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Abstract

Background: Maps of disease occurrences and GIS-based models of disease transmission risk are increasingly

common, and both rely on georeferenced diseases data. Automated methods for georeferencing disease data have

been widely studied for developed countries with rich sources of geographic referenced data. However, the

transferability of these methods to countries without comparable geographic reference data, particularly when

working with historical disease data, has not been as widely studied. Historically, precise geographic information

about where individual cases occur has been collected and stored verbally, identifying specific locations using place

names. Georeferencing historic data is challenging however, because it is difficult to find appropriate geographic

reference data to match the place names to. Here, we assess the degree of care and research invested in

converting textual descriptions of disease occurrence locations to numerical grid coordinates (latitude and

longitude). Specifically, we develop three datasets from the same, original monkeypox disease occurrence data,

with varying levels of care and effort: the first based on an automated web-service, the second improving on the

first by reference to additional maps and digital gazetteers, and the third improving still more based on extensive

consultation of legacy surveillance records that provided considerable additional information about each case. To

illustrate the implications of these seemingly subtle improvements in data quality, we develop ecological niche

models and predictive maps of monkeypox transmission risk based on each of the three occurrence data sets.

Results: We found macrogeographic variations in ecological niche models depending on the type of

georeferencing method used. Less-careful georeferencing identified much smaller areas as having potential for

monkeypox transmission in the Sahel region, as well as around the rim of the Congo Basin. These results have

implications for mapping efforts, as each higher level of georeferencing precision required considerably greater

time investment.

Conclusions: The importance of careful georeferencing cannot be overlooked, despite it being a time- and

labor-intensive process. Investment in archival storage of primary disease-occurrence data is merited, and improved

digital gazetteers are needed to support public health mapping activities, particularly in developing countries,

where maps and geographic information may be sparse.
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Background
Georeferencing is an essential first step towards enabling

GIS-based analyses of public health data [1,2]. It is the

process by which textual descriptions of the geographic

provenance of cases and diagnostic specimens are trans-

formed into digital spatial data (longitude and latitude

coordinates; “geocoding” is generally used to refer to the

simpler process of adding geographic coordinates to

postal addresses) [3]. The georeferencing process has

been generalized into the following components: input

records, reference datasets (e.g., gazetteers), and a geore-

ferencer (the algorithm used to normalize, standardize,

and match input records to the reference dataset) [4].

Ideally, the process is documented with detailed meta-

data [5].

The value of georeferenced public health data to state [6]

or national [7,8] public health systems is clear, as it enables

all spatial data analysis. However, nearly all research on the

efficiency, reliability, and accuracy of georeferencing meth-

ods has relied on examples of contemporary input records

and reference datasets from North America and Europe

[9], possibly because georeferencing methods evolve as the

availability and accuracy of reference datasets increase [4].

In contrast, our study compares three georeferencing

approaches to legacy monkeypox data from villages across

Central and West Africa.

Qualitative assessments of different georeferencing

methods for public health data have been developed pre-

viously [10-14]. Efforts aimed at georeferencing public

health data in data-poor parts of the world include tryp-

anosomiasis in Africa [15] and malaria globally [16].

However, although these studies acknowledge the chal-

lenges faced during the georeferencing process for loca-

tions where reference data are sparse or of poor quality,

they do not provide a comparison of various georeferen-

cing methods that could guide future studies needing

georeferenced disease data.

Monkeypox background

Monkeypox (MPX) virus was first identified as an agent

of human disease in 1970 in the Democratic Republic of

Congo (“DRC,” then Zaire) [17]. Prior to that date, MPX

virus had been isolated only from captive cynomologous

monkeys [18]. MPX presents clinically in a manner

nearly indistinguishable from smallpox, and thus was

cause for great concern among public health officials

trying to eradicate smallpox [19].

During 1970–1986, human MPX cases were identified

from seven countries across Central and West Africa as

a result of localized active disease surveillance efforts

(summarized in Figure 1). MPX cases have since been

identified in Gabon [20] and the Republic of Congo [21].

Even more recently, a limited outbreak of human MPX

in the United States was linked to rodents imported

from Ghana [22], and human MPX cases have been

identified in South Sudan [23].

