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1  | INTRODUC TION

The progressive age‐related decline in skeletal muscle mass and 

strength, responsible for impaired mobility and disability in el‐

derly, is referred as sarcopenia, and it is the result of multiple 

molecular and cellular changes. The decline in muscle mass in‐

volves a fiber number reduction of 30%–40% (Lexell, 1995), and 

a decrease in fiber size, with 10%–40% smaller type II fibers 

in elderly compared with young people (Frontera et al., 2000). 

Aging is also associated with a fast‐to‐slow fiber type shift 
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Abstract
The decline in skeletal muscle mass and strength occurring in aging, referred as sar‐

copenia, is the result of many factors including an imbalance between protein synthe‐

sis and degradation, changes in metabolic/hormonal status, and in circulating levels 

of inflammatory mediators. Thus, factors that increase muscle mass and promote 

anabolic pathways might be of therapeutic benefit to counteract sarcopenia. Among 

these, the insulin‐like growth factor‐1 (IGF‐1) has been implicated in many anabolic 

pathways in skeletal muscle. IGF‐1 exists in different isoforms that might exert differ‐

ent role in skeletal muscle. Here we study the effects of two full propeptides IGF‐1Ea 

and IGF‐1Eb in skeletal muscle, with the aim to define whether and through which 

mechanisms their overexpression impacts muscle aging. We report that only IGF‐1Ea 

expression promotes a pronounced hypertrophic phenotype in young mice, which is 

maintained in aged mice. Nevertheless, examination of aged transgenic mice revealed 

that the local expression of either IGF‐1Ea or IGF‐1Eb transgenes was protective 

against age‐related loss of muscle mass and force. At molecular level, both isoforms 

activate the autophagy/lysosome system, normally altered during aging, and increase 

PGC1‐α expression, modulating mitochondrial function, ROS detoxification, and the 

basal	inflammatory	state	occurring	at	old	age.	Moreover,	morphological	integrity	of	
neuromuscular	 junctions	was	maintained	and	preserved	 in	both	MLC/IGF‐1Ea	and	
MLC/IGF‐1Eb	mice	during	aging.	These	data	suggest	that	IGF‐1	is	a	promising	thera‐
peutic agent in staving off advancing muscle weakness.

K E Y W O R D S
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due to the age‐dependent remodeling of motor units (Ciciliot, 

Rossi, Dyar, Blaauw, & Schiaffino, 2013; D'Antona et al., 2003; 

Delbono, 2011). At the cellular level, aging is caused by a pro‐

gressive decline in mitochondrial function, resulting in accumu‐

lation of reactive oxygen species (ROS). The imbalance between 

protein synthesis and protein degradation and changes in met‐

abolic and hormonal status, as well as in circulating levels of 

inflammatory mediators, have been also postulated as the key 

factors contributing to sarcopenia (Doherty, 2003; Fielding et al., 

2011).	Moreover,	the	accumulation	of	damaged	macromolecules	
and cellular components, that constantly cause the initiation of 

an immune response, has been proposed as a potent contributor 

of the basal chronic inflammation associated with aging. Indeed, 

age‐related failure of removal of dysfunctional protein and or‐

ganelles (Terman & Brunk, 2006), through autophagic pathways, 

is detrimental for muscle tissue and is likely correlated to sarco‐

penia (Sandri et al., 2013).

Among pathways that regulate protein turnover and muscle 

function, insulin‐like growth factor 1 (IGF‐1) plays a central role 

in muscle growth, differentiation, and regeneration (Scicchitano, 

Rizzuto,	&	Musarò,	2009).	 In	 the	adult	mammals,	 IGF‐1	 is	princi‐
pally synthesized in the liver, acting as a systemic growth factor; 

however, it is also produced in extrahepatic tissues, including skel‐

etal muscle, where it plays a mainly autocrine/paracrine role. The 

IGF‐1 protein is produced by different pre‐pro‐peptides, whereas 

two different promoters and differential splicing of the IGF‐1 gene 

create several IGF‐1 isoforms, which differ in the N‐terminal signal 

peptide (Class 1 or 2) and the C‐terminal extension peptide (E‐pep‐

tide Ea or Eb) (Shavlakadze, Winn, Rosenthal, & Grounds, 2005). 

Whether different IGF‐1 isoforms exert different biological func‐

tions, or whether existence of these isoforms reflects a mechanism 

for a tissue specific regulation of IGF‐1 expression is still unclear. 

IGF‐1Ea, the dominant IGF‐1 isoform, promotes satellites cell dif‐

ferentiation and provides most of the mature IGF‐1 for stimulating 

protein synthesis, whereas IGF‐1Eb is responsible for satellite cell 

activation and proliferation. It has been previously demonstrated 

that muscle overexpression of IGF‐1Ea isoform induced mus‐

cle hypertrophy in adulthood and guaranteed a maintenance of 

muscle mass and functionality during aging and in animal mod‐

els	of	neuromuscular	diseases	 (Barton‐Davis,	Shoturma,	Musaro,	
Rosenthal,	 &	 Sweeney,	 1998;	 Bosch‐Marcé	 et	 al.,	 2011;	Musarò	
et al., 2004,2001; Palazzolo et al., 2009). A recent study demon‐

strated that only full‐length IGF‐1Eb, but not Eb peptide alone, 

was able to promote anabolic effects on muscle (Fornaro et al., 

2014); conversely, Eb peptides, without the influence of addi‐

tional IGF‐1, were able to induce a significant muscle hypertrophy, 

which was surprisingly associated with a loss of muscle strength 

(Brisson, Spinazzola, Park, & Barton, 2014). Given the conflicting 

and still unclear data on effects of different IGF‐1 isoforms, we 

propose to study the function of the full‐length Class1_IGF‐1 Ea 

and Class1_IGF‐1Eb isoforms in skeletal muscle, with the purpose 

to investigate whether the overexpression of either propeptides 

IGF‐1Ea or IGF‐1Eb isoform impacts muscle aging and through 

which mechanisms each isoform acts. By expressing the different 

isoforms under the control of the same postmitotic skeletal muscle 

regulatory elements, we directly compared their effects in order 

to define whether they share or not a common pathway for their 

actions.

