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Abstract – Fiber metal laminates (FMLs) are high-performance hybrid structures based on alternating
stacked arrangements of fiber-reinforced plastic (FRP) plies and metal alloy layers. In this paper, effect of
some geometrical and material parameters on free vibrations of FML plates was studied. The first-order
shear deformation theory (FSDT) as well as the Fourier series method was used to analytically solve the
governing equations of the composite plate. The accuracy of the used method was verified by comparing
the Rayleigh-Ritz analytical method and the ABAQUS finite element software (numerical) method. The
results indicated that some of the important parameters like sequence of metal layers, aspect ratio (a/b)
of plate and orientation of composite fibers were important factors affecting free vibration of the FMLs.
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1 Introduction

Fiber metal laminates (FMLs) are hybrid structures
consisting of different metal sheets and fiber-reinforced
plastic (FRP) layers as shown in Figure 1. They combine
good characteristics of metals such as ductility, impact
and damage tolerances with the benefits of fiber compos-
ite materials such as high specific strength, high specific
stiffness and good corrosion and fatigue resistance.

Due to the above advantages and also better
lightweight characteristic of metals than FRP laminates,
the plates composed of FML materials are excellent can-
didates for industries such as automobile, aircraft and
space structures (Asundi and Choi [1], Vlot et al. [2] and
Marsh [3]). Therefore, considering free vibration of the
structure is necessary in the design process.

Many researchers have studied free vibration of com-
posite plates using different methods. Ngo-Cong et al. [4]
presented the free vibration analysis of laminated com-
posite plates using FSDT and 1D-IRBFN method. The
laminated composite plates with various boundary con-
ditions, length-to-width ratios (a/b), thickness-to-length
ratios (t/b) and material properties were considered.
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Convergence study showed that faster rates were obtained
for higher t/b ratios irrespective of a/b ratios of the rect-
angular plates. They also indicted that boundary condi-
tions affected natural frequencies.

Xing and Liu [5] presented a novel separation of vari-
ables for solving the exact solutions for free vibrations of
thin orthotropic rectangular plates using all combinations
of simply supported and clamped boundary conditions.

Ganapathi et al. [6] calculated free vibrations’ char-
acteristics of simply supported anisotropic laminates us-
ing analytical approach. The formulation was based on
the first-order shear deformation theory. The governing
equations were obtained using energy method. They in-
vestigated effect of curvature, thickness ratio and lay up
of the plate.

Leissa and Martin [7] studied free vibrations and
buckling of composite plates with non-uniformly spaced
fibers using Ritz method. Their numerical results for six
non-uniform distributions of E-glass, graphite and boron
fibers in epoxy matrices in simply supported square plates
indicated that redistributions could increase buckling load
and fundamental frequency of these structures.

Xing and Reddy [8] presented exact solution with
Levy type solution method and a domain decomposition
technique to investigate vibration behavior of rectangular
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Nomenclature

a Length of the plate Eij Young’s modulus

b Width of the plate ksh Shear correction factor

h Thickness of the plate ωmn Natural frequency

x, y, z Coordinates υij Poisson’s ratio

Aij Extensional stiffness matrix ρh Density of each layer

Bij Coupling stiffness matrix u0 Plate displacement in x direction

Dij Bending stiffness matrix v0 Plate displacement in y direction

θ Fiber orientation w0 Plate displacement in z direction

ψx Shear rotation in the x direction I Moment of inertia of the plate

ψy Shear rotation in the y direction Qij Reduced stiffness matrix

q Dynamic normal load λ Non-dimensional frequency parameter

Φm(x) Geometric boundary conditions in the x direction Ψn (y) Geometric boundary conditions in the y direction

Fig. 1. Schematic view of fiber metal laminates (FMLs).

plates with an internal line hinge. They indicated that in-
crease in the thickness ratio always decreased frequency
parameters in plates.

Reddy and Kuppusamy [9] presented a description
of the three-dimentional elasticity equations and the as-
sociated finite element model for natural vibrations of
laminated rectangular plates. The numerical results were
compared with those obtained by a shear deformable
plate theory. Their investigations indicated that the two-
layer angle-ply plates had higher frequencies than the
cross-ply plates. These observations showed that the two-
layer cross-ply laminates were structurally more flexi-
ble whereas the two-layer angle-ply laminates were stiffer
than the four-layer cross-ply plates. They also indicated
that the effect of the in-plane inertia was to reduce the fre-
quencies, which especially had significant effects on higher
modes.

