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Effects of high-pass and low-pass

spatial filtering on face identification

NICHOLAS P. COSTEN,DENISM. PARKER, and IAN CRAW
University ojAberdeen, Aberdeen, Scotland

If face images are degraded by block averaging, there is a nonlinear decline in recognition accuracy
as block size increases, suggesting that identification requires a critical minimum range of object spa
tial frequencies. The identification of faces was measured with equivalent Fourier low-pass filtering and
block averaging preserving the same information and with high-pass transformations. In Experiment 1,
accuracy declined and response time increased in a significant nonlinear manner in all cases as the
spatial-frequency range was reduced. However, it did so at a faster rate for the quantized and high-passed
images. A second experiment controlled for the differences in the contrast of the high-pass faces and
found a reduced but significant and nonlinear decline in performance as the spatial-frequency range
was reduced. These data suggest that face identification is preferentially supported by a band of spa
tial frequencies of approximately 8-16 cycles per face; contrast or line-based explanations were found
to be inadequate. The data are discussed in terms of current models of face identification.

The questions of whether the information concerning the

identity offaces is carried by a limited range ofspatial scales

and whether the potential information from different regions

ofthe spatial spectrum is given equal weight in the determi

nation of identity have been approached in a number ofdif

ferent ways.One method ofconsidering these issues has been

to make useofspatial-frequencyfilteringtechniques(Harmon,

1973). However, variations in this method have produced

contradictory results,with notably differentconclusions about

the relative importance ofdifferent spatial-frequency bands

specified in terms ofcycles per face.The term cyclesperface
is defmed as the number of sinusoidal repetitions of a given

width that can be placed within the eye-level width of the

face. The use ofthis metric to describe the information pre

sent in stimuli allowsdiscussion ofthe degree of detail neces

sary for recognition, perhaps by defining the scale of facial

configuration. A class ofobjects has a configuration if there

is a consistent set of features all arranged in the same order.

Thus, if a set ofexamples are superimposed, normalizing for

scale and viewpoint, another example of the class is pro

duced that is closer to the prototype. Clearly, faces have this

property, since all have two eyes, a nose, and a mouth-and

these are consistently arranged.

Harmon (1973), who used images created by local block

averaging, was the first to consider spatial scale and iden

tification; examples ofthis technique, known as pixelizing,
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can be seen in Figure 2. The images are formed by placing

a regular square grid across the image and setting the pixel

value at each grid square to the average gray level within it.

This work suggested that the minimum image quality that

allows effective identification corresponds to a 16 X 16

pixel image; however, since the images did not take up the

whole of the screen, the number of pixels per face was

slightly lower. Harmon also used a smooth low-pass filter

ing technique. This type of filtering operation does not in

troduce additional spatial frequencies (noise), as the pix

elization procedure does (see Figure 1, for a comparison of

low-pass and pixel spectra). With this procedure, the min

imum image quality for identification was found to be the

surprisingly low value of2.5 cycles per face, measured at

eye level. Harmon mentions a bald subject as being consis

tently well recognized. This figure of 2.5 cycles per face

corresponds with 5 pixels per face. The smallest detail re

tained after pixelization will be that retained after Fourier

(smooth) low-pass filtering, which removes sinusoidal

components, with a cut-offwavelength twice the width of

a pixel. Thus, the smooth-filtered images were recognized

with a lower frequency cut-off than were the pixelized ver

sions, probably because ofthe introduction ofadditional ir

relevant spatial-frequency noise in the latter versions that

masked the preserved face-specific information.

When Fiorentini, Maffei, and Sandini (1983) considered

the best range of the spatial frequencies at which identifi

cation is supported, they found a sharp decrease in accu

racy when the highest spatial frequency in the image

dropped from 8 to 5 cycles per face. When the lower spa

tial frequencies were removed, a similar decline was seen

between 8 and 12 cycles per face. Bachmann (1991) con

sidered the identification of pixelized faces, quantized at

levels between 15 and 74 pixels per face. Faces with 15

pixels (7.5 cycles) were correctly identified on approxi

mately 45% of the occasions, but those with 18 pixels (9
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cycles) and above were all identified on approximately 80%

oftrials. These studies concur in indicating that below 8 cy

cles per face for smoothly filtered images, or 9 cycles (18

pixels) per face for pixelized images, there are problems.

None of these studies give identification times, and, thus,

it is impossible to tell if efficiency varied for the scales at

which identification was possible or if processing strate

gies changed at any point.

Costen, Parker, and Craw (1994) measured both speed

(response time, RT) and accuracy for 42-, 21-, and l l-pixel

faces (21, 11.5, and 5.5 cycles per face), as well as Fourier

and Gaussian low-pass versions calculated to remove the

same range ofspatial frequencies. A reduction ofthe max

imum detail from 22 to 10.5 cycles per face produced no

change in accuracy and an increase in RT only for the pix

elized condition. A further drop to 5.5 cycles per face both

reduced accuracy and increased RT for all conditions. The

reduction in performance was more pronounced for the

pixelized images, replicating the discrepancy between

Fiorentini et al. (1983) and Bachmann (1991) and also that

seen by Harmon (1973) between pixelized and Fourier

filtered images. Harmon and Julesz (1973) suggested that

this discrepancy might be due to masking by adjacent

spatial-frequency components introduced by the pixelizing

process. Morrone, Burr, and Ross (1983) suggested spatial

domain mispositioning of facial contours used for the de

termination ofshape as an additional problem with the pix

elized images. In a second experiment, Costen et a!. (1994)

also measured the RT and accuracy for images with the

same noise spectrum as the pixelized images, but with ran

dom orientations ofthe Fourier components. Performance

on the unstructured-noise images was intermediate be

tween the pixelized and Fourier low-pass images, suggest

ing that, while a substantial portion of the decrement

could be accounted for by unstructured noise, the edge el

ements of the pixels did cause additional interference.

