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Abstract

Background: Short episodes of high temperature (HT) stress during reproductive stages of development cause

significant yield losses in wheat (Triticum aestivum L.). Two independent experiments were conducted to quantify

the effects of HT during anthesis and grain filling periods on photosynthesis, leaf lipidome, and yield traits in wheat.

In experiment I, wheat genotype Seri82 was exposed to optimum temperature (OT; 22/14 °C; day/night) or HT (32/

22 °C) for 14 d during anthesis stage. In experiment II, the plants were exposed to OT or HT for 14 d during the

grain filling stage. During the HT stress, chlorophyll index, thylakoid membrane damage, stomatal conductance,

photosynthetic rate and leaf lipid composition were measured. At maturity, grain yield and its components were

quantified.

Results: HT stress during anthesis or grain filling stage decreased photosynthetic rate (17 and 25%, respectively)

and grain yield plant− 1 (29 and 44%, respectively), and increased thylakoid membrane damage (61 and 68%,

respectively) compared to their respective control (OT). HT stress during anthesis or grain filling stage increased the

molar percentage of less unsaturated lipid species [36:5- monogalactosyldiacylglycerol (MGDG) and

digalactosyldiacylglycerol (DGDG)]. However, at grain filling stage, HT stress decreased the molar percentage of

more unsaturated lipid species (36:6- MGDG and DGDG). There was a significant positive relationship between

photosynthetic rate and grain yield plant− 1, and a negative relationship between thylakoid membrane damage and

photosynthetic rate.

Conclusions: The study suggests that maintaining thylakoid membrane stability, and seed-set per cent and

individual grain weight under HT stress can improve the photosynthetic rate and grain yield, respectively.
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Background

Wheat (Triticum aestivum L.) is one of the import-

ant staple food crops in the world. Research indi-

cates that most of the wheat-growing regions of the

world are experiencing episodes of above-optimum

temperatures leading to a significant decrease in

grain yield [1–4]. Besides, IPCC [5] forecasted that

in the future, crops would face short episodes of ex-

treme temperatures, which will aggravate the nega-

tive effects of temperatures on grain yield [3, 4].

Wheat is sensitive to high temperature (HT) during

reproductive stages compared to vegetative stages

[6]. The OT for wheat during reproductive stages is

between 15 and 20 °C [7, 8]. However, in wheat-

growing regions of the world, an increased frequency

of high daytime temperatures (> 34 °C) is expected

[3]. If the occurrence of HT coincides with sensitive

stages of wheat, it will cause significant negative im-

pacts on grain yield. In field crops, an increase in

temperature during critical growth stages may cause

a yield reduction between 2.5 and 10% [9]. In wheat,

1 °C rise in minimum or maximum temperatures

during cropping season could decrease the global

wheat production by ~ 5.6% [1]. In another study,

Barkley et al. [2] have shown that 1 °C increase in

projected temperature during reproductive stages

could decrease grain yield by 21%. Asseng et al. [3]

have shown that global wheat production will de-

crease by 6% for each 1 °C increase of current mean

temperature and will become more variable over

time and space. Therefore, it is important to breed

HT tolerant genotypes to sustain wheat production.

Leaf photosynthesis is severely affected by HT stress

impacting plant growth and development [10]. Within

the chloroplast, the photosystem II present in thyla-

koid membranes are highly sensitive to HT, and dam-

ages to thylakoid membrane decreased photosynthetic

electron transfer, adenosine triphosphate phosphate

synthesis and alterations in photochemical reactions

[10, 11]. In addition, HT increases the production of

reactive oxygen species (ROS) including the super-

oxide radical (O2
−), hydrogen peroxide (H2O2), and

lipid peroxidation, resulting in increased membrane

damage [11, 12]. High temperature stress also induces

thylakoid membrane swelling and leakiness [11], lead-

ing to the physical separation of chlorophyll light-

harvesting complex II from the photosystem II core

complex [13]. Ristic et al. [14] found a strong nega-

tive relationship (r2 = 0.78) between chlorophyll con-

tent and thylakoid membrane damage in winter

wheat. Lower photosynthetic rate under HT stress in

wheat is an interplay among thylakoid membrane

damage, membrane lipid composition and oxidative

damage to cell organelles [11].

