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Abstract  In this work, a two dimensional problem in magnetic micropolar generalized thermoelastic medium, in the 
presence of a transverse magnetic field -taking into consideration the effect of Hall current- subjected to ramp-type heating, 
is investigated. The entire elastic medium is rotating with a uniform angular velocity. Laplace-Fourier transform technique 
is used to solve the problem. The transformed components of normal strain, normal stress, tangential couple stress, temper-
ature distribution, and the current density components are obtained. The integral transforms have been inverted by using a 
numerical technique. Hall current effects and effect of rotation have been depicted graphically on the resulting quantities.  
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1. Introduction 
The linear theory of elasticity is of paramount importance 

in the stress analysis of steel, which is the commonest en-
gineering structural material. To a lesser extent, linear elas-
ticity describes the mechanical behavior of the other com-
mon solid materials, e.g. concrete, wood and coal. However, 
the theory does not apply to the behavior of many of the 
new synthetic materials of the elastomer and polymer type, 
e.g. polymethyl-methacrylate (Perspex), polyethylene and 
polyvinyl chloride. The linear theory of micropolar elastici-
ty is adequate to represent the behavior of such materials. 
For ultrasonic waves i.e. for the case of elastic vibrations 
characterized by high frequencies and small wavelengths, 
the influence of the body microstructure becomes signifi-
cant. This influence of microstructure results in the devel-
opment of new type of waves, not found in the classical 
theory of elasticity. Metals, polymers, composites, soils, 
rocks, concrete are typical media with microstructures. 
More generally, most of the natural and manmade materials 
including engineering, geological and biological media 
possess a microstructure. Eringen and Suhubi[1] and Suhubi 
and Eringen[2] developed the nonlinear theory of mi-
cro-elastic solids. Later Eringen[3-5] developed a theory for 
the special class of micro-elastic materials and called it 
the“linear theory of micropolar elasticity”. Under this 
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theory, solids can undergo macro-deformations and ma-
cro-rotations.  

The classical uncoupled theory of thermoelasticity pre-
dicts two phenomena not compatible with physical observa-
tions. First, the equation of heat conduction of this theory 
does not contain any elastic terms, second, the heat equation 
is of a parabolic type, predicting infinite speeds of propaga-
tion for heat waves. 

Biot[6] introduced the theory of coupled thermoelasticity 
to overcome the first shortcoming. The governing equations 
for this theory are coupled, eliminating the first paradox of 
the classical theory. However, both theories share the 
second shortcoming since the heat equation for the coupled 
theory is also parabolic. 

Two generalizations to the coupled theory were intro-
duced. The first is due to Lord and Shulman[7], who ob-
tained a wave-type heat equation by postulating a new law 
of heat conduction to replace the classical Fourier’s law. 
Since the heat equation of this theory is of the wave-type, it 
automatically ensures finite speeds of propagation for heat 
and elastic waves. The remaining governing equations for 
this theory, namely, the equations of motion and constitutive 
relations, remain the same as those for the coupled and the 
uncoupled theories. The second generalization is known as 
the theory of thermoelasticity with two relaxation times, or 
the theory of temperature-rate-dependent thermoelasticity, 
and was proposed by Green and Lindsay[8]. It is based on a 
form of the entropy inequality proposed by Green and 
Laws[9]. It does not violate Fourier’s law of heat conduc-
tion when the body under consideration has a center of 
symmetry, and it is valid for both isotropic and anisotropic 
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bodies. Ezzat and Youssef[10] studied the generalized 
magneto-thermoelasticity in a perfectly 

conducting medium.  
The foundations of magnetoelasticity were presented by 

Knopoff[11] and Chadwick[12] and developed by Kaliski 
and Petykiewicz[13]. An increasing attention is being de-
voted to the interaction between magnetic field and strain 
field in a thermoelastic solid due to its many applications in 
the fields of geophysics, plasma physics and related topics. 
In all papers quoted above it was assumed that the interac-
tions between the two fields take place by means of the Lo-
rentz forces appearing in the equations of motion and by 
means of a term entering Ohm’s law and describing the 
electric field produced by the velocity of a material particle, 
moving in a magnetic field. 

