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�e intrauterine 	uid 	ow due to myometrial contractions is peristaltic type motion and the myometrial contractions may occur
in both symmetric and asymmetric directions. �e channel asymmetry is produced by choosing the peristaltic wave train on the
walls to have di
erent amplitude, and phase due to the variation of channel width, wave amplitudes and phase di
erences. In
this paper, we study the e
ects of heat and mass transfer on the peristaltic transport of magnetohydrodynamic couple stress 	uid
through homogeneous porous medium in a vertical asymmetric channel. �e 	ow is investigated in the wave frame of reference
moving with constant velocity with the wave. �e governing equations of couple stress 	uid have been simpli�ed under the long
wave length approximation. �e exact solutions of the resultant governing equations have been derived for the stream function,
temperature, concentration, pressure gradient, and heat transfer coe�cients.�epressure di
erence and frictional forces at both the
walls are calculated using numerical integration. �e in	uence of diverse 	ow parameters on the 	uid velocity, pressure gradient,
temperature, concentration, pressure di
erence, frictional forces, heat transfer coe�cients, and trapping has been discussed. �e
graphical results are also discussed for four di
erent wave shapes. It is noticed that increasing of couple stresses and heat generation
parameter increases the size of the trapped bolus.�e heat generation parameter increases the peristaltic pumping and temperature.

1. Introduction

In recent years, the 	ow of non-Newtonian 	uids has received
much attention due to the increasing industrial, medical,
and technological applications. Various researchers have
attempted diverse 	ow problems related to several non-
Newtonian 	uids and couple stress 	uid is one of them. �e
theory of couple stress 	uids originated by Stokes [1] has
many biomedical, industrial, and scienti�c applications and
was used to model synthetic 	uids, polymer thickened oils,
liquid crystals, animal blood, and synovial 	uid. Some earlier
developments in couple stress 	uid theory with some basic
	ows can be found in the book by Stokes [2]. Recently, few
researchers have studied some couple stress 	uid 	ows for
di
erent 	ow geometries [3–8].

Nowadays, peristaltic 	ows have gained much attention
because of their applications in physiology and industry.

Peristaltic transport is a form of 	uid transport induced by
a progressive wave of area contraction or expansion along
the length of a distensible tube/channel and transporting
the 	uid in the direction of the wave propagation. �is
phenomenon is known as peristalsis. In physiology this plays
an important role in various situations such as the food
movement in the digestive tract, urine transport from kidney
to bladder through ureter, movement of lymphatic 	uids in
lymphatic vessels, bile 	ow from the gall bladder into the
duodenum, spermatozoa in the ductus e
erentes of the male
reproductive tract, ovum movement in the fallopian tube,
blood circulation in the small blood vessels, the movement
of the chyme in the gastrointestinal tract, intrauterine 	uid
motion, swallowing food bolus through esophagus, and
transport of cilia. Many industrial and biological instruments
such as roller pumps, �nger pumps, heart-lung machines,
blood pumpmachines, and dialysis machines are engineered
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based on the peristaltic mechanism [9]. �e intrauterine
	uid 	ow due to myometrial contractions is peristaltic in
nature and these myometrial contractions occur in both
symmetric and asymmetric directions and also when embryo
enters the uterus for implantation there start the asymmetric
contractions.�e contractions inside the nonpregnant uterus
are very complicated because they are composed of variable
amplitudes and di
erent wave lengths [10]. In view of this,
Pandey and Chaube [11] have investigated the peristaltic
transport of a couple stress 	uid in a symmetrical channel
using perturbationmethod in terms of small amplitude ratio.
Ali and Hayat [12] have studied the peristaltic motion of
micropolar 	uid in an asymmetric channel. Naga Rani and
Sarojamma [13] have analyzed the peristaltic transport of a
Casson 	uid in an asymmetric channel. Hayat et al. [14] have
discussed the peristaltic 	ow of a Johnson-Segalman 	uid in
an asymmetric channel. Hayat and Javed [15] have studied
the peristaltic transport of power-law 	uid in asymmetric
channel.

�e porous medium plays an important role in the
study of transport process in bio	uid mechanics, indus-
trial mechanics, and engineering �elds. �e 	uid transport
through porous medium is widely applicable in the vascular
beds, lungs, kidneys, tumorous vessels, bile duct, gall bladder
with stones, and small blood vessels. In the pathological situ-
ations, the distribution of fatty cholesterol, artery clogging,
blood clots in the lumen of coronary artery, transport of
drugs and nutrients to brain cells, and functions of organs
are modeled as porous medium [16]. Recently, Tripathi [17]
studied the peristaltic hemodynamic 	ow of couple stress
	uids through a porous medium. Tripathi and Bég [18] have
investigated the peristaltic 	ow of generalized Maxwell 	uid
through a porous medium using homotopy perturbation
method. Abd elmaboud and Mekheimer [19] have discussed
peristaltic transport of a second-order 	uid through a porous
medium using regular perturbation method. �e magneto-
hydrodynamic 	ows also gained much attention due to the
widespread applications in bio	uid mechanics and industry.
It is the fact that many 	uids like blood are conductive in
nature and gave a new direction for research. �e indispens-
able role of biomagnetic 	uid dynamics in medical science
has been very helpful with many problems of physiology.
It has wide range of applications, such as magnetic wound
or cancer tumour treatment, bleeding reduction during
surgeries, provocation of occlusion of feeding vessels of
cancer tumor, cell separation, transport of drugs, blood pump
machines, and magnetic resonance imaging to diagnose the
disease and the in	uence of magnetic �eld which may be
utilized as a blood pump in carrying out cardiac operations
for the blood 	ow in arteries with arterial disease like arterial
stenosis or arteriosclerosis. Speci�cally, the magnetohydro-
dynamic 	ows of non-Newtonian 	uids are of great interest
in magnetotherapy. �e noninvasive radiological tests use
the magnetic �eld to evaluate organs in abdomen [20].
Hayat et al. [21] have studied the peristaltic transport of
magnetohydrodynamic Johnson-Segalman 	uid for the case
of a planar channel. Wang et al. [22] have investigated the
peristaltic motion of a magnetohydrodynamic generalized
second-order 	uid in an asymmetric channel. Nadeem and