Changes in membrane lipid composition and unsat-

uration levels are proposed to be an important mech-

anism of thermotolerance in wheat. Changes in

membrane lipid unsaturation levels are required to

prevent the phase transition of membranes to non-

bilayer phases and to maintain membrane function

and stability [15]. Studies on wheat leaves indicated

that HT stress during the anthesis significantly

decreased the total amount of monogalactosyldiacyl-

glycerol (MGDG), phosphatidylglycerol (PG), phos-

phatidylcholine (PC) and phosphatidic acid (PA) [11,

12]. Apart from this, HT stress decreased the levels

of more unsaturated lipids and increased the levels of

less unsaturated and saturated lipids in both the heat

susceptible and tolerant genotypes [12]. HT stress in-

creased oxidized species of PC, and phosphatidyletha-

nolamine (PE) in susceptible genotype [12].

Simultaneous changes in multiple lipid species under

HT stress may be associated with the increases in ac-

tivities of desaturating, oxidizing, glycosylating and

acylating enzymes [16]. Lipid analyses in pollen grains

of wheat have shown that 34:3 and 36:6 species of

extraplastidic phospholipids [PC, PE, phos-

phatidylinositol (PI), PA and phosphatidylserine (PS)]

dominated the lipid composition under optimum and

HT conditions [17]. The unsaturation levels of these

lipids were decreased through the decreases in the

levels of 18:3 and increases in the levels of 16:0, 18:0,

18:1, and 18:2 acyl chains under HT stress [17]. The

effects of HT on leaf lipids were quantified during

anthesis and not during the grain filling stage, and

comparative impacts were not quantified. In the

present study, we take advantage of an electrospray

ionization-tandem mass spectrometry (ESI-MS/MS)

approach to quantitatively profile a wide range of leaf

lipid molecular species under HT stress during anthe-

sis and grain filling stages.

In general, plant yield is a function of plant architecture,

photosynthetic efficiency, reproductive success and parti-

tioning of carbohydrates to grain, and each of these com-

ponents are vulnerable to HT in different ways [18]. In

wheat, HT during anthesis stage decreased floret fertility

by affecting pollen and pistil morphology and functions

[19, 20]. The pollen morphological abnormalities include

collapsed and desiccated, deeply pitted, rough exine wall,

and loss of columellae head. Similarly, the style, stigma

and ovary are desiccated and flaccid with less number of

pollen grains adhered on the stigma [20]. In wheat, HT

impairs viability, leading to poor fertilization [21, 22].

Similarly, HT decreased reproductive success (seed set) in

major cereals like rice (Oryza sativa L.) [23], sorghum

[Sorghum bicolor (L.) Moench] [24], and pearl millet [Pen-

nisetum glaucum (L.) R. Br.] [25]. In wheat, HT during

grain filling stage has been shown to decrease the grain
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yield through individual grain weight [20, 26, 27], which is

associated with leaf senescence, and decreased grain-filling

duration [3, 28, 29].

The objectives of this study are to quantify the effects

of HT during anthesis and grain filling periods on

photosynthesis, leaf lipidome, and yield-associated traits

in wheat. We hypothesize that the decrease in photosyn-

thesis during anthesis and grain filling stages were asso-

ciated with changes in lipids and thylakoid membrane

damage, decreased seed numbers and seed size leading

to lower grain yields.

Results

Effects of temperature regime on physiological and yield

traits

The mean data on various physiological traits re-

corded on 0, 2, 4, 6, 8, and 12 after the start of

temperature treatments from the experiment I (HT

during anthesis stage) and II (HT during grain filling

stage) and its repeat (n = 36) are presented to get the

overall effects of temperature treatment. Similarly, the

mean values of yield and its components recorded in

experiment I and II and its respective repeat (n = 20)

are presented.

Experiment I: HT during anthesis stage

High temperature stress during anthesis stage (experi-

ment I) significantly (P ≤ 0.05) decreased the chloro-

phyll index (SPAD units) by 19% compared to OT

(Fig. 1a). Like the chlorophyll index, the maximum

fluorescence yield (Fm; relative units) and photosyn-

thetic rate (μmol m− 2 s− 1) also decreased by 12 and

17%, respectively due to HT stress compared to OT

(Fig. 1e and k). In contrast, HT during anthesis stage

significantly (P ≤ 0.05) increased the minimum fluores-

cence yield (Fo; relative units) by 34% (Fig. 1c), thyla-

koid membrane damage (Fo/Fm ratio; relative units)

by 61% (Fig. 1g), and stomatal conductance by 42%

(Fig. 1i) than OT. High temperature during anthesis

stage significantly (P ≤ 0.001) decreased seed set per-

centage by 28%, number of grains spike− 1 by 36%,

and grain yield plant (g) by 29% compared to OT

(Fig. 2a, b, and e).