An MPX-specific research agenda was outlined in

1969 to address the problems that MPX posed to the

smallpox eradication campaign [25]. Under this plan,

World Health Organization (WHO) Collaborating Cen-

ters in the United States and the former Soviet Union,

the Centers for Disease Control (CDC), and the Moscow

Research Institute for Viral Preparations, respectively,

provided laboratory diagnostic services, enabling new in-

formation on MPX to be assembled. This collaborative

work supported serological studies during the 1970’s and

into the 1980’s [26]: surveillance activities intensified

during 1981–1986 [26-28], when 21,994 specimens were

tested from Congo, Ivory Coast, Sierra Leone, and Zaire

[24]. During this period of intensified surveillance, 228

cases were confirmed by electron microscopy or virus

culture; only 99 cases were confirmed based on serology

alone, while 11 additional cases died before specimens

could be collected. In all, during 1970–1986, 404 cases

of human MPX disease were documented and confirmed

[24].

Collection of diagnostic specimens from suspected

cases of MPX followed a system established by WHO

during the smallpox eradication campaign [25]. Staff at

local health facilities were responsible for completing

semi-standardized case forms at the time diagnostic spe-

cimens were collected from patients. Specimens and

forms were sent to WHO Headquarters in Geneva,

Switzerland, where they were divided and sent on to the

two collaborating centers. After diagnostic testing, a

diagnostic result form was generated by the lab; results

were either cabled to WHO Headquarters, or sent dir-

ectly to personnel in the field.

During the active surveillance period, summary infor-

mation from the case forms for the 404 confirmed cases

was organized in data tables. Later, WHO researchers

generated a digital spreadsheet of individual case infor-

mation; the geographic information in this spreadsheet

enabled subsequent MPX research [29]. The spreadsheet

contains five hierarchical place name fields for each case:

country, region, district/zone, town, and locality. Unfor-

tunately, details of the provenance of the data on the

WHO spreadsheets are not known. In 2007, CDC

researchers discovered that in the late 1980’s, after much

of the initial research agenda regarding orthopoxviruses

had been completed, many of the CDC laboratory diag-

nostic records were converted to microfilm and the ori-

ginals likely destroyed. The microfilm has since been

scanned digitally, and converted to PDF formats. Prelim-

inary comparisons of data from a few case forms against

the information in the WHO spreadsheet identified sev-

eral inconsistencies, which served as a motivation for

this study.
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An active area of recent MPX ecology and epidemi-

ology research is based on GIS mapping and modelling

techniques used to search for patterns between the loca-

tions of case occurrences and geographic and environ-

mental variables [24,29-31]. Historically, broad

association of MPX virus and tropical forest was

observed in early MPX research [32-34]; later,

continental-scale ecological niche models showed that

disease occurrence had stronger association with mean

annual precipitation than with land cover [29]. Subse-

quent analyses at finer spatial scales constrained to

within the Congo Basin, however, pointed back to prox-

imity to dense forest [30], probably reflecting different

scales and resolutions. However, studies to date have not

considered the quality of the georeferencing of the case

occurrence data used as model inputs—this point, al-

though seemingly a simple methodological step, ends up

being quite important.

Here, we test the hypothesis that different levels of ef-

fort invested in the georeferencing process can introduce

considerable biases into geographic models of disease

transmission. Specifically, we produce three georeferen-

cing data sets for the MPX disease occurrences based on

the same original WHO data, but differing in the detail

and care with which they were derived. The first was

based on automated georeferencing modules developed

to facilitate the georeferencing process for biodiversity

data (“automated data set”). Such automated approaches

approximate the level of care and attention that many

researchers pay to this step, and indeed exceed greatly

the standards of some studies, which have depended on

Internet search engines such as Google, Bing, and Yahoo

maps, along with Open Street Map. The second data set,

or “worked data set,” was developed by consulting a

broader suite of geographic data sources to refine the

first. This method explores the results one might obtain

if not intimately aware of the nuances of a set of disease

data. The final data set, or “researched data set,” was

developed by consulting both geographic datasets and

legacy CDC records (“researched data set”). This method

represents the product of exhaustive searches for the

greatest number of highest-quality georeferences could

produce for our study system.