2  | RESULTS

2.1 | Effects of IGF‐1 isoforms overexpression on 
muscle growth and hypertrophy

We analyzed and compared the ability of muscle‐specific expression 

of full propeptides IGF‐1Ea and IGF‐1Eb (Supporting Information 

Figure S1a) to induce muscle hypertrophy and counteract sarco‐

penia. Real‐time PCR analyses demonstrated that each transgenic 

mouse line, namely IGF‐1Ea and IGF‐1Eb, up‐regulated selectively 

its specific class and peptide, without any compensatory modula‐

tion of other IGF‐1 isoforms (Supporting Information Figure S1b). 

Western blot analyses confirmed the up‐regulation of IGF‐1 protein 

in transgenic muscle compared to wild‐type and revealed two dif‐

ferent IGF‐1 expression patterns in both transgenic mice (Figure 1a). 

The IGF‐1Ea muscle predominantly expressed the mature form of 

IGF‐1, whereas the IGF‐1Eb muscle displayed the unprocessed form. 

Of note, despite the different patterns, the total expression levels 

of IGF‐1, including mature partially processed and unprocessed iso‐

forms, were comparable in the two models. As expected, only a faint 

band of IGF‐1 protein, corresponding to the IGF‐1Ea predominantly 

expressed	isoform	in	muscle	(Kern	et	al.,	2011;	Sandri	et	al.,	2013),	
was	detectable	in	wild‐type	mice.	Moreover,	the	muscle	expression	
of either IGF‐1Ea or IGF‐1Eb transgene did not lead to systemic up‐

regulation of the circulating IGF‐1 isoform (Supporting Information 

Figure S1c).

We	then	explored	whether	IGF‐1Eb,	similarly	to	IGF‐1Ea	(Musarò	
et al., 2001), is able to promote muscle hypertrophy. For this pur‐

pose, we analyzed, in wild‐type and IGF‐1Ea and IGF‐1Eb mice, the 

weight of different muscles such as quadriceps (TH), gastrocnemius 

(GN), tibialis anterior (TA), extensor digitorum longus (EDL), and 

Soleus (SOL). Of note, the fast‐fiber‐specific effects of the IGF‐1Ea 

and IGF‐1Eb transgenes were reflected in the increased average 

weight of muscles rich in fast fibers, compared with wild‐type mus‐

cles (Figure 1b). Histological analysis (Figure 1c) and frequency dis‐

tribution of cross‐sectional area (CSA) (Figure 1d) of EDL myofibers 

revealed a shift of the median values toward large myofibers size 

in muscles of both transgenic mouse lines, compared to wild‐type 

littermates, although the hypertrophic muscle phenotype was more 

pronounced in IGF‐1Ea mice, compared to IGF‐1Eb animals.

To define whether the different levels of muscle hypertrophy, 

exerted by the two isoforms of IGF‐1, were associated with an in‐

crease in muscle performance, we analyzed the functional proper‐

ties of IGF‐1Ea, IGF‐1Eb, and wild‐type muscles. Of note, only the 

increased muscle mass in IGF‐1Ea transgenic muscle was associated 

with increased force generation compared with both IGF‐1Eb and 

wild‐type muscles (Figure 1e,f).
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2.2 | Effect of IGF‐1 isoforms overexpression on 
skeletal muscle aging

In order to study the effects of IGF‐1 isoforms overexpression dur‐

ing aging, we analyzed IGF‐1Ea and IGF‐1Eb transgenic mice at 

26 months of age, comparing them with age‐matched wild‐type 

mice. Western blot analyses demonstrated that the up‐regulation of 

IGF‐1 protein was maintained during aging without changes in the 

expression pattern (Figure 2a). We observed that only aged IGF‐1Ea 

mice displayed significant increase in body weight compared to both 

age‐matched wild‐type and IGF‐1Eb mice (Figure 2b). To exclude 

systemic effects of long‐term overexpression of IGF‐1 transgenes, 

we analyzed serum levels of IGF‐1 and the weight of total body and 

visceral organs of young and aged mice. The evaluation of visceral 

organs weight and the morphologic and molecular analyses of the 

cardiac tissue revealed that skeletal muscle‐specific expression of 

IGF‐1 isoforms caused no significant changes in transgenic mice 

compared to wild type littermates (data not shown). Interestingly, 

consistent with the physiological decline in serum IGF‐1 during 

aging (Landin‐Wilhelmsen, 2004), we observed a strong reduction 

of serum IGF‐1 levels in old wild‐type mice, whereas aged transgenic 

animals exhibited unchanged levels of IGF‐1 compared to young 

counterparts (Figure 2c).

