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Abstract: Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is performed
using carbon nanowalls (CNWs) for ionization-assisting substrates. The CNWs (referred to as high-
quality CNWs) in the present study were grown using a radical-injection plasma-enhanced chemical
vapor deposition (RI-PECVD) system with the addition of oxygen in a mixture of CH4 and H2

gases. High-quality CNWs were different with respect to crystallinity and C–OH groups, while
showing similar wall-to-wall distances and a wettability comparable to CNWs (referred to as normal
CNWs) grown without O2. The efficiency of SALDI was tested with both parameters of ion intensity
and fragmental efficiency (survival yield (SY)) using N-benzylpyridinuim chloride (N-BP-CI). At
a laser fluence of 4 mJ/cm2, normal CNWs had an SY of 0.97 and an ion intensity of 0.13, while
5-sccm-O2– high-quality CNWs had an SY of 0.89 and an ion intensity of 2.55. As a result, the
sensitivity for the detection of low-molecular-weight analytes was improved with the high-quality
CNWs compared to the normal CNWs, while an SY of 0.89 was maintained at a low laser fluence
of 4 mJ/cm2. SALDI-MS measurements available with the high-quality CNWs ionization-assisting
substrate provided high ionization and SY values.

Keywords: carbon nanowalls; surface-assisted laser desorption/ionization mass spectrometry;
plasma-enhanced chemical vapor deposition

1. Introduction

The method of surface-assisted laser desorption/ionization mass spectrometry (SALDI-
MS) was introduced by Sunner et al. in 1995 [1]. SALDI-MS was applied for the rapid,
invasive, and sensitive diagnoses of biological samples. SALDI-MS provides the advantage
of a matrix-free detection method, particularly for low-molecular-weight molecules. A vari-
ety of materials have been applied as SALDI ionization-assisting substrates. For example,
Si-based materials (e.g., porous Si [2] and Si nanowires (SiNWs) [3,4]), carbon-based mate-
rials (e.g., graphite [1], carbon nanotubes (CNTs) [5–7], graphene [7,8], carbon nanowalls
(CNWs) [9,10]), and metal-based materials (e.g., Ge [11], Ag [12,13], Pt [13,14], Au [13,15,16],
and TiO2 [17]) have been reported. The achievement of highly sensitive and nonfragmented
SALDI-MS has been an issue for high-efficiency desorption/ionization without fragmen-
tation of the analytes [18]. N-benzylpyridinium chloride (N-BP-Cl) has been used as a
chemical thermometer to indicate the degree of ionization fragmentation [19]. The survival
yield (SY) of N-BP-Cl is defined using the intensities of benzylpyridinium ions ((BP)+)
and benzylium ions ((C7H7)+). The previously reported SY values were 0.97 for CNWs
grown without O2 (referred to as normal CNWs) at a laser fluence of 4 mJ/cm2 [10], 0.8 for
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SiNWs at as laser fluence of 4 mJ/cm2 [4], 0.97 for perfluorodecyltrichlorosilane-modified
platinum nanoflowers (FDTS-PtNFs) with a citrate buffer at approximately 10 mJ/cm2 [14],
and 0.964 ± 0.023 for CNTs at 25 mJ/cm2 [7]. SALDI ionization-assisting substrates with
unique morphologies, such as SiNWs, PtNFs, and CNWs, enable desorption/ionization
at low laser fluences [7,10,14]. Carbon-based materials, such as CNTs, also provide excel-
lent SALDI properties due to their optical properties, chemical termination, and phase
transition/destruction [7]. It has been reported that improved crystallinity and the in-
troduction of carboxyl groups for oxidized CNTs [6] and oxidized graphitized carbon
black nanoparticles (GCB) [20] enhanced the signal intensities in SALDI measurements.
Compared to other ionization-assisting substrates, CNW ionization-assisting substrates,
which are comprised of carbon and have unique morphologies, offer two advantages. One
is that CNWs achieved desorption/ionization at the lowest laser fluence of 4 mJ/cm2 [10],
and the other is that at the lowest laser fluence of 4 mJ/cm2, CNWs grown without oxygen
achieved a higher SY of 0.97 [10] than an SY of 0.8 for SiNWs [4].

