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Abstract A mathematical model is proposed to assess the effects of a vaccine on the

time evolution of a coronavirus outbreak. The model has the basic structure of SIRI

compartments (susceptible-infectious-recovered-infectious) and is implemented by tak-

ing into account of the behavioral changes of individuals in response to the available

information on the status of the disease in the community. We found that the cumu-

lative incidence may be significantly reduced when the information coverage is high

enough and/or the information delay is short, especially when the reinfection rate is

high enough to sustain the presence of the disease in the community. This analysis is in-

spired by the ongoing outbreak of a respiratory illness caused by the novel coronavirus

COVID–19.

Keywords Epidemic model · Coronavirus · Reinfection · Vaccine · Information

Mathematics Subject Classification (2000) 92D30 · 34C60

1 Introduction

On 7 January 2020, China announced the outbreak of a respiratory illness caused by

a novel coronavirus which did not match any other known virus. The coronavirus was

temporarily named 2019–nCoV and finally COVID–19 [33]. The outbreak was first

detected in Wuhan City, Hubei Province, and then expanded in the rest of China and

other countries [32]. Coronaviruses are a large family of viruses which can affect many

different species of animals, like cattle, cats, and bats. Rarely, animal coronaviruses

can infect people and then spreading from person-to-person. However, this may hap-

pen with serious consequences: well known cases are that of Severe acute respiratory

syndrome (SARS) which killed 813 people worldwide during 2002-2003 outbreak [30],
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and the more recent case of Middle East respiratory syndrome coronavirus (MERS),

where a total of 2494 confirmed cases including 858 associated deaths were reported,

the majority from Saudi Arabia (at the end of November 2019, [31]). Therefore, coro-

navirus may represent a serious public health threat.

The emergency related to the novel outbreak in China is still ongoing at time of

writing this article and it is unclear how the situation worldwide will unfold. The news

released by media create great concern and behavioral changes can be observed in the

everyday life of individuals, even in Europe where at the moment only few cases have

been reported. For example, the fear of coronavirus has driven rapidly to sold out of

protective face masks in pharmacies in Italy long before the first case in the country

was reported [1].

A specific aspects of diseases caused by coronavirus is that humans can be rein-

fected with respiratory coronaviruses throughout life [20]. The duration of immunity

for SARS, for example, was estimated to be greater than 3 years [35]. Moreover, inves-

tigations on human coronavirus with infected volunteers has shown that even though

the immune system react after the infection (serum-specific immunoglobulin and IgC

antibody levels peak 12–14 days after infection) at one year following experimental in-

fection there is only partial protection against re-infection with the homologous strain

[10].

Predictions or insight concerning the time-evolution of epidemics, especially when a

new emerging infectious disease is under investigation, can be obtained by using mathe-

matical models. In Mathematical Epidemiology, a large amount of literature is devoted

to the use of the so called compartmental epidemic models, where the individuals of the

community affected by the infectious disease are divided in mutually exclusive groups

(the compartments) according to their status with respect to the disease [3,4,11,22,25].

Compartmental epidemic models are providing to be the first mathematical approach

for estimating the epidemiological parameter values of COVID–19 in its early stage

and for anticipating future trends [2,12,29].

When the disease under interest confer permanent immunity from reinfection af-

ter being recovered, the celebrated SIR model (susceptible–infectious–recovered) and

its many variants are most often adopted. However, where reinfection cannot be ne-

glected the SIRS model (susceptible–infectious–recovered, and again susceptible) and

its variants may be used, under the assumption that infection does not change the host

susceptibility [3,4,11,22,25].

Since the disease of our interest has both reinfection and partial immunity after

infection, we consider as starting point the so-called SIRI model (susceptible-infectious-

recovered-infectious) which takes into account of both these features (see [26] and the

references contained therein for further information on SIRI model). When the epidemic

process may be decoupled from the longer time-scale demographic dynamics, i. e. when

birth and natural death terms may be neglected, one gets a simpler model with an

interesting property. In fact, according to the values of three relevant parameters (the

transmission rate, the recovery rate and the reinfection rate), the model exhibits three

different dynamics [19,21]: (i) no epidemic will occur, in the sense that the fraction of

infectious will decrease from the initial value to zero; (ii) an epidemic outbreak occurs,

in the sense that the fraction of infectious will initially increase till a maximum value

is reached and then it decreases to zero; (iii) an epidemic outbreak occurs and the

disease will permanently remain within the population.

