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Abstract

Background: Global climate change can seriously impact on the epidemiological dynamics of vector-borne
diseases. In this study we investigated how future climatic changes could affect the climatic niche of Ixodes ricinus
(Acari, Ixodida), among the most important vectors of pathogens of medical and veterinary concern in Europe.

Methods: Species Distribution Modelling (SDM) was used to reconstruct the climatic niche of I. ricinus, and to
project it into the future conditions for 2050 and 2080, under two scenarios: a continuous human demographic
growth and a severe increase of gas emissions (scenario A2), and a scenario that proposes lower human
demographic growth than A2, and a more sustainable gas emissions (scenario B2). Models were reconstructed
using the algorithm of “maximum entropy”, as implemented in the software MAXENT 3.3.3e; 4,544 occurrence
points and 15 bioclimatic variables were used.

Results: In both scenarios an increase of climatic niche of about two times greater than the current area was
predicted as well as a higher climatic suitability under the scenario B2 than A2. Such an increase occurred both in a
latitudinal and longitudinal way, including northern Eurasian regions (e.g. Sweden and Russia), that were previously
unsuitable for the species.

Conclusions: Our models are congruent with the predictions of range expansion already observed in I. ricinus at
a regional scale and provide a qualitative and quantitative assessment of the future climatically suitable areas for
I. ricinus at a continental scale. Although the use of SDM at a higher resolution should be integrated by a more
refined analysis of further abiotic and biotic data, the results presented here suggest that under future climatic
scenarios most of the current distribution area of I. ricinus could remain suitable and significantly increase at a
continental geographic scale. Therefore disease outbreaks of pathogens transmitted by this tick species could
emerge in previous non-endemic geographic areas. Further studies will implement and refine present data
toward a better understanding of the risk represented by I. ricinus to human health.
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Background
Global climate change can seriously impact on the epi-

demiological dynamics of vector-borne diseases [1-5].

However, because of the influence of several biotic and

abiotic factors on hosts, arthropods and pathogens they

vector, future spatial and temporal distribution of vector-

borne diseases is still difficult to predict [4,6]. Under the

above circumstances, predicting how climatic changes will

affect geographic distribution of the vector is an obligate

step. Indeed, vectors play a key role in infectious disease

areas where they may transmit pathogens to a variety of

animal hosts, often representing the bridge between

zoonotic reservoirs and humans [3,7,8]. Likewise, since

pathogens may disperse through arthropods into previously

non-endemic areas, climate-induced changes in vector

distribution ultimately affect the epidemiology of vector-

borne diseases [3,9]. In addition, a distributional shift of

vectors may also lead to spatial overlap of different vector

species [10], thus changing the impact of pathogen trans-

mission, interfering with their epidemic cycles [4] or as a

consequence of vector interspecific competition [11-13].

In the last few years, Species Distribution Modelling

(SDM) has greatly contributed to understanding the effect

of climatic changes on vector distribution, combining

known occurrence points of a species with a set of cli-

matic variables [14,15]. Indeed, such an approach allows

developing the potential geographic distribution under

current and future climatic conditions [16-19]. SDM has

been used in several studies on arthropod vectors [20-25],

allowing to infer future range expansion, such as in the

case of sand fly species Lutzomyia anthophora and

L. diabolica in North America [22], or a potential distri-

butional shift and/or a reduction of geographic range, as

suggested for the malaria vectors in Africa [21].

In this study we investigated how future climatic

changes could affect the climatic niche of the tick Ixodes

ricinus (Acari, Ixodidae). This species is regarded as the

most important vector occurring in Eurasian regions since

it is a multi-competent vector of bacteria (i.e. Borrelia

burgdorferi s.l., Babesia spp., Anaplasma and Erlichia spp.)

and viruses (i.e. Flavivirus spp.), to humans and animals

[26-30]. The above tick species is regarded as a major

vector responsible for many zoonotic diseases, such as

Lyme disease, babesiosis, anaplasmosis, erlichiosis and

Tick-Borne Encephalitis (TBE) [31]. Ixodes ricinus has

been recorded in Europe, Russia, up to the Caspian Sea

on the east, and North Africa [32]. Along the western

boundary of Russia and the neighboring countries, its

range overlaps with the range of I. persulcatus tick, dis-

tributed in Eastern Europe and across Asia [30,33,34].