Hori et al. invented SALDI-MS with CNWs as SALDI ionization-assisting sub-
strates [21,22]. CNWs are vertically oriented wall-like structures that are comprised of
multiple stacks of graphene sheets [23,24]. CNWs are grown on various substrates, such
as Si, without a catalyst [23]. CNWs have a high density of graphene edges formed by
graphene with excellent optical properties at the top edge [25]. CNWs retain their structure
in bio-liquids and can be applied to cell culture plates [26]. The morphology of CNWs,
such as the wall density, can be changed by altering the plasma during growth [27,28]. The
oxygen-added growth of CNWs alters their physical properties, such as their crystallinity
and electrical conductivity [29,30]. O radicals enhance the nucleation of CNWs due to a
decrease in amorphous carbon during the initial growth of the CNWs. O radicals also
suppress branching of the sides of CNWs during growth. The hydrophilic and hydrophobic
properties of CNWs can easily be changed using atmospheric pressure plasma [31]. These
characteristics make CNWs a promising SALDI ionization-assisting substrate. First, when
irradiated with a high-intensity laser, high optical absorption and tip-edge structures of
CNWs possibly form an electric field that assists with the ionization of molecules located
on the surface [9,10]. Second, rapid SALDI-MS can be performed by simply dropping
a bio-liquid onto the CNW ionization-assisting substrates. For example, dispersion and
spots need to be considered before dropping a bio-liquid due to its aggregation in other
carbon nanomaterials ionization-assisting substrates, such as CNTs [7]. Third, the prepa-
ration of CNW ionization-assisting substrates is more practical with respect to growth
conditions. For example, CNT growth requires a catalyst, while no catalyst is needed
for CNW growth [23]. By controlling the wall density over a wide range from 142 to
467 nm, CNWs with a wall-to-wall distance of 142 nm were determined as effective for
SALDI, and resulted in low fragmentation and high ion mass signal intensities for the
analyte molecules [10]. Hydrophilic CNWs are more effective for the detection of small
biomolecules [9]. Whereas optimizations of CNWs for SALDI-MS have been reported, the
elucidation of desorption/ionization mechanisms in CNWs has been limited. It is yet to
be clarified whether specific properties of CNWs (e.g., crystallinity, electrical conductivity,
etc.) can affect SALDI properties such as the ionization efficiency and SY.

In this study, the effect of CNWs grown with the introduction of oxygen (referred to
as high-quality CNWs) on the properties of SALDI was investigated in detail. High-quality
CNWs were grown in a radical-injection plasma-enhanced chemical vapor deposition
(RI-PECVD) system by the addition of oxygen during CNW growth [24,29,30,32]; the
morphology and physical properties of CNWs change when the growth conditions include
the addition of oxygen. Considering a previous report that the morphology of CNWs
affected SALDI properties [10], high-quality CNWs were grown with a small amount of
oxygen addition within the range that did not affect the morphology as much as possible.
The performance of high-quality CNWs as ionization-assisting substrates was tested with
respect to the ionization intensity and fragmental efficiency in SALDI measurements of
N-benzylpyridinuim chloride (N-BP-CI).
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2. Materials and Methods
2.1. Preparation of CNWs as Ionization-Assisting Substrates

CNW ionization-assisting substrates were grown on Si substrates with an RI-PECVD
system (Katagiri Engineering Co., Ltd., Kanagawa, Japan) [24,29,30,32]. Two types of
plasma source were used in this system to precisely and independently generate and
control radical species, as shown in Figure 1. One was a surface-wave plasma (SWP) source
located at an upper region, and the other was a capacitively coupled plasma (CCP) source.
The two plasma sources were connected through a mesh electrode near an upper electrode
for the CCP. A microwave (2.45 GHz) power of 400 W was used for the SWP. A radio
frequency (RF) power of 100 MHz and 400 W was applied for the CCP, and the distance
between the CCP upper electrode and the lower stage was 30 mm. The total pressure in the
chamber was kept at 1 Pa. The temperature of the substrates was kept at approximately
650 ◦C during the entire deposition process.
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Figure 1. Radical-injection plasma-enhanced chemical vapor deposition (RI-PECVD) system with
CH4, H2, and O2 gases.

Normal CNWs were grown under the following conditions. During plasma generation,
100 sccm of CH4 and 50 sccm of H2 gases were introduced into the CCP and SWP chambers,
respectively. The deposition time for CNW growth was 290 s.