Thai and Kim [10] studied the free vibration of lam-
inated composite plates using two-variable refined plate
theory (RPT), energy equations with Hamilton principle
and Navier approach for simply support boundary condi-
tion. The Navier technique was employed to obtain close-
form solutions of anti-symmetric cross-ply and angle-ply
laminates. They showed that the refined plate theory was
not only accurate but also efficient in predicting nat-
ural frequencies of anti-symmetric laminated composite
plates. In order to avoid the use of shear correction fac-
tor in the first shear deformation theory (FSDT), Aagaah
et al. [11] and Swaminathan and Patil [12] developed the
higher-order shear deformation theories (HSDT) based on
power series expansion of displacements with respect to

the thickness coordinate. Using experiments and FEM
numerical analysis, Mishra and Kumar Sahu [13] stud-
ied free vibration of woven fiber glass/epoxy composite
plates in free-free boundary conditions. Their specimens
of woven glass fiber and epoxy matrix composite plates
were manufactured by the hand-layup technique. They
also studied the effect of different geometrical parame-
ters including number of layers, aspect ratio and fiber
orientation of woven fiber composite plates for free-free
boundary conditions in details. To examine effect of the
number of layers of laminates, three different types of
laminate were fabricated, which were made up of 8, 12
and 16 layers. They indicated when the number of layers
and aspect ratios increased, the natural frequency also
increased. They also showed that, as the fiber angle in-
creased, natural frequencies decreased. It was observed
that the maximum frequency occurred at θ = 0◦ and the
minimum at θ = 30◦.

Dutt and Shivanand [14] studied free vibration re-
sponse of CFFF and CFCF woven carbon composite
laminates using a Fast Fourier Transform analyzer and
compared it with FEM tool ANSYS. Lee and Park [15]
performed a free vibration analysis of skew composite
laminates with or without cutout based on the high-order
shear deformation plate theory (HSDT). They studied ef-
fects of skew angles and ply orientations on natural fre-
quencies for various boundary conditions using a non-
linear high-order finite element program developed for
this study. Civalek [16] investigated free vibration anal-
ysis of symmetrically laminated composite plates with
first-order shear deformation theory (FSDT) by discrete
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singular convolution method. Thai and Kim [17]
investigated free vibration of laminated composite plates
using two-variable refined plate theory. Their theory ac-
counted for parabolic distribution of transverse shear
strains through plate thickness and satisfied the zero trac-
tion boundary conditions on the surface of the plate us-
ing shear correction factors. They used Hamilton’s prin-
ciple and the Navier technique to obtain the closed-form
solutions of antisymmetric cross-ply and angle-ply lami-
nates. Numerical results obtained using their theory were
compared with those of three-dimensional elasticity so-
lutions and those computed using the first-order and
other higher-order theories. Hatami et al. [18] studied
free vibration of axially moving symmetrically laminated
plates subjected to in-plan force by classical plate the-
ory. An exact method was developed to analyze vibration
of multi-span traveling cross-ply laminates and then a
semi-analytical finite strip method was extended for mov-
ing symmetric laminated plates in general for arbitrary
boundary conditions.

Xiang and Wang [19] used trigonometric shear defor-
mation theory to derive differential governing equations of
symmetric laminated composite plates. Differential gov-
erning equations were discretized by a meshless collo-
cation method based on the inverse multiquadric radial
basis function to predict free vibration behavior of sym-
metric laminated composite plates. Natural frequencies
were computed for various material parameters and geom-
etry parameters of laminated plates and were compared
with some available published results. The influence of
grid pattern, modulus ratio and side-to-thickness ratio on
natural frequencies was also investigated.

Topal and Uzman [20] investigated free vibration anal-
ysis of simply supported laminated composite plates us-
ing first-order shear deformation theory (FSDT). The
displacement field of a laminated composite plate was
given for FSDT. The numerical studies were conducted
to determine effect of width-to-thickness ratio, degree
of orthotropy and fiber orientation, aspect ratio on the
non-dimensional fundamental frequency for laminated
composite plates. Also, effect of shear deformation, ro-
tary inertia and shear correction coefficients on the non-
dimensional fundamental frequency was examined.