Although these results are relatively consistent, other

studies show lesser effects or higher optimal frequencies.

Hayes, Morrone, and Burr (1986) considered the identifi

cation, or matching (it is unclear which), of band-passed

images, some of which had 1800 phase shifts, with 1.5

octave-wide frequency bands, centered between 3.2 and

50 cycles per face. They found 80% accuracy with 25 cy

cles per face and about 60% accuracy with 6.4 or 50 cy

cles per face. Schuchard and Rubin (1989) also measured

performance on a same-different task, with similar bands

centered on 4.0, 11.2, and 31.7 cycles per face, and they

found no difference between the three spatial-frequency

levels. If both of these studies are classed as matching

tasks rather than identification tasks, the results suggest a

higher optimal spatial band for the former task.

Tieger and Ganz (1979) approached the problem by com

bining faces with two-dimensional sine-wave gratings

whose frequencies lay between 3.2 and 31.2 cycles per

face and found that the mask with 17.6 cycles per degree

(cpd) had the most detrimental effect on identification.

Moscovitch and Radzins (1987; see also Bryer, 1988, and

Moscovitch, 1988, on the proper analysis to be applied) used

random dots with groupings of between 1.1 and 52.8 cpd

as masks and found no differential effect. Keenan, Wit

man, and Pepe (1989; see also Keenan, Witman, & Pepe,

1990) used masks formed by vertical square-wave bars with

fundamental frequencies between 1.6 and 76.8 cpd; al

though it was not clear whether there was a significant ef

fect of the spatial frequency of the mask, 76.8 cycles per

face showed less masking than did lower frequencies.

This discrepancy between studies that have varied the

effective spatial-frequency range ofthe images by altering

either the upper or the lower cut-off of the filters (Bach

mann, 1991; Costen et aI., 1994; Fiorentini eta!., 1983;

Harmon, 1973) and those that have attempted to remove a

constant spatial range by removing a band of information

within the images' spectrum (Hayes et aI., 1986; Tieger &

Ganz, 1979) could have a number ofexplanations. The first

is that it is due to variation in image contrast. The energy

at a specified frequency in a real image will decline with

at least the square of the frequency (Edwards, 1967). In

addition, humans are differentially sensitive to spatial fre

quencies, with a maximum sensitivity at approximately

2--4 cpd (Campbell & Green, 1965), and RT is monoton

ically related to spatial frequency (Parker, 1980). Thus, it

is possible that the additional contrast present in low-passed

images disproportionately enhances performance and un

derestimates optimal spatial frequency. The matching ac

curacy for the faces in Hayes et al. (1986) order correctly

for a contrast sensitivity effect, as do the masking results

of Tieger and Ganz (1979).

A second possibility is that this discrepancy is a conse

quence of the range of spatial frequencies in the images.

However, this explanation fails to account for the results

of Fiorentini et al. (1983). Their low-pass limit of6.5 cy

cles per face suggests a range of approximately 4.5 oc

taves of preserved information, but the high-pass limit of

10 cycles per face suggests a range of 0.5 octaves, since

their images did not preserve components above 15 cycles

per face. Nor can this idea explain the results of Costen

et al. (1994), where the additional decline in the pixelized

images over that seen with Fourier and Gaussian filtering

reflected the effect of masking within this critical band.

A third explanation might be in terms of the task that

the subjects were asked to perform. Costen et al. (1994),

Bachmann (1991), and Fiorentini et al. (1983) taught their

subjects to recognize the faces, and Harmon (1973) used

familiar faces, whereas the subjects ofHayes et al. (1986)

matched the filtered face to an original, as did those of

Schuchard and Rubin (1989) and Moscovitch and Radzins

(1987). Tieger and Ganz (1979) required a judgment offa

miliarity, but not of identity; only Keenan et al. (1989),

whose results are rather unclear, used an identification

from-memory paradigm. In this respect, these results re

semble those of Sergent (1986), who found a left cerebral

hemisphere RT advantage for semantic judgments (iden

tification and occupational category of 16 faces personally

familiar to the subjects), but none for a sex judgment.

Low-passing the images so that information above 6 cy

cles per face was lost suppressed this effect, and all three

tasks then showed a right hemisphere advantage. This sug

gests that different tasks are supported by different spatial
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frequencies and, thus, that the results from the constant

frequency-range studies may not reflect face identifica

tion, but rather perceptual matching of some sort.

Tomore fully investigate this area,we decided to replicate

the Fiorentini et al. (1983) study and to extend it by in

cluding a measure of the time to make identity decisions.

Additionally, a set of images pixelized by the method used

by Bachmann (1991), Costen et al. (1994), and Harmon

(1973) was added with the same range of spatial frequen

cies removed. The measurement of RT allows the exclu

sion ofthe possibility that a discontinuity in identification

is simply due to a move from ceiling performance. Addi

tion ofa time stress also allows consideration ofthe method

and information used in identification-for example, dis

tinguishing between a natural, configural identification

process and a slower critical feature strategy. As well as al

lowing reconciliation of the small difference between the

estimates of the lower limit upon efficient identification

provided by Bachmann (1991) and Fiorentini et al. (1983),

the comparison of Fourier-filtered and pixelized images

will also allow consideration of the difference between

these values and the higher critical range suggested by

Hayes et al. (1986) and Tieger and Ganz (1979). By si

multaneously considering the effectsofreduction ofspatial

frequency range by both high-pass and low-pass Fourier

filtering and by the introduction ofextraneous information

by the block-averaging process in the proposed critical re

gion, we should be able to shed further light on which spa

tial scales dominate the face-identification process.

EXPERIMENT 1

Method
Subjects. The subjects were 9 undergraduate students at the Uni

versity of Aberdeen. The data from 1 subject were dropped because

of unacceptably slow performance. This subject's performance was

significantly worse than that of the others.