High-quality CNWs were grown through the addition of O2 gas and with the same
growth conditions as those for the normal CNWs. A small amount of oxygen was added,
aiming for no change in wall density, because the wall density of CNWs affects SALDI
performance [10]. High-quality CNWs were grown with a deposition time of 320 s for an
oxygen flow rate of 5 sccm and 380 s for an oxygen flow rate of 10 sccm to achieve a CNW
height of approximately 500 nm. The crystallinity of the CNWs was previously reported to
be improved when O2 gas with a flow rate of 5 or 10 sccm was introduced into the CCP
source [29,30].
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In the present experiment, CNWs that were at least 14 days old after growth were
used because it has been reported that the CNW edges initially contain many defects and
the surfaces become highly hydrophobic over time with inert and stable terminations [33].

The morphology of the CNWs was observed using scanning electron microscopy
(SEM; Hitachi High Technologies Corporation, Tokyo, Japan, SU8230). The average wall-
to-wall distance was defined as the length of a straight line divided by the number of
walls crossing the line in the top view images. Raman spectra of the CNWs were acquired
using a laser with a wavelength of 532 nm (Renishaw plc, Wotton-under-Edge, UK, inVia
Raman). The chemical bonding states of the CNW surfaces in the C1s and O1s regions
were analyzed using X-ray photoelectron spectroscopy (XPS; Vacuum Generator Scientific,
Waltham, MA, USA, ESCAlab 250i). The wettability of the CNWs was investigated with
contact angle measurements using three different solutions of deionized water (Milli-Q),
methylene iodide (Kishida Chemical Co. Ltd., Osaka, Japan, 000-24382), and ethylene
glycol (Kishida Chemical Co. Ltd., Osaka, Japan, 000-29332). The volume of the solution
droplets was set to 1 mL.

2.2. CNWs-SALDI-TOF-MS

Laser light was provided by the fourth harmonic wave with a wavelength of 266 nm
from a Nd:YAG laser (repetition rate: 30 Hz, pulse width: 2 ns; Spectra-Physics, Quanta-Ray
Pro 250). The laser light was focused on the CNWs/Si sample surface located at the ion
collection point of a time-of-flight mass spectrometer system (TOF-MS; Toyama Co., Ltd.,
Kanagawa, Japan) [9,10]. The background pressure of the ionization chamber was kept
below 10−7 Pa. The ion signals were detected in positive-ion mode using a microchannel
plate (MCP) with a high voltage of 2 kV applied. The incident laser fluences were set to
4, 8, and 12 mJ/cm2 for the detection of N-BP-Cl. Details of CNWs-SALDI-TOF-MS have
been previously published [9,10].

N-BP-Cl (C12H12ClN; Alfa Chemistry, Stony Brook, NY, USA, ACM2876133, 204 Da)
was used to evaluate the degree of fragmentation in the desorption/ionization
process [7,10,13]. N-BP-Cl was dissolved in methanol (Fuji Film Wako Pure Chemical
Corporation, Osaka, Japan, 138-06473). The concentration was adjusted to 0.1 mM with
reference to previous literature [7,10]. A total of 5 µL of the N-BP-Cl solution was then
dropped onto the CNW ionization-assisting substrate and left to dry in the ambient air.
The SY of N-BP-Cl is defined as:

SY =

(
IM

IM + IF

)
(1)

where IM and IF are the signal intensities for benzylpyridinium ions ((BP)+) with m/z of
170, and benzylium ions ((C7H7)+) with m/z of 91, respectively [7,10,13]. When (BP)+ is
desorbed/ionized, the C–N bond between the benzyl and pyridine is simply cleaved,
producing fragment ions. For more details, please refer to the publication on the SY
method [19].