Zhen and Wanji [21] used global-local higher-order
theory to study free vibration of laminated composite and
sandwich plates. This global-local theory could satisfy free
surface conditions and geometric and stress continuity
conditions at interfaces and the number of unknowns was
independent from the layers number of the laminate. For
general laminated composite plates, the results obtained
from their global-local higher-order theory were found to
be in good agreement with those obtained from three-
dimensional elasticity theories. They indicated that this
theory was suitable for analyzing laminated plates with
arbitrary layouts and soft-core sandwich plates whereas
numerical results showed that the global higher-order
and first-order theory overestimated natural frequency
for these special structures. This theory could not only
calculate natural frequencies but could accurately predict

modal stress distributions in the thickness direction with-
out any smooth techniques.

In this paper, free vibration of FMLs was investigated
using two analytical and one numerical method. The ef-
fect of using Al layers as well as some of the important
parameters such as stacking sequence, aspect ratio (a/b)
of the plate and orientation of composite medium fibers
as important factors affecting free vibration of FMLs were
studied as well. The results of these parameters could be
useful for designers.

2 Governing equations

2.1 First-order shear deformation theory

Here, the plate equations developed by Whitney and
Pagano [22] were used. They include effect of transverse
shear deformations, in which displacement field of the
FSDT at time is as follows:

u = u0 (x, y, t) + zψx(x, y, t)

v = v0 (x, y, t) + zψy(x, y, t)

w = w0 (x, y, t) (1)

u0, v0 and w0 are plate displacements in x, y and z di-
rections at the plate mid-plane and ψx and ψy are shear
rotations in x and y directions.

In this paper, a symmetrically laminated plate with
the coordinate system originated at the mid-plane of lam-
inate was considered, in which each layer of the lami-
nate was orthotropic with respect to x and y directions
and all layers were of equal thickness. Equations of mo-
tion for free vibration of this laminated plate could be
expressed by dynamic version of the principle of virtual
displacements as:

D11ψx,xx +D66ψx,yy + (D12 +D66)ψy,xy

− kshA55ψx − kshA55w,x = I2ψ̈x

(D12 +D66)ψx,xy +D66ψy,xx +D22ψy,yy

− kshA44ψy − kshA44w,y = I2ψ̈y

kshA55ψx,x + kshA55w,xx + kshA44ψy,y

+ kshA44w,yy + q = I0ẅ (2)

ksh is the shear correction factor introduced by
Mindlin [23], which usually π2/12 and q is the dynamic
normal load over the plate; also:

(Aij , Bij , Dij) =
∫ h/2

−h/2

Qk
ij

(
1, z, z2

)
dz (3)

(ρ, I) =
∫ h/2

−h/2

ρ0(1,z2)dz (4)

where I0 and I2 are mass inertia tensor components de-
fined as:

I0 = ρh

I2 =
ρh3

12
(5)



232 F.A. Ghasemi et al.: Mechanics & Industry 14, 229–238 (2013)

in which ρ0 represents the density of each layer, ρ the total
density and h the thickness of the plate. Aij , Bij , Dij are
the components of extensional and shear, coupling and
bending stiffness matrices, respectively.

Whitney and Pagano [22] used (Qij)k (i, j =
1, 2, 6) for reducing in-plane stiffness components and
(Qij)k(i, j = 4, 5) for reducing transverse shear stiffness
components. Expressing the variables w, ψx, ψyin the fol-
lowing harmonic forms for the free vibration solution of
a rectangular plate with simply supported boundary con-
ditions was assumed to be in the following form [24,25]:

w (x, y, t) =
∞∑

m=1

∞∑
n=1

Amn (t)
(
sin

mπ

a
x
) (

sin
nπ

b
y
)

ψx (x, y, t) =
∞∑

m=1

∞∑
n=1

Amn (t)
(
cos

mπ

a
x
) (

sin
nπ

b
y
)

ψy (x, y, t) =
∞∑

m=1

∞∑
n=1

Bmn (t)
(
sin

mπ

a
x
)(

cos
nπ

b
y
)
(6)

where Amn (t), Bmn (t) and Wmn (t) are time-dependent
coefficients.