To compare the results of these methods, we devel-

oped ecological niche models and maps of potential

MPX distributions based on each of the three occur-

rence data sets, and thereby can assess the effects of the

different georeferencing methods on maps of MPX

transmission risk (this latter defined for the purposes of

this particular example as the potential for transmission

at a site, given its environmental characteristics and geo-

graphic position).

Methods
Georeferencing

We used the point-radius approach [5] and implemented

the recommended metadata architecture [35] to docu-

ment the georeferencing process in the production of all

three data sets. This approach captures (1) the original

data, such that the lineage of information is preserved

back to its source; (2) all decisions and assumptions

made in the course of the georeferencing process; (3)

the georeferenced coordinates, in a specified format and

datum; and (4) a summary of uncertainty associated with

the georeference. This summary of uncertainty repre-

sents an integration of uncertainty inherent in the geo-

graphic reference (e.g., an incomplete description),

uncertainty in components of the geographic reference

Figure 1 Total reported MPX case distribution across Central and West Africa, 1970–1986. The distribution of MPX cases in seven

countries where MPX cases were reported through the joint WHO/CDC surveillance efforts, including the total number of cases identified within

each county [24]. Countries labeled in gray without numbers indicate locations where additional MPX or MPX-related disease have occurred since

1986 [20-23].
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(e.g., “5 miles east” may be anything between 4.5 and 5.5

miles, and anything between northeast and southeast),

and uncertainty in the underlying geography (e.g., the

spatial footprint of the site referred to, distances among

‘multiple hits’ in matching gazetteer data). It is expressed

as the radius of a circle that sums the diverse sources of

uncertainty in the georeference. We relied on the MaNIS

georeferencing calculator for estimating positional un-

certainty [36] and excluded any locality with an uncer-

tainty greater than 10 km.

Automated data set

The methods for producing the automated data sets are

similar to the single-stage georeferencing methods

described elsewhere [10,37]. We used the automated

georeferencing facility implemented in the Biogeoman-

cer workbench [38]. This free, web-based platform auto-

mates georeferencing by taking the WHO spreadsheet

input data, and searching for matching localities in the

National Geospatial-Intelligence Agency’s (NGA)

GEOnet Names Service (GNS) database [39], and then

automatically calculating and populating the MaNIS

metadata fields [40]. We reduced the initial set of input

data to unique textual locality records, and submitted

the resulting table of country, state, district, municipal-

ity, and locality records to Biogeomancer for automated

georeferencing.

Worked data set

The methods for producing the worked data sets are

akin to multi-stage georeferencing methods described

elsewhere [10,37], wherein we attempted to match

manually input data for which satisfactory georeferences

were not produced by the automated method. Here, the

initial Biogeomancer output was processed further by a

person knowledgeable in African geography (ATP), but

without access to the case reports. Using the automated

output from the Biogeomancer Workbench facility (see

above) as a starter, the data were explored further, refin-

ing initial automated results using locality information

on the Biogeomancer site, and incorporating additional

information from additional sources: gazetteer data [41],

Google Earth, and general Internet searches. The object-

ive was to ascertain the location of each record with

greater precision, and to describe uncertainty [5] more

accurately. This step involved 5–30 minutes of work per

locality, and the result is referred to as our “worked”

dataset.

Researched data set

The method used for georeferencing the researched data

departs considerably from the previous two methods,

and may be characterized as an iterative, detailed clerical

review [42]. It is distinguished from the previous two

methods because it utilized legacy primary disease data

to refine the input data, and it consulted a broader range

of geographic reference material than those used in the

automated and researched methods. The CDC legacy

case form provided the basis for modifying and refining

the input data, based on the assumption that the WHO

spreadsheet contained transcription and other typo-

graphical errors. Additional legacy data was used to en-

rich the available geographic reference material, by

compiling all available historic maps of MPX case loca-

tions into a common GIS map document to easily overlay

and compare geographic information from different

sources [17,19,24,27,32-34,43-51]. GNS geographic refer-

ence data was further supplemented with Joint Operation

Graphics (JOG) topographic reference maps [52,53].