Fig. 1 Effect of temperature regimes [optimal temperature (OT: 24/14 °C) and high temperature (HT: 32/22 °C)] on leaf physiological traits. a and

b chlorophyll index (SPAD units), c and d minimum fluorescence yield (Fo; relative units), e and f maximum fluorescence yield (Fm; relative units),

g and h thylakoid membrane damage (Fo/Fm ratio; relative units), i and j stomatal conductance (mol m− 2 s− 1), and k and l photosynthetic rate

(μmol m− 2 s− 1) during anthesis (experiment I) and grain filling (experiment II) stage, respectively. Values shown are LSMEAN ± standard error of

LSMEAN [n = 36; 3 replications × 6 days of measurement (0, 2, 4, 6, 8, and 12 days after treatment imposition) x repeat of the experiment I and II

(2)]. LSMEANS estimates with same letter are not significantly different at P ≤ 0.05
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Experiment II: HT during grain filling stage

Similar to experiment I, the HT stress during the grain

filling stage (experiment II) significantly (P ≤ 0.05) de-

creased the chlorophyll index (25%), the maximum

fluorescence yield (Fm; relative units) (12%) and photo-

synthetic rate (25%) compared to OT (Fig. 1b, f, and l).

However, HT significantly (P ≤ 0.05) increased the mini-

mum fluorescence yield (Fo; relative units), thylakoid

membrane damage, and stomatal conductance by 31, 68,

and 42%, respectively over OT (Fig. 1d, h and j). High

temperature stress during grain filling stage significantly

(P ≤ 0.001) decreased individual grain weight (mg

seed− 1) by 39%, and plant grain yield by 44% over OT

(Fig. 2d, and f).

Effects of temperature regime on lipids composition

Experiment I: HT during anthesis stage

Significant (P ≤ 0.05) effect of HT during anthesis stage (ex-

periment I) was observed for the molar percentage of total

PI (Table 1). High temperature stress increased the molar

percentage of total PI by 23% over OT. Significant (P ≤

0.05) increase in the molar percentage of less unsaturated

lipid species containing two polyunsaturated acyl chains

such as 36:5- (18:2/18:3 combination) MGDG and digalac-

tosyldiacylgylcerol (DGDG) species was observed due to

HT stress compared to OT (Fig. 3a, b). In contrary, the

molar percentage of 34:2-, 36:2-, 36:3-, 36:4-, and 36:5- PC

decreased significantly (P ≤ 0.05) under HT compared to

OT (Fig. 3d). The proportion of more unsaturated lipid

species, namely 36:6- (di18:3 combination) MGDG, DGDG,

PC, and PE did not vary between OT and HT (Fig. 3a, b).

Experiment II: HT during grain filling stage

Significant (P ≤ 0.05) effect of HT during the grain

filling stage (experiment II) was observed for the

molar percentage of total MGDG, DGDG, and PS

(Table 1). High temperature stress increased the

molar percentage of total- MGDG (4%) and PS (57%),

and decreased the molar percentage of total DGDG

(10%) compared to OT (Table 1). High temperature

stress significantly (P ≤ 0.05) decreased the molar per-

centage of more unsaturated lipid species containing

two polyunsaturated acyl chains such as 36:6- (di18:3

combination) MGDG and DGDG species over OT

(Fig. 4a, b). In contrast, HT increased the molar per-

centage of less unsaturated lipid species containing

two polyunsaturated acyl chains such as 36:5- (18:2/

18:3 combination) MGDG and DGDG species or the

amount of more saturated lipid species [containing

one saturated acyl chain namely 34:1- (18:1/16:0 or

Fig. 2 Effect of temperature regimes [optimal temperature (OT: 24/14 °C) and high temperature (HT: 32/22 °C)] on grain yield and its components.

a seed set percentage, b number of grains spike− 1, c and d individual grain weight (mg seed− 1), and e and f grain yield (g plant− 1) during

anthesis (experiment I) and grain filling (experiment II) stage, respectively. Values shown are LSMEAN ± standard error of LSMEAN (n = 20; 10

replications x repeat of the experiment I and II (2)). LSMEANS estimates with same letter are not significantly different at P ≤ 0.05
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18:0/16:1 combination) PG species], and 36:4- (18:3/

18:1 or 18:2/18:2 combination) species of MGDG and

DGDG, and 34:3 PG (18:3/16:0 or 18:2/16:1 combin-

ation) over OT (Fig. 4a, b, c). However, the molar

percentage of 34:4- (18:3/16:1) PG was significantly

(P ≤ 0.05) decreased under HT than OT. All these

variations indicate a decreased molar percentage of

polyunsaturated acyl chain (18:3) or increased molar

percentage of saturated acyl chain (16:0).