3. Results and Discussion
3.1. Physicochemical Observation of the Normal and High-Quality CNWs

The morphology of the CNWs was observed by acquiring top and cross-sectional
SEM images, as shown in Figure 2. Figure 2a shows the morphology of the normal CNWs.
The wall-to-wall distance for normal CNWs was 142 ± 3.7 nm. Figure 2b,c show the
morphology of the high-quality CNWs, where the wall-to-wall distances for the CNWs
were 152 ± 6.2 nm for an oxygen flow rate of 5 sccm and 157 ± 6.6 nm for an oxygen
flow rate of 10 sccm. The height of all CNWs was approximately 500 nm, as shown
in Figure 2d–f.
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Figure 3 shows a series of Raman spectra that were normalized with respect to the peak
intensity of the 1350 cm− 1 D-band. The observed Raman peaks were identified as being due
to graphene materials. The peaks at 1586 cm− 1 were attributed to the six-membered ring
structure of graphene, i.e., the G-band. The D-band was due to disorders and defects of the
six-membered ring structures. The peak at 1620 cm− 1 was assigned as the D’-band, which
is related to the finite size of the graphite crystallites and their edges. If the peak intensities
for the D- and D’-bands are large with respect to the G band, then the CNWs are assumed
to have defects in the six-membered ring structures and graphene edges. In addition, it has
been reported that graphene-based materials with a large amount of graphene edges have
a 2D-band at approximately 2690 cm− 1, a D+G-band at approximately 2940 cm− 1, and a
2G-band at approximately 3200 cm− 1. The results indicated that all the CNWs had almost
the same characteristics, regardless of the introduction of oxygen [27].

Figure 4 shows peak area intensity ratios for the D-band to G-band peaks (ID/IG) and
those for the D’-band to G-band peaks (ID’/IG). For example, ID/IG were 2.94, 2.75, and
2.69 with O2 flow rates of 0, 5, and 10 sccm, respectively. ID/IG and ID’/IG decreased when
the O2 flow rate was increased, which indicates that the addition of oxygen allowed the
growth of more crystalline CNWs, as previously reported [29,30]. The addition of O2 gas
was assumed to decrease amorphous carbon and nucleation during the initial growth of
the CNWs. In addition, CNWs grown with oxygen in this study (high-quality CNWs) may
have improved the electrical conductivity and formed monolithic graphene sheets, similar
to CNWs grown with oxygen, as previously reported [30].

Figure 5 shows (I) C1s and (II) O1s XPS spectra of the CNWs. The C1s and O1s spectra
were normalized with respect to the peak intensities for sp2 C-C bonds at 284.6 eV. CNWs
grown at O2 flow rates of (a) 0, (b) 5, and (c) 10 sccm are shown in Figure 5. The C1s peak
was decomposed into three components centered at 284.6, 285.5, and 286.9 eV (Figure 5I).
The main C1s peak at 284.6 eV corresponded to sp2 C-C bonds of graphite [27,34]. The
peak centered at 285.5 eV originated from sp3-bonded carbon atoms (sp3 C-C), and the
peak at 286.9 eV was due to C-O-C bonds [34]. The O1s peak was also observed regardless
of the oxygen flow rate (Figure 5II). It has been reported that O1s is formed by the C-OH
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peak at 532.4 eV and the C=O peak at 530.2 eV [27]. All CNWs exhibited surface-bonding
states of typical CNWs [27,34]. The XPS survey spectra was shown in Figure S1 in the
Supplementary Materials.
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Figure 5. (I) C1s and (II) O1s XPS spectra of (a) normal CNWs, (b) 5-sccm-O2–, and (c) 10-sccm-
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intensities for sp2 C–C bonds at 284.6 eV.

Figure 6 shows the peak area ratios of the 284.6 eV peak to C1s, 285.5 eV peak to
C1s, 286.9 eV peak to C1s, and O1s to C1s for the CNWs. The ratios of the 284.6 eV XPS
peak area to the total peak area of C1s and the total O1s area to the total peak area of C1s
increased with the oxygen flow rate. The ratio of the 285.5 eV peak area to the total peak
area of C1s decreased with an increase in the oxygen flow rate. The ratio of the 286.9 eV
peak area to the total peak area of C1s showed no dependence on the oxygen flow rate.
These results indicate that sp2 C-C bonds at 284.6 eV and C-OH at 532.4 eV increased
instead of decreasing the sp3 C-C bond. Thus, graphene sheets forming the high-quality
CNWs were more graphene-like, i.e., the high-quality CNWs had high crystallinity.
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Figure 7 shows optical photographs of droplet impressions for (I) deionized water,
(II) ethylene glycol, and (III) methylene iodide, taken during contact angle measurements
on CNW surfaces grown with various oxygen flow rates of (a) normal CNWs, (b) 5-sccm-
O2–, and (c) 10-sccm-O2– high-quality CNWs.
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Figure 7. Optical photographs of droplet impressions taken during contact angle measurements
on CNWs surfaces grown with various oxygen flow rates. (a) Normal CNWs, (b) 5-sccm-O2–, and
(c) 10-sccm-O2– high-quality CNWs. Row (I) deionized water, (II) ethylene glycol, and (III) methylene iodide.