The workflow used to produce this dataset for MPX

cases was iterative, as persistent and repeated searches

sometimes turned up additional useful information. The

initial step was to identify and resolve discrepancies be-

tween the input data from the WHO spreadsheet and

the available case forms. Next, we examined all informa-

tion available about individual cases to construct a

sound spatial logic for identifying locations. When dis-

crepancies were encountered, information from different

sources had to be prioritized. We deemed original case

forms as the most authoritative, but these records were

not available for all cases. If original case forms were un-

available, the earliest published journal article reports

were prioritized. If these two sources proved unhelpful,

then information in review articles or marginal annota-

tions was considered.

Once we had verified the geographic information for a

given case, we began the search for a matching reference

location. Our general strategy for assigning a georeference

was to consult the JOG maps first, which had the finest

spatial resolution, using all available information sources

to find the locality on JOG maps (sometimes including

preliminary GNS searches). If no location could be found

or inferred there, then less-detailed data resources were

used in order of decreasing precision. To expedite locating

areas of interest within the JOG maps, GNS was consulted

because it could be queried electronically. If a single GNS

match was found, then the location could frequently be

confirmed on the JOG maps and more precise coordinates

recorded. If no probable match was found in GNS, or if

more than one location had the same place name, then in-

formation from alternative data sources was used to guide

searches. In all cases, prior to model development (see

below), we discarded localities for which the uncertainty

radius exceeded 10 km.

We evaluated the quality of results for each of the

georeferencing methods based on completeness, pos-

itional accuracy, concordance, and repeatability [13].

Completeness is determined by the number of locations

Lash et al. International Journal of Health Geographics 2012, 11:23 Page 4 of 12

http://www.ij-healthgeographics.com/content/11/1/23



which could be matched to latitude and longitude coordi-

nates. Positional accuracy is determined here by the spatial

resolution of the geographic reference dataset. Concord-

ance is difficult to quantify in this study, as it assesses

whether the georeferenced coordinates match truthfully

those referenced by the locality place name. Since this

study is based on historical data for which it is impossible

to revisit, our measure of concordance is the number of

localities falling within the political geography boundary

cited in the original data record. Repeatability is largely

determined by the georeferencing methodology.

Ecological niche model comparisons

Ecological niche modeling is a methodology that has seen

extensive use in recent years [54], and that has seen in-

creasing applications to understanding disease geography

[55]. We used a simple application of the methodology, as

the purpose of these analyses was only to test whether dif-

ferent georeferencing methodologies identify different

areas as “at risk” of MPX transmission. In particular, we

developed models using the Genetic Algorithm for Rule-

set Prediction, or GARP [56], based on default settings,

save for generating 100 random replicate models instead

of 20, and derived a consensus model that summed the 10

models with lowest omission error out of the original 100

models.

We analyzed known MPX occurrences for each of the

three georeferencing approaches in the context of 7

dimensions of climate drawn from the WorldClim climate

data set [57]. Specifically, we used annual mean tem-

perature, mean diurnal range, maximum temperature of

warmest month, minimum temperature of coldest month,

annual precipitation, and precipitation of the wettest and

driest months, which represent a diverse and relatively

uncorrelated environmental space in which to calibrate

models [58]. All analyses were conducted at 2.5’ spatial

resolution, which is equivalent to ~6.5 km near the Equa-

tor. The niche model results were summarized as maps of

putative suitable conditions, and compared by means of

calculation of difference maps on a pixel-by-pixel basis.

Results
Differences in georeferencing methods

The 404 recorded MPX cases in the WHO spreadsheet

came from 231 unique localities, a figure which may vary

slightly depending on whether spelling variations are

interpreted as valid entries or human error. The auto-

mated method successfully georeferenced only 69/231 lo-

calities (30% match rate); the worked method successfully

georeferenced 116/231 localities (50% match rate), while

the researched method successfully georeferenced 106/

231 localities (match rate = 46%). Match rates for each

method are broken down geographically in Table 1.