Many authors have considered the propagation of elec-
tromagneto-thermoelastic waves in an electrically and 
thermally conducting solid. Paria[14] discussed the propa-
gation of plane magneto-thermoelastic waves in an isotropic 
unbounded medium under the influence of a uniform ther-
mal field and with a magnetic field acting transversely to 
the direction of the propagation. Paria used the classical 
Fourier law of heat conduction, and neglected the electric 
displacement. Wilson[15] extended Paria’s results by intro-
ducing a component of the magnetic field parallel to the 
direction of the propagation. A comprehensive review of the 
earlier contributions to the subject can be found in Paria[16]. 
Among the authors who considered the generalized magne-
to-thermoelastic equations are Nayfeh and Na-
mat-Nasser[17] who studied the propagation of plane waves 
in a solid under the influence of an electromagnetic field. 
They obtained the governing equations in the general case 
and the solution for some particular cases. Choudhuri[18] 
extended these results to rotating media. Sherief and Ez-
zat[19] solved a thermal shock half-space problem using 
asymptotic expansions. Lately, Rajneesh Kumar and Ru-
pender[20] studied the effect of rotation in magne-
to-micropolar thermoelastic medium due to mechanical and 
thermal sources, Rajneesh Kumara and ManjeetSingh[21] 
solved the effect of rotation and imperfection on reflection 
and transmission of plane waves in anisotropic generalized 
thermoelastic media, R. Kumar, Praveen Ailawalia[22] stu-
died moving load response in micropolar thermoelastic me-
dium without energy dissipation possessing cubic symmetry, 
few attempts have been made to solve two-dimensional 
problems in this field Moncef Aouadi[23] introduced tem-
perature dependence of an elastic modulus in generalized 
linear micropolar thermoelasticity. 

When the magnetic field is very strong, the conductivity 
will be a tensor and the effect of Hall current cannot be 
neglected. The conductivity normal to the magnetic field is 
reduced due to the free spiraling of electrons and ions about 
the magnetic lines of force before suffering collisions and a 
current is induced in a direction normal to both the electric 
and magnetic fields. This phenomenon is called the Hall 
effect. In all of the above investigations, the effects of Hall 
current have not been considered.  

In this work, we introduced a new model of the equations 
of the generalized magneto micropolar thermoelasticity in 
the presence of transverse magnetic field, taking into con-
sideration the effects of Hall current and rotation, is applied 
to both generalizations, Lord–Shulman theory and 
Green–Lindsay theory, as well as to the coupled theory.  

2. Basic Equations 
In the dynamical of linear theory of magneto micropolar 

thermoelasticity permeated by an initial strong magnetic 
field of strength H = (0, 0, Ho). We consider The elastic 
medium is rotating uniformly with an angular velocity Ω.  

The governing equations of motion for homogenous, iso-
tropic and elastic solid, when the Hall current and rotation 
effect is taken into account consists of 

i. The equations of motion taking into account the Lo-
rentz force have the form 

( )ijr j r i,ttJ H = u 2o
uu
t

σ µ ε ρ
  ∂

+ + Ω× Ω× + Ω×  ∂  
j,ij

(1) 

, i,tt =ijr ji jm j
t
φε σ ρ φ

 ∂
+ + Ω× ∂ 

jr      (2) 

where σij is the force stress tensor, ui is the components of 
the displacement vector, φi is the components of the micro-
rotation vector, mij is the couple stress tensor, ρ is the densi-
ty, j is the microinertia, εijr is the permutation symbol, µo is 
the magnetic permeability, and Jr is the conduction current 
density, given by The generalized Ohm’s law including Hall 
current:  

0
ο o2 e

1J  μ  u  J H
en1 m

E Hσ  
= + × − × 

+  


     (3) 

where E is the intensity vector of the electric field, m (= 
ωe te) is the Hall parameter, te is the electron collision time, 
ωe (= e Bo/me) is the electronic frequency, e is the charge of 
an electron, Bo is the magnetic induction, me is the mass of 
the electron, σo (e2 ne te/me), is the electrical conductivity 
and ne is the number density of electrons. 

ii. The constitutive equation 

( )
( ) ( )

ij , , ,

, 1 ,

r r ij i j j i

j i ijr r t ij

u u u

k u T T

σ λ δ µ

ε φ γ ν δ
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       (4) 