Effects of temperature regime on lipid unsaturation level

Experiment I: HT during anthesis stage

Significant (P ≤ 0.05) effect of temperature regime during

anthesis stage on the unsaturation index of plastidic and

extraplastidic lipids was observed (Table 2). High

temperature significant (P ≤ 0.05) decreased the unsatur-

ation level of MGDG and PG over OT. However, the

unsaturation level of PE was significant (P ≤ 0.05) in-

creased under HT compared to OT (Table 2).

Experiment II: HT during grain filling stage

Significant (P ≤ 0.05) effect of temperature regime during

the grain filling stage on the unsaturation index of

MGDG, DGDG, PG, and PS was observed (Table 2).

The unsaturation level of MGDG, DGDG, and PG was

decreased due to HT stress compared to OT. However,

the unsaturation level of PS increased under HT com-

pared to OT (Table 2).

Relationship among photosynthetic rate, thylakoid

membrane damage, grain yield and its components

There was a negative linear relationship between thyla-

koid membrane damage and photosynthetic rate during

anthesis (r2 = 0.61; P ≤ 0.001; Fig. 5a) and grain filling

stage (r2 = 0.71; P ≤ 0.001; Fig. 5a). However, photosyn-

thetic rate had a linear positive relationship with seed

set percentage (r2 = 0.67; P ≤ 0.001; Fig. 5b), individual

grain weight (r2 = 0.46; P ≤ 0.001; Fig. 5c), and grain yield

(r2 = 0.59; P ≤ 0.001; Fig. 5d) during anthesis stage. Simi-

larly, photosynthetic rate had a linear positive relation-

ship with individual grain weight (r2 = 0.78; P ≤ 0.001;

Fig. 5c), and grain yield (r2 = 0.60; P ≤ 0.001; Fig. 5d) dur-

ing grain filling stage.

Discussion

High temperature during anthesis or grain filling stage

decreased the photosynthetic rate by decreasing thyla-

koid membrane integrity. The yield associated traits,

namely seed set percentage and individual grain weight,

were decreased due to HT during anthesis or grain fill-

ing stage, respectively. In addition, HT stress during an-

thesis or grain filling stage increased the molar

percentage of less unsaturated lipid species (36:5-

MGDG and DGDG). However, at the grain filling stage,

HT stress decreased the molar percentage of more un-

saturated lipid species (36:6- MGDG and DGDG). At

both growth stages, there is a positive relationship

among photosynthetic rate and grain yield plant− 1, and

a negative association between thylakoid membrane

damage and the photosynthetic rate.

High temperatures increased thylakoid membrane

damage (Fig. 1g, h; Fo/Fm ratio) because it is more sensi-

tive to HT than other cell organelles [11]. An increased

Fo value (1c, and d) under HT indicates damaged PS II

reaction centres [30, 31], due to which the transfer of ex-

citation energy from the antenna to the reaction centres

will be lowered, resulting in an increased production of

reactive oxygen species (ROS) [32, 33], and decreased

production of NADPH2 [34, 35] which can potentially

affect the carbon fixation process.

The chlorophyll molecule is primarily located on the

thylakoid membranes as a complex with proteins of PS

Table 1 Effect of temperature regimes [optimal temperature (24/14 °C) and high temperature (32/22 °C)] during anthesis

(experiment I) and grain filling (experiment II) stages on proportion of various lipid classes. Values shown are LSMEAN ± standard

error of LSMEAN (n = 4). The LSMEANS followed by same letter(s) within each growth stage are not statistically significant at P ≤ 0.05

Polar lipid Growth stages

Experiment I: High temperature during anthesis stage Experiment II: High temperature during grain filling stage

Optimum temperature High temperature Optimum temperature High temperature

Total MGDG 59.64 ± 1.00a 60.76 ± 1.00a 61.88 ± 0.25b 64.60 ± 0.25a

Total DGDG 26.81 ± 0.58a 26.47 ± 0.58a 26.24 ± 0.33a 23.62 ± 0.33b

Total PG 4.68 ± 0.18a 4.20 ± 0.18a 5.17 ± 0.22a 5.12 ± 0.22a

Total PC 4.44 ± 0.21a 3.87 ± 0.21a 3.29 ± 0.09a 3.19 ± 0.09a

Total PE 2.98 ± 0.24a 2.81 ± 0.24a 2.07 ± 0.07a 1.96 ± 0.07a

Total PI 1.15 ± 0.08b 1.49 ± 0.08a 1.06 ± 0.06a 1.22 ± 0.06a

Total PS 0.10 ± 0.004a 0.12 ± 0.004a 0.07 ± 0.009b 0.11 ± 0.009a

Total PA 0.09 ± 0.05a 0.14 ± 0.05a 0.04 ± 0.007a 0.05 ± 0.007a

MGDG Monogalactosyldiacylglycerol, DGDG Digalactosyldiacylgylcerol, PG Phosphatidylglycerol, PC Phosphatidylcholine, PE Phosphatidylethanolamine, PI