We then analyzed the expression levels of relevant circulating 

IGFBPs, namely IGFBP‐2 and IGFBP‐3 in young and aged wild‐type 

and IGF‐1Ea and IGF‐1Eb transgenic mice. While IGFBP‐2 levels did 

not significantly change between wild‐type and transgenic animals 

(data not shown), we observed a significant increase in circulating 

protein levels of IGFBP‐3 in both 6‐month‐old and 26‐month‐old 

IGF‐1Eb mice, compared to wild‐type and IGF‐1Ea age‐matched an‐

imals (Figure 2d). Of note, circulating IGFBP‐3 levels did not display 

any significant change in IGF‐1Ea transgenic mice compared to wild‐

type littermates.

We then verified whether expression of the IGF‐1Eb isoform, 

similarly to IGF‐1Ea and despite the lack of functional muscle hy‐

pertrophy, was able to counteract the decline in muscle mass during 

aging. We observed an increase in weight of different muscles 

from transgenic mouse models compared to wild‐type littermates 

(Figure 2e). As shown by the representative H&E images (Figure 2f) 

and by the CSA frequency distribution graph (Figure 2g), myofibers 

from EDL of aged IGF‐1Ea and IGF‐1Eb transgenic mice were sig‐

nificantly bigger than those of wild‐type mice. Notably, muscles of 

IGF‐1Ea mice were characterized by increased weight and CSA val‐

ues compared with those of IGF‐1Eb littermates.

To strengthen evidence that muscle expression of IGF‐1 iso‐

forms is able to counteract muscle aging, we performed additional 

analyses evaluating the degree of muscle wasting. Analysis of EDL 

myofiber numbers revealed that IGF‐1Ea isoform more efficiently 

protects skeletal muscle from the fiber loss occurring in aging, com‐

pared to both aged wild‐type and IGF‐1Eb mice (Figure 3b). Indeed, 

26‐month‐old IGF1Ea mice displayed a reduction in muscle fibers 

number of about 14% (13.99% ± 1.98) compared to young IGF‐1Ea 

mice, whereas both aged wild‐type (23% ± 3.28) and IGF‐1Eb mice 

(20.84% ± 2.86) showed a significant reduction in muscle fibers 

compared to the respective young counterparts. We then analyzed 

the percentage of both fast and slow fibers in wild‐type and trans‐

genic mice at the different age (Figure 3a,c). While aged wild‐type 

mice displayed an increased, not statistically significant, percentage 

F I G U R E  1   Effect of IGF‐1 isoforms on skeletal muscle weight in 6‐month‐old mice. (a) Densitometric analysis and representative 

Western blot bands of IGF‐1 protein; (b) Wet weight (mg), normalized for tibial length (mm), of fast (TA, TH, GN, and EDL) and slow (SOL) 

skeletal muscles from wt and tg animals. (c) Hematoxylin and eosin‐stained cross sections of EDL from wt and tg mice (6 months old). 

Bar = 50 um. (d) Frequency distribution of cross‐sectional area (CSA) of extensor digitorum longus (EDL) muscles from the different 

experimental groups. Values of mean ± SEM: wt = 1673.42 ± 30.16; IGF‐1Ea = 2502.75 ± 35.29; IGF‐1Eb = 2016.35 ± 32.97. (e,f) 

Physiological properties of EDL muscles from tg and wt mice. All measurements are presented as mean ± SEM. *between young (6 months) 

wt and tg mice (*p < 0.05; **p < 0.001; ***p < 0.005; ****p	<	0.0001	by	Mann–Whitney	U test)
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of slow myofibers with a reduction in fast ones, the expression of 

either IGF‐1Ea or IGF‐1Eb isoform maintained the fiber type com‐

position	during	aging.	Moreover,	independently	of	the	extent	of	in‐

creased muscle mass, both aged IGF‐1Ea and IGF‐1Eb mice showed 

an increase in force generation, compared with age‐matched wild‐

type littermates (Figure 3d,e).

In order to evaluate the whole physical performance, wild‐type 

and transgenic mice of different ages were subjected to the exercise 

tolerance test (ETT), revealing that both young and aged IGF‐1Ea 

and IGF‐1Eb transgenic mice were able to significantly increase 

running distance compared with age‐matched wild‐type (Figure 3f). 

It was also interesting to note that IGF‐1Eb mice, despite a lower 

muscle mass compared to IGF1‐Ea mice, showed a similar physical 

performance.

2.3 | Analysis of molecular markers of protein 
synthesis and degradation

To determine the mechanisms activated by IGF‐1 isoforms to miti‐

gate aging‐dependent muscle wasting, we analyzed relevant markers 

of anabolic and catabolic pathways, such as Akt kinase and its down‐

stream effector rapamycin (mTOR) (Schiaffino, Dyar, Ciciliot, Blaauw, 

& Sandri, 2013), along with the muscle‐specific atrophy‐related 

ubiquitin	ligases	gene,	namely	Atrogin‐1	and	MuRF1,	as	well	as	mark‐
ers of the autophagic pathways (Sandri et al., 2013).

Western blot analysis did not reveal any significant modulations 

of Akt and mTOR phosphorylation between the different mouse 

models and during aging (data not shown). Instead, RNA expres‐

sion levels of the atrogenes markedly increased in all aged animal 

models except for atrogin‐1 that did not change significantly be‐

tween young and aged transgenic mice (Supporting Information 

Figure S1d,e). Western blot analyses of the relevant markers of 

the autophagic pathway, normally altered during aging (Carnio et 

al., 2014), revealed a significant up‐regulation of the LC3‐II/LC3‐I 

protein ratio (Figure 4a) and of the autophagosome cargo protein 

p62/SQSTM1(Figure	4b)	 in	 the	muscles	of	both	aged	 IGF‐1Ea	and	
IGF‐1Eb mice compared to those of wild‐type littermates.

