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Abstract

In this paper, we study the HIV infection model based on fractional derivative with

particular focus on the degree of T-cell depletion that can be caused by viral

cytopathicity. The arbitrary order of the fractional derivatives gives an additional

degree of freedom to fit more realistic levels of CD4+ cell depletion seen in many AIDS

patients. We propose an implicit numerical scheme for the fractional-order HIV model

using a finite difference approximation of the Caputo derivative. The fractional system

has two equilibrium points, namely the uninfected equilibrium point and the infected

equilibrium point. We investigate the stability of both equilibrium points. Further we

examine the dynamical behavior of the system by finding a bifurcation point based

on the viral death rate and the number of new virions produced by infected CD4+

T-cells to investigate the influence of the fractional derivative on the HIV dynamics.

Finally numerical simulations are carried out to illustrate the analytical results.

Keywords: fractional derivative; HIV model; finite difference scheme; dynamical

analysis

1 Introduction

According to WHO there were approximately  million people at the end of  liv-

ing with HIV with . million people becoming newly infected in  globally with HIV.

HIV belongs to the family of lentiviruses, which means being acting slowly. Lentiviruses

cause diseases that progress over a long period disturbing the immune system in humans.

HIV produces virus particles by converting viral RNA into DNA in the cell and then mak-

ing many RNA copies. The transformation is completed with an enzyme named reverse

transcriptase. The change from RNA to DNA and back to RNA is substantial and makes

fighting against HIV challenging. There is a chance of the virus mutating and there being

errors each time when it happens. These copies or virus particles destroy the cell after

formation and infecting other cells. Although HIV attacks many different cells, it inflicts

the most disorder on the CD+ T-cells, the main target of CD+ T-cells is to form the

body’s overall immune response to external infections. HIV provides the basis to grow

acquired immune deficiency syndrome (AIDS). For a person infected from HIV it can

take - years to develop AIDS. On the medical frontier there have been many ad-

vances, but still there is no effective cure or vaccine available for HIV. Since the early

s, many mathematical models have been developed to better understand the inter-

action of HIV and the human immune system for the purpose of testing treatment strate-
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gies [–]. Silva and Torres [] proposed a population model for TB-HIV/AIDS coinfec-

tion transmission dynamics, they applied optimal control theory to TB-HIV/AIDS model

to study optimal strategies for the minimization of the number of individuals with TB

and AIDS. Recently Rocha et al. [] investigated an HIV optimal control problem with

delays in both state and control variables, where the objective is to find the optimal treat-

ment strategy that maximizes the number of CD+ T-cells and CTL immune response

cells, keeping the drug strength low. Luo et al. [] studied bifurcations and stability of

an HIV model that incorporates the immune responses. An HIV model including latent

infection and antiretroviral therapy is examined by Wang et al. []. They obtained the

global asymptotic stability of the uninfected equilibriumby constructing a Lyapunov func-

tion. We refer the reader to the excellent review paper on mathematical modeling of HIV

on different phenomena of []. Quantitative analysis of HIV- replication in vivo has

made significant contributions to understanding of AIDS pathogenesis and antiretrovi-

ral treatment ([, ]). For a detailed mathematical analysis on such models, we refer to

[] and [].

Fractional-order dynamics has recently been a focus of interest because of its appear-

ance in physics, biology and engineering applications. There is a rich literature on the the-

oretical research of the fractional differential equations. The book of Podlubny [] pro-

vides an overview to the basic theory of fractional differential equations. The monograph

by Samko, Kilbas, and Marichev [] contains remarkably comprehensive theory on the

topic of fractional differential equations. Recently, much work has done on modeling the

HIV infectionwith fractional-order derivatives [–] and []. A fractional-ordermodel

retains its memory, which is one of the main characteristic of the fractional-order deriva-

tive, while the features of immune response include memory. In [] a fractional-order

time-delay model is investigated which include three types of cells, namely healthy CD+