In this work, rotary inertia effect was neglected follow-
ing Mindlin [23]. Load function could be demonstrated
by Christoforou and Swanson [24] and Carvalho and
Soares [26] as follows:

q (x, y, z) =
∑
m

∑
n

Qmn (t) sin
(mπ
a

)
x sin

(nπ
b

)
y (7)

Qmn (t) =
4F (t)
ab

sin
(mπ
a

)
x sin

(nπ
b

)
y (8)

where Qmn (t) are terms of the Fourier series, F (t) is im-
pact load, a and b are plate length and width, respec-
tively. Hence, using equations (2) and (6), the system of
equations (2) could be reduced to the following system of
ordinary decouple differential equations:⎡

⎣L11 L12 L13

L12 L22 L23

L13 L23 L33

⎤
⎦

⎧⎨
⎩

⎡
⎣ Amn(t)
Bmn(t)
Wmn(t)

⎤
⎦

⎫⎬
⎭

=

⎧⎨
⎩

⎡
⎣ 0

0
Qmn (t) − ρhẄmn(t)

⎤
⎦

⎫⎬
⎭ (9)

where:

L11 = D11

(mπ
a

)2

+D66

(nπ
b

)2

L12 = L21 = (D12 +D66)
(mπ
a

) (nπ
b

)
L13 = L31 = kshA55

(mπ
a

)
L22 = D66

(mπ
a

)2

+D22

(nπ
b

)2

+kshA55

L23 = L32 = kshA44

(nπ
b

)
L33 = kshA55

(mπ
a

)2

+ kshA44

(nπ
b

)2

(10)

Following Christoforou and Swanson’s [24] procedure and
using changes of variables as shown below:

Amn (t) = KAWmn(t); Bmn (t) = KBWmn(t) (11)

KA =
L12L23 − L13L22

L11L22 − L2
12

; KB =
L12L13 − L11L23

L11L22 − L2
12

(12)

Equation (9) can be simplified as follows:

Ẅmn (t) + ω2
mnWmn (t) =

Qmn(t)
ρh

(13)

where:

ω2
mn =

L13KA + L23KB + L33

ρh
(14)

ω2
mn is square of the fundamental frequencies of the plate.

If the values of m = n = 1,2,3, . . . and q = 0 are
inserted in equations (14) and (2), respectively, values
of natural frequencies for FMLs could be calculated. In
the present research, a simply supported rectangular plate
with dimensions of a and b was chosen to study, in which
the boundary conditions were as follows:

w = ψx,x = ψy = 0 at x = 0, a
w = ψy,y = ψx = 0 at y = 0, b (15)

2.2 Rayleigh-Ritz method

For a symmetrically thin laminated composite plate,
the governing differential equation is given by Liew [27]
as follows:

D11
∂4W

∂x4
+ 4D16

∂4W

∂x3∂y
+ 2 (D12 + 2D66)

∂4W

∂x2∂y2

+ 4D26
∂4W

∂x∂y3
+D22

∂4W

∂y4
− ρh

∂2W

∂t2
= 0 (16)

The governing energy functional for the plate is:

F = V − T (17)

where:

V =
1
2

∫
A

{
D11

(
∂2W

∂x2

)2

+ 2D12

(
∂2W

∂x2

) (
∂2W

∂y2

)

+D22

(
∂2W

∂y2

)2

+ 4D16

(
∂2W

∂x2

) (
∂2W

∂x∂y

)

+4D26

(
∂2W

∂y2

)(
∂2W

∂x∂y

)
+ 4D66

(
∂2W

∂x∂y

)2
}

dA (18)

T =
1
2
ρhω2

∫
A

W 2dA (19)

in which A is area of plate.
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If vibration is assumed to be a harmonic motion, the
solution of equation (16) may be written as:

w (x, y, t) = W (x, y) sinωt (20)

The Ritz method in solving equation (16) was applied by
Wong [28], Meirovitch [29] and Bhat [30]. The following
series was used to represent the deflection (W (x, y)):

W (x, y) =
∑
m

∑
n

AmnΦm(x)Ψn (y) (21)

where Φm(x) and Ψn (y) are appropriate functions which
satisfy at least the geometric boundary conditions in the
x and y directions, respectively.