2.4 | Analysis of oxidative stress and 
mitochondrial biogenesis

Another potential mechanism involved in the pathogenesis of sar‐

copenia is an enhancement of ROS production and the increase in 

oxidant damage (Carnio et al., 2014). We analyzed gP91 protein, a 

catalytic subunit of NOX2 that belongs to enzyme's family dedicated 

to ROS production. We observed a significant up‐regulation of this 

F I G U R E  2   Analysis of the effects of IGF‐1 isoforms during aging. (a) Densitometric analysis and representative Western blot bands of 

IGF‐1 protein (the representative western blot related to young mice is part of the experiment also reported in Figure 1a); (b) body weight (gr), 

(c) serum levels of IGF‐1 (pg/ml), and (d) IGFBP‐3 (pg/ml); (e) skeletal muscle wet weight (mg), normalized for tibial length (mm), in wt and tg 

mice of young (6 months old) and aged (26 months old) mice. (f) Hematoxylin and eosin‐stained cross sections of EDL muscle from old wt and 

tg mice. (g) Frequency distribution of the myofibers cross‐sectional area (CSA) of extensor digitorum longus (EDL) from young and old wt and 

tg mice. Bar = 50 μm. Values of mean ± SEM: wt = 1554.00 ± 24.72; IGF‐1Ea = 2360.99 ± 31.80; IGF‐1Eb = 1790.32 ± 29.62. #between young 

and old mice in each group; ^between old wt and tg mice (#, ^p < 0.05; ##, ^^, **p < 0.005; ###, ^^^p < 0.001; ####, ^^^^, ****p < 0.0001 by 

Mann–Whitney	U test). In (e), the statistical analysis between young wt and tg mice is not shown; it is indicated in Figure 1b
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protein in the muscle of both young and aged IGF‐1Ea mice, but not 

in the muscle of either wild‐type or IGF‐1Eb mice (Figure 4c).

Of note, the increase in ROS production in the muscle of aged 

IGF‐1Ea mice was compensated with the modulation of relevant en‐

ergy	sensors,	such	as	AMPK	(Figure	4d),	and	of	markers	with	anti‐
oxidant activity, namely PGC1‐α and Nrf‐2 (Figure 4e,f). Consistent 

with these data, we also found that the levels of mRNAs that en‐

code the rate‐limiting enzyme for glutathione biosynthesis (glutamyl 

cysteine	 ligase	modulator,	GCLM)	 and	 catalase,	 a	ROS	 scavenging	
enzyme, were significantly up‐regulated in old IGF‐1Ea, compared 

with wild‐type and IGF‐1Eb littermates (Figure 4g,h). Interestingly, 

the expression of Sirt1 protein, a factor that has broad biological 

functions in growth regulation, stress response, endocrine signaling, 

and	extended	lifespan	(Kim	&	Um,	2008),	resulted	significantly	up‐
regulated in aged IGF‐1Ea mice, while its expression did not change 

between IGF‐1Eb and wild‐type muscle in both young and aged mice 

(Figure 4i).

In addition to the role in antioxidant defense, PGC1‐α has been 

implicated in mitochondrial dynamics by promoting the fusion 

and fission of mitochondria and ultimately regulating their qual‐

ity and functionality (Dabrowska, 2015). We observed, similarly to 

PGC1‐α expression profile, increased mRNA levels of mitochon‐

drial	 fusion	 protein	MFN2,	 which	 is	 a	 PGC1‐α molecular target, 

in both aged IGF‐1Ea and IGF‐1Eb transgenic mice with respect 

to	 wild‐type	 aged‐matched	 mice	 (Figure	 4j).	 Moreover,	 mRNA	
expression	 levels	 of	MTFP1,	 a	 protein	 involved	 in	mitochondrial	
fission, significantly increased in aged IGF‐1Ea mice and showed 

a moderate, not significant, up‐regulation in aged IGF‐1Eb mice 

compared to wild‐type littermates (Figure 4k). The significantly 

elevated expression of these markers in IGF‐1Ea mice suggests 

that this isoform preferentially promotes enhanced control of mi‐

tochondrial quality.

2.5 | Analysis of inflammatory markers

Since there is growing recognition of the central role of increased 

low‐grade inflammatory response in aging‐sarcopenia and it has 

been reported that PGC1‐α downregulates inflammation (Dinulovic 

et al., 2016), we analyzed inflammatory cytokine expression in 

skeletal muscle from the different mice. Skeletal muscle from old 

wild‐type mice significantly up‐regulated IL‐6 and IL‐1b cytokine 

RNA expression, whose levels were strongly reduced in the muscle 

of both IGF‐1Ea and IGF‐1Eb aged mice (Figure 4l,m). Coherently, 

the analysis of circulating IL‐6 levels showed an increase in serum of 

aged mice and a significant reduction in both IGF‐1Ea and IGF‐1Eb 

transgenic mice compared to wild‐type littermates (Figure 4n).