Recently, a latitudinal and altitudinal shift has been

reported in I. ricinus distribution in European regions,

and temperature rise was suggested to be among the fac-

tors responsible for this phenomenon [35-40]. In spite of

the epidemiological implications that vector distribution

changes might have on vectored pathogens, no studies

have investigated the impact of future climatic changes on

the geographic distribution of this tick species at a contin-

ental geographic scale.

By using SDM we aimed to reconstruct the climatic

niche of I. ricinus and projected it into the future condi-

tions for 2050 and 2080, under two possible scenarios: i) a

continuous human demographic growth and a severe in-

crease of gas emissions (A2 scenario), ii) a lower human

demographic growth than A2, and a more sustainable gas

emissions (scenario B2) [41].

Methods

To reconstruct the current and future climatic niche of

I. ricinus, the algorithm of “maximum entropy” has been

used, as implemented in the software MAXENT 3.3.3e.

This technique, using presence-only points in conjunction

with environmental variables, estimates the potential distri-

bution of the species finding the probability distribution

that approximates the distribution of maximum entropy

[42]. This approach is largely used to reconstruct SDM

because its performances are highly competitive with the

other modeling methods. Indeed it showed the better cali-

bration when compared to 16 other algorithms, including

several traditional tools using presence-absence data,

such as general linear models (GLM) and general additive

models (GAM) [18,43-46]. To model the current and fu-

ture climatic niche of I. ricinus, we used 4,544 occurrence

points (Figure 1) obtained from the digital dataset avail-

able at https://sites.google.com/site/palticks/home/down-

load [47]. The dataset includes occurrence points obtained

by a systematic search of the published, peer-reviewed

literature since, approximately, 1970 to 2010; records of

ticks available in some curated collections were also in-

cluded. It covers most of the I. ricinus range and does

not include records considered as potentially incorrect,

based on the known distribution of I. ricinus [47]. Environ-

mental data were downloaded from WorldClim database

(www.worldclim.org) with a resolution of 2.5 arc-minutes

(~ 5 km). Nineteen bioclimatic variables derived from

monthly temperature and rainfall values were downloaded,

that represent annual trends, seasonality and extreme or

limiting environmental factors. The runs have been made

using 75% of the occurrence points to construct the model

(training data) and the remaining 25% to test it. The

default parameters of MAXENT have been used with

the exception of the Regularization parameter β. This

parameter acts as a multiplier for the default values and it

regulates the smoothness and regularity of the model

[44,48]. Recently, Warren & Seifert [48] have highlighted

the importance to test different values of this parameter to

improve the MAXENT’s performance. We developed ten

models using different values of β (1, 3, 5, 7, 9, 11, 13, 15,
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17 and 19) and then we chose the model that outperformed

all the others using the sample sized corrected Akaike

Information Criterion (AICc) score, as implemented in

the software ENMTOOLS. The model built with the value

of β equal to 1 gained the lowest score for the AICc, thus

outperforming all the remaining nine models tested,

therefore it has been used to reconstruct the final models.

To evaluate the accuracy of the developed models we used

the area under the curve (AUC) of the receiver operating

characteristic (ROC) as suggested by Peterson et al. [49].

Explorative analyses have been done using all 19 variables,

then the environmental variables outside the range present

in the training data have been excluded. The final models

have been reconstructed using 15 variables (Additional

file 1). Ten replicates were run using the cross-validation

form of replication. This approach randomly split the data

into equal-size groups (“folds”) and creates models leaving

out each fold in turn and using them for evaluation [50].