Akram [23, 24] have discussed the peristaltic transport of a
couple stress 	uid and Williamson 	uid in an asymmetric
channel with the e
ect of the magnetic �eld.

Heat transfer plays a signi�cant role in the cooling pro-
cesses of industrial and medical applications. Such consider-
ation is very important since heat transfer in the human body
is currently considered as an important area of research. In
view of the thermotherapy and the human thermoregulation
system, the model of bioheat transfer in tissues has been
attracted by the biomedical engineers. In fact the heat transfer
in human tissues involves complicated processes such as
heat conduction in tissues, heat transfer due to perfusion of
the arterial-venous blood through the pores of the tissue,
metabolic heat generation, and external interactions such
as electromagnetic radiation emitted from cell phones [25].
Heat transfer also involves many complicated processes
such as evaluating skin burns, destruction of undesirable
cancer tissues, dilution technique in examining blood 	ow,
paper making, food processing, vasodilation, and radiation
between surface and its environment [26]. Mustafa et al.
[27] have studied the peristaltic transport of nano	uid in a
channel. �e heat transfer characteristics of a couple stress
	uid in an asymmetric channel have been analyzed by Abd
elmaboud et al. [28]. Nadeem and Akbar [29] have discussed
the in	uence of heat transfer andmagnetic �eld on peristaltic
	ow of a Johnson-Segalman 	uid in a vertical symmetric
channel. Some more works regarding peristaltic 	ows with
the e
ect of heat transfer and magnetic �eld can be seen
in [30–33]. Srinivas et al. [34] have studied the e
ects of
both wall slip conditions and heat transfer on peristaltic
	ow of MHD Newtonian 	uid in a porous channel with
elastic wall properties. Mass transfer is another important
phenomenon in physiology and industry. �is phenomenon
has great applications such as nutrients’ di
usion out from the
blood to neighboring tissues, membrane separation process,
reverse osmosis, distillation process, combustion process, and
di
usion of chemical impurities [35]. Recently, Noreen [36]
studied the problem of mixed convection peristaltic 	ow of
third-order nano	uidwith an inducedmagnetic �eld. Saleem
and Haider [37] have discussed the peristaltic transport of
Maxwell 	uid with heat and mass transfer in an asymmetric
channel. Some more relevant works on the peristaltic trans-
port with heat and mass transfer can be seen in [38–42].

�e aim of the present study is to investigate the in	uence
of heat and mass transfer on the peristaltic 	ow of magne-
tohydrodynamic couple stress 	uid through homogeneous
porous medium in a vertical asymmetric channel. �is paper
is arranged as follows. Section 2 presents the mathematical
formulation for the problem. �e solution of the problem
is obtained in Section 3. �e four di
erent wave forms are
presented in Section 4 while the computational results are
discussed in Section 5. �e last section, Section 6, presents
the conclusions of the present study.

2. Formulation of the Problem

Let us consider magnetohydrodynamic couple stress 	uid in
a vertical asymmetric channel through the porous medium



Journal of Fluids 3

B0

g

Y

X

T0

�a1

H1
C1 C0

c

H2

T1

a2

�

d1

d2

o

Figure 1: Physical model of the problem.

with the width of �1 + �2. �e surfaces �1 and �2 of the
asymmetric channel are maintained at constant temperatures�0 and �1 and the constant concentrations �0 and �1,
respectively (see Figure 1).�e porous medium is assumed to
be homogeneous. �e motion is induced by sinusoidal wave
trains propagating with constant speed � along the channel
walls as de�ned by the following:

�1 = �1 + �1 cos(2	
 (� − ��)) (right side wall) ,
�2 = −�2 − �2 cos(2	
 (� − ��) + �) (le� side wall) ,

(1)

where �1 and �2 are the wave amplitudes, 
 is the wave length,�1 + �2 is the channel width, � is the velocity of propagation,� is the time, and� is the direction of wave propagation. �e
phase di
erence � varies in the range 0 ≤ � ≤ 	, in which � =0 corresponds to symmetric channel with waves out of phase
and � = 	 corresponds to waves in phase, and further �1, �2,�1,�2, and�meet the following relation �21+�22+2�1�2 cos� ≤(�1 + �2)2.

�e continuity, momentum, energy, and concentration
equations for an MHD incompressible couple stress 	uid, in
the absence of body couples, are [8, 16]

∇ ⋅ � = 0,
����� = −∇� − �∇2� − �∇4� + � × � + �

+ ���� (� − �0) + ���� (� − �0) ,

������� = �∗∇2� +  0,���� = �∇2� + �!��� ∇2�,
(2)

in which �/�� represents the material derivative and � is
Darcy’s resistance in the porous medium which are given by��� = ""� + # ""$ + V

""% , � = − ��0 �, (3)

where � is the velocity vector, � is the density, � is the
pressure, � is the viscosity, � is material constant associated
with couple stress, � is the electric current density, � is
the total magnetic �eld, � is the acceleration due to the
gravity, �� is the coe�cient of thermal expansion, �� is the
coe�cient of expansion with concentration, �� is the speci�c
heat at constant pressure, � is the temperature, � is the
mass concentration, �∗ is the thermal conductivity,  0 is the
constant heat generation parameter, � is the coe�cient of
mass di
usivity, !� is the thermal di
usion ratio, �� is the
mean temperature, and �0 is the permeability parameter. �e
viscous dissipation is neglected in the energy equation.