At time of writing this paper, scholars are racing to make a vaccine for the novel

COVID–19 coronavirus available. As of February 12, 2020, it was announced that ‘The



3

first vaccine could be ready in 18 months’ [33]. Therefore, it becomes an intriguing

problem to qualitatively assess how the administration of a vaccine could affect the

outbreak, taking into account of the behavioral changes of individuals in response to

the information available on the status of the disease in the community. This is the

main aim of this paper.

The scenario depicted here is that of a community where a relatively small quantity

of infectious is present at time of delivering the vaccine. The vaccination is assumed

to be fully voluntary and the choice to get vaccinated or not is assumed to depend in

part on the available information and rumors concerning the spread of the disease in

the community.

The behavioral change of individuals is introduced by employing the method of

information–dependent models [15,16,34] which is based on the introduction of a suit-

able information index. Such an approach has been applied to general infectious diseases

[15,16,24,34] as well as specific ones, including childhood diseases like measles, mumps

and rubella [15,34] and meningitis [9], and is currently under development (for very

recent papers see [5,23,36]). Therefore, another goal of this manuscript is to provide

an application of the information index to a simple model containing relevant features

of a coronavirus disease. Specifically, we use epidemiological parameter values based

on early estimation of novel coronavirus COVID–19 [29].

The rest of the paper is organized as follows: in Section 2 we introduce the basic

SIRI model and recall its main properties. In Section 3 we implement the SIRI model by

introducing the information–dependent vaccination. The epidemic and the reinfection

thresholds are discussed in Section 4. Section 5 is devoted to numerical investigations:

the effects of the information parameters on the time evolution of the outbreak are

discussed. Conclusions and future perspective are given in Section 6.

2 The SIRI model

Since the disease of our interest has both reinfection and partial immunity after in-

fection, we first consider the SIRI model, which is given by the following nonlinear

ordinary differential equations (the upper dot denotes the time derivative) [19]:

Ṡ = µ(1− S)− βSI

İ = βSI + σβRI − (γ + µ) I

Ṙ = −σβRI + γI − µR.

(1)

Here S, I and R denote, respectively, the fractions of susceptible, infectious (and

also infected) and recovered individuals, at a time t (the dependence on t is omitted);

β is the transmission rate; γ is the recovery rate; µ is the birth/death rate; σ ∈ (0, 1)

is the reduction in susceptibility due to previous infection.

Model (1) assumes that the time–scale under consideration is such that demographic

dynamics must be considered.

However, epidemics caused by coronavirus often occurs quickly enough to neglect

the demographic processes (as in the case of SARS in 2002-2003). When the epidemic

process is decoupled from demography, i.e. when µ = 0, one obviously gets the reduced

model:
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Ṡ = −βSI

İ = βSI + σβRI − γI

Ṙ = −σβRI + γI.

(2)

This very simple model has interesting properties. Indeed, introduce the basic re-

production number R0 = β/γ. It has been shown that the solutions have the following

behavior [21]:

If R0 ≤ 1, then no epidemic will occur, in the sense that the state variable I(t) denoting

the fraction of infectious will decrease from the initial value to zero;

If R0 ∈ (1, 1/σ), then an epidemic outbreak will follow, in the sense that the state vari-

able I(t) will initially increase till a maximum value is reached and then it decreases

to zero;

If R0 > 1/σ, then an epidemic outbreak will follow and the disease will permanently

remain within the population, in the sense that the state variable I(t) will approach

(after a possibly non monotone transient) an endemic equilibrium E, given by:

E =
(

S, I, R
)

,

where:

S = 0; I = 1−
1

σR0

; R =
1

σR0

. (3)

The equilibrium E is globally asymptotically stable [21] and it is interesting to note

that, since the demography has been neglected, the disease will persist in the population

due to the reservoir of partially susceptible individuals in the compartment R.

From a mathematical point of view, the threshold R0 = R0σ, where R0σ = 1/σ, is

a bifurcation value for model (2). This does not happen for model (1). In fact, when

demography is included in the model, the endemic equilibrium exists for R0 > 1, where

R0 = β/(µ+ γ) and therefore both below and above the reinfection threshold.

Model (2) (as well as (1)) is a simple model which is able to describe the time-

evolution of the epidemic spread on a short time-scale. However, it does not takes

into account of possible control measure. The simplest one to consider is vaccination.

We consider the scenario where the vaccination is assumed to be fully voluntary. In

order to emphasize the role of reinfection, we assume that only susceptible individuals

(i.e. individuals that did not experience the infection) consider this protective option.

When the vaccine is perfect (i.e. it is an ideal vaccine which confer 100 percent life-long

immunity) one gets the following model:

Ṡ = −βSI − ϕ0S

İ = βSI + σβRI − γI

Ṙ = −σβRI + γI

V̇ = ϕ0S.