, , ,ij r r ij i j j im αφ δ βφ γφ= + +         (5) 

where λ, μ are Lame’s constants, α, β, γ, and k are mi-
cropolar constants, T is the absolute temperature of the me-
dium, ν is the constant with dimension of time, called relax-
ation time, γ1 is the material constant given by γ1 = ( 3 
λ+2μ+K) α1, α1 being a coefficient of linear thermal expan-
sion.  

iii. The generalized equation of heat condition 
( ) ( ),jj , 1 , ,K T E t o t o i it o o i ittc T T T u n uρ τ γ τ= + + +  (6) 

where K is thermal conductivity, cE is the specific heat at 
constant temperature, To is the uniform temperature, τo is an 
other relaxation time and no is a non-dimensional constant. 
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For L–S theory n0 =1, τo > 0, ν = 0, and for G–L theory n0 = 
0, τo > 0, ν > 0.  

Substituting equations (4), and (5) into equation (5), and 
(6) we get 

( ) ( ) ( )
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3. Formulation and Solution of the 
Problem 

The rectangular Cartesian system (x, y, z) having origin 
on the surface z = 0 with z-axis vertical into the medium is 
introduction. In the following, we restrict our analysis pa-
rallel to xz-plane with z ≥  0, ui = (u, 0, w), φi = (0, φ2, 0) 
and Ω = (0, Ω, 0), we also assume that E = 0, the genera-
lized Ohm’s law gives Jy = 0 everywhere in the medium. 
The current density components Jx and Jz are given by: 
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where ,,2 kcKc Eoo ρηρ == and M is the Hartmann 
number or magnetic parameter. 

The system of equations (6)-(8), using relations (9), and 
(10), takes the following form – dropping the asterisks for 
convenience-, 

2
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Introducing potential functions Φ(x,z,t), and Ψ(x,z,t) de-
fined by 
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Substituting Eq. (21) into Eqs. (11)–(14) we obtain 
2
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Taking Laplace transform defined by the relation: 

0( ) ( )stf s e f t dt−∞= ∫  
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of both sides of (15)–(20) and (22)-(25) using the homo-
genous initial conditions, we obtain: 
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We now use the Fourier transform with respect to the 
space variable z, defined by 
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Taking the Fourier transform of both sides of (26)–(33) 
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and the operator D means the derivative with respect to x. 
0n Eqs. (34)–(37) and after some simplification, we ar-

rive at the following 
eighth order differential equation satisfied by 
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The solution of the Eq. (44) satisfying the radiation con-
ditions that *

2
** ,, ϕΨΦ and *T  tend to zero as x tends to 

infinity can be written as 
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and ki (i=1,2,3,4) are the characteristic roots of the cha-
racteristic equation (36) which is 

,02468 =+−+− FCkBkAkk  
Eq. (21) together with Eq. (45), immediately give 
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4. Application 
The boundary of the half-space is affected by ramp-type 

heating, which depends on the coordinate z and the time t of 
the form 

(0, , ) ( ) ( )T z t G t F z=         (48) 
where F(z) is an arbitrary function of z and G(t) is a 

function defined as Misra et al.,[25]: 
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where to indicates the length of time to rise the heat and 
T1 is constant, this means that the boundary of the 
half-space, which is initially at rest and has a fixed temper-
ature To, is suddenly raised to a temperature equal to the 
function G(t)F(z) and maintained at this temperature from 
then on. 

Applying the Laplace and Fourier transforms to both 
sides of Eq. (42), we obtain 
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We assume that, on the boundary x = 0 the displacement 
u of the body does not depends on x, hence we have Du(0, z, 
t) = 0 and the medium is subjected to a rough and rigid 
foundation enough to prevent the displacement w at any 
time and any point of z, so also we have w(0, x, t) = 0, mzy 
= 0. 