Figure 8 shows the contact angles for each droplet on CNW surfaces grown at different
oxygen flow rates. Contact angles were similarly obtained for deionized water, ethylene
glycol, and methylene iodide on CNW surfaces grown at various oxygen flow rates. The
results indicate that the wettability of the CNW surfaces grown with all oxygen flow rates
was not significantly affected by the crystallinity. As described in Section 2.1, the surface
condition of the CNWs was stable and hydrophobic because the CNWs were more than
14 days old, which was consistent with previous research [33]. It has been reported that
differences in wettability affect the sensitivity for detection [9]. This suggests that the
addition of oxygen does not affect wettability, i.e., it does not affect the SALDI sensitivity.

3.2. SALDI Performance of the High-Quality CNWs

Figure 9 shows the SALDI mass spectra of N-BP-Cl on high-quality CNWs ionization-
assisting substrates. The laser fluences were set at 4, 8, and 12 mJ/cm2. All spectra were
normalized and shown with respect to the intensity at m/z = 170. Two characteristic signals
related to N-BP-Cl were observed. One indicated (BP)+ ions at m/z = 170 and the other
(C7H7)+ ions at m/z = 91 [7,10,13]. In addition, relatively small peaks due to pyridine ions
((C5H5N)+) also appeared at m/z = 79 in some spectra [10]. For the high-quality CNWs, the
(C7H7)+ ions peak at m/z = 91, which corresponded to fragmentation, became larger. On
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the other hand, the spectra of high-quality CNWs (Figure 9b,c) at 4 mJ/cm2 were more
clearly observed than in the case of normal CNWs (Figure 9a).
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Figure 10 shows the ion intensities for N-BP-Cl on the normal and high-quality CNWs
ionization-assisting substrates as a function of the laser fluence. The ion intensity was
defined as the sum of the peak intensities at m/z = 170 and 91. The ion intensities measured
using the CNW ionization-assisting substrates increased with the laser fluence. At a low



Nanomaterials 2023, 13, 63 10 of 14

laser fluence of 4 mJ/cm2, the ion intensity for the high-quality CNWs was clearly higher
than that for the normal CNWs.
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The rate of increase in ion intensity as a function of the laser fluence was different for
normal CNWs grown without O2 and high-quality CNWs grown with O2. As explained
in Section 3.1, physicochemical observations of high-quality and normal CNWs showed
that the main difference was the crystallinity and the C-OH groups. Therefore, from these
results, it can be assumed that the crystallinity and the C-OH bond of the CNWs had
an influence.

Why did high-quality CNWs with high crystallinity and C–OH groups enhance the
ion intensity? One mechanism could be that the monolithic graphene sheets that form
the high-quality CNWs contributed to a further enhancement of the electric field on the
CNWs’ edge. We have previously indicated that the factor influencing ionization of the
measured molecules on CNWs is the electric field concentration at the graphene edges of
the CNWs [10]. The O radicals produced during the growth of high-quality CNWs etch
the amorphous carbon and suppress branching of the CNWs, which allows for higher
crystallinity and electrical conduction [29,30]. The more graphene-like, less branched
CNWs, i.e., high-quality CNWs, can enhance the electric field on the edges compared to
the normal CNWs, which contributes to the improved ion intensity.

Another mechanism could be the C–OH groups on the surface of high-quality CNWs.
It has been reported that the signal was enhanced in oxidized CNTs [6] and GCB [20],
mainly due to the increase in C–OH groups. However, it is not sufficiently clear how
the structure and electrical properties of the individual graphene sheets of CNWs differ
between the normal and high-quality CNWs. More detailed studies, such as using X-ray
diffraction, are, thus, required to clarify how these features affect the ionization properties.