Substitution of the deflection function W (x, y) in
equation (21) into the kinetic and strain energy equa-
tions (18) and (19) and minimization of Rayleigh quotient
with respect to the coefficients Amn led to the eigenvalue
equation represented by Bhat [30]:∑

m

∑
n

(
Cmnij − λ2

(
E

(0,0)
mi · F (0,0)

nj

))
Amn = 0 (22)

Cmnij = D11E
(2,2)
mi F

(0,0)
nj + α4D22E

(0,0)
mi F

(2,2)
nj

+ α2D12

(
E

(0,2)
mi F

(2,0)
nj + E

(2,0)
mi F

(0,2)
nj

)
+ 2αD16

(
E

(2,1)
mi F

(0,1)
nj + E

(1,2)
mi F

(1,0)
nj

)
+ 2α3D26

(
E

(0,1)
mi F

(2,1)
nj + E

(1,0)
mi F

(1,2)
nj

)
+ 4α2D66E

(1,1)
mi F

(1,1)
nj (23)

E
(0,0)
mi =

∫ 1

0

(
d0Φm

dx0

) (
d0Φi

dx0

)
dx

=
∫ 1

0

(Φm ∗ Φi) dx

F
(1,1)
nj =

∫ 1

0

(
d1Ψn

dx1

) (
d1Ψj

dx1

)
dy

=
∫ 1

0

(
dΨn

dy

) (
dΨj

dy

)
dy

E
(r,s)
mi =

∫ 1

0

(
drΦm

dxr

) (
dsΦi

dxs

)
dx,

F
(r,s)
nj =

∫ 1

0

(
drΨn

dyr

) (
dsΨj

dys

)
dy

E
(2,2)
mi =

∫ 1

0

(
d2Φm

dx2

) (
d2Φi

dx2

)
dx,

F
(2,2)
nj =

∫ 1

0

(
d2Ψn

dyr

) (
d2Ψj

dys

)
dy (24)

λ =
ρhω2a4

D0
;D0 =

E1h
3

12(1 − υ12υ21)
;

α =
a

b
; m,n, i, j = 1, 2, 3, . . . ; r, s = 0, 1, 2 (25)

Fig. 2. Modeling in ABAQUS.

Fig. 3. Boundary condition in ABAQUS.

in which integrations as given in equation (24) are eval-
uated numerically. Natural frequencies and coefficients
for the mode shapes equation (21) were obtained by
solving the generalized eigenvalue problem defined by
equation (22).

2.3 Finite element (FE) model

A three-dimensional finite element model was devel-
oped in the commercial software ABAQUS 6.11.3 for free
vibrations of the composite and FML plates, as shown in
Figure 2. This was done to carry out a comparative study
for FE models with the analytical results. The material
properties for this plate including S4R elements was used
for meshing the simply support boundary condition of
the composite plate (Fig. 3). The calculated frequencies
were also listed in tables and compared with the analyt-
ical results. It can be seen that the calculated natural
frequencies were close to the analytical values.

3 Results and discussion

The used FML plate was symmetric and cross-ply. The
structure consisted of 10 layers, numbered from top to
bottom. Material and geometrical properties of the FML
plate are presented in Table 2.
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Table 1. For a simply supported laminated composite plate having [0/90/0/90/0] layer sequence: the number of elements and
nodes of the plate in ABAQUS.

a/b
1 1.5 2 2.5 3 3.5 4

Number of Elements 61 206 72 360 78 246 97 686 117 126 136 566 156 006
and Nodes

Table 2. Geometrical and material properties of FML plate [31,32].

Geometrical properties of FML plate:
Boundary conditions: Simply supported

Length = Width = 200 mm
Lay-up: [0/90/0/90/0]s

Ply thickness = 0.269 mm, a/h = 74.3 (Thin Plate)
Material properties of composite plate (T300/934 carbon-epoxy layers):

E11 = 120 GPa; E22 = 7.9 GPa; G12 = G13 = 5.5 GPa
ν12 = ν23 = 0.3; ρ = 1580 kg.m−3

Material properties of Al layers (2024-T3):
E = 72.4 GPa; G = 27.6 GPa; ν = 0.33; ρ = 2780 kg.m−3

Table 3. For a simply supported laminated composite plate having [0/90/0/90/0]s layer sequence: effect of different solution

methods and mode numbers on non-dimensional natural frequency (ω̄ = (ωa2/h)
√
ρ/E1) for) of the plate.