Applying the Laplace and Fourier transforms, we get 
* * * 0zyDu w m= = =              (51) 

Using the values in expressions (50), and (51), the above 
general expressions reduce in our case to the following 
form 
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( ) 4,3,2,1.,11 =−= iiqkkL iiii   

5. Particular Cases 
i- If m = 0, in Eqs. (52)–(61), we obtain the components 

of displacements and tresses in magneto-micropolar genera-
lized thermoelastic with rotating medium without Hall cur-
rent effect. 

ii- Taking Hartmann number M = 0, in Eqs. (52)–(61), we 
obtain the components of displacements and tresses in mi-
cropolar generalized thermoelastic with rotating medium. 

iii. If the effect of rotation is absent (Ω = 0), in Eqs. 
(52)–(61), we obtain the components of displacements and 
stresses in micropolar generalized thermoelastic medium 
with the following changed values of δ1, δ3, δ4, and δ6 as 
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iv. Taking n0 =1, τo > 0, ν = 0 in Eqs. (52)–(61), we ob-
tain the corresponding expressions for magneto-micropolar 
thermoelastic with rotating for L–S theory. 

v. Taking n0 = 0, τo > 0, ν > 0 in Eqs. (52)–(61), we obtain 
the corresponding expressions for magneto-micropolar 
thermoelastic with rotating for G–L theory. 

vi. Taking, n0 = 0, τo= 0, ν= 0 we obtain the corresponding 
expressions for magneto-micropolar coupled thermoelastic 
with rotating medium for (C–T theory 

6. Inversion of the Transforms 
To obtain the solution of the problem in the physical do-

main (x,y, t), we have to invert the iterated transforms in 
Eqs. (52)–(61). These expressions can be formally ex-
pressed as functions of x and the parameter of the Fourier 
and Laplace transforms q and s of the form )s,q,x(f * . 

First, we invert the Fourier transform using the inversion 
formula given previously. This gives the Laplace transform 
expression )s,q,x(f  of the function f(x,y, t) as 

( )

1( , , ) ( , , )
2

1 cos( ) sin( )
2

iqy

e o

f x q t e f x q s dq

qy f i qy f dq

π

π

∞
−

−∞
∞

−∞

= ∫

= +∫

 

where fe and fo denote the even and the odd parts of the 
function ),,(* sqxf respectively. 

We shall now outline the numerical inversion method 
used to find the solution in the physical domain. For fixed 
values of x, y, and q the function inside braces in the last 
integral can be considered as a Laplace transform )s(g  of 
some function g(t). 

The inversion formula for the Laplace transform can be 
written as 

1( ) ( )
2

c i st

c i
g t e g s ds

iπ

+ ∞

− ∞
= ∫  

where c is an arbitrary real number greater than all the 
parts of the singularities )s(g . Taking s = c + iy, the above 
integral takes the form 

( ) ( )
2

ct
iyteg t e g c iy dy

π

∞

−∞
= +∫  

Expanding the function h(t) = exp(-ct)g(t) in a Fourier 
series in the interval[0, 2L], we obtain the approximate 
formula. 

( ) ( ) Dg t g t E∞= +  
where 

1

1( ) 0 2
2 o k

k
g t c c for t L

∞
∞

=
= + ≤ ≤∑      (62) 

and 

( )Re
ct

ik t L
k

ec e g c i k t L
L

π π = + 
    (63) 

ED, the discretization error, can be made arbitrary small 
by choosing c large enough. 

Since the infinite series in Eq. (62) can be summed up to 
finite number N of terms, the approximate value of g(t) be-
comes 

1

1( ) 0 2
2

N
N o k

k
g t c c for t L

=
= + ≤ ≤∑   (64) 

Using the above formula to evaluate g(t), we introduce a 
truncation error ET which, must be added to the discretiza-
tion error to produce the total approximation error. 

Two methods are used to reduce the total error. First the 
‘‘Korrecktur’’ method is used to reduce the discretization 
error. Next, the e algorithm is used to reduce the truncation 
error and hence to accelerate convergence. 

The Korrecktur method uses the following formula to 
evaluate the function g(t): 

2( ) ( ) (2 )cL
Dg t g t e g L t E∞ ∞ ′= − + +  

where the discretization error DD EE <<′ . Thus, the 
approximate value of g(t) becomes 

2( ) ( ) (2 )cL
NK N Ng t g t e g L t′= − +     (65) 

N' is an integer such that N' < N. 
We shall now describe the e-algorithm that is used to ac-

celerate the convergence of the series in Eq. (64). 
Let N = 2q + 1 where q is a natural number, and let  

∑
=

=
m

k
kcms

1
 

be the sequence of partial sums of Eq. (64). We define the 
e-sequence by 

, 1,0, 0o m mε ε= =  

and 

,...3,2,1,
1

,1,

1,1
,1 =

−

+
=

+

+−
+ p

mpmp

mp
mp εε

ε
ε  

it can be shown that the sequence ε1,1, ε3,1, ε5,1, . . . , εN,1, 
converges to f(x,y, t) + ED – co/2 faster than the sequence of 
partial sums sm (m = 1,2,3,. . .). 