2.6 | IGF‐1 isoforms expression preserves 
NMJ integrity

Since one of the mechanisms attributed to the loss of muscle mass 

during aging is a preceding myofiber denervation (Jang & Van 

Remmen, 2011), we aimed to determine whether the expression 

of different IGF‐1 isoforms would counteract age‐related neuro‐

muscular	 junctions	 (NMJ)	 degeneration.	Histological	 analysis,	 by	
α‐bungarotoxin staining on the longitudinal sections of quadriceps 

F I G U R E  3   Analysis of the effect of IGF‐1 isoforms on fiber type composition and muscle strength in aging. (a) Immunofluorescence of 

transverse sections from EDL of aged (26 months old) wild‐type and IGF‐1Ea and IGF‐1Eb transgenic mice (n = 3 per group), stained with 

antibodies	against	slow	myosin	(red)	and	laminin	(green).	(b)	Myofibers	number	of	EDL	muscle	from	young	and	old	wt	and	tg	mice.	(c)	The	
mean number of fast (white) and slow (black) myofibers is expressed as percentage of total number of myofibers in each experimental 

group (wt young 1.56 ± 0.88; wt old 3.75 ± 1.47; IGF‐1Ea young 1.08 ± 0.76; IGF‐1Ea old 0.68 ± 0.40; IGF‐1Eb young 1.25 ± 0.30; IGF‐1Eb 

old	1.72	±	0.56).	(d,e)	Physiological	properties	of	EDL	muscles	from	young	and	aged	wild‐type	and	transgenic	mice.	(f)	Maximum	running	
distance (m) determined by exhaustion of all analyzed mice on the ETT. All measurements are presented as mean ± SEM. #between young 

and old mice in each group; ^between old wt and tg mice (#, ^p < 0.05; ##, ^^, **p < 0.005; ###, ^^^p < 0.001; ####, ^^^^p < 0.0001 by 

Mann–Whitney	U test). In (d,e), the statistical analysis between young (6 months) wt and tg mice is not shown; it is indicated in Figure 1e,f
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muscle,	 revealed	 marked	 alterations	 in	 the	 NMJ	 of	 aged	 wild‐
type mice and not in age‐matched IGF‐1Ea and IGF‐1Eb mice 

(Figure 5a,b), suggesting that the expression of IGF‐1 isoforms 

counteracts	 NMJ	 fragmentation.	 To	 support	 this	 observation,	
we performed gene expression analysis for the gamma subunit of 

AChR (AChRγ), whose expression increases in denervated muscle 

or	under	conditions	that	alter	the	NMJ	functionality	(Witzemann,	
Brenner, & Sakmann, 1991). Real‐time PCR analysis revealed that 

AChRγ expression was dramatically up‐regulated during aging in 

the muscle of wild‐type mice, compared with that observed in 

both IGF‐1Ea and IGF‐1Eb littermates (Figure 5c).

3  | DISCUSSION

In this study, we analyzed the effects of overexpression of full‐

length Class 1 IGF‐1Ea and Class 1 IGF‐1Eb isoforms on muscle 

growth and their ability to counteract sarcopenia. Two major IGF‐1 

F I G U R E  4   Effect of IGF‐1 isoforms on different molecular pathways during aging. Densitometric analyses (upper panel) and 

representative Western blot bands (lower panel) in TA muscle from young (6 months old) and aged (26 months old) wt and tg mice 

for	the	expression	of:	LC3	(a)	(analysis	of	the	ratio	of	LC3‐II/LC3‐I,	normalized	to	the	total	protein);	SQSTM1/p62	(b),	gp91	(phox)	(c),	
phospho‐AMPK	(Thr172)	and	total	AMPK	(d)	(analysis	of	the	ratio	between	the	phosphorylated	and	the	total	protein),	and	SIRT‐1	(i).	The	
representative bands come from not contiguous lanes in the same gel. Values are reported as protein content relative to that of young wt 

mice. Real‐time PCR analysis for the expression of PGC‐1α	(e),	NRF‐2	(f),	Catalase	(g),	GCLM	(h),	MFN2	(j),	MTFP1	(k),	IL‐6	(l),	and	IL‐1β (m) 

in TH muscles from young (6 months old) and aged (26 months old) wt and tg mice. (n) Serum levels of IL‐6 (pg/ml). Values are reported as 

fold change in expression and represent mean ± SEM; n = 4–8 per group. *between young wt and tg mice; #between young and old mice in 

each group; ^between old wt and tg mice (*, #, ^p < 0.05; **, ##, ^^p < 0.005; ***, ###, ^^^p < 0.001; ****, ####, ^^^^p	<	0.0001	by	Mann–
Whitney U test)
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transcripts are known: the locally acting isoform with an autocrine/

paracrine action and the circulating isoform with endocrine effects 

(Scicchitano et al., 2009). The physiological differences between the 

function of local and circulating isoform of IGF‐1 are not completely 

established, and controversies exist between the activity of local/

tissue specific production of IGF‐1 versus liver/circulatory IGF‐1. 

Injury of mammalian tissues induces transient production of locally 

acting IGF‐1 isoforms that control growth, survival, and differentia‐

tion. Contrarily, circulating IGF‐1 isoforms can induce hyperplasia 

and	 spontaneous	 tumor	 formation	 (Musaro	 &	 Rosenthal,	 2006).	
Thus, the restricted action of supplemental IGF‐1 to muscle should 

guarantee the autocrine/paracrine role, excluding possible endo‐

crine	effects	on	other	tissues.	Moreover,	it	has	been	demonstrated	
that the insulin and IGF‐1 signaling pathway plays a critical role in the 

control of longevity in invertebrates; in contrast, their potential in‐

volvement in human longevity remains dubious. The reasons for the 

controversial action of insulin/IGF‐1 signaling between invertebrate 

and mammals can be numerous: among these, the different affinity 

of insulin, IGF‐1 and IGF‐2, to receptors and the activation of differ‐

ent metabolic pathways.