In the �xed frame, governing equations for the peristaltic
motion of an incompressible magnetohydrodynamic couple
stress 	uid through homogeneous porous medium in the
two-dimensional vertical channel are"&"� + "'"* = 0,

� ("&"� + &"&"� + '"&"*)
= − "1"� + �("2&"�2 + "

2&"*2 )



4 Journal of Fluids

− �("4&"�4 + 2 "4&"�2"*2 + "
4&"*4 )

− 5�20& − ��0& + ���� (� − �0) + ���� (� − �0) ,
� ("'"� + &"'"� + '"'"*)

= −"1"* + �("
2'"�2 + "

2'"*2)
− �("4'"�4 + 2 "4'"�2"*2 + "

4'"*4) − ��0',
��� ("�"� + & "�"� + '"�"*) = �∗ ("

2�"�2 + "
2�"*2) +  0,

("�"� + &"�"� + '"�"*)
= �("2�"�2 + "

2�"*2) + �!��� ("2�"�2 + "
2�"*2) ,

(4)

in which& and' are the respective velocity components,1 is
the pressure, � is the temperature and � is the concentration
in the reference to �xed frame system, 5 is the electrical
conductivity of the 	uid, and �0 is the applied magnetic �eld.
In the above, the inducedmagnetic �eld is neglected since the
magnetic Reynolds number is assumed to be small.

�e coordinates, velocities, pressure, temperature, and
concentration in the �xed frame (�, *) and wave frame ($, %)
are related by the following expressions:

$ = � − ��, % = *, # = & − �, V = ',
� ($, %) = 1 (�, *, �) , � ($, %) = � (�, *, �) ,

� ($, %) = � (�, *, �) ,
(5)

in which #, V, �, �, and � are velocity components, pressure,
temperature, and concentration in the wave frame, respec-
tively.

Using (5), the governing equations in the wave frame are
given as follows:

"#"$ + "V"% = 0,
� (#"#"$ + V

"#"%)
= −"�"$ + �("

2#"$2 + "
2#"%2)

− �("4#"$4 + 2 "4#"$2"%2 + "
4#"%4)

− 5�20 (# + �) − ��0 (# + �) + ���� (� − �0)
+ ���� (� − �0) ,

� (# "V"$ + V

"V"%)
= −"�"% + �( "

2
V"$2 + "

2
V"%2)

− �( "4V"$4 + 2 "4V"$2"%2 + "
4
V"%4) − ��0 V,

��� (#"�"$ + V

"�"% ) = �∗ ("
2�"$2 + "

2�"%2 ) +  0,
(#"�"$ + V

"�"% )
= �("2�"$2 + "

2�"%2 ) + �!��� ("2�"$2 + "
2�"%2 ) .

(6)

We introduce the following dimensionless parameters:

$ = $
 , % = %�1 , # = #� , V = V� ,
ℎ1 = �1�1 , ℎ2 = �2�1 , � = ��
 ,

� = �21
���,
: = �1
 , � = �2�1 , � = �1�1 , ; = �2�1 ,
Re = ���1� , < = √5��0�1, �� = �0�21 ,
? = √���1, Gr = ���21�� (�1 − �0)�� ,

Gc = ���21�� (�1 − �0)�� , @ = @��1 , Pr = ����∗ ,
A = � − �0�1 − �0 , Φ = � − �0�1 − �0 , � =  0�21�∗ (�1 − �0) ,

Sc = ���, Sr = ��!� (�1 − �0)��� (�1 − �0) ,
(7)

where : is the dimensionlesswave number, Re is the Reynolds
number, < is the Hartmann number, �� is the Darcy
number, ? is the couple stress parameter, Gr is the local
temperature Grashof number, Gc is the local concentration
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Grashof number, Pr is the Prandtl number, A is the dimen-
sionless temperature, Φ is the dimensionless concentration,� is the heat generation parameter, Sc is the Schmidt number,
and Sr is the Soret number.

In terms of these nondimensional variables, the govern-
ing equations (6), a�er dropping the bars, become

:"#"$ + "V"% = 0, (8)

Re :(#"#"$ + 1:V"#"%)
= −"�"$ + (:2 "

2#"$2 + "
2#"%2)

− 1?2 (:4 "
4#"$4 + 2:2 "4#"$2"%2 + "

4#"%4)
− (<2 + 1��) (# + 1) + GrA + GcΦ,

(9)

Re :2 (# "V"$ + 1:V"V"%)
= −"�"% + (:3 "

2
V"$2 + :"

2
V"%2)

− 1?2 (:5 "
4
V"$4 + 2:3 "4V"$2"%2 + :"

4
V"%4) − 1�� :V,

(10)

RePr:(#"A"$ + V

"A"%) = (:2 "
2A"$2 + "

2A"%2) + �, (11)

Re :(#"Φ"$ + V

"Φ"% )
= 1
Sc
("2Φ"$2 + "

2Φ"%2 ) + Sr(:2 "2A"$2 + "
2A"%2) .