T-cells, infected CD+ T-cells and free HIV virus particles. In [] the authors introduced

fractional orders to the model of HIV- whose components are plasma densities of unin-

fectedCD+ T-cells, they use the generalized Eulermethod (GEM) and homotopy analysis

method (HAM) to approximate the solution. Approximate solutions of fractional-order

differential system for modeling human T-cell lymphotropic virus I (HTLV-I) infection of

CD+ T-cells is investigated in [] using a multi-step generalized differential transform

method. Bernstein operational matrices is applied to fractional order HIV model to ap-

proximate the solution []. Homotopy decomposition method is given in [] to solve

a system of fractional nonlinear differential equations that arise in the model for HIV in-

fection of CD+ T-cells. Recently, Huo et al. [] studied a fractional-order HIV model to

assess the impact of vaccines in a homosexual community. They have shown that the vac-

cinated reproduction below unity is not a threshold of HIV eradication when effectiveness

and the dosage of the vaccines are low. A new critical threshold is derived in order to erad-

icate the HIV. Recently Pinto et al. [] studied a fractional-order model for HIV infection

that includes latently infected cells, macrophages and CTLs. In this paper we propose a fi-

nite difference implicit scheme to solve fractional-order HIVmodel containing four types

of populations: uninfected CD+ T-cells, latently infected, actively infected CD+ T-cells

and HIV virus particles. Further we analyze the dynamics of fractional-order HIV by in-

vestigating bifurcation points. The benefit of fractional-order systems is that they permit

greater degrees of freedom in the model.



Arshad et al. Advances in Difference Equations  ( 2017)  2017:92 Page 3 of 14

This paper is organized as follows: Section  includes generalized HIV model. In Sec-

tion , we introduce implicit scheme for solving the fractional-order HIV- infection

model. Dynamical behavior of generalized HIVmodel is investigated in Section . In Sec-

tion , we present numerical simulations of the model and discuss the biological signifi-

cance of the results. A conclusion is given in the last section.

2 Generalized HIVmodel

The Riemann-Liouville fractional integral Iαu of order α >  of u :R+ →R is defined by

Iαu(t) =


Ŵ(α)

∫ t



(t – s)α–u(s)ds,

provided the expression on right hand side is defined. Here Ŵ denotes the Gamma func-

tion [].

The Caputo fractional derivative Dαu of order α of a continuous function u :R+ →R is

defined by

Dαu(t) =

{


Ŵ(m–α)

∫ t


(t – s)m–α–u(m)(s)ds, m –  ≤ α <m,

dmu(t)
dtm

, m = α.

In particular, when  < α < , we have

Dαu(t) =


Ŵ( – α)

∫ t



(t – s)–αu′(s)ds.

We generalize the integer-order model of target cells limited proposed by Perelson et

al. [] to fractional order  < α < , which involves various types of cells: Let T , TL and

TA denote the population of uninfected CD+ T-cells, latently infected and actively in-

fected CD+ T-cells, respectively. The population of free virus particles is denoted by V .

Interaction between these cells is given by the following system:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

DαT = sα –μα
TT + rαT( – T+TL+TA

Tmax
) – kα

 TV , t ≥ ,

DαTL = kα
 TV –μα

TTL – kα
TL, t ≥ ,

DαTA = kα
TL –μα

bTA, t ≥ ,

DαV =Nμα
bTA – kα

 VT –μα
VV , t ≥ .

()

Note that the units of the fractional differential equation are different, that is, fractional

differential equations are expressed with respect to an intrinsic time variable that depends

on α [, ] instead of the physical time. Thus a reformed parameter has been presented

in model () to interpret the fractional order. Notice that when α →  the fractional HIV

model () reduces to the classical HIV model.