The georeferencing process for the researched data set

is of particular interest. During this process, 48 locations

were georeferenced using the input data as listed in ori-

ginally in the WHO spreadsheet; georeferencing

remaining localities involved careful checking against

primary records and/or alternative sources of geographic

information. Table 2 summarizes the relative utility of

the additional data resources used: CDC legacy records

and JOG maps provided the most valuable information,

followed by a coarse-scale (1:1,000,000) map that pro-

vided information on 7 localities [49]; several useful arti-

cles came from Ebola virus outbreak investigations,

which covered many of the same villages.

The above discussions of development of georefer-

enced public health data sets may all be inconsequential

if the additional precision and documentation that they

provide make no tangible difference to the outcome of

analyses. That is, if the results of analyses are qualita-

tively the same with such high-quality data as with less-

carefully-prepared data, then no reason exists to invest

time in the processes outlined above. Comparing the

distribution of localities of these three datasets

(Figure 2A), no MPX occurrences along the eastern,

southeastern, and northeastern limits of the known dis-

tribution of the pathogen were reliable, as none could be

substantiated in the researched data set.

The spatial projections of the three niche models identi-

fied areas that differed consistently. In brief, the researched

data set identified broader areas throughout West Africa,

as well as broader areas to the southwest and east in the

Congo Basin (Figure 2B). Visualizing the occurrence

points in a simple environmental space (annual mean

temperature X annual precipitation; Figure 2E), we see

that, although researched points define most of the

extremes of the distribution of the pathogen, the points

with lowest annual rainfall come from the automated data-

set only. Additionally, only the worked dataset includes

areas of both high temperature and high precipitation.

Discussion
The method with the best match rate overall was the

worked dataset (50% match rate overall), followed by the

researched dataset (46%), and finally the automated

dataset (30%) (Table 1). Comparing match rates by

country shows that the worked dataset achieved 100%

success only in Ivory Coast, whereas the researched

dataset achieved 100% success in Ivory Coast, Liberia,

Nigeria, and Sierra Leone; the automated dataset did not

achieve 100% success in any country. The researched

data set was successful, for example, in Liberia, because

a detailed map and set of site descriptions [47] were

among the materials that it used. A previous study [29]

georeferenced 156 of 231 locations (68% match rate),
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but the georeferencing methods were not documented

in detail.

While comparing match rates across each country pro-

vides a metric of how well different georeferencing methods

performed broadly across the continent, 220/231 (95%) of

MPX cases occurred in the DRC. In the DRC, the worked

method achieved a match rate of 51%, the researched

method 45%, and the automated method only 30%. Issues

of concordance arise, however: for example, consider num-

bers of cases georeferenced in the DRC regions of Bas

Zaire, Haut Zaire, and Shaba. The worked method identi-

fied 9 localities in Haut Zaire, but the WHO spreadsheet

indicated only three (marked with an asterisk in Table 1).

The automated method had even lower concordance, iden-

tifying 8 localities in Haut Zaire, one in Bas Zaire, and one

in Shaba, when the WHO spreadsheet showed three in

Haut Zaire and none in the other two regions.

Additional issues of concordance may go undetected

in these automated and worked datasets, as it is not en-

tirely clear how these methods dealt with multiple ‘hits,’

i.e., several places having the same name. In the

researched processing, localities were only entered into

the database if the locations fell within the indicated pol-

itical geographic unit, which reduced match rates by ex-

cluding some questionable localities that did have valid

returns; however, it minimized the probability of includ-

ing sites falsely. Under the other two methods, this con-

flicting evidence was clearly viewed subjectively (worked

data) or managed in unknown ways depending on dis-

tances among the multiple localities (automated data).

Information resources for georeferencing

When georeferencing historical disease data for foreign

locations, this study shows that georeferencing results

Table 1 Comparison of georeferencing match rates across countries and sub-national units for each different method