Non-dimensional natural frequency (ω̄ = (ωa2/h)
√
ρ/E1)

Mode number
Solution method 1 2 3 4 5 6

FSDT 3.2383 12.9023 28.8427 50.8203 78.5198 111.5663
ABAQUS 3.2306 12.8692 28.7616 50.6599 78.2411 111.4316

Rayleigh-Ritz 3.2425 12.9701 29.1829 51.8805 81.0628 116.7308
Max. Error (%) 0.13 0.52 1.16 2 3.14 4.42

Accuracy of the presented approach was verified ana-
lytically (by Rayleigh-Ritz method) and numerically (by
ABAQUS software). Table 3 shows good agreement of the
results. Table 3 shows that the maximum error of using
the presented method was only about 4 percent. The ef-
fect of using Al layers and some of the parameters such
as their stacking sequence, aspect ratio (a/b) of the struc-
ture, orientation of composite medium fibers and increase
in the thickness of the plate on the free vibration of FMLs
is also studied in Table 3. By increasing the plate’s aspect
ratio, it tended to be converted into a rectangular strip
and its lateral stiffness increased, this resulted in the in-
crease of the effect of plate corners. Therefore, the plate
showed a semi-cantilever behavior. This could be the rea-
son that the results of the finite element method were
different from those of analytical one.

3.1 Effect of the layer sequence of the metal layers

First, aluminum (Al) 2027-T3 layers were symmetri-
cally placed instead of the carbon-epoxy T300/934 ones
to see their position effects on the free vibration of the
structure. It means that the Al layers were placed in-
stead of these carbon-epoxy layers of the structure sep-
arately: (1,10), (2,9), (3,8), (4,7), (5,6) and (1,2,9,10),
(1,2,3,8,9,10), (1,2,3,4,7,8,9,10) and (1,2,3,4,5,6,7,8,9,10).

Table 4 shows effect of different aspect ratios (a/b)
and layer sequences of FMLs on the first non-dimensional
natural frequency using FSDT method in ABAQUS soft-
ware. It can be seen that accuracy of the current ana-
lytical method results was verified by the numerical one.
It was also observed that these values increased by us-
ing the Al layers instead of the carbon-epoxy layers and
the aspect ratio (a/b) of the plate also increased. Con-
sidering the material properties presented in Table 1 and
because the lateral elastic modulus of the Al layers was
greater than those of carbon-epoxy layers, with increase
in the number of the Al layers, the amount of the natural
frequency increased.

3.2 Effect of the aspect ratio (a/b) and location
of the Al layers

Table 5 shows effect of plate aspect ratio (a/b) and also
location of Al layers on natural frequency of the plate si-
multaneously. The results showed that, by increasing the
aspect ratio and converting the plate into a strip, the
non-dimensional natural frequency increased. Thus, the
more the Al layers were embedded in the outer layers of
the structure, the more the natural frequency would in-
crease. This was because lateral stiffness of the Al layers
was more than the FRP ones and, by embedding them in
outer layers of the structure, their effects on the natural
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Table 4. For a simply supported laminated composite plate having [0/90/0/90/0]s layer sequence: effect of different length-to-

width (a/b) ratios, solution methods and layer sequences on the first non-dimensional natural frequency (ω̄ = (ωa2/h)
√
ρ/E1)

of the plate.

Non-dimensional natural frequency (ω̄ = (ωa2/h)
√
ρ/E1)

a/b
Layers sequence Solution method 1 1.5 2 2.5 3 3.5 4
No FSDT 3.2383 5.0819 8.0116 11.9358 16.8041 22.5938 29.2940
Al layers ABAQUS 3.2306 5.0728 8.0028 11.9275 16.7974 22.5899 29.2960
(1,10) FSDT 4.1853 7.1396 11.3990 16.9274 23.7082 31.7340 41.0013