Phosphatidylinositol, PS Phosphatidylserine, and PA Phosphatidic acid
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II and PS I, and damage to thylakoid membrane under

HT may lead to chlorophyll loss [36, 37]. A strong nega-

tive relationship between thylakoid membrane damage

and the photosynthetic rate at both anthesis and grain

filling stage (Fig. 5a), indicates that the rate of thylakoid

membrane damage under HT exceeds the rate of repair

leading to net inhibition of photosynthetic rate [38]. An

increase in growth temperature has decreased the photo-

synthetic rate during anthesis and grain filling stages

(Fig. 1k, l); however, the former had less decrease over

OT than later. This could be associated with leaf senes-

cence phenomenon, which was activated during the

grain filling stage in wheat [39].

Lipids such as MGDG tend to pack into a hexagonal

phase or non-bilayer phases; in contrast, DGDG forms

bilayers [15, 16, 40]. High temperature during grain fill-

ing stage decreased the molar percentage of total DGDG

(Table 1), which might have resulted in a phase transi-

tion of membranes from the liquid crystalline phase to a

hexagonal II or cubic phase leading to loss of membrane

integrity. This indicates that during the grain filling

stage, the membranes are highly prone to disintegration

than anthesis stage. The similar extent of thylakoid

membrane damage at both growth stages and lower

molar percentage of total DGDG at grain filling com-

pared to anthesis stage indicates that at anthesis stage

Fig. 3 Effect of temperature regimes [optimal temperature (OT: 24/14 °C) and high temperature (HT: 32/22 °C)] during anthesis stage (experiment

I) on lipid molecular species. Values shown are LSMEAN ± standard error of LSMEAN (n = 4). LSMEANS estimates with same letter within a lipid

molecular species are not significantly different at P ≤ 0.05. MGDG, monogalactosyldiacylglycerol; DGDG, digalactosyldiacylglycerol; PG,

phosphatidylglycerol; PC, phosphatidylcholine; and PE, phosphatidylethanolamine
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the rate of repair of thylakoid membranes may be higher

compared to grain filling stage, since, there was no vari-

ation in total plastidic lipids between OT and HT at an-

thesis stage (Table 1).

Taken together, HT stress caused a mixed effect in

terms of lipid changes. The major effect is a reduction of

desaturase activity as evident from the low molar per-

centage of more unsaturated lipids and high molar per-

centage of less unsaturated lipids (Figs. 3 and 4), and

this may be an adaptive mechanism in leaves under HT

to maintain the membranes fluidity [41, 42]. In wheat,

glycolipids (MGDG and DGDG) are the major lipids,

and 36:6- MGDG and DGDG (di18:3) are the major

lipid species. These lipids decreased under HT during

the grain filling stage (Fig. 4), because these species are

highly vulnerable to peroxidation by ROS, which are

produced under HT [11]. The decrease in unsaturation

level was mainly due to the decrease in the polyunsatur-

ated fatty acid (18:3) and an increase in less unsaturated

fatty acids (18:2 and 18:1) and saturated fatty acids (16:0

and 18:0) (Fig. 4). This is in accordance with the findings

of Narayanan et al. [12] and Djanaguiraman et al. [11].

These changes could be associated with terminal leaf

senescence process during grain filling stage [43, 44],

and also temperature optima for grain filling (21.3 °C)

and anthesis stages (23 °C) [6]. Leaf and pollen lipidome

Fig. 4 Effect of temperature regimes [optimal temperature (OT: 24/14 °C) and high temperature (HT: 32/22 °C)] during grain filling stage

(experiment II) on lipid molecular species. Values shown are LSMEAN ± standard error of LSMEAN (n = 4). LSMEANS estimates with same letter

within a lipid molecular species are not significantly different at P ≤ 0.05. MGDG, monogalactosyldiacylglycerol; DGDG, digalactosyldiacylglycerol;