Equipment. The basic equipment was an Imaging Technology

FG 100V framegrabber card fitted to a Sun 31160M. A maximum of

512 X 512 pixels, 8 bits deep, were accessible or visible at anyone

time. The images were displayed on a Phillips 35-cm color monitor.

The experiment was controlled from the Sun workstation using com

piled C programs and executable shell scripts under Sun UNIX. To

record the RTs and choices, an Apple Ile with a specially built nine

choice button box (three of the buttons were masked off) was used.

The Apple lIe was triggered by the framegrabber device driver and

returned the choice and RT for recording. On the rare occasion that

the two computer systems got out of step, the Apple did not return

any data; 69 of the 4,504 responses are not included in the analysis.

The experimenter monitored the computers continually, and resyn

chronization required only the pressing of a button.

Stimuli. Six photographs of males rated as typical from a collec

tion gathered at Aberdeen University for the Facial Retrieval and

Matching Equipment (FRAME) database offace measurements and

ratings (Shepherd, 1986) were digitized at a resolution of 128 X 128

pixels. The faces measured about 160 X 210 mm ofthe screen. The

subjects were seated with their heads approximately 1 m from the

screen, so the images subtended about 9.20
X 12.10

•

These base pictures were used in the practice session, with the addi

tion ofsix half-sized pictures that were labeled A-F (by which the im

ages were referred to on the button box in the same consistent arrange

ment). The background of these latter images (the correction images)

was black. The experimental images were formed by processing the

pictures with the HIPS image-processing package (Landy, Cohen, &

Sperling, 1984), running under Unix on a Sun workstation. Images

were pixelized to 45, 23, 12, and 9 pixels per face, measured horizon

tally at eye level by gray level averaging using a grid placed upon the

image and setting each pixel to the mean brightness ofthe block.

Low-pass images were created by taking Fourier transforms, ap

plying exponential low-pass filters (with second-order roll-offs) of

the appropriate value, and taking inverse Fourier transforms. This

applied the equation

wherefis the multiplication faction, r is the component radius, and

c I is the low-pass cut-off radius. High-pass images were created with

the same parameters and equation except that rand c I were trans

posed and thus lacked low spatial frequencies. The low-pass cut-offs

were selected so that a checkerboard with squares of the size given

by the pixel manipulation would be just noticeable as a nonuniform

field when low-passed. Thus, the same information was preserved,

but without introducing extra noise. This needed spatial frequencies

with wavelengths oftwice the pixel side length (so 9, 12,23, and 45

pixels per face equated with maximum frequencies in the Fourier

low-pass condition of4.5,6, 11.5, and 22.5 cycles per face). Exam

ples of the filters are shown in Figure 1 for a 23-pixels-per-face

image, and a set ofexamples ofthe images are provided in Figure 2.

Procedure. At the start ofthe testing session, the experimenter ex

plained that the subject would be taught to identify six faces, and the

importance of accuracy was stressed. The experiment was subject

paced; a response triggered the next trial. On a practice trial, the sub

ject saw in sequence a fixation point, a blank white field, and then

one ofthe images chosen at random, each for 1 sec. The screen then

showed the white blank field until the subject made his/her choice,

aided by a sheet with the six correction images in the same config

uration as on the button box, or for 1 sec, whichever was longer. The

correction stimulus associated with the image seen immediately be

fore was then shown for 2 sec and was also identified. This proce

dure was followed for three blocks of 18 trials; each block randomly

repeated the six images three times.

Spatial Frequency (cycles/degree)

0.2 0.4 0.7 1.0 2.0 4.0 7.0 10.0

1.8 1.8

1.8 1.6

1.4 1.4

1.2 1.2

:2 Q

! 1.0 1.0 ~
t l;
~ £1£

~
0.8 0.8 ~

u:
0.6 0.6

0.4 0.4

0.2 ;/ 0.2..,.. ~ ~ ~

0.0 0.0

0.7 1.0 20 4.0 7.0 10.0 20.0 40.0 70.0

Spatial Frequency (cycleslface)

Figure 1. Fourier filter functions used on one image at 11.5 cy
cles per face (23 pixels per face) for high-pass, low-pass, and pix
elization manipulations. Note that these are derived functions;
the pixel manipulation was performed in the real domain. The
upper abscissa shows the frequency in cycles per degree. The
lower abscissa shows the frequency in cycles per face. The ordi

nates show the ratio of filter power.
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stricted, overall comparisons will show only a crude effect of

spatial-frequency range. The major interest here lies in the

simple effects. Accuracy data are displayed in Figure 3 and

show the replication ofthe Fiorentini et al. (1983) and Bach

mann (1991) findings. These results are derived from the in

verse-sine transformation ofthe data, which reduced the sig

nificant correlation between means and variances of the

groups. The reported means are the sine transformation of

the mean values of the groups. An analysis of variance

(ANOVA) ofthe accuracy data showed significant effects of

spatial-frequency cut-off(blur) [F(3,21) = 7.10,p = .0018]

and of type of image processing (manipulation) [F(2,14) =
12.35,p = .0008]. The interaction between blur and manip

ulation was significant [F(6,42) = 15.53,p < .0001].

The significant interaction between blur and manipula

tion indicated that simple effects should be analyzed. For

the high-pass condition, there was a significant effect of

blur [F(3,21) = 25.91,p = .0001]. A Tukey HSD test (a =

.05) showed that this effect was due to a difference be

tween the 22.5-cycles-per-face (45-pixels-per-face) group

and the other groups, which did not differ between them

selves. The low-pass condition also had a significant ef

fectofblur[F(3,21) = 3.08,p = .0499]. A Tukey HSD test

showed that there was a significant difference between

the 4.5-cycles-per-face (9-pixels-per-face) group and the

22.5-cycles-per-face (45-pixels-per-face) groups, although

neither of these were significantly different from the 6

and 11.5-cycles-per-face (12- and 23-pixels-per-face)

groups. The pixelized condition also had a significant ef

fect of blur [F(3,21) = 19.86,p < .0001]. A Tukey HSD

test showed that data could be divided into two groups: 4.5

and 6 cycles per face (9 and 12 pixels per face) and 11.5

and 22.5 cycles per face (23 and 45 cycles per face).