Our data demonstrated that muscle localized expression of ei‐

ther IGF‐1Ea or IGF‐1Eb counteracts sarcopenia, without inducing 

any evident sign of side effect in other tissues and organ and without 

limiting the lifespan of the animals. Preliminary results indicate that 

the two transgenic mouse models live longer compared to wild‐type 

mice.

It is plausible that local expression of IGF‐1 isoforms, preserv‐

ing skeletal muscle, might maintain the youth not only of muscle 

tissue but also of the entire organism, as demonstrated by the ex‐

ercise tolerance test (ETT). Interestingly, skeletal muscle has re‐

cently been identified as an endocrine organ capable to produce, 

express, and release, following exercise training, cytokines, and 

other peptides, known as myokines, that exert paracrine, auto‐

crine, or endocrine effects. We can speculate that IGF‐1 is a sort of 

myokine	that	promotes	a	local	effort	for	a	global	impact	(Musarò,	
2012), inducing health benefits. Thus, the reduction in circulating 

IGF‐1 levels observed in aged wild‐type mice could be the result 

of muscle morpho‐functional alterations; conversely, transgenic 

mice, guaranteeing the muscle expression levels of IGF‐1 isoforms 

even at late postnatal life, preserve the capability of muscle to 

function as endocrine organ, thus contributing to maintain unal‐

tered the circulating IGF‐1 levels.

In a recent work, it has been addressed the question on whether 

the selective expression of Ea and Eb peptides on skeletal muscle 

is able to induce any specific anabolic effects even in the absence 

of mature IGF‐1 peptide (Brisson et al., 2014). The authors revealed 

that E‐peptides increase skeletal muscle mass but at the expense of 

strength, suggesting that a cooperative effect between E‐peptide 

and IGF‐1 mature peptide is necessary to promote more significant 

functional effects on skeletal muscle. Nevertheless, it remained to 

be determined whether full IGF‐1Ea and IGF‐1Eb propeptides ex‐

erted different role on muscle growth and homeostasis.

In previous works, we demonstrated that localized IGF‐1Ea 

transgene expression sustains hypertrophy and regeneration in 

senescent	skeletal	muscle	(Musarò	et	al.,	2001).	However,	to	date	
it is not clear whether IGF‐1Eb isoform could outperform IGF‐1Ea 

isoform and whether the two isoforms activate different molecu‐

lar mechanisms. Comparing the effects of the overexpression of 

two IGF‐1 isoforms on the skeletal muscle, we revealed that only 

IGF‐1Ea is able to promote a pronounced hypertrophic pheno‐

type in adult mice, which is maintained in aged mice. In particular, 

muscles of IGF‐1Ea mice were characterized by increased muscle 

weight and CSA values than those of IGF‐1Eb. Although differ‐

ent molecular mechanisms can be involved in the induction and 

maintenance of the hypertrophic phenotype, it was interesting to 

note different expression pattern of IGF‐1 protein in IGF‐1Ea and 

IGF‐1Eb transgenic mice. We can hypothesize that the higher ex‐

pression levels of mature IGF‐1 protein in IGF‐1Ea mice, compared 

to IGF‐1Eb one, may be responsible for the hypertrophic pheno‐

type exerted by IGF‐1Ea isoform.

Nevertheless, beside the promotion of muscle growth, both 

IGF‐1Ea and IGF‐1Eb are able to counteract sarcopenia, activating 

F I G U R E  5  Analysis	of	the	effect	of	IGF‐1	expression	on	the	morpho‐functional	changes	of	NMJs	during	aging.	(a)	Representative	
maximum projection of photomicrographs showing α‐bungarotoxin staining in longitudinal cryosections of TH muscle from aged (26 months 

old)	wt	and	tg	mice.	(b)	Mean	number	of	fragments	and/or	discontinuity	regions	of	α‐bungarotoxin staining in young and old, wt and tg mice. 

All measurements are presented as mean ± SEM; n = 3–5 mice per group. (c) Real‐time PCR analysis for the expression of gamma subunit of 

the Acetylcholine receptor. Values are reported as fold change in expression and represent mean ± SEM; n = 3–8 mice per group. *between 

young wt and tg mice; #between young and old mice in each group; ^between old wt and tg mice (*,#, ^p < 0.05; **, ##, ^^p < 0.005; ***, ###, 

^^^p < 0.001; ****, ####, ^^^^p	<	0.0001	by	Mann–Whitney	U test)
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pathways normally affected during aging, namely autophagy and 

PGC‐1‐mediated signaling (Sandri et al., 2013). These pathways con‐

trol two important destabilizing factors associated with sarcopenia: 

the removal of dysfunctional mitochondria, responsible for exces‐

sive	production	of	ROS,	and	the	maintenance	of	NMJ	integrity,	es‐
sential to muscle function, and muscle‐nerve interplay.

Interestingly, we observed a significant up‐regulation of relevant 

molecular markers of the autophagic pathway in aged muscles of 

both IGF‐1Ea and IGF‐1Eb mice, compared to wild‐type mice. Our 

data also revealed that the activation of autophagic pathway under‐

lies the ability of both isoforms of IGF‐1 to preserve the integrity 

and	the	morphology	of	NMJ	during	aging,	protecting	muscle	fibers	
by denervation. In addition, the modulation of PGC‐1α, by IGF‐1Ea 

and IGF‐1Eb isoforms, emerges as a key aspect of the ability of the 

two IGF‐1 isoforms to counter sarcopenia. There is growing recog‐

nition of the central roles of inflammatory cytokines, such as IL‐6, 

in aging‐induced sarcopenic phenotypes (Visser et al., 2002). Here 

we reported the negative modulation of IL‐1β and IL‐6 levels by both 

IGF‐1Ea and IGF‐1Eb overexpression, counteracting the inflame‐

aging process.