Al layers ABAQUS 4.1498 7.0999 11.3576 16.8851 23.6648 31.6919 40.9618
(1,2,9,10) FSDT 4.8207 7.7550 11.9183 17.2978 23.8859 31.6788 40.6747
Al layers ABAQUS 4.7665 7.6920 11.8516 17.2295 23.8159 31.6102 40.6089
(1,2,3,8,9,10) FSDT 5.2889 8.6628 13.3991 19.4946 26.9477 35.7574 45.9234
Al layers ABAQUS 5.2286 8.5940 13.3265 19.4196 26.8707 35.6810 45.8498
(1,2,3,4,7,8,9,10) FSDT 5.6726 9.2083 14.1558 20.5157 28.2885 37.4741 48.0728
Al layers ABAQUS 5.6194 9.1471 14.0918 20.4514 28.2241 37.4145 48.0178
(1,2,3,4,5,6,7,8,9,10) FSDT 6.0473 9.8250 15.1086 21.8996 30.1985 40.0058 51.3215
Al layers ABAQUS 6.0143 9.7874 15.0711 21.8643 30.1664 39.9811 51.3063

Table 5. For a simply supported laminated composite plate with [0/90/0/90/0]s layer sequence: effect of different length-

to-width (a/b) ratios and location of Al layers on the first non-dimensional natural frequencies (ω̄ = (ωa2/h)
√
ρ/E1) of the

plate.

a/b
Layer sequence 1 1.5 2 2.5 3 3.5 4
No Al layers 3.2383 5.0819 8.0116 11.9358 16.8041 22.5938 29.2940

Al layers in (1,10) 4.1853 7.1396 11.3990 16.9274 23.7082 31.4340 40.0013
Al layers in (2,9) 3.8872 5.6593 9.3407 14.8993 20.3073 28.5489 37.6156
Al layers in (3,8) 3.6481 5.5338 9.0084 13.9959 19.6580 26.3773 34.1458
Al layers in (4,7) 3.4792 5.3685 8.7504 12.7426 17.6965 24.1891 31.0092
Al layers in (5,6) 3.3917 5.3337 8.4115 12.4302 17.3383 23.8122 30.7409

frequency of the structure increased. Another reason was
that the issue of high density of Al layers with respect to
FRP ones, which resulted in the increase at moment of
inertia in the plate. Therefore, the strength and stiffness
of the plate and also natural frequency of the plate in-
creased with respect to the cases that the Al layers were
embedded in the middle layers of the structures.

3.3 Effect of the fiber orientation of the composite
plate

Effect of using different fiber orientations of the com-
posite plate was studied here (Tab. 6). To study effect of
fiber orientations of the composite and the FML plate,
the layup was chosen as [0/θ/0/θ/0]s where θ = 0◦, 15◦,
30◦, 45◦, 60◦, 75◦, 90◦. As can be seen in small values
of θ (from 0◦ to 45◦), the first non-dimensional natu-
ral frequency of plate increased by increasing θ. But, by
increasing the amount of θ from 60◦ to 90◦, the first
non-dimensional natural frequency of the plate decreased,
which was a good advantage for designers of composite
and FML structures in designing the stacking sequence
of their desired structure.

It must be also noted that, with increasing the mode
number, the amount of frequency also increased that was
obvious. The closer the angle of the fibers to 45 degrees,

shear and lateral stiffness of the plate would increase and
therefore the natural frequency would increase (Tab. 6).
Comparison of Ritz and finite elements method showed
good accordance of the results for different fiber orien-
tations. Because the aspect ratio (a/b) of the plate was
equal to one (with symmetrical geometry), the natural
frequency of the plate increased from 0 to 45 degrees and
decreased from 45 to 90 degrees. For the above reasons
and also since shear stiffness was high in 45 degrees, nat-
ural frequency had its maximum value with respect to
other fiber orientations (Tab. 6).

Figure 4 shows effect of aspect ratio and fibers’ orien-
tation on the non-dimensional natural frequency. When
the aspect ratio was equal to one, the plate had a square
shape. Therefore, because of the geometrical symmetry
and the plate’s boundary conditions, natural frequency
increased when the fibers’ orientation increased from 0
to 45 degrees and then decreased when they increased
from 45 to 90 degrees. This process changed when aspect
ratio increased and the plate tended to become a strip.
For example, when the fibers’ orientation was 90 degrees,
the more the aspect ratio increased, the more the oppo-
site sides of the plate got close to each other. Because
the fibers’ orientation was rectangular to these edges, the
fibers tended similar to the small parallel beams. There-
fore, the plate stiffness increased severely and became
higher than other cases. When the fibers’ orientation was
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Table 6. For a simply supported laminated composite plate with [0/90/0/90/0]s layer sequence: effect of different fiber ori-

entations (θ), mode numbers and solution methods on the non-dimensional natural frequencies (ω̄ = (ωa2/h)
√
ρ/E1) of the

plate.