(4)

where V denotes the fraction of vaccinated individuals and ϕ0 is the vaccination rate.

In the next section we will modify the SIRI model (4) to assess how an hypothetical

vaccine could control the outbreak, taking into account of the behavioral changes of

individuals produced by the information available on the status of the disease in the

community.
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3 The information–dependent model

We modify the SIRI model by employing the idea of the information–dependent epi-

demic models [24,34]. We assume that the vaccination is fully voluntary and information–

dependent, in the sense that the choice to get vaccinated or not depends on the available

information and rumors concerning the spread of the disease in the community.

The information is mathematically represented by an information index M(t),

which summarizes the information about the current and past values of the disease

and is given by the following distributed delay [13–15,17]:

M(t) =

∫ t

−∞

g̃ (S(τ), I(τ), V (τ)) K(t− τ)dτ, (5)

Here, the function g̃ describes the information that individuals consider to be relevant

for making their choice to vaccinate or not to vaccinate. It is often assumed that g̃

depends only on prevalence [5,13,15,17]

g̃ =

{

0 if t < 0

g(I) if t ≥ 0
,

where g is a continuous, differentiable, increasing function such that g(0) = 0. In

particular, we assume that:

g(I) = kI. (6)

In (6) the parameter k is the information coverage and may be seen as a ‘summary’ of

two opposite phenomena, the disease under–reporting and the level of media coverage

of the status of the disease, which tends to amplify the social alarm. The range of

variability of k may be restricted to the interval (0, 1) (see [6]).

The delay kernel K(t) in (5) is a positive function such that
∫+∞

0
K(t)dt = 1 and

represents the weight given to past history of the disease. We assume that the kernel

is given by the first element Erl1,a(t) of the Erlangian family, called weak kernel or

exponentially fading memory. This means that the maximum weight is assigned to

the current information and the delay is centered at the average 1/a. Therefore, the

parameter a takes the meaning of inverse of the average time delay of the collected

information on the disease. With this choice, by applying the linear chain trick [27],

the dynamics of M is ruled by the equation:

Ṁ = a (k I −M) . (7)

We couple this equation with model (4). The coupling is realized through the

following information–dependent vaccination rate:

ϕ (M) = ϕ0 + ϕ1 (M) , (8)

where the constant ϕ0 ∈ (0, 1) represents the fraction of the population that chooses to

get vaccinate regardless of rumors and information about the status of the disease in the

population, and ϕ1 (M(t)) represents the fraction of the population whose vaccination

choice is influenced by the information.

Generally speaking, we require that ϕ1(0) = 0 and ϕ1 is a continuous, differentiable

and increasing function. However, as done in [5,15], we take:
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Fig. 1 The information–dependent vaccination rate (8) as function of the information index
M . The parameter values are given in Table 1.

ϕ1(M) = (1− ϕ0 − ε)
DM

1 +DM
,

where ε > 0. This parametrization leads to an overall coverage of 1−ε (asymptotically

for M → ∞). Here we take ε = 0.01, which means a roof of 99% in vaccine uptakes

under circumstances of high perceived risk. We also take D = 500 [15]. Note that this

choice of parameter values implies that a 96.4% vaccination coverage is obtained in

correspondence of an information index M = 0.07 (see Figure 1).

Finally we assume that the vaccine is not perfect, which is a more realistic hypothe-

sis, so that the vaccinated individuals may be infected but with a reduced susceptibility

ψ.

The SIRI epidemic model with information–dependent vaccination that we consider

is therefore given by































Ṡ = −βSI − ϕ (M)S

İ = βSI + σβRI + ψβV I − γI

Ṙ = −σβRI + γI

V̇ = −ψβV I + ϕ (M)S

Ṁ = a (k I −M)

(9)

The meaning of the state variables, the parameters and their baseline values are

given in Table 1.

Note that

d

dt
(S + I +R+ V ) = 0,

therefore assuming that S(0)+I(0)+R(0)+V (0) = 1 we can substitute S = 1−I−R−V

in (9) to get:























İ = β (1− I −R− V ) I + σβRI + ψβV I − γI

Ṙ = −σβRI + γI

V̇ = ϕ (M) (1− I −R− V )− ψβV I

Ṁ = a (kI −M)

(10)
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Parameter Meaning Baseline value Reference

β Transmission rate 1.07 ind−1day−1 [29]
γ Recovery rate 0.278 day−1 [29]
σ Rel. susceptibility of recovered indiv. - varying
ψ Rel. susceptibility of vaccinated indiv. 0.15 guessed
ϕ0 Information–independent vaccinaton rate 0.04 day−1 [5]
k Information coverage (0.2,1) guessed

1− ǫ Max vaccin. coverage due to information 0.99 [5]
D Michaelis-Menten parameter 500 [15]
T Average time delay of information (0,120) day guessed
a Inverse average time delay of infor. (1/T ) (0,00833,∞) guessed

Table 1 Description and baseline values of the parameters of model (9).