The maintenance of hypertrophic phenotype by IGF‐1Ea in‐

volves	also	the	activation	of	additional	pathways,	such	as	AMPK,	a	
factor involved in the maintenance of whole‐body energy balance 

and an “energy sensor” controlling glucose and lipid metabolism 

(Kjøbsted	et	al.,	2018).	Indeed,	it	was	up‐regulated	in	the	muscle	of	
IGF‐1Ea but not in IGF‐1Eb mice. The high metabolic rate observed 

in IGF‐1Ea muscle was correlated with high ROS production. These 

mice, however, were able to minimize oxidative damage in senescent 

muscle up‐regulating, through PGC1‐α activation, NRF‐2 protein, 

the master regulator of antioxidant defense (Scicchitano, Pelosi, Sica, 

&	Musarò,	2018)	and	Sirt‐1,	a	factor	involved	in	growth	regulation,	
stress response, endocrine signaling, and extended lifespan. In aged 

IGF1‐Ea mice, the increased levels of markers involved in the fusion 

and fission of mitochondria could further contribute to the control of 

mitochondrial quality and functionality. Our data are consistent with 

a model (Figure 6) in which muscle expression of either IGF‐1Ea or 

IGF‐1Eb, activating a series of anabolic and compensatory pathways, 

is able to prevent muscle loss and a normal muscle‐nerve interaction, 

counteracting sarcopenia.

4  | E XPERIMENTAL PROCEDURES

4.1 | Generation of transgenic mice and aging 
colony

IGF‐1‐Eb isoform expression construct was generated by cloning 

the rodent cDNA sequence of Class 1_IGF‐1Eb into the skeletal 

muscle‐specific	 expression	 cassette	 (Musarò	 &	 Rosenthal,	 1999)	
containing	 the	myosin	 light	chain	MLC	1	promoter,	a	SV40	poly	A	
signal	and	the	MLC	1/3	enhancer	sequence.	FVB	male	mice	(Jackson	
Laboratories) were used as embryo donors, and the transgenic ani‐

mals were generated using standard methods. Positive founders for 

each IGF‐1Ea and IGF‐1Eb transgenic lines were subsequently bred 

to	FVB	wild‐type	mice,	and	MLC/IGF‐1Ea	and	MLC/IGF‐1Eb	trans‐
genic mice were selected by PCR using tail digests. The animals were 

housed in individually ventilated cages (4‐5 per cage) in a tempera‐

ture (22°C) and humidity (45%–55%) controlled room with a 12:12 hr 

light/dark cycle. All cages contained wood shavings, bedding, and 

F I G U R E  6  A	summary	of	the	molecular	pathways	responsible	for	the	protective	role	of	IGF‐1	isoforms	against	sarcopenia.	Muscle	
localized expression of either IGF‐1Ea or IGF‐1Eb counteracts sarcopenia, through the coordinated activation of two pathways, namely 

PGC1α and autophagy. IGF‐1Ea or IGF‐1Eb activates the autophagy/lysosome system, normally altered during aging, to maintain 

the cell clear from dysfunctional organelles and mis‐ or unfolded proteins that are prone to aggregate during aging. PGC‐1α induces 

mitochondriogenesis and stimulates specific gene programs to guarantee the maintenance of muscle mass and muscle adaptation (i.e., fiber 

type	specification,	NMJ	stability,	and	reduced	inflammation).	Notably,	IGF‐1Ea	expression	stimulates	additional	pathways	(i.e.,	AMPK,	SIRT1)	
to guarantee a functional hypertrophic phenotype even during aging
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a cardboard tube for environmental enrichment and spontaneous 

physical	 activities.	 Mice	 were	 provided	 with	 food	 (Teklad	 Global	
18%	Protein	Rodent	Diet	 (Envigo,	Huntingdon,	UK))	 and	water	 ad	
libitum. Sentinel mice were tested every four months to detect 

potential infection, analyzing the presence of viral, bacterial, and 

parasitic pathogens listed in the FELASA recommendations. The ani‐

mals used for the experiments were specific pathogen free. Young 

(6 months of age) and old (26 months of age) wild‐type, IGF‐1Ea, and 

IGF‐1Eb heterozygous transgenic mice were used for all the experi‐

ments. In our study, we used male mice, based on the considera‐

tion that females, because their hormonal changes during aging, are 

subjected to a great individual variability, leading to confounder 

effects. Preliminary results on aged female revealed similar mor‐

pho‐functional and molecular signatures observed in male. Since we 

did not observe any significative differences in phenotypic features 

and in protein and gene expression levels among wild‐type mice and 

transgenic negative littermates for both IGF‐1Ea and IGF‐1Eb mice 

(Supporting Information Figure S2), we indicated as wild‐type the 

control mice. All experiments were conducted within the animal wel‐

fare regulations and guidelines.