The first two equations deal with the effects of HIV. Here sα , corresponds to the s, the

source term, from the classical HIV model, rα corresponding to r represents the rate of

growth for the CD+ cell population and μα
T is the analogon to the μT , the death rate of

uninfected CD+ T-cells. kα
 corresponding to k represents the rate at which CD+ T-cell

become infected by virusmodeled bymass-action type of term. The dynamical behavior of

actively infected T-cells is given in the third equation with kα
 corresponding to the k rate
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at which latently infected cells convert to being actively infected and μα
b corresponding

to μb represents the death rate per cell from the classical HIV model. The last equation

models the free infectious virus population. Assume that an actively infected CD+ T-

cell produces N virus particles. The virus production rate is N times μα
b . Free virus is

expired at a rate kα
 VT by binding to uninfected CD+ T-cells. Viral death from the body

is represented by –μα
vV .

3 Construction of implicit numerical scheme

In this section, we introduce an implicit numerical scheme using a finite difference ap-

proximation of the Caputo derivative. Numerous schemes have been developed for the

numerical solution of the fractional differential equations []. A class of the fractional

multi-step method is proposed by Lubich [] and Galeone and Garrappa [], the frac-

tional Adams method is proposed by Diethelm et al. [] and Odibat and Momani []

and Grünwald-Letnikov approximation based on the Grünwald-Letnikov definition of

the fractional derivative is addressed in [] and discussed the analysis of convergence

and stability. Baker [] introduced some numerical methods for the Volterra integral and

integro-differential equations.

In this paper, we implement the L-scheme to approximate the Caputo fractional deriva-

tive, which was independently developed and analyzed in [] and []. The L-scheme is

based on a piecewise linear approximation to the fractional derivative. We are in favor of

the L-scheme, because this scheme is derived easily and the coefficients of this scheme

have good properties e.g. the representation of the coefficients is simple. The L-scheme

has been extensively used in practice and currently it is one of themost efficient numerical

methods for solving the time fractional differential equations due to its ease of implemen-

tation.

To discretize Dαf (t) based on the L-scheme, first we defined the temporal size τ and tn

means nτ . Therefore we discretize the Caputo derivative by a finite difference method,

Dαf (tn) =


Ŵ( – α)

∫ tn



(tn – s)–α df (s)

ds
ds

=


Ŵ( – α)

n–
∑

j=

∫ tj+

tj

(tn – s)–α
f (tj+) – f (tj)

τ
ds + Rn

t

=
τ–α

Ŵ( – α)

n
∑

j=

bnj f (tj) + Rn
t , ()

where

bnj =

⎧

⎪

⎨

⎪

⎩

–(n–α – (n – )–α), j = ,

(n – j + )–α – (n – j)–α + (n – j – )–α , j = , , . . . ,n – ,

, j = n.

Let

∇α
t f (tn) =

τ–α

Ŵ( – α)

n
∑

j=

bnj f (tj), n = , , . . . ,N , ()
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Algorithm 1 Amodified Jacobi matrix on Newton iterationmethod

1: Given Niter , ε, let Nd = 1

2: if k > Niter and ‖f (xk+1)‖ > ‖f (xk)‖

3: Nd := 1
2
Nd

4: end if

5: if det(J(xk )) < ε, %ε is a sufficiently small positive number

6: J(xk ) := Nd · (J(xk ) + I), %I is an identity matrix

7: else

8: J(xk ) := Nd · J(xk )

9: end if

then by [], we have, for n = , , . . . ,N ,

∣

∣Rn
t

∣

∣ =
∣

∣Dαf (tn) –∇α
t f (tn)