(12)

�e dimensionless velocity components (#, V) in terms of
stream function @ are related by the following relations:

# = "@"% , V = −:"@"$ . (13)

Using (13), the governing equations (9)–(12) reduced to

Re : [("@"% ""$ − "@"$ ""%) "@"% ]
= −"�"$ + (:2 "

3@"$2"% + "
3@"%3 )

− 1?2 (:4 "
5@"$4"% + 2:2 "

5@"$2"%3 + "
5@"%5 )

− (<2 + 1��)("@"% + 1) + GrA + GcΦ,

− Re :3 [("@"% ""$ − "@"$ ""%) "@"$ ]
= −"�"% − (:4 "

3@"$3 + :2 "
3@"$"%2)

+ 1?2 (:6 "
5@"$5 + 2:4 "

5@"$3"%2 + :2 "
5@"$"%4)

+ 1�� :2 "@"$ ,
RePr:("@"% "A"$ − "@"$ "A"%) = (:2 "

2A"$2 + "
2A"%2) + �,

Re :("@"% "Φ"$ − "@"$ "Φ"% )
= 1
Sc
(:2 "2Φ"$2 + "

2Φ"%2 ) + Sr(:2 "2A"$2 + "
2A"%2) .

(14)

�e dimensionless boundary conditions can be put in the
forms

@ = F2 , "@"% = −1, "3@"%3 = 0,
A = 0, Φ = 0

at % = ℎ1 = 1 + � cos (2	$) ,
@ = −F2 , "@"% = −1, "3@"%3 = 0,

A = 1, Φ = 1
at % = ℎ2 = −� − ; cos (2	$ + �) .

(15)

�e dimensionless mean 	ow rate Θ in �xed frame is related
to the nondimensional mean 	ow rate F in wave frame by

Θ = F + 1 + �, (16)

in which

F = ∫ℎ1
ℎ2

"@"% �% = @ (ℎ1 ($)) − @ (ℎ2 ($)) . (17)

We note that ℎ1 and ℎ2 represent the dimensionless forms of
the peristaltic walls

ℎ1 ($) = 1 + � cos (2	$) ,
ℎ2 ($) = −� − ; cos (2	$ + �) , (18)

where �, ;, �, and � satisfy the relation �2 + ;2 + 2�; cos� ≤(1 + �)2.
3. Solution of the Problem

Assuming that the wave length of the peristaltic wave is very
large compared to the width of the channel, the wave number
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: becomes very small.�is assumption is known as longwave
length approximation. Since : is very small, all the higher
powers of : are also very small. �erefore, neglecting terms
containing : and its higher powers from (14), we get

"�"$ = "
3@"%3 − 1?2 "

5@"%5
− (<2 + 1��)("@"% + 1) + GrA + GcΦ, (19)

"�"% = 0, (20)

"2A"%2 + � = 0, (21)

1
Sc

"2Φ"%2 + Sr
"2A"%2 = 0. (22)

Elimination of pressure form from (19) and (20) yields

"4@"%4 − 1?2 "
6@"%6 − (<2 + 1��) "

2@"%2 + Gr
"A"% + Gc

"Φ"% = 0.
(23)

Solving (21) and (22) with the boundary conditions (15), the
temperature and concentration are obtained as

A = −�%22 + I1% + I2,
Φ = SrSc�%22 + �1% + �2,

(24)

where

I1 = � (ℎ21 − ℎ22) − 22 (ℎ1 − ℎ2) ; I2 = �ℎ21 − 2I1ℎ12 ;
�1 = −ScSr� (ℎ21 − ℎ22) + 22 (ℎ1 − ℎ2) ; �2 = −ScSr�ℎ21 + 2�1ℎ12 .

(25)

Inserting (24) in (23), with the help of boundary conditions
(15), we obtain the stream function as

@ = �1%3 + �2%2 + �3% + �4 + �5 cosh (K1%)
+ �6 sinh (K1%) + �7 cosh (K2%) + �8 sinh (K2%) . (26)

in which

L1 = √<2 + 1�� ; K1 = √ ?2 + ?√?2 − 4L212 ;
K2 = √ ?2 − ?√?2 − 4L212 ;

�1 = �?2 (GcScSr − Gr) ; �2 = ?2 (GrI1 + Gc�1) ;�3 = �19 + �8�20;

�4 = F2 − �1ℎ31 − �2ℎ21 − �3ℎ1 − �5 cosh (K1ℎ1)− �6 sinh (K1ℎ1) − �7 cosh (K2ℎ1) − �8 sinh (K2ℎ1) ;�5 = �13 + �8�14; �6 = �15 + �8�16;
�7 = �17 + �8�18; �8 = �21�22 ;
�1 = �16L21?2 ; �2 = �22L21?2 ;�3 = sinh (K1ℎ1) − sinh (K1ℎ2) ;�4 = cosh (K1ℎ1) − cosh (K1ℎ2) ;�5 = sinh (K2ℎ1) − sinh (K2ℎ2) ;�6 = cosh (K2ℎ1) − cosh (K2ℎ2) ;

�7 = K31 (sinh (K1ℎ1) − �3 sinh (K2ℎ1)�5 ) ;
�8 = K31 (− cosh (K1ℎ1) + �4 sinh (K2ℎ1)�5 ) ;
�9 = K32 (cosh (K2ℎ1) + �6 sinh (K2ℎ1)�5 ) ;
�10 = 3�1 (ℎ22 − ℎ21) + 2�2 (ℎ2 − ℎ1)

− 6K1�1�4�8 + 6K31�1�4K22�8 ;
�11 = K1�3 + K1�4�7�8 − K31�3K22 − K31�4�7K22�8 ;