4.2 | Histological and immunofluorescence analysis

EDL muscles from wild‐type (wt) and transgenic (tg) mice were em‐

bedded in tissue freezing medium and snap‐frozen in nitrogen‐cooled 

isopentane. For histological and morphometric analysis, frozen cross 

sections (7 µm) were stained for hematoxylin and eosin. The distri‐

bution and the mean values of CSA, of at least 700 myofibers for 

each mice group, were analyzed with ImageJ software (Schneider, 

Rasband, & Eliceiri, 2012). For immunofluorescence analysis, EDL 

muscle sections were fixed with 4% PFA and processed as described 

(Dobrowolny et al., 2005). We used the following antibodies: anti‐

Laminin,	anti‐Myosin	Slow,	and	anti‐Myosin	Fast	Abs	(Sigma‐Aldrich,	
Saint	Louis,	MO,	USA).	 Inverted	microscope	(Axioskop	2	plus;	Carl	
Zeiss	Micro	Imaging,	Inc.,	Jena	Germany)	was	used,	and	images	were	
processed using Axiovision 3.1. The number of fast and slow fibers 

was calculated as percentage of the total number of fibers in the 

cross	section	of	EDL	muscle	of	the	different	group	of	mice.	For	NMJ	
analysis, longitudinal frozen sections (40 μm) of quadriceps muscles 

were stained for fluorescent (BGT‐AF488) α‐bungarotoxin (Thermo 

Fisher	Scientific,	Waltham,	MA,	USA)	and	confocal	images	were	ana‐
lyzed using Leica Laser Scanning TCS SP2.

4.3 | Protein extraction and Western blot analysis

Protein extraction was performed from TA muscles of wild‐type and 

transgenic	mice	at	the	different	age.	Muscles	were	homogenized	in	lysis	
buffer (Giusto et al., 2017), and equal amounts of protein from each 

muscle lysate were separated in SDS polyacrylamide gel (Criterion™ 

TGX	 Stain‐Free™	 precast	 gel,	 Bio‐Rad,	Hercules,	 CA,	 USA).	 For	 im‐

munoblot were used antibodies against Phospho‐Akt (Thr308) (Sigma, 

Saint	Louis,	MO,	USA);	Akt,	Phospho‐mTOR	(Ser2448),	mTOR,	LC3B,	
Phospho‐AMPK	(Thr172),	AMPK	(Cell	Signaling	Technology,	Danvers,	

MA,	 USA);	 SQSTM1/p62,	 NOX2/gp91	 phox	 (Abcam,	 Cambridge,	
GB);	IGF‐1	(R&D	system,	Minneapolis,	MN,	USA);	and	Sirtuin1/SIRT1	
(Novus	 Biologicals,	 Littleton,	 CO,	 USA).	 Signals	 were	 acquired	 by	
ChemiDoc™	MP	Instrument	(Bio‐Rad,	Hercules,	CA,	USA),	and	densi‐
tometric analysis was performed using Image Lab acquisition analysis 

software (Image Lab Software Version 5.2.1). Each Western blot band 

intensity was normalized to stain‐free total lane protein. The expres‐

sion levels of the analyzed proteins were calculated with respect to 

young control group and reported as mean fold change values.

4.4 | RNA extraction and quantitative reverse 
transcription polymerase chain reaction (qPCR)

Total RNA from quadriceps (TH) muscles was extracted in Tri‐

Reagent™	(Sigma,	Saint	Louis,	MO,	USA)	using	Tissue	Lyser	(Qiagen,	
Hilden, Germany). The reverse transcription reactions were per‐

formed with QuantiTect Reverse Transcription kit (Qiagen, Hilden, 

Germany), according to the manufacturer’s instruction. Gene 

expression levels were measured by quantitative real‐time PCR 

(qRT–PCR)	in	an	ABI	PRISM	7500	Sequence	Detection	System	(Life	
Technologies,	 Carlsbad,	 CA,	 USA),	 using	 premade	 6‐carboxyfluo‐

rescein	(FAM)‐labeled	TaqMan	assays	for	Hprt1,	Nfr2,	PGC‐1α, IL‐6, 

IL‐1β,	atrogin,	MuRF1,	catalase,	Gclm,	AchRγ,	MFN2,	MTFP1,	and	for	
the different IGF‐1 isoform sequences (Class I, Class II, Ea peptide, 

Eb peptide). Quantitative RT–PCR sample values were normalized to 

the expression of Hprt1 mRNA. The relative level for each gene was 

calculated using the 2‐ΔΔCT method (Livak & Schmittgen, 2001) and 

reported as mean fold change in gene expression.

4.5 | ELISA analysis

To determine circulating IGF‐1 and IL‐6 levels, ELISA analysis was per‐

formed	using	mouse	DuoSet	ELISA	kits	(R&D	system,	Minneapolis,	
MN,	USA).	Serum	levels	of	IGFBP‐2	and	IGFBP‐3	were	measured	by	
mouse SimpleStep ELISA®	Kits	(Abcam,	Cambridge,	UK).

4.6 | Functional analysis

To test in vitro the muscle functional properties of wt and tg mice, 

the EDL muscle was isolated from the mice and transferred to a 

temperature‐controlled	 chamber	 (30°C)	 containing	 a	Krebs‐Ringer	
solution equilibrated with 5% CO2–95% O2.	 Muscle	 contractions	
were electrically evoked by means of two platinum electrodes with 

300	mA	controlled	current	pulses,	as	detailed	in	Del	Prete,	Musarò,	
and Rizzuto (2008).

4.7 | Exercise tolerance test (ETT)

After a period of acclimation to the treadmill, all mice at the dif‐

ferent analyzed age began to run at initial speed of 6 m/min; 

speed	was	increased	every	3	m/min.	Maximum	exercise	tolerance	
and exhaustion were determined when the mouse became unable 

to run.
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4.8 | Statistics

Statistical analysis was performed with GraphPad Prism v6.0 soft‐

ware. All data are expressed as mean ± SEM. Groups were compared 

by	nonparametric	test	(Mann–Whitney	U test). A value of <0.05 was 

considered statistically significant.
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