In summary, the accuracy data show that all three ma

nipulations had significant effects ofspatial frequency. TheAlthough the presence ofthe sheet and correction stimuli reduced

the potential learning effect of response accuracy, there was a sig

nificant effect ofpractice across blocks [F(2,14) = 4.08,p = .0403]

and a significant effect ofthe target used [F(5,35) = 3.92,p = .0063],

but these factors did not interact (F = 1.00). The same pattern was

found with RT [F(2,14) = l7.l3,p = .0002;target(F(5,35) = 6.58,

p = .0002; interaction,F(1O,69) = 1.54,p = .1448]. Since the map

ping from targets to buttons on the button box was not varied, some

of this main effect of targets may reflect differences due to the posi

tion of the buttons.

The sheet ofimages was then taken from the subjects, and they were

told that the experimental session would be starting. The experimenter

said that he was interested in the amount of information needed to

identify the images and that he had manipulated the images in a

number of ways. The subjects were instructed to ignore the manip

ulation as much as they could and concentrate on identifying the im

ages. The subjects were urged to respond quickly, even if this meant

that a few errors would occur. Experimental trials ran in the same

way as the practice ones, except that there were no correction stim

uli and the stimuli were presented for only 100 msec. The experi

ment had eight blocks of 72 randomly ordered stimuli (6 targets X

3 manipulations X 4 spatial-frequency cut-offs), and no feedback

was given.

Figure 2. Low-pass, high-pass, and pixel images at 42, 23, 12,
and 9 pixels per face. Note that the prints underestimate the con
trast of the images displayed in the experiment, particularly the
high-pass images.

Results
Since, in one case, spatial-frequency cut-off refers to a

limit below which components were restricted (high-pass),

whereas in the others, components above the cut-offwere re-

Figure 3. Response accuracy in Experiment 1. The upper ab
scissa shows the frequency cut-off in cycles per degree. The lower
abscissa shows the frequency cut-off in pixels per face. The ordi
nates show response accuracy in percent.
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Figure 4. Response times in Experiment I, The upper abscissa
shows the frequency cut-off in cycles per degree. The lower ab
scissa shows the frequency cut-off in pixels per face. The ordi
nates show response time in milliseconds.

low-pass condition showed a drop in performance when

the maximum spatial frequency dropped to 4.5 cycles per

face (9 pixels per face), whereas the pixelized condition

showed a drop in performance when the maximum pre

served spatial frequency dropped below 11.5 cycles per

face (23 pixels per face). The high-pass condition, which

showed a maximum identification accuracy comparable

to the lowest accuracy of the low-pass condition, showed

a further drop in performance when the minimum frequency

present rose above 11.5 cycles per face (23 pixels per

face). It is notable that when information of around 11.5

cycles per face (23 pixels per face) was present, the response

accuracy was not significantly affected by the method

used to restrict the spatial-frequency range [F(2, 14) =

3.4I,p = .218].

To normalize the correct RT data because of a signifi

cant positive skew, we applied a 5% upper cut-off to each

subject to remove aberrant points and took a base 10 log

arithm transformation that removed the positive correla

tions between means and standard deviations. All displayed

means (see Figure 4) are harmonic means, formed by find

ing the averages of the logarithmic values and then taking

anti-logs. Using these data and the standard ANOVA for

repeated measures, there was no significant effect ofblur

[F(3,21) = 1.83,p = .l720],buttherewasasignificantef

fectofmanipulation[F(2,14) = 6.56,p = .0098], and the

interaction between blur and manipulation was also sig

nificant [F(6,15) = 3.00,p = .0157].

For the high-pass condition, there was no effect of blur

[F(3,21) = 1.68,p> .2]; however, for the low-pass condi

tion, there was a significant effect ofblur [F(3,21) = 4.82,

P = .0094], and a Tukey HSD test showed that all four lev

els of blur were significantly different from each other.

The pixelized condition also showed a significant effect

of blur [F(3,21) = 3.10,'p = .0229]. A Tukey HSD test

showed that the 22.5-cycles-per-face (45-pixels-per-face)

Frequency Cut-off(cycles/degree)

0.5 0.6 0.7 0.8 0.9 1.0 2.0

Discussion

The first thing to be noted about Experiment I is that

there is a comparative absence of significant differences

in RTs ifthe high-pass manipulation is included. This de

rives from the relatively low accuracy with which these

images were identified, dropping to 40% for the pixelized

condition and 30% for the high-pass condition at their min

imum spatial ranges. Although the RT measure considers

only the occasions on which the subject is correct, it is not

possible to say why the subject is correct on any particular

trial. When accuracy drops, the proportion ofoccasions on

which the subject guesses at random and is correct will in

crease. Unless the RT for guesses happens to coincide with

the characteristic RT for trials upon which identification

is possible at that spatial-frequency range, this will increase

the variance and thus decrease the power of the design.

Within these considerations, both the RTs and the re

sponse accuracies replicate those ofBachmann (1991), Cos

ten et al. (1994) and Fiorentini et al. (1983). The low-pass

and pixel conditions showed increases in RT and declines

in accuracy as image quality was reduced, and these were

greater in the latter case. The results suggest that pixeli

zation introduces noise that masks the remaining image.