�12 = K1�4�9�8 − K31�4�9K22�8 ;
�13 = �10�11 ; �14 = �12�11 ;

�15 = �7�13 + 6�1�8 ; �16 = �7�14 − �9�8 ;
�17 = −K31 (�3�13 + �4�15)K32�5 ;

�18 = −K31 (�3�14 + �4�16) + K32�6K32�5 ;
�19 = − 1 − 3�1ℎ21 − 2�2ℎ1 − K1�13 sinh (K1ℎ1)− K1�15 cosh (K1ℎ1) − K2�17 sinh (K2ℎ1) ;�20 = − K1�14 sinh (K1ℎ1) − K1�16 cosh (K1ℎ1)− K2�18 sinh (K2ℎ1) − K2 cosh (K2ℎ1) ;

�21 = F − �1 (ℎ31 − ℎ32) − �2 (ℎ21 − ℎ22) − �19 (ℎ1 − ℎ2)− �4�13 − �3�15 − �6�17;
�22 = �20 (ℎ1 − ℎ2) + �4�14 + �3�16 + �6�18 + �5.

(27)
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Figure 2: Velocity pro�le for (a) $ = 1, � = 0.7, ; = 0.5, � = 1, �� = 0.5, ? = 5, � = 	/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = 2, and� = 0.2; (b) $ = 1, � = 0.7, ; = 0.5, � = 1,< = 1,�� = 0.5, ? = 5, � = 	/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Θ = 2, and � = 7; (c) $ = 1, � = 0.7,; = 0.5, � = 1,< = 1,�� = 0.5, � = 	/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4,Θ = 2, and � = 0.2; (d) $ = 1, � = 0.7, ; = 0.5, � = 1,< = 1,? = 5, � = 	/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = 2, and � = 0.2; (e) $ = 1, � = 0.7, ; = 0.5, � = 1,< = 1,�� = 0.5, ? = 5, � = 	/3,
Gr = 0.5, Gc = 0.5, Sr = 0.8, Sc = 0.8, and Θ = 2; (f) $ = 1, � = 0.7, ; = 0.5, � = 1,< = 1, �� = 0.5, ? = 5, � = 	/3, Gc = 0.5, Sr = 0.4,
Sc = 0.4, Θ = 2, and � = 0.2.
Using (24) and (26) in (19), the pressure gradient is given by

"�"$ = U1%2 + U2% + U3 + U4 cosh (K1%) + U5 sinh (K1%)+ U6 cosh (K2%) + U7 sinh (K2%) ,
(28)

where

U1 = GcScSr� − Gr� − 6L21�12 ;
U2 = GrI1 + Gc�1 − 2L21�2;U3 = GrI2 + Gc�2 + 6�1 − L21 (1 + �3) ;



8 Journal of Fluids

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

x

d
p
/d
x

M = 0.0

M = 1.0

M = 1.5

M = 2.0

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

x

d
p
/d
x

� = 0
� = 3

� = 6

� = 9

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
5

10
15
20
25
30
35
40
45
50
55

x

d
p
/d
x

Gr = 0

Gr = 2

Gr = 4

Gr = 6

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

Da = 0.2

Da = 0.3

Da = 0.4

Da = 0.6

x

d
p
/d
x

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

x

d
p
/d
x

Sc = 0

Sc = 1

Sc = 2

Sc = 3

(e)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

x

d
p
/d
x

� = 4

� = 5

� = 7
� = 11

(f)

Figure 3: Pressure gradient for (a) % = 0, � = 0.7, ; = 0.5, � = 1, �� = 0.5, ? = 5, � = 	/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = −1,
and � = 0.2; (b) % = 0, � = 0.7, ; = 0.5, � = 1,< = 1,�� = 0.5, ? = 5, � = 	/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, and Θ = −1; (c) % = 0,� = 0.7, ; = 0.5, � = 1,< = 1, �� = 0.5, ? = 5, � = 	/2, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = −1, and � = 0.2; (d) % = 0, � = 0.7, ; = 0.5, � = 1,< = 1, ? = 5, � = 	/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = −1, and � = 0.2; (e) % = 0, � = 0.7, ; = 0.5, � = 1,< = 1,�� = 0.5, ? = 5,� = 	/2, Gr = 0.5, Gc = 0.5, Sr = 0.4, Θ = −1, and � = 0.2; (f) % = 0, � = 0.7, ; = 0.5, � = 1,< = 1, �� = 0.5, � = 	/3, Gr = 0.5, Gc = 0.5,
Sr = 0.4, Sc = 0.4, Θ = −1, and � = 0.2.

U4 = �6 (K31 − L21K1 − K51?2) ;
U5 = �5 (K31 − L21K1 − K51?2) ;

U6 = �8 (K32 − L21K2 − K52?2) ;
U7 = �7 (K32 − L21K2 − K52?2) .