∣

∣ ≤ C max

≤t≤T

∣

∣

∣

∣

df (t)

dt

∣

∣

∣

∣

τ –α , ()

for some C > . The implicit numerical scheme for fractional-order system () with finite

difference approximation of the Caputo derivative is

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∇α
t T

n = sα –μα
TT

n + rαTn( –
Tn+Tn

L+T
n
A

Tmax
) – kα

 T
nV n,

∇α
t T

n
L = kT

nV n –μα
TT

n
L – kα

T
n
L ,

∇α
t T

n
A = kα

T
n
L –μα

bT
n
A,

∇α
t V

n =Nμα
bT

n
A – kα

 V
nTn –μα

VV
n,

()

that is,

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Tn +
∑n–

j= b
n
j T

j – τ αŴ( – α)(sα –μα
TT

n + rαTn( –
Tn+Tn

L+T
n
A

Tmax
) – kα

 T
nV n) = ,

Tn
L +

∑n–
j= b

n
j T

j
L – τ αŴ( – α)(kα

 T
nV n –μα

TT
n
L – kα

T
n
L ) = ,

Tn
A +

∑n–
j= b

n
j T

j

A – τ αŴ( – α)(kα
T

n
L –μα

bT
n
A) = ,

V n +
∑n–

j= b
n
j V

j – τ αŴ( – α)(Nμα
bT

n
A – kα

 V
nTn –μα

VV
n) = .

In order to solve the above nonlinear equations, we choose theNewton iterationmethod

xk+ = xk – J–
(

xk
)

f
(

xk
)

, k = , , , . . . , ()

the initial values are given by x = (T,T
L ,T


A,V

). Furthermore, to ensure the conver-

gence of the Newton iteration method and avoid the Jacobian matrix J(xk) to be nonsin-

gular, we improve the above method by the Algorithm .

4 Dynamical behavior of generalized HIVmodel

In this section we will analyze the dynamics of the generalized HIV model and examine

the effect of the fractional order on the HIV dynamics. For this we find the equilibrium

points of () by solving the following system:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

sα –μα
TT + rαT( – T+TL+TA

Tmax
) – kα

 TV = ,

kα
 TV –μα

TTL – kα
TL = ,

kα
TL –μα

bTA = ,

Nμα
bTA – kα

 VT –μα
VV = .
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We find that system () has two equilibrium points: the uninfected equilibrium points

Eα
 = (T, , , ) and the (positive) infected equilibrium points Eα

 = (T ,TL,TA,V ) where

T =
p +

√

p + sαγ

γ
, T =

μα
Vk

kα
 (Nk

α
 – k)

,

TL =
μα
VV

Nkα
 – k

, TA =
kα
μα

VV

μα
b (Nk

α
 – k)

, V =
sαk + pkμ

α
V – γ (μα

V )


kα
 μα

V (k + kμ
α
V )

,

p = rα –μα
T , and γ = rα/Tmax,

k = kα


(

Nkα


kα
 +μα

T

– 

)

, k = kα
 +μα

T , k =
γ

k

(

 +
kα


μα
b

)

.

Theorem . The uninfected equilibrium point Eα
 = (T, , , ) is asymptotically stable

if and only if

μα
V > μα

crit =
kα
 k

α
TN – kα

 kT

k
.

Proof The Jacobian matrix J evaluated at Eα
 for the system () is given by

J =

⎛

⎜

⎜

⎜

⎝

–a –γT –γT –kα
 T

 –k  kα
 T

 kα
 –μα

b 

  Nμα
b –k

⎞

⎟

⎟

⎟

⎠

,

where k = kα
 T +μα

V , a = –p + Tγ .

The associated characteristic equation is given by

(λ + a)
[(

λ +μα
b

)

(λ + k)(λ + k) – kα
 k

α
TNμα

b

]

= .

Hence

λ = –a < ,

since substituting the value of T, we get a =
√

p + sγ > . Dividing the characteristic

equation by (λ + a), we obtain

λ +Aλ
 +Aλ +A = ,

where

A = μα
b + k + k > ,

A = kα
 k +μα

b (k + k) > ,

A = μα
b

(

kk – kα
 k

α
TN

)

.
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Using the definition of μα
crit, we have

A = μα
b

(

kk – kα
 k

α
TN

)

= μα
b

(

k
(

kα
 T +μα

V

)

– kα
 k

α
TN

)

= μα
bk

(

μα
V –

(

kα
 k

α
TN – kα

 kT

k

))

= μα
bk

(

μα
V –μcrit

)

.