Costen et al. (1994) suggest that this reflects a combina

tion ofmasking ofthe effective upper limit ofthe available

information by medium-frequency noise and bias in locat

ing portions ofthe image introduced by the sharp edges of
the pixels.

The high-pass manipulation exhibits a large drop in

identification accuracy, replicating the results of Fioren

tini et al. (1983), who found increased errors as the cut-off

frequency of their high-pass images increased, although

the results here suggest a rather higher frequency band

than was suggested by Fiorentini et al. Since there was no

group was significantly different from the other three

groups, which did not differ significantly.

The data were then divided up by the values ofblur. Al

though there were no significant effects for the 4.5- and

22.5-cycles-per-face (9- and 45-pixels-per-face) groups,

the 6-cycles-per-face (12-pixels-per-face) group showed a

significant effect of manipulation [F(2,14) = 4.46, P =

.0318]. A Tukey HSD test showed that this was due to dif

ferences between the pixelized images and the high-pass

and low-pass images, which did not differ between them

selves. For the 11.5-cycles-per-face (23-pixels-per-face)

group, there was also a significant effect of manipulation

[F(2,14) = 11.90,p = .0010]. A Tukey HSD test showed

that this effect was due to a difference between the low-pass

condition and the high-pass and pixelized conditions, which

did not differ between themselves.

In summary, the RT data show that the time to correctly

recognize the high-pass images was not significantly af

fected by the spatial frequency cut-off, but it increased for

the low-pass and pixelized conditions as the spatial fre

quency range was reduced. This occurred at a faster rate for

the pixelized images than for the low-pass images, with

significant additional reductions at 6 and 11.5 cycles per

face (12 and 23 pixels per face).
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significant change in RT for the high-pass manipulation,

the results of Fiorentini et al. cannot reflect a change in

strategy and so support the view that there is some upper

limit to the useful range of spatial frequencies.

The view that there is a band of object spatial frequen

cies that is preferentially used in face identification agrees

with the results ofFiorentini et al. (1983), although Keenan

et al. (1989) did not see such differences, and Tieger and

Ganz (1979) and Hayes et al. (1986) obtained results that

would lead one to expect no difference between the 11.5

and 22.5-cycles-per-face (23- and 45-pixels-per-face)

conditions. From these and our experiments, this band

would be situated somewhere between 8 and 16 cycles per

face (16 and 32 pixels per face).

It is possible that the use offaces selected as typical, in

an attempt to ensure that identification was relatively dif

ficult and thus avoid ceiling effects, has affected the spa

tial frequency value obtained. However, facial measures of

typicality suggest that this is unlikely. Bruce, Burton, and

Dench (1994) found positive correlations at a number of

size (distance) scales between ratings of distinctiveness

and the deviations from the means offacial distances. The

two highest correlations reported for male faces, normal

ized by equating the interocular distances, were the height

ofthe eyebrows and the face width at the mouth. The mea

surements ofsmall-scale distances will be dependent upon

high frequencies; low-pass images will not allow accurate

location ofclosely adjacent points. Conversely, large-scale

distances will depend upon low frequencies, since their

absence will increase the probability of the comparison of

inappropriate contours. Thus, the typical distances should

determine the typical frequency components, and vice

versa. In addition, while Vokey and Read (1992) suggest

typicality can be decomposed into "general familiarity"

and memorability factors, O'Toole, Deffenbacher, Valentin,

and Abdi (1994) suggest that, although general familiar

ity (or as they prefer, "attractiveness") is dependent upon

the shape offaces, memorability is dependent upon small,

discrete, local features. From these results, it appears that

typicality and distinctiveness are probably the result of a

number of different effects operating at different scales,

and so there should be little interaction between typicality

and an optimal spatial-frequency range.

The change in identification performance obtained here

could also be attributed to a drop in contrast as the spatial

range is reduced. As the frequency ofFourier components

increases, the intensity of the components decreases (Ed

wards, 1967). Since a large proportion ofthe total available

contrast is accounted for by very low spatial frequencies,

as the frequency of the cut-off in the high-pass condition

increases, the available contrast falls much faster in the

low-pass conditions. Thus, a given frequency band contains

a larger fraction of the contrast in an image that has been

high-passed than in one that has been subjected to an equiv

alent low-pass.

This problem with contrast may underlie the fact that

these data disagree somewhat with those collected by Fio

rentini et al. (1983), since the identification rate for the

4.5-cycles-per-face (9-pixels-per-face) high-pass images

was significantly lower than that for the low-pass images

with the same cut-off. One explanation ofthis effect could

be that the overall energies of our high-pass images are

low. When the inverse Fourier transform was applied to the

images, the output format permitted only positive values.

Since the fundamental ofa Fourier transform is the mean

gray level of the image and all higher frequencies form

deviations from this base, this removed halfofthe contrast

of the image. This manipulation was applied to all of the

images; thus, the low-pass and high-pass were computa

tionally identical. However, the low-pass images will not be

noticeably affected by this feature, since the decline in en

ergy with increased spatial frequency ensures that negative

gray levels are impossible. Although Fiorentini et al. (1983)

do not state their computational method, inspection of the

examples given suggests that their images did not suffer

from this problem and may also have had the mean contrast

enhanced. To test these options, the high-pass condition

was repeated, with contrast-enhanced and uncensoredfloat

output conditions added. These had the effect ofenhancing

the remaining contrast in the high-passed images, the first

retaining the requirement that the images contain only the

positive deviations from the removed mean brightness, and

the second with both positive and negative deviations.

EXPERIMENT 2

Method

Subjects. The subjects were 8 undergraduate students at the Uni

versity of Aberdeen.

Equipment. The equipment was the same as that used in Exper

iment 1.

Stimuli. The base stimuli were the same as those used in Exper

iment 1.The high-pass condition was identical to that in Experiment 1.