Researched Worked Automated

Country

Sub-national unit WHO Locations Matched % Matched % Matched %

Cameroon 2 0/2 0 1/2 50 0/2 0

Centre 2 0/2 0 1/2 50 0/2 0

Central African Republic 2 0/2 0 0/2 0 0/2 0

Sangha 2 0/2 0 0/2 0 0/2 0

Democratic Republic of the Congo 220 99/220 45 112/220 51 67/220 30

Bandundu 37 14/37 38 23/37 62 12/37 32

Bas Zaire 0 0/0 n/a 0/0 n/a 1/0* n/a

Equateur 143 62/143 43 71/143 50 38/143 27

Haut Zaire 3 2/3 67 9/3* n/a 8/3* n/a

Kasai Occidental 3 2/3 67 1/3 33 2/3 67

Kasai Oriental 31 19/31 61 6/31 19 5/31 16

Kivu 3 0/3 0 2/3 67 0/3 0

Shaba 0 0/0 n/a 0/0 n/a 1/0* n/a

Ivory Coast 2 2/2 100 2/2 100 1/2 50

Abengourou 1 1/1 100 1/1 100 0/1 0

Haut-Sassandra 1 1/1 100 1/1 100 1/1 100

Liberia 2 2/2 100 0/2 0 0/2 0

Grand Gedeh 2 2/2 100 0/2 0 0/2 0

Nigeria 2 2/2 100 1/2 50 1/2 50

East Central 1 1/1 100 0/1 0 0/1 0

Oyo 1 1/1 100 1/1 100 1/1 100

Sierra Leone 1 1/1 100 0/1 0 0/1 0

Southern 1 1/1 100 0/1 0 0/1 0

Overall 231 106/231 46 116/231 50 69/231 30

The number of MPX case localities were matched at different rates in different national and sub-national units (i.e. state or province), which are expressed as

fractions and percentages, relative to numbers of unique localities reported there in the WHO spreadsheet. Bolded regions in the DRC represent likely errors of

commission, where more localities were georeferenced than would be expected based on the WHO spreadsheet. Asterisks identify probable specific instances of

this type of error, such that calculating match rate percentages are not useful.
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are improved by both supplementing geographic refer-

ence information, and consulting a variety of informa-

tion sources to check and validate input data. The

overall match rate improved considerably between the

automated method and the worked and researched

methods because the latter two methods utilized add-

itional geographic reference information beyond a single

gazetteer (e.g. GNS). While the overall match rate be-

tween the worked and researched methods were similar,

the researched method used more authoritative geo-

graphic information resources. The worked method

included the Falling Rain digital gazetteer [41] for which

there is no metadata about its data sources or standards.

In comparison, the researched method made extensive

use of the JOG maps, which have very detailed standards

and specifications [62].

The CDC legacy case forms were a unique and in-

formative resource that illuminated and modified the in-

formation in the WHO spreadsheet which has

previously been available to MPX specialists. These

records allowed us to seek details of geographic refer-

ence in several dimensions—place of residence, location

of the reporting clinic, etc. Such information may fre-

quently not be available for other disease systems, but

their utility in this study pointed clearly to the

importance of tracking down all levels of documentation

for disease case occurrences in such studies.

The legacy case forms posed challenges, though. They

were not available for all 404 cases; four different varia-

tions of the typed form had been used; and forms were

almost always completed by hand. In theory, cases for

which CDC provided confirmatory testing (n = 193)

should have been available; however, not all of these case

forms could be located. Generally, forms captured im-

portant information, including patient identification, pa-

tient history, health facility contact information,

examining physician, and regional surveillance team, and

each patient was assigned a unique identification num-

ber. Specific to the geographic information on the form,

a case’s place of residence was captured using a hier-

archy of place names, including the following fields:

name of region (e.g. administrative level-1), sub-region

(e.g. administrative level-2), zone (e.g. administrative

level-3), collectivité (a french term for a local govern-

ment administrative unit, e.g. administrative level-4),

and locality (e.g. village of residence). Only one of the

four versions of the case form included the sub-region

field. Two versions of the form included separate zone,

collectivité, and locality fields for where the affected per-

son was when illness began, and where the case had

resided two weeks prior to onset of symptoms; however,

this information was most commonly identical. One ver-

sion of the form did not have separate fields for each of

the hierarchical place names; rather, it asked for the

“complete address” of the case, and the person complet-

ing the form filled in abbreviated field names for collec-

tivité, zone, and region.

The JOG maps also proved useful for overcoming the

limited precision of the GNS data. It is worth noting that

when localities from the GNS data are overlaid on the

JOG maps in ArcGIS, the village locations between the

two do not align perfectly, apparently owing to the higher

spatial precision of the JOG maps (Figure 3). In GNS,

nearly all Congo Basin localities have been truncated to

the nearest 1’ (~2.6 km near the Equator), whereas the

scale of the JOG maps provides geographic precision finer

than 1 km. A limitation of both the GNS and JOG maps,

is the fact that little information is known about the tem-

poral provenance of the information in either resource.