Eigenvalues have a negative real part if and only if the following conditions of the Routh-

Hurwitz criteria are satisfied:

A,A >  and AA –A > .

Here A is positive, being a sum of positive terms,

AA –A = μα
b (k + k) +μα

b

(

k + k + kk + kα
 k

α
TN

)

+ kk(k + k) > .

A >  if and only if

μα
V > μα

crit. �

Remark . μα
V is a bifurcation parameter, transcritical bifurcation occurs as μα

V passes

the point μα
crit (see Figure ). When

μα
V > μα

crit =
kα
 k

α
TN – kα

 kT

k
,

the uninfected equilibrium point E is stable and the infected equilibrium point Eα
 does

not exist (this case is unphysical). When μα
V = μα

crit, the uninfected equilibrium point is

neutrally stable. When μα
V < μα

crit, E becomes unstable.

Remark . Following a similar analysis, we see that a transcritical bifurcation occurs at

Nα
crit, where

Nα
crit =

k(μ
α
V + kα

 T)

kα
 k

α
T

.

If N < Nα
crit; the uninfected equilibrium point Eα

 is stable and the infected equilibrium

point Eα
 does not exist (this case is unphysical). The uninfected equilibrium point is neu-

trally stable at N =Nα
crit. E

α
 becomes unstable when N >Nα

crit.

The Jacobian matrix J evaluated at Eα
 for the system () is given by

J =

⎛

⎜

⎜

⎜

⎝

–σ –γT –γT –kα
 T

–kα
 T –k  kα

 T

 kα
 –μα

b 

–kα
 T  Nμα

b –k

⎞

⎟

⎟

⎟

⎠

, ()
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where σ = –p + γT + γT + kV . The characteristic equation associated to the Jacobian

matrix is given by

λ + Bλ
 + Bλ

 + Bλ + B = , ()

with B = kα
 VT[kα

 μα
b (Nk

α
 – kα

 ) + γμV (k
α
 + μα

b )], B = σ [kk + μα
b (k + k)] + kα

 VT ×

[γ (μα
V + kα

 +μα
b ) – kα

 (k +μα
b )], B = σ (k + k +μα

b ) +μα
b (k + k) + kk + kα

 TV (γ – kα
 ),

B = σ + k + k +μα
b .

By the Routh-Hurwitz criteria for the stability of fractional-order systems [], we have

the following result for the stability of infected equilibrium.

Theorem . The infected equilibrium point Eα
 = (T ,TL,TA,V ) is locally asymptotically

stable if the coefficients of the characteristic polynomial () evaluated at Eα
 satisfy

B > , B > , B >  and BBB > B
 + B

B, ()

for all α ∈ (, ].

5 Numerical simulations

In this section, numerical simulations are provided to verify the theoretical results estab-

lished in the previous sections. In the following we will monitor the effect of varying viral

death rate and varying number of new virions produced by infected CD+ T-cells on the

dynamical behavior of the fractional model, respectively. The parameters are chosen as in

Table , unless otherwise stated.

Table 1 HIV model parameters

µ
α

T
µ

α

b
µ

α

V
k

α

1 k
α

2 r
α

N Tmax s
α

0.02α 0.24α 2.4α (2.4× 10–5)α (3× 10–3)α 0.03 Varies 1,500 10α

Figure 1 Bifurcation diagram (viral death rate), N = 1,000.
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Figure 2 Solution of fractional HIV model with µ
α

V
= 2.4α (left panel) and µ

α

V
= 7.4α (right panel) for

α = 0.99, 0.97, 0.95. Take N = 1,000 with initial condition (T0 , T0
L
, T0

A
,V0) = (1,000, 0.01, 0.1, 0.001).

Uninfected equilibria for different fractional orders are as follows:

⎧

⎪

⎨

⎪

⎩

Eα
 = (, , , ), μα

crit = . for α = .,

Eα
 = (,, , ), μα

crit = . for α = .,

Eα
 = (,, , ), μα

crit = . for α = ..