Figure 11(I) shows SY values for N-BP-Cl on normal and high-quality CNW ionization-
assisting substrates as a function of the ion intensity. For each CNW substrate, the increase in
the ion intensity corresponded to the laser fluences of 4, 8, and 12 mJ/cm2, in that order. Here,
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the SY values for the normal CNWs were retrieved from the publication [10]. For example, in
the case of a laser fluence of 4 mJ/cm2 (the lowest ion intensity for each CNW substrate), the
average SY values were 0.97, 0.89, and 0.88 for the CNW ionization-assisting substrates with
normal CNWs, 5-sccm-O2–, and 10-sccm-O2– high-quality CNWs, respectively. The SY values
for the high-quality CNWs decreased as the oxygen flow increased.
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Figure 11. SY values for N-BP-Cl on high-quality CNWs ionization-assisting substrates as a function of
(I) the ion intensity and (II) laser fluence: (a) normal CNWs, (b) 5-sccm-O2–, and (c) 10-sccm-O2– high-
quality CNWs. For each CNW sample, the increase in the ion intensity corresponds to laser fluences
of 4, 8, and 12 mJ/cm2, in that order. SY values of (a) normal CNWs [10], SiNWs [4], FDTS-PtNFs
with a citrate buffer [14], and CNTs [13] are cited for comparison, respectively.

Figure 11(II) shows the SY values for N-BP-Cl on high-quality CNW ionization-
assisting substrates as a function of laser fluence. Here, the results of the previous study
and the SY of the present study are compared. The SY value for SiNWs was reported to
be approximately 0.8 under a laser irradiation of 4 mJ/cm2 [4]. An SY value of 0.97 for
FDTS-PtNFs with a citrate buffer was also reported at a laser fluence of approximately
10 mJ/cm2 [14]. We also reported a high SY value of 0.97 for normal CNWs, which is close
to 1, at the lowest laser fluence of 4 mJ/cm2 [10]. Compared to these reported high SY
values, the SY values of 0.89 and 0.88 for 5-sccm-O2- and 10-sccm-O2– high-quality CNWs
at a laser fluence of 4 mJ/cm2 were comparable. High-quality CNW ionization-assisting
substrates grown with oxygen also offered the same two advantages as normal CNW
ionization-assisting substrates grown without oxygen, as described in Chapter 1. This
means that the electric field at the graphene edge of CNWs with optimized wall-to-wall dis-
tances may cause more efficient desorption/ionization, as discussed in the publication [10].

As a result, at a laser fluence of 4 mJ/cm2 (the lowest value of ion intensity shown
in Figure 11(I)), the SY value for the high-quality CNWs decreased compared to that for
the normal CNWs, but the ion intensity increased. For example, at a laser fluence of
4 mJ/cm2, the normal CNWs had an SY value of 0.97 and an ion intensity of 0.13, while
the 5-sccm-O2– high-quality CNWs had an SY value of 0.89 and an ion intensity of 2.55.
This indicates that the higher crystallinity of CNWs with the same surface morphology
can increase the ionization intensity, while having a slightly negative effect on the soft
ionization properties, such as the SY. It was assumed that excessive crystallinity results
in the formation of a strong electric field that assists ionization. This means that the
high-quality CNWs with moderate crystallinity clearly increased the ion intensity while
softly ionizing the N-BP-Cl. High-quality CNW ionization-assisting substrates could,
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thus, be available for mass-spectrometry analysis of samples, such as biomolecules, while
maintaining high soft ionization ability.

4. Conclusions

The laser desorption/ionization properties of high-quality CNWs grown by the in-
troduction of oxygen were investigated in detail. The high-quality CNWs showed high
crystallinity and an increase in C–OH groups, while showing wall-to-wall distances and
wettability comparable to normal CNWs grown without oxygen. At a laser fluence of
4 mJ/cm2, the normal CNWs had an SY value of 0.97 and ion intensity of 0.13, while
5-sccm-O2– high-quality CNWs had an SY value of 0.89 and ion intensity of 2.55. The SY
values were decreased for the high-quality CNWs compared to normal CNWs, but the ion
intensity was increased. The results presented here indicate that high-quality CNWs had
higher ionization efficiency while suppressing the fragmentation in desorption/ionization,
i.e., they exhibited high SY values.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/nano13010063/s1, Figure S1: (I) the entire and (II) en-
larged XPS spectra of (a) normal CNWs, (b) 5-sccm-O2–, and (c) 10-sccm-O2– high-quality CNWs.
XPS spectra were normalized with respect to the C1s peak intensities;
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