(29)
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Figure 4: Pressure gradient for various wave forms for �xed values of % = 0, � = 0.7, ; = 0.5, �� = 0.5,< = 1, ? = 5, � = 0, Gr = 0.5,
Gc = 0.5, Sr = 0.4, Sc = 0.4, and � = 0.2.
�e nondimensional expressions for the pressure di
erence
for one wave lengthΔ�� , the frictional forces at both wallsF	1
at % = ℎ1 and F	2 at % = ℎ2, and the heat transfer coe�cientsWℎ1 and Wℎ2 at the right and le� walls are de�ned as follows
[32]:

Δ�	 = ∫1
0
(���$)�$, F	1 = ∫10 ℎ21 (−���$)�$,
F	2 = ∫10 ℎ22 (−���$)�$,

Wℎ1 = "ℎ1"$ "A"% , Wℎ2 = "ℎ2"$ "A"% .
(30)

Using (30), the heat transfer coe�cients at the right and le�
walls, respectively, are obtained asWℎ1 = 2�	 (�% − I1) sin (2	$) ,Wℎ2 = −2;	 (�% − I1) sin (2	$ + �) . (31)

�e expressions for pressure rise Δ�	 and frictional forces
at both walls F	1 at % = ℎ1 and F	2 at % = ℎ2 involve the
integration of ��/�$. Due to the complexity of ��/�$, the
analytical integration of integrals of (30) is not possible. In
view of this, a numerical integration scheme is used for the
evaluation of the integrals.

4. Expressions for Wave Shapes

�e nondimensional expressions for the four considered
wave forms are given in the following.

(1) Sinusoidal wave:ℎ1 ($) = 1 + � sin (2	$) ,
ℎ2 ($) = −� − ; sin (2	$ + �) . (32)

(2) Triangular wave:

ℎ1 ($) = 1 + �( 8	3
∞∑
�=1

(−1)�+1(2K − 1)2 sin (2	 (2K − 1) $)) ,
ℎ2 ($) = −� − ;( 8	3

∞∑
�=1

(−1)�+1(2K − 1)2 sin (2	 (2K − 1) $ + �)) .
(33)

(3) Square wave:

ℎ1 ($) = 1 + �( 4	
∞∑
�=1

(−1)�+12K − 1 cos (2	 (2K − 1) $)) ,
ℎ2 ($) = −� − ;( 4	

∞∑
�=1

(−1)�+12K − 1 cos (2	 (2K − 1) $ + �)) .
(34)
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Figure 5: Pressure di
erence for (a) % = 0, � = 0.7, ; = 0.5, � = 1, �� = 0.5, ? = 5, � = 	/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = 2,
and � = 0.2; (b) % = 0, � = 0.7, ; = 0.5, � = 1,< = 1, ? = 5, � = 	/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = 2, and � = 0.2; (c) % = 0,� = 0.7, ; = 0.5, � = 1,< = 1,�� = 0.5, � = 	/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4,Θ = 2, and � = 0.2; (d) % = 0, � = 0.7, ; = 0.5, � = 1,< = 1, �� = 0.5, ? = 5, � = 	/2, Gr = 0.5, Gc = 0.5, Sc = 0.4, Θ = 2, and � = 0.2; (e) % = 0, � = 0.7, ; = 0.5, � = 1,< = 1, �� = 0.5, ? = 5,� = 	/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, and Θ = 2; (f) % = 0, � = 0.7, ; = 0.5, � = 1,< = 1, �� = 0.5, ? = 5, � = 	/3, Gr = 0.5,
Sr = 0.4, Sc = 0.4, Θ = 2, and � = 0.2.

(4) Trapezoidal wave:

ℎ1 ($)
= 1 + �(32	2

∞∑
�=1

sin ((	/8) (2K − 1))(2K − 1)2 sin (2	 (2K − 1) $)) ,

ℎ2 ($)= −�
− ;(32	2

∞∑
�=1

sin ((	/8) (2K − 1))(2K − 1)2 sin (2	 (2K − 1) $ + �)) .
(35)
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Figure 6: Frictional force at the right wall for (a) % = 0, � = 0.7, ; = 0.5, � = 1, �� = 0.5, ? = 5, � = 	/3, Gr = 0.5, Gc = 0.5, Sr = 0.4,
Sc = 0.4, Θ = 2, and � = 0.2; (b) % = 0, � = 0.7, ; = 0.5, � = 1,< = 1, ? = 5, � = 	/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = 2, and� = 0.2; (c) % = 0, � = 0.7, ; = 0.5, � = 1,< = 1, �� = 0.5, � = 	/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = 2, and � = 0.2; (d) % = 0,� = 0.7, ; = 0.5, � = 1,< = 1, �� = 0.5, ? = 5, � = 	/2, Gr = 0.5, Gc = 0.5, Sc = 0.4, Θ = 2, and � = 0.2; (e) % = 0, � = 0.7, ; = 0.5, � = 1,< = 1,�� = 0.5, ? = 5, � = 	/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, and Θ = 2; (f) % = 0, � = 0.7, ; = 0.5, � = 1,< = 1,�� = 0.5, ? = 5,� = 	/3, Gr = 0.5, Sr = 0.4, Sc = 0.4, Θ = 2, and � = 0.2.
5. Results and Discussion

�is section is dedicated to discussion and analysis of the
velocity distribution, pumping characteristics, heat and mass
characteristics, and trapping phenomena for di
erent 	ow
parameters.