Similar temporal problems with georeferenced data have

been noted elsewhere [63], and potential end users of the

data must be aware that no solution is readily available.

While the GNS data set provides a helpful textual

search functionality, JOG maps (which must be

inspected visually by the user) allow more accurate geor-

eferencing. Operationally, using GNS and the JOGs in

tandem was the most efficient process. If a locality could

be found using the text-based search in GNS, it could

frequently be found and georeferenced with greater

Table 2 Geographic information resources consulted for

“researched” dataset

Localities Name Reference

43 Joint Operation Graphic’s (JOG’s) [52]

18 Legacy CDC case forms

Reports

4 Report of Meeting on the implementation of
Post-Smallpox Eradication Policy

[49]

3 Human infections with MPX virus: Liberia and
Sierra Leone

[47]

Articles

3 The role of squirrels in sustaining MPX virus
transmission.

[50]

2 Ebola haemorrhagic fever in Zaire, 1976. [59]

4 A search for Ebola virus in animals in the
Democratic Republic of the Congo and
Cameroon: ecologic, virologic, and serologic
surveys, 1979–1980.

[46]

1 Human MPX. [19]

1 Human poxvirus disease after smallpox
eradication.

[48]

1 Four generations of probable person-to-person
transmission of human MPX.

[60]

1 Results of Ebola antibody surveys in various
populations groups

[61]

The number of MPX case localities which benefited from more detailed CDC

legacy data and other historic materials, by resource name.
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precision using the JOG maps. When a record could not

be identified in GNS at the locality level, the next-higher

unit place name (county, district, etc.) could frequently

be found on the JOG maps, which then guided visual

searches of the JOG maps for the locality—many of the

place names found on JOG maps have not been cap-

tured in the GNS database. Because JOG maps were not

available for our entire study area, some potential exists

for spatial bias in the resulting georeferencing database.

However, such areas were not omitted completely be-

cause some records could be georeferenced via other in-

formation resources, so we neglect this source of bias in

our results.

The following provides an example of one of the

unique and more complex instances of the georeferen-

cing process, for the locality “Libela.” Libela was

recorded as a MPX occurrence locality from a case in

1972, but was not found in either the GNS database or

the JOG maps. Likely alternative spellings (e.g., Libella,

Lebella, etc.) were considered, but again no matching

records were found. After an Internet search using Goo-

gle, a reference to Libela was identified in the proceed-

ings of a conference on Ebola virus held in 1977, where

the author notes a fatal case of possible hemorrhagic

fever “in Libela (38 km south of Yambuku) [61].” Figure 3

shows a portion of a JOG map near Yambuku Mission

(not labeled on the map, but noted with a church

symbol, and included in the GNS database). Following

the only road south from Yambuku for 38 km leads to

an unlabeled populated place symbol, which we inferred

to be Libela. Hence, in this example, we had to use the

conjunction of GNS and JOG to identify Yambuku, and

then non-standard Internet resources to find the rela-

tionship of Libela to Yambuku.

Figure 2 Exploration of effects of different levels of care and detail in georeferencing of human MPX cases on derivative transmission

risk maps. Models derived from the automated and worked occurrence data differ in environmental and geographic dimensions from those

based on the carefully researched occurrence data points. See text for additional detail. Red and orange areas in panels C and D are those that

are more extensive in the researched data set, while blue areas are those that are less extensive. Panel E highlights portions of the ecological

niche unique to the West African countries (Nigeria, Ivory Coast, Liberia, Sierra Leone) which were located using the researched method, but

largely missed by the other two methods.
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Monkeypox transmission geography

The extra effort invested in the ‘researched’ data set

impacted the results of the ecological niche models. As

the data in Table 1 shows, the researched dataset

matched all of the West African locations (Nigeria, Ivory

Coast, Liberia, Sierra Leone), but both the automated

and worked datasets failed to locate many of the cases in

this region (Figure 2A). Ecological niche models gener-

ated from the results of the researched method

(Figure 2B) therefore include more area in West Africa

as part of their predictions. However, models generated

from the results of automated (Figure 2C) and worked

(Figure 2D) georeferencing methods largely do not in-

clude much of these West African locations in their pre-

dicted distribution. The ecological conditions

represented by the West African locations are different

than much of the rest of the MPX ecological niche, as

shown in the highlighted portion of Figure 2E. Areas

along the northern and southern edges of the Congo

Basin were more variable in the effects of researching

data points, as the signals from the worked and auto-

mated data sets differed for these areas.