The model developed for the present-day conditions has

been projected onto the future climatic conditions. Two

scenarios proposed by the Special Report of Emission

Scenarios (SRES) of the Inter-governmental Panel on

Climate Change (IPCC) [51], have been considered, namely:

scenario A2 (that proposes a continuous human demo-

graphic growth and a severe increase of gas emissions)

and scenario B2 (that proposes lower human demographic

growth than A2, and a more sustainable gas emissions)

[17,41]. Potential climatic niche under these scenarios

has been predicted for 2050 and 2080 using the Canadian

Center for Climate Modeling and Analysis CCCAM-

CGCM3.1-T47 model [52].

All SDM predictions were visualized in Quantum-GIS

1.8.0 (http://download.qgis.org). To estimate the future

increase of the niche area respect to current model, pres-

ence/absence maps using the minimum training presence

threshold were constructed [53]. Then future increase of

the niche area respect to current model was calculated

using the software ImageJ (http://rsb.info.nih.gov/ij/).

Results

The averaged climatic niche of the species for current

conditions is shown in Figure 2a. The averaged value of

AUC for this model was 0.860 (± 0.004), indicating an

optimal performance of the models. Among the 15

variables used BIO6 (Min Temperature in the coldest

period) and BIO17 (Precipitation of the driest quarter) give

the highest percent contribution to construct the model

(Additional file 1), according to the biology of I. ricinus,

that lives in biotopes that offer moderate temperatures

and high relative humidity [54]. The climatically suitable

area predicted by our model under current conditions en-

compasses the known geographic distribution of I. ricinus

and that previously inferred for this species using both

climatic features and vegetation index [55], supporting

the validity of our reconstruction.

In Figure 2b-e the models predicted under future climatic

conditions are shown. In both scenarios an increase of a

climatically suitable area of about two times greater than

Figure 1 Occurrence points. Map shows the 4,544 records of I. ricinus used to develop the Species Distribution Modelling.
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Figure 2 Geographic distribution predicted by species distribution modelling for Ixodes ricinus. (a) Current conditions; (b-c) 2050, scenario
A2 and B2, respectively; (d-e) 2080, scenario A2 and B2, respectively.
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the current area was predicted (Additional file 2). Such an

increase occurred both in a latitudinal and longitudinal

way, including northern Eurasian regions (e.g. Sweden and

Russia), that were previously unsuitable for the species.

Notably, climatically suitable conditions appeared also

in the easternmost Asian region, such as Central China,

South Korea, Japan and Kamchatka Peninsula. While the

two scenarios showed no difference about the extension

of the predicted suitable area, they instead showed some

difference in its climatic suitability. Indeed, under the

scenario B2 most of the predicted area showed a higher

climatic suitability than A2 in both 2050 and 2080. Fur-

thermore, under the scenario B2 an increase of climatic

suitability for I. ricinus has been predicted between 2050

and 2080 in several areas (i.e. Ireland and Eastern Europe)

(Figure 2c,e).

Discussion

The increase in temperature, which has been predicted

to occur in the future years [41], could drastically affect

the ecology and geographic distribution of I. ricinus in

Eurasian regions. Climatic changes have been shown to

affect seasonal activity and feeding behavior of I. ricinus,

at different life stages [3,32,40]. Furthermore, because of

the I. ricnus vulnerability to drought [54], global warming

may affect negatively the species in southernmost part of

its range of distribution. On the other hand, higher

temperature could lead to milder winter and extended

spring and autumn seasons than those actually charac-

terizing northern regions, making these areas climatic-

ally suitable for the species. Evidence that this latter

phenomenon is in progress in Europe has been already

recorded for I. ricinus, in which an expansion of the

northern distribution limits in Sweden and Norway has

been reported since the 1980s [35,38-40,56]. Likewise, a

shift of the limit to higher altitudes northward in Czech

Republic and Switzerland respectively, has been shown

[36,37]. Our results by using SDM are congruent with the

predictions of range expansion and provide a qualitative

and quantitative assessment of the future areas climatic-

ally suitable for I. ricinus at a continental scale.