5.1. Flow Characteristics. Figures 2(a)–2(f) illustrate the
in	uence of Hartmann number <, Schmidt number Sc,
couple stress parameter ?, Darcy number��, heat generation
parameter �, and Grashof number Gr on axial velocity pro�le
across the channel. From these �gures, it is observed that
the maximum velocities are always located near the centre
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Figure 7: (a) Pressure di
erence, (b) frictional force at right wall, and (c) frictional force at le� wall for di
erent wave forms when % = 0,� = 0.7, ; = 0.5, � = 1,�� = 0.5,< = 1, ? = 5, � = 0, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = 2, and � = 0.2.
of the channel and the velocity pro�les are nearly parabolic
in all cases. It is noted from Figure 2(a) that as Hartmann
number < increases, the velocity decreases near the centre
of the channel and it is increased in the neighborhood of the
walls. �is seems realistic because the magnetic �eld acts in
the transverse direction to the 	ow andmagnetic force resists
the 	ow. �e similar behavior is observed in [25]. �e same
behavior can be seen with increasing of Schmidt number Sc
and couple stress parameter ? (see Figures 2(b) and 2(c)). It is
observed from Figure 2(d) that increasing of Darcy number�� increases the velocity near the centre of the channel
and decreases the velocity of the 	uid near the peristaltic
walls. �e same trend is followed with the increasing of heat
generation parameter � (see Figure 2(e)). It is noticed from
Figure 2(f) that, with increasing of Grashof number Gr, the
velocity at the le� wall increases while a reverse trend is seen
at the right wall.

5.2. Pumping Characteristics. Figure 3 illustrates the varia-
tion of pressure gradient over one wave length $ ∈ [0, 1].
�e e
ects of<, �, and Gr on pressure gradient are displayed
in Figures 3(a)–3(c). It can be seen from Figure 3(a) that
increasing of Hartmann number < increases the pressure
gradient. It shows that when strong magnetic �eld is applied

to the 	ow �eld then higher pressure gradient is needed
to pass the 	ow. �is result suggests that the 	uid pressure
can be controlled by the application of suitable magnetic
�eld strength. �is phenomenon is useful during surgery
and critical operation to control excessive bleeding. It is also
observed that increasing of � and Gr increases the pressure
gradient. From Figures 3(d)–3(f), it is noted that with the
increasing of ��, Sc, and ? the pressure gradient decreases.
It is noticed that, in the wider part of the channels $ ∈[0, 0.2] and $ ∈ [0.7, 1], the pressure gradient is small, so
the 	ow can be easily passed without the imposition of large
pressure gradient. However, in the narrow part of the channel$ ∈ [0.2, 0.7] the pressure gradient is large; that is, much
larger pressure gradient is needed to maintain the same given
volume 	ow rate. Figure 4 is prepared to see the behaviour of
pressure gradient for di
erent four wave forms. It is observed
from Figures 4(a)–4(d) that, in all the wave forms, increase in� decreases pressure gradient.

�e dimensionless pressure di
erence per unit wave
length versus time mean 	ow rate Θ has been plotted in
Figure 5. We split the whole region into four segments as
follows: peristaltic pumping region where Δ�	 > 0 andΘ > 0 and augmented pumping region when Δ�	 < 0 andΘ > 0. �ere is retrograde pumping region when Δ�	 > 0
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Figure 8: (a) Temperature pro�le, (b) concentration pro�le, and (c) heat transfer coe�cient at the right wall for � = 0.7, ; = 0.5, � = 1,�� = 0.5,< = 1, ? = 5, � = 	/3, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, and Θ = 2.
and Θ < 0. Free pumping region corresponds to Δ�	 =0. �e region where Δ�	 > 0 and Θ > 0 is known as
peristaltic pumping region. In this region, the positive value
of Θ is entirely due to the peristalsis a�er overcoming the
pressure di
erence. �e region where Δ�	 < 0 and Θ > 0
is known as copumping or augmented pumping region. In
this region, a negative pressure di
erence assists the 	ow due
to the peristalsis of the walls. �e region where Δ�	 > 0
and Θ < 0 is called retrograde pumping region. In this
region, the 	ow is opposite to the direction of the peristaltic
motion. In the free pumping region, the 	ow is caused purely
by the peristalsis of the walls. It is evident from Figure 5 that
there is an inversely linear relation betweenΔ�	 andΘ. From
Figure 5(a), it is clear that with the increasing of <, in the
augmented pumping and free pumping regions, the pumping
decreases, in the peristaltic pumping region, the pumping
increases up to a critical value of Θ and decreases a�er
the critical value, and in the retrograde pumping region the
pumping increases. It is observed from Figure 5(b) that, with
the increasing of��, the behaviour is quite opposite with<.
It is noticed from Figure 5(c) that in the augmented pumping
region the pumping increases and in the peristaltic pumping
and retrograde pumping regions the pumping decreases.
Figure 5(d) depicts that, in all the pumping regions, the

pumping decreases by increasing Sr. It is noted from Figures
5(e)-5(f) that the behaviour is quite opposite with Sr while
increasing � and Gc.

Figure 6 describes the variation of frictional forces against
	ow rate Θ for di
erent values of <, ��, ?, Sr, �, and Gc.
It is observed that there is a direct linear relation between
frictional forces and Θ. �e frictional forces have exactly
opposite behaviour when compared with that of pressure
di
erence. Figure 7(a) indicates the e
ects of four di
erent
wave forms on pressure di
erence. It is noticed that the
trapezoidal wave has best peristaltic pumping characteristics,
while the triangular wave has poor peristaltic pumping as
compared to the other waves. Figures 7(b)-7(c) show that
the frictional forces at the walls have opposite behaviour as
compared to the pressure di
erence.