The stretched condition was prepared in the same way, but, before

the DC component was added, the contrast of the image was en

hanced. This was performed by linearly increasing the range ofgray

levels present in the image to the full range available (0-255) and thus

equated the Michelson (1927/1962) contrast of the set of images.

The float images were constructed in the same way as the stretched

images, but care was taken to ensure that, at each stage, there were

no constraints upon pixel values. Only at the final stage, when the

Michelson contrast was set, was the image converted for display pur

poses. The results of these filters are shown in Figure 5. This dis

plays the data in the same manner as Figure 1 and shows the in

creased contrast for the stretched and float images relative to the

high-pass images, and it shows that only the float images had the

smooth, curved filter pattern expected from an exponential filter.

The images were again manipulated by the HIPS image-processing

package running from Unix shell scripts. A set of examples of the

images are provided in Figure 6.

Procedure. The procedure was the same as that used in Experi

ment 1. Ofa total of4,608 trials, 66 (1.43%) were discarded because

of equipment missynchronization.

The practice procedure produced a significant increase in response

accuracy across blocks [F(2,14) = 5.29,p = .0194]. RTalso showed

a significant effect of practice [F(2,14) = 21.44, p = .0001].

Results

The accuracy results were treated in the same way as

those in Experiment I and are displayed in Figure 7, taking

the sine ofthe values used in the analyses. There were sig

nificant effects ofspatial-frequency cut-off(blur) [F(3,21)
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high-pass condition was significantly different from the

stretched and float conditions, which did not vary between

themselves.

In summary, then, accuracy data show that, although en

hancing the contrast of the images did improve identifi

cation when the minimum frequency rose above 11.5cycles

per face, there was still a significant drop in performance

at this level for both the contrast-enhanced conditions. The

relatively small differences between the stretched and float

manipulations suggest that total gray-level range was of

relatively little importance, although it is notable that there

was a significant difference between these conditions when

the minimum frequency was 11.5 cycles per face.

The mean RTs, formed by taking the anti-logarithms of

the means of the groups used in the analysis are given in

Figure 8. Analysis found that there were significant effects

of blur [F(3,21) = 7.96, p = .001] and of manipulation

[F(2,14) = 6.59,p = .0096]. The interaction between blur

and manipulation was not significant (F < 1). Post hoc

Tukey tests showed that, although the 22.5-cycles-per-face

frequency cut-offwas significantly different from the 4.5-,

6-, and 11.5-cycle-per-face groups, these did not vary sig

nificantly among themselves. They also showed that the

high-pass manipulation was significantly different from

both the stretched and the float manipulations, which did

Figure 6. High-pass, stretched, and float at 42, 23, 12, and 9
pixels per face. The prints underestimate the contrast of the im
ages used in the experiment.
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= 40.35,p = .0001]andofthetypeoffilterused(manip

ulation) [F(2,14) = 34.61, p = .0001]. There was also a

significant interaction between blur and manipulation

[F(6,42) = 15.l8,p = .0001].

The significant interaction between blur and manipula

tion demands an analysis of simple effects. When the data

were sorted on the basis ofmanipulation, all three showed

significant effects ofblur (all ps < .0002). For the high-pass

manipulation, a Tukey HSD test showed that the 22.5

cycles-per-face group was significantly different from the

4.5-,6-, and l l.S-cycles-per-face groups and that, while the

4.5- and 11.5-cycles-per-face groups were significantly

different from each other, neither differed significantly

from the 6-cycles-per-face group. The stretched manipu

lation showed that, while the 22.5-cycles-per-face group

was significantly different from the 4.5- and 6-cycles-per

face groups, the l lS-cycles-per-face group did not differ

from any other. For the float manipulation, the 22.5-cycles

per-face group was significantly different from the others,

which did not vary among themselves.

When the data were divided on the basis ofthe values of

the blur factor, it was found that the 4.5-cycles-per-face

condition showed a significant effect of manipulation

[F(2,14) = 4.28,p = .0355]. A TukeyHSD test showed that

there was a significant difference between the stretched

and float manipulations, but not between these and the

high-pass condition. At the 6-cycles-per-face level, there

was no significant effect ofmanipulation [F(2, 14) = 1.49,

p = .2594], but there was at the 11.5-cycles-per-face level

[F(2,14) = 9.89,p = .0021]. The float manipulation here

was significantly different from the stretched and high-pass

manipulations, which did not differ significantly from

each other. There was also a significant effect at the 22.5

cycles-per-face level [F(2,14) = 64.85, p = .0001]. The
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GENERAL DISCUSSION
AND CONCLUSIONS

It is clear that the variation in the root mean square val

ues for these images will not account for the experimental

results. While the relationship between the high-pass and

contrast-enhanced images was approximately the same in

both cases, the float images showed more accurate and

faster identification than did the stretched images. How

ever, they had significantly lower energies. In particular, the

energy ofthe 4.5-cycles-per-face high-pass images was the

same as that of the 22.5-cycles-per-face float images and

was less than that ofthe 22.5-cycles-per-face stretched im

ages. A one-way ANOYAofthese three conditions showed

that this difference was significant [F(2,1O) = 8.49, p =

.007]. A Tukey HSD test showed that this reflected a sig

nificant difference between the stretched images and the

float and high-pass images, which did not vary signifi

cantly. However, the high-pass images showed more ac

curate identification [F(2,14) = 15.51, p = .0003] than

did the stretched or float images, although there was no

significant difference in RT for these images [F(2, 14) =

1.44,p = .2710]. Conversely, the significant drop in con

trast that is observed at 4.5 cycles per face when compar

ing the high-pass images with the stretched and float im

ages produced no significant difference in the speed of

response, and it produced only a slight difference between

the high-pass and stretched conditions. The float condition

was not significantly different from either ofthese condi

tions. The results show clearly that the available image con

trast and performance were almost totally decoupled.

