocators reduced nest success,

complete hatching of clutches, and return rate for three

small-bodied species. Our findings suggest that guide-

lines for relative mass developed for backpack-style at-

tachments may be too liberal for the leg-mounted tags

used in most of our studies. Although we found no ef-

fects of geolocators for the majority of species in our

analyses, tags may change behavior or physiology of

birds even when no effects are observed on demographic

rates [14, 50, 74], and long-term impacts may not be

predictable from short-term studies [75]. Impacts of geo-

locators or other leg-mounted tags could be mitigated

by minimizing total mass of attached material and by

modifying the shape of the tag to reduce damage to eggs

or legs. In some species, males, individuals with estab-

lished site fidelity, and birds that successfully hatched a

nest were more likely to return. For species not included

in our analysis, a pilot study or previous data from indi-

vidually marked birds would help strategize deployment

of geolocators with the aim of maximizing data recovery,

thus reducing the number of birds that need to be

tagged and minimizing any potential impacts on the spe-

cies. Future decisions to deploy devices on small-bodied

shorebirds should be made on a case-by-case basis,

weighing the potential impacts on individuals and popu-

lations against the value of improved knowledge of mi-

gratory movements.
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