By Remark ., Eα
 is asymptotically stable when μα

V = .α > μα
crit and Eα

 become unsta-

ble as μα
V = .α is reduced. Transcritical bifurcation occurs at the point μα

crit see Figure .
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Figure 3 Solution of fractional HIV model with N = 600 (left panel) and N = 500 (right panel) for

α = 0.99, 0.97, 0.95 with initial condition (T0,T0
L
,T0

A
,V0) = (1,000, 0.01, 0.1, 0.0001).

The approximate solution for α = ., ., . are displayed in Figure , which are in

good agreement with the analytical result.

Next we will simulate the fractional system by varying the values of the parameter N

and choosing other values from Table . By calculation we can obtain

⎧

⎪

⎨

⎪

⎩

Eα
 = (, , , ), Nα

crit =  for α = .,

Eα
 = (,, , ), Nα

crit =  for α = .,

Eα
 = (,, , ), Nα

crit =  for α = ..
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According to Remark ., E.
 is stable but E.

 and E.
 are unstable when N = .

Next reducing N =  gives N < N.
crit and N < N.

crit so E.
 and E.

 become stable;

however, E.
 is unstable as shown in Figure .

For α = . the coefficients of characteristic polynomial evaluated at infected equilib-

rium Eα
 = (, , , ) are

B = .× – > , B = . > , B = . > ,

BBB = . > B
 + B

B = ..

Hence by Theorem ., E.
 is locally asymptotically stable as shown in Figure .

The decline in the number ofCD+ T-cells in peripheral blood is used in a clinical setting

as indicators of the disease stage. Decreasing fractional order gives rise to larger amounts

of CD+ T-cell depletion as shown in Figure .

Figure 4 Solutions of fractional system (1) using finite difference scheme for α = 0.97, N = 1,000 with

initial condition (1,000, 250,4, 10).

Figure 5 Effect of fractional derivative on T-cell depletion for N = 900,1,200 other parameters are

given in Table 1 with initial condition (1,000, 0, 0, 0.001).
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6 Conclusion

In this paper, we have investigated a fractional-order HIVmodel, as a generalization of an

integer-order model. The advantage of the generalized model is that the fractional-order

system possesses memory, which belongs to the main features of the immune response.

An implicit numerical scheme has been proposed for the fractional-order HIV model us-

ing a finite difference approximation of the Caputo derivative. We showed that the system

possesses two equilibrium points and derived the analytical condition for the stability of

uninfected and infected equilibrium points. Further we analyzed the influence of the frac-

tional derivative on the dynamics of system. In many AIDS patients the T-cell level can be

depleted < mm– level, on the other hand an integer-order model cannot model this

fact using the parameter values in Table . However, with the additional degree of freedom

of the fractional derivative we can obtain the low CD+ cell counts seen during the late

stages of the disease; see Figure . We established that μα
V and N are bifurcation parame-

ters, transcritical bifurcation occurs as μα
V and N passes the point μα

crit and Nα
crit, respec-

tively. We have shown that the disease can be eradicated by increasing the viral death rate

greater than μα
crit as shown in Figure . Another parameter that could play a vital role to

control the HIV virus is the number of new virions produced by infected CD+ T-cells.

We found that the virus can be eliminated if N is less than Nα
crit, that is, HIV infection

will not be sustained if infected cells die without producing an adequate number of viral

progeny as demonstrated in Figure . Mathematical models can help physicians to choose

an optimal dosage and check the effects of their therapeutic action. HIV progression has

many variations from patient to patient, which is difficult to capture by an integer-order

derivative. The fractional derivative can be varied to best fit the real data according to

the progression of different HIV patients. Thus a more reliable model can be obtained by

choosing the relevant fractional index according to real data. Consequently, the clinician

can recommend administration of drugs or treatment to each individual patient by using

the information from the generalized model with the most relevant fractional index.
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