The data from the low-pass conditions in Experiment 1

readily confirm the evidence that there is a discontinuity

in the decline in identification of faces as detail is re

moved (Bachmann, 1991; Costen et aI., 1994). If the im-
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not vary significantly between themselves. Since there was

no significant interaction between these factors, simple ef

fects were not extracted.

Figure 7. Response accuracy in Experiment 2. The upper ab
scissa shows the frequency cut-off in cycles per degree. The lower
abscissa shows the frequency cut-off in cycles per face. The ordi
nates show response accuracy in percents.

Discussion

The major results of Experiment 2 are relatively clear.

As in Experiment 1, the high-pass condition, which did not

have enhanced contrast, showed a large drop in the accu

racy with which the face was identified and an accompa

nying increase in the time taken to do this correctly. The

stretched and float conditions showed the same pattern of

results, with significantly worse performance on the 22.5

cycles-per-face condition than on the others. However, the

stretched and float images were identified more accu

rately and faster than were the high-pass images. It would

appear that a proportion of the drop in performance seen

in the high-pass condition as the spatial-frequency of the

cut-off increased was due to the drop in the contrast of the

images. However, it is not clear whether all ofthis decline

was due to the loss of contrast or whether some of it was

due to the loss of some critical band of information. This

can be further investigated by considering different def

initions of the contrast of the images. The images have

been manipulated to control the Michelson (1927/1962)

contrast, which is a function of the maximum and mini

mum brightness. However, other measures, such as the

energy or the root mean square (Moulden, Kingdom, & Gat

ley, 1990), also could have been used. This statistic mea

sures the average deviation from the mean gray level.

When the root mean square of the images was measured,

there were consistent effects of spatial-frequency cut-off

[F(3,15) = 250.02,p«.0001],ofmanipulation[F(2,1O) =
212.52,p« .0001], and of the interaction between these

factors [F(6,30) = 0.0039, p = .0039], as can be seen in

Figure 9.
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lation for the latter cut-off. Thus, the changes in energy

present in the images do not provide an explanation of the

results; there is no relation either in order or interaction or

in mean identification level between the root mean square

contrast of the images and the identification level. This

evidence from both experiments clearly suggests that, de

spite changes in contrast in the different filtering condi

tions, the identification of these faces is preferentially

supported by a band ofintermediate-spatial-frequency in

formation, which we suggest is located between approxi

mately 8 and 16 cycles per face .

Both the differences between the low-pass and pixel

ized conditions in Experiment 1 and the differences be

tween the float and stretched conditions in Experiment 2

can be explained by the effect of noise on such a critical

band. If there is a critical band of spatial-frequency infor

mation of about 8-16 cycles per face, then the low-pass

condition should show a particularly sharp decline as the

upper limit of the available information moves below this

region; the residual identification and longer processing

times seen in the 4.5- and 6-cycles-per-face conditions

may reflect pattern identification rather than face identi

fication. If this explanation in terms ofadded noise is cor

rect, pixel images should display the same accuracy pat

tern, but shifted so that equivalent levels of performance

occur with higher preserved spatial frequencies. The dif

ference arises because the lower portions ofthe critical re

gion will be contaminated by the presence of edge noise

even ifthe pixel size should allow transmission ofthe crit

ical information.

A similar explanation can cover the high-pass conditions.

As the minimum retained spatial frequency passes above

this critical value ofspatial frequencies, identification per

formance should again drop off. However, this decline may

be accelerated either by major differences in the total con

trast present in the image, as was the case in the high-pass

condition, or by the addition of extra contrast by the en

hancement procedure, as in the stretched condition. This

enhanced-contrast manipulation was formed by taking the

positive side of the high-passed images, adding a mean

gray level, and then stretching the range to the maximum

possible with the equipment (256 gray levels). The float

manipulation took the positive and negative components

of the image before adding the gray level. As a conse

quence, the level of distortion present in the images rela

tive to the original (the positive and negative components)

will be greater for the stretched manipulation than for the

float manipulation. It is notable that, while there was a sig

nificant main effect difference between the float and

stretched conditions in Experiment 2, they were signifi

cantly different at the 11.5-cycles-per-face condition in the

center of the postulated critical region and not signifi

cantly different above and below that value.

This suggested band of 8-16 cycles per face, the limits

of which are in agreement with that of Bachmann (1991)

and Fiorentini et al. (1983), is higher than that assessed by

Harmon (1973) and lower than that proposed by Hayes

et al. (1986) and Tieger and Ganz (1979). The presence of

these masking effects allows one to exclude explanations
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ages are degraded by quantization, or Fourier filtering, this

occurs at a level between 11.5 and 6 cycles per face in Cos

ten et al. (1994) and in Experiment 1 here. With the addi

tion ofthe RTdata, ceiling effects can be discounted in these

investigations. The discontinuity is also clearly not due to

the degradation method, since the low-passcondition, which

does not introduce additional noise, shows a more marked

discontinuity than does the pixel condition. The pixel con

dition also shows a general decrement in performance rel

ative to the low-pass condition. This both replicates and rec

onciles the values from previous studies (Bachmann, 1991;

Fiorentini et aI., 1983), where worse identification was

seen for quantized images than for smoothly blurred ones.

The data from the high-pass condition in Experiment 1

show a decrease in response accuracy and increase in RT

as the frequency cut-off rises above 11.5 cycles per face.

This result might have been explained by the relatively low

energy or gray-level range seen in the high-pass images.

Indeed, increasing the available contrast in the images did

lessen the decline in accuracy and the increase in RTs in

comparison with the high-pass condition in Experiment 2.

Given the desire to discover the use of the spatial content

of the images, it should be noted that manipulations such

as equating the contrast of the filtered images are as un

natural a set of activities as, say, extracting line drawings.