The actual procedure used to invert the Laplace transform 
consists of using Eq. (65) together with the ε-algorithm. The 
values of c and L are chosen according to the criteria out-
lined Honig and Hirdes[24]. 
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7. Numerical Results and Discussion 
The analysis is conducted for a magnesium crystal-like 

material. Following reference[25], the values of physical 
constants are 

λ= 9.4x1010 Nm-2, μ=4.0x1010 Nm-2, k = 1.0x1010 Nm-2,  
ρ=1.74x103 gm/cm3, γ=0.779x10-9N, j=0.2x10-15 cm2, 
cE=1.04x103 kgm-3, K*=1.7x102 Jm-1s-1deg-1, To=298 K,  
ν = 3.68x106Nm-21deg-1, τo=0.02, no=0.05. 
we consider the following electric constants for our 

problem 
σo = 9.36x105Col2/Cal.cm.sec, Ho = 105 Col/cm.sec 
The computations are carried out for the non-dimensional 

time t=0.1, strip width a=0.9x103 and rotation Ω=2and on 
the surface plane z=0. The distribution of non-dimensional 
transverse displacement u, non-dimensional normal dis-
placement w, non-dimensional normal force stress σzz, non- 
dimensional tangential couple stress mzy, non-dimensional 
temperature distribution T non-dimensional current density 
jx and jz non-dimensional distance x have been shown in 
Figs. 1–7. 

The solid line represent magneto-micropolar generalized 
thermoelastic with Hall current effect and rotating medium 
MMGT(HR) and large dashes line represent magne-
to-micropolar generalized thermoelastic with Hall current 
effect MMGT(H), while small dashes line represent mag-
neto-micropolar generalized thermoelastic in rotating me-
dium without Hall current effect MMGT(R). The dot line 
represent magneto-micropolar generalized thermoelastic 
without Hall current effect and rotating medium MMGT.  

Fig.1 Studying the effect of Hall parameter m on the 
temperature distribution against y for, from this figure we  

 
Figure 1.  Variation of temperature with the Hall parameter m 

see that the all curves start from the same value 1 at 
x=0.0 then decreases till it tends to zero at x =2, we observe 
that from this figure the temperature T decrease in the case 
MMGT(HR) in comparison to curve MMGT(R), while in-
creases in comparison to curves MMGT and MMGT(H). 
The effect of parameter m on the transverse displacement u 
is presented in Fig. 2.It is noticed that from the graphic re-
presentation of the transverse displacement that the values 
are oscillatory for all the cases in the whole range and the 
values of u remain higher near the boundary condition in 

magnitude for case MMGT(HR) as compared with the val-
ues for all cases and then increases. Fig. 3 describes the 
variations of the normal displacement w under the effect of 
all parameters, it is noticed that the normal displacement w 
records values lower in case MMGT(HR) as compared with 
the values for all cases. It is shown in Fig. 4 that the values 
of normal force stress for MMGT(H) and MMGT lie in a 
very short range. The variation for all cases being oscillato-
ry in nature are comparable in magnitude and the magnitude 
of these oscillations decrease with increase in horizontal 
distance x. Fig. 5 shows that the Variation of couple stress 
myz decreases as m increases MMGT(HR). The figure indi-
cate that myz records values higher in case MMGT(H) as 
compared with the values of case MMGT(R) and all cases 
oscillations about y-axes.  

 
Figure 2.  Variation of transverse displacement with the Hall parameter 
m 

 
Figure 3.  Variation of normal displacement with the Hall parameter m 

 
Figure 4.  Variation of normal force stress with the Hall parameter m 
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Figure 5.  Variation of couple stress with the Hall parameter m 

 
Figure 6.  Variation of current density component J

x
 with the Hall para-

meter m 

 
Figure 7.  Variation of current density component J

z
 with the Hall para-

meter m 

Figs. 6, 7 describe the variations of two components of 
density component Jx and Jz respectively, it is evident that 
the values of both fields are decreased in the MMGT(HR) 
as compared with the values for cases MMGT and 
MMGT(H). 
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