PG, phosphatidylglycerol; PC, phosphatidylcholine; and PE, phosphatidylethanolamine
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Table 2 Effect of temperature regimes [optimal temperature (24/14 °C) and high temperature (32/22 °C)] during anthesis

(experiment I) and grain filling (experiment II) stages on unsaturation index of various lipid classes. Values shown are LSMEAN ±

standard error of LSMEAN (n = 4). The LSMEANS followed by same letter(s) within each growth stage are not statistically significant

at P≤ 0.05

Polar
lipid

Growth stages

Experiment I: High temperature during anthesis stage Experiment II: High temperature during grain filling stage

Optimum temperature High temperature Optimum temperature High temperature

MGDG 2.92 ± 0.006a 2.89 ± 0.006b 2.87 ± 0.007a 2.80 ± 0.007b

DGDG 2.79 ± 0.009a 2.77 ± 0.009a 2.72 ± 0.01a 2.66 ± 0.01b

PG 1.64 ± 0.008a 1.57 ± 0 .008b 1.69 ± 0.01a 1.59 ± 0.01b

PC 1.74 ± 0.02a 1.82 ± 0.02a 1.74 ± 0.01a 1.70 ± 0.01a

PE 1.81 ± 0.01b 1.89 ± 0.01a 1.87 ± 0.01a 1.86 ± 0.01a

PI 1.39 ± 0.01a 1.41 ± 0.01a 1.36 ± 0.004a 1.35 ± 0.004a

PS 1.29 ± 0.01a 1.33 ± 0.01a 1.31 ± 0.01b 1.36 ± 0.01a

PA 1.63 ± 0.02a 1.69 ± 0.02a 1.51 ± 0.03a 1.53 ± 0.03a

The unsaturation index of each lipid molecular species was calculated as the product of the amount of that lipid molecular species and the average number of

double bonds per acyl chain, where the average number of double bonds per acyl chain was calculated by dividing the number of double bonds in the lipid

molecular species by the number of acyl chains. Finally, the unsaturation index of a lipid head group class was calculated as the sum of the unsaturation indices

of individual lipid molecular species in that class. MGDG Monogalactosyldiacylglycerol, DGDG Digalactosyldiacylgylcerol, PG Phosphatidylglycerol, PC

Phosphatidylcholine, PE Phosphatidylethanolamine, PI Phosphatidylinositol, PS Phosphatidylserine, and PA Phosphatidic acid

Fig. 5 Relationship analysis. a photosynthetic rate (μmol m− 2 s− 1) as a function of thylakoid membrane damage (Fo/Fm ratio; relative units), b

seed set percentage as a function of photosynthetic rate (μmol m− 2 s− 1), c individual grain weight (mg seed− 1) as a function of photosynthetic

rate (μmol m− 2 s− 1), and d grain yield (g plant− 1) as a function of photosynthetic rate (μmol m− 2 s− 1). Circle in gray and solid regression line

indicates anthesis (experiment I) stage and circle in white and dotted regression line represent grain filling (experiment II) stage. ***

indicates P ≤ 0.001
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is unique to each other, but the changes in lipid species

under HT stress are similar and associated with HT tol-

erance in wheat [17].

High temperature during reproductive stages in wheat

is associated with reductions in grain yield [22]. In

wheat, 8 to 6 d before anthesis and anthesis stages are

identified to be the most sensitive stages to HT stress

[20]. Aliqing et al. [45] have observed that compared to

control (optimum temperature) the reduction in spike

grain weight under HT stress was greater in later-

flowering tillers than early flowering tillers because the

later-flowering tillers have experienced HT during gam-

etogenesis stage, whereas, the early flowering tillers have

experienced HT during the flowering stage. In the

present study, HT during anthesis stage have decreased

grain yield by lowering seed set per cent and grain num-

bers (Fig. 2a, b). The main physiological process happen-

ing during anthesis include dehiscence of anthers, pollen

perception by stigma, pollen germination, pollen tube

growth in the style, fertilization and embryo formation.

Studies have shown that decreased functionality and

structural abnormalities of pollen and/or pistil are the

probable reasons for decreased seed numbers under HT

[6, 20, 21, 46–48]. The individual grain weight was not

affected under HT during anthesis stage because plants

did not experience HT during the grain filling stage.

Studies have shown that the rate of photosynthesis may

also affect pollen tube growth in wheat [49], implying

that photosynthetic rate during anthesis is critical in

maintaining reproductive success. This was validated in

this study by a significant linear relationship between

photosynthetic rate and seed set percentage (Fig. 5b).