5.3. Heat and Mass Characteristics. Figure 8 depicts the
e
ects of heat transfer, concentration, and heat transfer
coe�cient on the peristaltic transport for various values of�. We can observe that the temperature and concentration
pro�les are almost parabolic except when� = 0. It is observed
from Figure 8(a) that the temperature increases with �. It
is clear from Figure 8(b) that the concentration pro�le has
quite opposite behaviour of temperature pro�le. It is noticed
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Figure 9: Streamlines for � = 0.5, ; = 0.5, � = 1,< = 1, ? = 5, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = 2, and � = 0.2.

from Figure 8(c) that, due to the peristalsis, the heat transfer
coe�cient is in oscillatory behaviour. Moreover, the absolute
value of heat transfer coe�cient increases with increase of �.
5.4. Trapping Phenomenon. In the wave frame, the stream-
lines, in general, have a shape similar to the walls as the
walls are stationary. However under certain conditions some
streamlines can split to enclose a bolus of 	uid particles in
closed streamlines. Hence some circulating regions occur. In
the �xed frame of reference the 	uid bolus is trapped with the
wave and itmoves as awholewith thewave speed. To examine
the e
ects of ��, ?, and � in the symmetric and asymmetric
channels we have plotted Figures 9–11. In Figures 9 and 10,
the le� panels (a), (c), and (e) related to symmetric channel
and the right panels (b), (d), and (f) are corresponding to
asymmetric channel. It is observed from Figure 9 that when�� increases, the size of the trapped bolus decreases near

the le� wall and increases near the right wall in both panels.
However, the increase of Darcy number �� increases the
trapped bolus near both walls when Gc = 0 and Gr = 0.
�e e
ects of ? on the trapping phenomena are displayed
in Figure 10. It is shown that with the increasing ? decrease
the trapping phenomena for the symmetric and asymmetric
channels. Since ? = √�/��1, ? decreases as � increases
and hence increasing of couple stresses increases the size
of trapped bolus. Figure 11 gives the trapping behaviour for
various values of �. It is evident that as � increases, the trap-
ping bolus decreases and when it reaches to 	 the trapping
disappears. Moreover, with the increase of � the bolus moves
upward with decreasing e
ect. Figures 12 and 13 provide
the variations of � on trapping for di
erent wave shapes:
(a) sinusoidal, (b) triangular, (c) square, and (d) trapezoidal.
From these �gures we observe that the size of the trapped
bolus increases with increasing � in all the wave forms.
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Figure 10: Streamlines for � = 0.5, ; = 0.5, � = 1,< = 1,�� = 0.5, Gr = 0.5, Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = 2, and � = 0.2.
6. Conclusions

�e e
ects of heat and mass transfer on the peristaltic
	ow of magnetohydrodynamic couple stress 	uid through
porous medium in a vertical asymmetric channel have
been analyzed. �e governing equations are modeled under
the assumption of long wave length approximation. �e
exact solutions for the stream function, pressure gradient,
temperature, heat transfer coe�cients, and concentration
are obtained. �e e
ects of involved parameters on the
velocity characteristics, pumping characteristics, heat and
mass characteristics, and the trapping due to the peristalsis of
the walls are discussed in detail. From the analysis the main
�ndings can be summarized as follows:

(i) Increasing of heat generation increases the peristaltic
pumping, size of the trapped bolus, and the magni-
tude of heat transfer coe�cient at the peristaltic walls.

(ii) Increasing of couple stresses increases the size of
trapped bolus.

(iii) Increasing of heat generation increases the tempera-
ture and decreases the concentration.

(iv) �e trapezoidal wave has best peristaltic pumping as
compared to the other wave shapes.

(v) �e frictional forces have an opposite behaviour as
compared to the pressure di
erence.

Symbols

�1, �2: Wave amplitudes
: Wave length�: Propagation velocity�: Time
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Figure 11: Streamlines for � = 0.5, ; = 0.5, � = 1,< = 1,�� = 0.5, Gr = 0.5, Gc = 0.5, ? = 5, Sc = 0.4, Sr = 0.4, Θ = 2, and � = 0.2.

�,*: Coordinates of �xed frame1: Pressure in the �xed frame�: Velocity vector�: Darcy’s resistance in the porous medium�: Density�: Viscosity�: Material constant associated with couple stress�: Electric current density�: Total magnetic �eld�: Acceleration due to the gravity��: Coe�cient of thermal expansion��: Coe�cient of expansion with concentration��: Speci�c heat at constant pressure�: Temperature�: Mass concentration

�∗: �ermal conductivity 0: Heat generation parameter�: Coe�cient of mass di
usivity!�: �ermal di
usion ratio��: Mean temperature�0: Permeability parameter&,': Velocity components in the �xed frame1: Pressure in the �xed frame5: Electrical conductivity of the 	uid�0: Uniform applied magnetic �eld:: Dimensionless wave length$, %: Coordinates of wave frame�: Pressure in the wave frame#, V: Velocity components in the wave frame
Re: Reynolds number
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Figure 12: Streamlines for various wave forms for �xed values of � = 0.7, ; = 0.5, � = 1,�� = 0.5,< = 1, ? = 5, � = 	/3, Gr = 0.5, Gc = 0.5,
Sr = 0.4, Sc = 0.4, Θ = 2, and � = 0.
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Figure 13: Streamlines for various wave forms for �xed values of (a) � = 0.7, ; = 0.5, � = 1, �� = 0.5,< = 1, ? = 5, � = 	/3, Gr = 0.5,
Gc = 0.5, Sr = 0.4, Sc = 0.4, Θ = 2, and � = 5.
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<: Hartman number��: Darcy number?: Couple stress parameter
Gr: Local temperature Grashof number
Gc: Local concentration Grashof number
Pr: Prandtl numberA: Dimensionless temperatureΦ: Dimensionless concentration�: Dimensionless heat generation parameter
Sc: Schmidt number
Sr: Soret number@: Stream functionΘ: Time mean 	ow rate in the �xed frameF: Time mean 	ow rate in the wave frame : Volume 	ow rate in the �xed frame�: Volume 	ow rate in the wave frame.
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