While interpreting inferred expansion of climatic niche

in the context of possible changes in geographic distribu-

tion of I. ricinus [15-18] the following two issues should

be considered. First, the climatic features are only one of

the ecological features that affect the geographic distribu-

tion of tick species [57,58]. However, I. ricinus, as all other

ixodid ticks, spend most of their life off the host, so that

climate is an essential determinant of their occurrence

[59,60]. At a smaller geographic scale, other abiotic factors

should be considered to assess the effective occurrence of

I. ricinus, such as landscape physical features, or landscape

use [15] and biotic factors (competition, hosts abundance

etc.) [15,61,62]. The integration of these factors could

show discontinuity in areas that our model predicted

as large continuous areas of climate suitability. With

respect to biotic factors, the hosts are key components

for the ecological niche of ticks [7,63,64]. Ixodes

ricinus is able to exploit a large variety of terrestrial

vertebrates [7,63-65], so that host occurrence should

not be a limiting factor to their persistence under climatic

change scenarios [66]. Its wide ecological plasticity with

respect to host choice, for example, was a key factor in

allowing I. ricinus to survive during the last glacial phases

without significant range reduction across the European

continent [67].

Secondly, it should be considered that in order to

have an effective range expansion, the new climatically

suitable areas should be reached by the species. Host

movements largely determine tick dispersal during in-

festation [65,68-72]. Among the several hosts exploited

by I. ricinus, some of them, such as birds and cervids,

are characterized by high dispersal ability. Host mediated

dispersal of ticks also across long distances and more

distant geographic areas have been demonstrated in several

studies both for I. ricinus [72-74] and for other tick species

[40,67,75-77]. Following the above considerations, although

the use of SDM models at a higher resolution should be

integrated by a more refined analysis of further abiotic

and biotic data, the general significance of results presented

here suggest that under future climatic scenarios, most

of the current distribution area of I. ricinus could remain

suitable and significantly increase at a continental geo-

graphic scale.

Our results suggest also that the more favourable

climatic conditions for I. ricinus will occur under the

scenario B2 (i.e., lower human demographic growth, and a

more sustainable gas emissions than A2). Interestingly,

reduced demographic growth and gas emissions are

objectives of several international policies [78]. In this

context it is further advisable to investigate the factors

that could affect the epidemiological dynamics in which

this tick is involved. For example, future inferred expan-

sion eastward of the climatic niche of I. ricinus could

increase the overlapping areas with the Eurasian tick

I. persulcatus [79], increasing or decreasing pathogen

transmission due to vector interspecific competition

[11-13], or to interferences among pathogen epidemic cy-

cles [4]. This may be the case for Borrelia spp. in which a

relationship has been established between bacterial com-

plexes and tick species. Indeed, while the Eurasian type

of B. garinii and B. afzelii are carried by both I. ricinus

and I. persulcatus in North Asian regions, B. burgdorferi

s.s. seems to be vectored exclusively by I. ricinus, and

the Asian type of B. garinii by I. persulcatus [80]. The

expansion of the areas of co-presence of the two tick spe-

cies could enhance the diffusion of the types for which

both of them are competent.
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Conclusions
In the epidemiological systems involving I. ricinus as a

vector, climatic changes have been shown to have several

effects. First, the seasonal activity of ticks could undergo

some changes [40,81]. Indeed, previous studies conducted

on I. ricinus showed that this species could prolong

its questing season, usually spanning from March to

November, until January as a response of milder winters

due to the temperature increase [3,81-84]. As a conse-

quence, more abundant populations of ticks could survive

the winter, thus a higher probability of tick bites, and

in turn of disease transmission, could be expected [82].

Second, different life stages could become active and

search for a host simultaneously [32,40]. Larvae and

nymphs could parasitize the same host individual at

the same time, favoring the trans-stadial transmission of

pathogens by co-feeding and enhancing the efficiency of

disease transmission [40,85]. In addition, our results sug-

gest a potential significant increase of climatic niche of

I. ricinus in the future years under both scenarios. There-

fore disease outbreaks of pathogens transmitted by this

tick species could emerge in previous non-endemic geo-

graphic areas. Further studies will implement and refine

present data toward a better understanding of the risk rep-

resented by I. ricinus for human health.
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