4 The epidemic and the reinfection thresholds

4.1 The epidemic threshold

Let us introduce the quantity

P0 =
β

γ
, (11)

which is the basic reproduction number of model (2) [21]. From the second equation of

(9) it easily follows that

İ = γI [P (S,R, V )− 1] ,

where:

P (S,R, V ) = P0S + σP0R+ ψP0V.

It immediately follows that, if I(0) > 0, then:

P (S(0), R(0), V (0)) > 1 ⇐⇒ I ′(0) > 0,

and

P (S(0), R(0), V (0)) < 1 ⇐⇒ I ′(0) < 0.

Assuming that I(0) > 0 and R(0) = V (0) = 0 (and therefore S(0) < 1) it follows that:

If P0 < 1/S(0), then the epidemic curve initially decays. If P0 > 1/S(0) the epidemic

takes place since the infectious curve initially grows.

4.2 The reinfection threshold

From the first equation in (9) it can be seen that at equilibrium it must be S̃ = 0.

Therefore, all the possible equilibria are susceptible-free. Since the solutions are clearly

bounded, this means that for large time any individual who was initially susceptible

has experienced the disease or has been vaccinated. Looking for equilibria in the form

Ẽ =
(

Ĩ , R̃, Ṽ , M̃
)

, from (10) we get:
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

























β
(

1− Ĩ − R̃− Ṽ
)

Ĩ + σβR̃Ĩ + ψβṼ Ĩ − γĨ = 0

−σβR̃Ĩ + γĨ = 0

ϕ
(

M̃
)(

1− Ĩ − R̃− Ṽ
)

− ψβṼ Ĩ = 0

a
(

kĨ − M̃
)

= 0

(12)

Disease-free equilibria: If Ĩ = 0. It can be easily seen from (12) that

ϕ0

(

1− R̃− Ṽ
)

= 0.

Therefore there are infinitely many disease–free equilibria of the form

E0 = (0, R0, V0, 0) ,

where R0 + V0 = 1.

Endemic equilibrium: We begin by looking for equilibria such that

Ĩ 6= 0; S̃ = 1− Ĩ − R̃− Ṽ = 0. (13)

This implies that:























σβR̃Ĩ + ψβṼ Ĩ − γĨ = 0

−σβR̃Ĩ + γĨ = 0

ψβṼ Ĩ = 0

kĨ = M̃.

(14)

Therefore: Ṽ = 0 and

R̃ =
γ

σβ
,

and from (13):

Ĩ = 1− R̃.

It follows that an unique susceptibles–free endemic equilibrium exists, which is given

by:

E1 = (I1, R1, 0,M1) , (15)

where

I1 = 1−
1

σP0

; R1 =
1

σP0

; M1 = k I1, (16)

which exist only if

P0 >
1

σ
. (17)

The quantity
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σc = 1/P0, (18)

is the reinfection threshold. When σ > σc the disease may spread and persist inside the

community where the individuals live. Note that in classical SIR models the presence

of an endemic state is due to the replenishment of susceptibles ensured by demography

[21], which is not the case here.

The local stability analysis of E1 requires the Jacobian matrix of system (10):

J =









J11 −β I + σβ I −β I + ψβ I 0

−σβ R+ γ −σβ I 0 0

−ϕ(M)− ψβ V −ϕ(M) −ϕ(M)− ψβ I −ϕ′(M) (1− I −R− V )

ak 0 0 −a









where

J11 = −β I + β (1− I −R− V ) + σβ R+ ψβ V − γ.

Taking into account of (13), (14) and that V1 = 0, it follows

J (E1) =









−βI1 −β I1 + σβ I1 −β I1 + ψβ I1 0

0 −σβ I1 0 0

−ϕ(M1) −ϕ(M1) −ϕ(M1)− ψβ I1 0

ak 0 0 −a









The eigenvalues are:

λ1 = −a; λ2 = −σβ I1,

and the eigenvalues of the submatrix:

J̃ =

[

−βI1 −β I1 + ψβ I1
−ϕ(M1) −ϕ(M1)− ψβ I1

]

The trace is negative and the determinant is

det J̃ = ψβ2 I21 + ψβϕ(M1) I1 > 0,

so that E1 is locally asymptotically stable.