High temperature during grain filling stage decreased

grain yield plant− 1 by affecting the individual grain

weight (Fig. 2d, f). In wheat, grain filling (weight) is

linked with current assimilates production through

photosynthesis [50] and/or remobilization of stored as-

similates from vegetative tissues to developing repro-

ductive tissues (grain) [51]. The reduction in grain yield

plant− 1 under HT during grain filling stage could be due

to accelerated development [52], and/or leaf senescence-

associated with decreased photosynthetic rate [53–55].

Conclusions

Under HT stress, changes in membrane lipid unsatur-

ation levels were observed in the flag leaves at both an-

thesis and grain filling stage. The decrease in grain yield

under HT during anthesis and grain filling stage was as-

sociated with grain numbers and individual grain weight,

respectively. A positive relationship between photosyn-

thetic rate and grain yield plant− 1 indicates that during

anthesis and grain filling stage, maintaining greater

photosynthetic rate is important for achieving higher

seed numbers and seed size, ultimately influencing grain

yield. With the recent developments in genomic re-

search, targeting key genes involved in the synthesis of

highly unsaturated lipid species can improve HT stress

tolerance in wheat. Comprehensive gene expression

studies on genes involved in thylakoid or pollen intrin-

sic/membrane lipid biosynthesis, degradation and re-

modeling will help in understanding the mechanism of

tolerance. Understanding relationship among lipid mo-

lecular species, photosynthetic rate, and grain yield

under HT stress will accelerate the molecular and

physiological breeding for enhancing stress tolerance.

Methods

Two independent experiments using spring wheat geno-

type Seri82 (seeds were obtained from Wheat Genetics

Resource Center at Kansas State University; original seed

source was International Maize and Wheat Improve-

ment Center, Mexico) were conducted at controlled en-

vironment facilities available at the Department of

Agronomy, Kansas State University, Manhattan, Kansas,

USA.

Plant husbandry and growth conditions

Wheat genotype Seri82 was grown as explained by Dja-

naguiraman et al. [11] in 1.8 L pots filled with commer-

cial Sun Grow Metro Mix 200 potting soil (Hummert

International, Topeka, Kansas, USA) and 10 g of

controlled-release fertilizer (Osmocote Plus, N:P2O5:

K2O= 15:9:12; Scotts, Marysville, Ohio, USA) in each

pot. Forty plants were grown in a large indoor growth

chamber (Conviron Model PGW40, Winnipeg, Mani-

toba, Canada) maintained at 24/14 °C (daytime max-

imum/nighttime minimum temperature), 14 h

photoperiod, and ~ 70% relative humidity. The day and

nighttime temperature were each held for 8 h, with a 4 h

transition period. Cool white fluorescent lamps were

used to produce photosynthetically active radiation (~

900 mol m− 2 s− 1; Philips Lighting Co., Somerset, New

Jersey, USA). After 21 d of emergence, three plants were

retained per pot. To avoid sucking pests a systemic in-

secticide [Marathon 1% granular, with a.i.: Imidacloprid,

1-((6-chloro-3-pyridinyl) methyl)-N-nitro-2-imidazolidi-

nimine, Hummert International, Topeka, Kansas, USA]

was applied (four g pot− 1) [11]. Pots were well-watered

(up to 100% pot capacity) by keeping in trays containing

water ~ 2 cm deep from sowing to physiological matur-

ity. Miracle-Gro, a water-soluble fertilizer (N:P2O5:

K2O= 24:8:16; Scotts Miracle-Gro Products, Inc., Marys-

ville, Ohio, USA) was added to the irrigation water (ac-

cording to the manufacturer’s instructions) once in

every 7 d from jointing (Feekes growth stage 6.0) to

physiological maturity (Feekes growth stage 11.4). The

pots were randomly arranged within the growth cham-

ber and moved randomly on alternate days to avoid
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positional effects. Air temperature and relative humidity

were monitored at 20-min intervals from sowing to

physiological maturity. At the boot stage (Feekes growth

stage 10.0), the main stem of each plant was tagged for

measuring physiological, lipid, and yield traits.

Temperature treatment imposition

Experiment I: HT during anthesis stage

At the anthesis stage (Feekes growth stage 10.5.1), two

temperature regimes [optimum temperature (OT, 24/

14 °C) and HT (32/22 °C)] were established randomly in

two growth chambers (Conviron Model PGR15, Winni-

peg, Manitoba, Canada). Ten pots were moved to each

growth chamber. The plants were maintained in their re-

spective temperature regime for 14 d. After exposing the

plants to either OT or HT for 14 d during anthesis stage,

the pots were moved back to the original growth cham-

ber maintained at 24/14 °C and remained until physio-

logical maturity.