Non-dimensional natural frequency (ω̄ = (ωa2/h)
√
ρ/E1)

Mode number
θ◦ Solution method 1 2 3 4 5 6

0
FSDT 3.2363 12.8715 28.6910 50.3582 77.4423 109.4503

ABAQUS 3.2288 12.8392 28.6105 50.1999 77.1669 109.3196

15
FSDT 3.3284 13.2387 29.5124 51.8065 79.6816 112.6338

ABAQUS 3.3016 13.1308 29.2473 51.2493 78.6871 110.6811

30
FSDT 3.5054 13.9443 31.0910 54.5908 83.9873 118.7554

ABAQUS 3.4410 13.7290 30.5799 53.6070 83.7366 116.3309

45
FSDT 3.5909 14.2878 31.8697 55.9877 86.1911 121.9579

ABAQUS 3.5057 14.1782 31.7570 55.0382 85.2257 120.3834

60
FSDT 3.5063 13.9585 31.1608 54.8030 84.4809 119.7217

ABAQUS 3.4365 13.1554 30.3481 53.9179 83.1641 119.4721

75
FSDT 3.3301 13.2646 29.6399 52.1949 80.5865 114.4089

ABAQUS 3.3001 13.0536 28.7027 51.6612 79.9798 113.7365

90
FSDT 3.2383 12.9023 28.8427 50.8203 78.5198 111.5663

ABAQUS 3.2306 12.8692 28.7616 50.6599 78.2411 111.4316

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

5

10

15

20

25

30

35

40

45

Aspect ratio (a/b)

 N
on

-d
im

en
si

on
al

 n
at

ur
al

 f
re

qu
en

cy

 

 

θ= 0o

θ= 15o

θ= 30o

θ= 45o

θ= 60o

θ= 75o

θ= 90o

Fig. 4. For a simply supported laminated composite plate having [0/90/0/90/0]s layer sequence with Al layers in (1,10)
plies: effect of the fiber orientations and length-to-width (a/b) ratios on the first non-dimensional natural frequency (ω̄ =

(ωa2/h)
√
ρ/E1).

0 degree, this was vice versa. Therefore, depending on
what the plate’s aspect ratio or the fibers’ orientation
was, the plate’s behavior changed. To study natural fre-
quency of these structures, effect of this parameter must
be simultaneously noted. This shows why the plate be-
havior is so complicated by changing the plate’s aspect
ratio and the fibers’ orientation.

Figures 5 and 6 show the first and second mode shapes
using analytical and FEM methods. A good adaptation
could be observed between the results; the more the
mode number increased, the mode shape became more
complicated.

4 Conclusions

In the present research, free vibration of a simply sup-
ported laminated FML plate was studied using the first-
shear deformation theory and Fourier series method to
solve the system of governing equations of the plate ana-
lytically. The accuracy of the presented method was veri-
fied by comparing the data by the Rayleigh-Ritz (an ana-
lytical method) and the ABAQUS software (a numerical
method).The results indicated that some parameters like
layer sequence, aspect ratio and fibers’ orientation of the
plate were important factors which affected free vibration
of the FMLs. Also, location of embedding the Al layers
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Fig. 5. Different mode shapes of a simply supported laminated composite plate with [0/90/0/90/0]s layer sequence with Al
layers in (1, 10) plies. (a) Mode 1: ω̄ = 4.1853. (b) Mode 2: ω̄ = 16.6871.

(a) (b)

Fig. 6. Different mode shapes of a simply supported laminated
composite plate with [0/90/0/90/0]s layer sequence with Al
layers in (1, 10) plies in ABAQUS. (a) Mode 1: ω̄ = 4.1498.
(b) Mode 2: ω̄ = 16.5007.

was an important factor on the overall and local dynamic
behaviors of these structures. It can be also seen that the
dynamic response of these structures was so complicated
and depended on what the plate’s aspect ratio and fibers’
orientation were.
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