Even without the modeling step, the exercise of inves-

tigating each occurrence record in great depth was illu-

minating, and the linking of individual diagnostic results

with each unique location proved insightful. No

researched data point fell in the eastern quarter of the

Congo Basin. Biologically more importantly, however, no

researched data point comes from the Republic of the

Congo, on the west side of the Congo River above

Kinshasa. This latter area has not seen massive political

conflicts, so this absence may in fact be real; research is

underway into the causes of this lack of records from

the region. Since the relational database created was able

to incorporate data on confirmatory lab test as well, we

can state that laboratory confirmation of MPX by viral

culture occurred in 70 (66%) of the 106 localities in the

researched data set, a higher standard for disease con-

firmation than serology testing alone. Hence, earlier

studies based on the less carefully researched WHO

spreadsheet [29] must be taken with a grain of salt: quite

simply, different georeferencing have very-real implica-

tions for results of mapping exercises.

Figure 3 Example of application of complex spatial logic to

georeferencing a difficult locality. A portion of a JOG map is

shown, with GNS gazetteer data overlaid as orange dots with

orange labels. The village of Libela did not appear on either the JOG

map or in the GNS database, but anecdotal reference was made to

it as being 38 km south of Yambuku [61]. Using ArcGIS, a 38 km

distance (solid white line) from Yambuku Mission (church symbol on

JOG map highlighted in white) to the south led to an unnamed

village on the JOG map 38 km away, which could reasonably be

inferred to be Libela.
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Conclusions
This paper contributes uniquely because we document

the difficulties and limitations in the available methods

for georeferencing under challenging conditions, namely

historic disease data in foreign locations with poor geo-

graphic reference information. We demonstrate the util-

ity of institutional legacy data and importance of

consulting a variety of geographic data resources to the

process of georeferencing. We show meaningful differ-

ences in the resulting MPX distribution depending on

the georefrencing method chosen. While other studies

have encountered and identified similar difficulties to

georeferencing historic public health data from develop-

ing countries [15,16], the MPX data used in this study

are even older; we believe that our results may help

other researchers in the future to plan strategically for

georeferencing other historic public health data sets.

Elsewhere, analyses are appearing in the literature using

ecological niche modeling or other related GIS based

modeling methods to examine disease distributions in

various locations and at various spatial scales e.g., [64-

67]. Too often, however, occurrence data are used with-

out careful introspection or the georeferencing process

is executed without detailed attention.

Such concerns have seen considerable discussion

and development in the biodiversity informatics world

[5,68-70]. In public health, a clear and robust argument

of the need for georeferenced health data was put forth

nearly 15 years ago [71]. Since then, a large amount of

research has focused on georeferencing domestic disease

occurrences [1,11,72-74]. The work herein, like that of

Serebriakova [75], suggests that greater investment in

georeferencing resources for international public health

research is needed, and that legacy map library collec-

tions should be used to fill gaps in digital gazetteer data

[76]. In this vein, automated approaches to extracting in-

formation from scanned maps [77] may offer even

greater efficiency than manual digitizing. Discussions

have begun as regards alternative formats for capture of

human disease occurrence data [78,79], but much more

contemplation is needed, owing to differences in disease

surveillance systems and geographic information infra-

structure around the world. Emerging technologies may

be one way of strengthening public health surveillance

capacity, such as monitoring Twitter feeds [80], and

other types of mobile communications [81]. In light of

the ongoing threat posed by emerging and re-emerging

infectious diseases [82], it seems most advantageous to

initiate a focus on constructing high-quality, well-

documented geographic summaries of primary disease

data.
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