Experiment II: HT during grain filling stage

During grain filling period (Feekes growth stage 10.5.4;

14 d after anthesis stage), 10 pots were moved to the

growth chambers maintained at OT (24/14 °C) or HT

(32/22 °C) to impose temperature treatment for 14 d.

After exposing the plants to either OT or HT, the pots

were moved back to the original growth chamber main-

tained at 24/14 °C and remained until physiological

maturity.

Physiological, lipids and yield traits

Out of 10 pots in each temperature regime during an-

thesis or grain filling period, 4 pots were used for meas-

uring chlorophyll index, thylakoid membrane damage,

stomatal conductance, and photosynthetic rate, 2 pots

were used for collecting leaf samples for lipid analyses,

and the remaining 4 pots were used for measuring grain

yield and its associated components.

Chlorophyll index, thylakoid membrane damage, and gas

exchange measurements

Chlorophyll index, chlorophyll a fluorescence, and gas ex-

change measurements were made on the attached flag

leaves of tagged plants between 10:00 and 14:00 h, at OT

and HT on days 0, 2, 4, 6, 8 and 12 after the start of

temperature treatments in experiment I (HT during anthe-

sis stage) and II (HT during grain filling stage). Out of four

pots, three pots were randomly selected and one plant in

each pot was tagged and used at each day of observation

for measuring physiological traits. Chlorophyll index was

measured in the middle portion of tagged flag leaves using

a chlorophyll meter (SPAD-502, Spectrum Technologies,

Plainfield, IL, USA) as explained by Djanaguiraman et al.

[11]. Chlorophyll a fluorescence parameters [minimum

fluorescence yield (Fo) and maximum fluorescence yield

(Fm)] were measured on 30-min dark-adapted tagged flag

leaves by using a modulated fluorometer (OS-30p, Opti-

Science Inc., Hudson, New Hamshire, USA). Thylakoid

membrane damage was determined as the ratio of Fo/Fm
(relative units). Photosynthesis and stomatal conductance

were measured using a LICOR 6400 portable photosyn-

thesis system (LICOR, Lincoln, Nebraska, USA) as de-

scribed by Djanaguiraman et al. [11].

Lipid extraction and lipid profiling in leaves

Lipid composition was measured from four tagged flag

leaves in both experiments I and II. The tagged flag

leaves were collected for lipid extraction on the 10th day

of temperature treatment from each temperature regime.

The middle one-third portion of the leaf was cut and

immediately chopped into pieces, transferred into a 50-

mL glass tube with a Teflon-lined screw cap (Thermo

Fisher Scientific, Inc., Waltham, Massachusetts, USA),

containing 6 mL of isopropanol (75 °C) with 0.01% butyl-

ated hydroxytoluene. Lipid extraction was performed as

described by Narayanan et al. [12]. An automated elec-

trospray ionization-tandem mass spectrometry approach

was used for lipid profiling. Lipid unsaturation index

was calculated as described by Narayanan et al. [12].

Yield and yield components

The yield and yield components were quantified from

ten tagged plants in experiment I and II. At physiological

maturity, the tagged spike on the main tiller of each

plant from OT and HT was used for calculating seed set

percentage, number of grains spike− 1 and individual

grain weight (mg seed− 1) as described by Prasad and

Djanaguiraman [20]. Similarly, the tagged and remaining

spikes were harvested, dried in an incubator at 40 °C

until constant weight was achieved. The spikes were

hand threshed, and the grains were weighed to deter-

mine grain yield (g plant− 1).

Statistical analyses

Each experiment I (HT during anthesis stage) and II

(HT during grain filling stage) had two treatments

namely OT and HT. The experiments I and II was re-

peated again with the same treatments and growth con-

ditions mentioned earlier. The physiological and yield

traits were recorded in both experiments; however, the

lipids profiling was carried out in the repeat. The data

were analysed in SAS 9.4 (SAS Institute Inc., Cary,

North Carolina, USA) by using PROC MIXED proce-

dures. For physiological traits, treatments were treated

as class variable, days of observation and experiments

were treated as random variable to get the overall effects

of temperature treatment. The Tukey-Kramer adjust-

ment was used to separate the treatment means.
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However, for grain yield and its associated traits, treat-

ments were treated as class variable and the experiments

were treated as random variable. The treatments were

considered as class variable for lipid analyses. Regression

analyses among physiological traits and grain yield were

carried out by using the data from first and second run

using PROC REG procedure of SAS.
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