This will lead to one sort of information within the face

predominating, and obscure the real interest, the use of

different types of information within the natural frequency

spectrum. However, using a range ofdifferent energy ma

nipulations (as in the present experiments) should over

come this problem by allowing the tracing ofthe same un

derlying factor through the different manipulations.

The relative advantage for the 4.5-,6-, and 11.5-cycles

per-face conditions increased for the enhanced-contrast

conditions, with a particular increase in the float manipu-

Figure 9. Image contrast in Experiment 2. The upper abscissa
shows the frequency cut-off in cycles per degree. The lower ab
scissa shows the frequency cut-off in cycles per face. The ordi
nates show image contrast.
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of the difference between these results and those of Hayes

et aI. (I 986) based upon spatial range or image contrast.

Not only is this proposed value, with a harmonic mean of

11.3 cycles per face (equating with a spatial frequency of

1.23 cpd in this case), approximately one octave below the

optimal frequency for contrast sensitivity of 2.5--4.0 cy

cles per degree (Campbell & Green, 1965) but extraneous

information in this band has a disproportionate effect upon

identification for both high-pass and low-pass images, com

pared with information outside this range. This strongly

suggests that these changes in accuracy do not reflect dif

ferences in spatial range, and reinforce the difference in

results between these two studies. Hayes et al. (1986) used

ideal filters (also used in Costen et al., ]994, obtaining re

sults comparable with those here) which have a sudden

change from spatial frequency components included in

the image to those excluded, and thus introduce extra

noise. A possible explanation ofthe discrepancy is that the

tasks the subjects were asked to perform in these two stud

ies were different. The base faces that the subjects pro

cessed in Hayes et al. (1986) were on display during the

experiment, the images were shown for a relatively long

period (contrast was nonzero for 3 sec), and no RTs were

given. Interestingly, the optimal frequency value was not af

fected by negating the image, thus creating a frequency

component impossible in a real face. As a consequence, it

appears that Hayes et al. (1986) did not investigate face

identification proper, but the ability to match filtered vi

sual patterns to their base images.

An alternative explanation could involve point- or line

finding procedures operating independently of the spatial

frequencies ofthe image and also independently ofthe fea

tures of a general face-identification system, and this can

explain some ofthe data. The accelerating decline in iden

tification performance ofthe low-pass and pixel conditions

in Experiment] could reflect the range of scales at which

useful information was present in these images, rather than

the features ofa general face-identification system. How

ever, this explanation does not fit the data from the high

pass conditions very well: the critical information about

the location of facial features will still be present in the

high-pass images, obscured possibly by the lack of con

trast. Under these conditions, one should expect relatively

small changes in response accuracy but large changes in

the time to identify images; however, the reverse was seen.

In both experiments, response accuracy was affected much

more than RT.

In addition, the enhanced-contrast conditions in Exper

iment 2 show that this explanation cannot be correct. Ifthe

relatively linear decline in identification accuracy seen in

the high-pass condition reflected the failure of a point

finding algorithm under conditions ofreduced contrast, then

the contrast manipulation should remove, or very much

reduce, the changes in identification seen as the spatial fre

quency cut-off increases. The continued presence ofa dis

continuity in identification strongly suggests that the de

cline reflects the selective use of information at this scale,

rather than its ease of detection.

The finding that about 8 cycles per face is a critical lower

region for encoding structural information about faces has

an intuitive appeal. This wavelength (0.125 face width) is

approximately half the distance (0.287 face width) from

the side of the face to the center of the eye socket and also

from the center of the eye socket to the nasion and so is

suited to code a range offacial dimensions. However, this

suggestion that information at this level ofdetail is useful

in determining the configural information necessary for

face identification does not explain why it is used in pref

erence to other levels ofdetail-most notably, the accurate

location ofitems as allowed by higher spatial frequencies.

Perhaps the information outside this range is positively

harmful to the identification process. This may happen if

a major requirement in face identification is to determine

the three-dimensional shape of the stimulus, as suggested

when dealing with basic-level classification (Biederman,

1987; Hummel & Beiderman, 1992) and in identification

via rotation to standard positions (Ullman, 1989). If this

happens, neither the high- or the low-frequency informa

tion, measured relative to the object considered, will be of

great use. The very low frequency information may sug

gest that there is a face present, but not whose face it is

(Sergent, 1986). The highest spatial frequencies may also

be oflittle use, since they cannot allow the extraction ofin

formation concerning the relative three-dimensional posi

tion ofportions of the face.

These results do not require that faces be Fourier trans

formed during the identification process; rather, they offer

an indication of the spatial scale at which critical infor

mation lies. An alternative algorithm that would capture

these effects is the coding of configural information by

the type of local surface distortion present in the image

(Bruce, Coombes, & Richards, 1993). This calculates the

ratio between directional, mean curvature and the amount

of circular, Gaussian curvature within a given area. The

area of the face with different ratios correlates with dis

tinctiveness and the visibility of changes in facial shape.

Alternatively, O'Toole, Abdi, Deffenbacher, and Valentin

(1993) considered the accuracy ofrepresentation of faces

by different ranges ofa principal components spectrum, a

set of orthogonal components upon which a group of im

ages vary. The components are extracted in order of de

creasing magnitude of variation; thus, as the rank number

increases, they move from coding general shape to coding

detail. A central band allowed the best discrimination of

known from unknown faces, which again suggests that

relative shape or texture is ofmaximum value at a medium

scale.

Ifthis suggestion, that face identification preferentially

depends upon the presence ofa band ofspatial frequencies

of about 8-16 cycles per face, is correct, comparable re

sults should be obtained with spatial-frequency band

passed manipulations of constant width. Compatible re

sults would also be obtained with faces transformed so

that they are seen, for example, from different orientations

or at different sizes. These questions are currently being

addressed.
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