Remark 1 We remark that:

(i) the stable endemic state E1 can be realized thanks to the imperfection of the

vaccine, in the sense that when ψ = 0 in (9) the variable V is always increasing.

(ii) the information index, in the form described in Section 3 may be responsible of

the onset of sustained oscillations in epidemic models, both in the case of delayed

information (see e.g. [9,15,17,13,18] and instantaneous information (as it happens

when the latency time is included in the model [7]). In all these mentioned cases,

the epidemic spread is considered on a long time–scale and demography is taken into

account. The analysis in this section clearly shows that sustained oscillations are not

possible for the short time–scale SIRI model with information.
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Fig. 2 Time profiles of fraction of infectious I (Left panel) and and information index M
(Right panel). The dotted line correspond to a value of the reinfection rate σ above the
threshold 1/P0 = 0.259. Therefore the disease is sustained endemically by reinfection. The
continuous line correspond to a value of σ below the threshold 1/P0 = 0.259, so that the
epidemic will eventually die out. The information coverage is k = 0.2 and the average time
delay of information is T = 120 days. The other parameter values are given in Table 1.

5 Numerical investigations

We use epidemiological parameter values based on early estimation of novel coronavirus

COVID–19 provided in [29]. The estimation, based on the use of an SEIR metapopula-

tion model of infection within Chinese cities, revealed that the transmission rate within

the city of Wuhan, the epicenter of the outbreak, was 1.07 day−1, and the infectious

period was 3.6 days (so that γ = 0.27 day−1).

Therefore the BRN given in (11) is P0 = 3.85 (of course, in agreement with the

estimate in [29]), and the value σc := 1/P0 = 0.259 is the threshold for the infection

rate.

For vaccinated individuals, the relative susceptibility (compared to an unvaccinated

individuals) is set ψ = 0.15, which means that vaccine administration reduces the

transmission rate by 85% (vaccine efficacy=0.85). This value falls within the estimates

for the most common vaccine used in the USA, where vaccine efficacy ranges between

0.75 and 0.95 (see Table 9.3, p.222, in [25]).

As for the relative susceptibility of recovered individuals, we consider two relevant

baseline cases:

(i) Case I: σ = 0.2. This value is representative of a reinfection value below the rein-

fection threshold σc;

(i) Case II: σ = 0.4. This value is representative of a reinfection value above the

reinfection threshold σc.

The information parameter values are mainly guessed or taken from papers where

the information dependent vaccination is used [5,15]. The information coverage k ranges

from a minimum of 0.2 (i.e. the public is aware of 20% of the prevalence) to 1. The

average time delay of information ranges from the hypothetical case of immediate

information (T=0) to a delay of 120 days.

The description and baseline values of the parameters are presented in Table 1.

The initial data reflect a scenario in which a small portion of infectious is present in
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Fig. 3 Time profile of incidence. The reinfection rate σ above the threshold 1/P0 = 0.259.
The dotted line correspond to a low value of the information coverage (k = 0.2). A greater
value (k = 0.4, continuous line) results in the elimination of the disease. The average time
delay of information is T = 120 days. The other parameter values are given in Table 1.

the community at time of administrating the vaccine. Furthermore, coherently with

the initial data mentioned in Section 4, we assume that:

I(0) = 10−4, R(0) = 0, V (0) = 0, M(0) = k I(0), (19)

and, clearly, S(0) = 1− I(0).

According to the analysis made in Sect. 4, values of σ below the threshold σc
implies that the epidemic will eventually die out. When σ is above σc, then the disease

is sustained endemically by reinfection. This behavior is illustrated in Figure 2, where

it is considered the worst possible scenario, where k = 0.2 and T = 120 days.

In Figure 2, left panel, the continuous line is obtained for σ = 0.2. Vaccination is

not able to influence the outbreak, due to the large delay. However, even though an

epidemic peak occurs after three weeks, thereafter the disease dies out due to the low

level of reinfection. The case σ = 0.4 is represented by the dotted line. As expected,

the reinfection is able to ‘restart’ the epidemic. The trend (here captured for one year)

would be to asymptotically converge to the endemic equilibrium E1.

The corresponding time evolution of the information index M is shown in Figure

2, right panel. In particular, in the elimination case (σ = 0.2), the information index

reaches a maximum of 0.002 (approx.) which correspond to a vaccination rate of 51.5%

(see Figure 1). After that, it declines but, due to memory of past events, the information

index is still positive months after the elimination of the disease. The ‘social alarm’

produced in the case σ = 0.4 is somehow represented by the increasing continuous

curve in Figure 2, right panel. At the end of the time frame it is M ≈ 0.022 which

correspond to a vaccination rate of 91%.

In summary, a large reinfection rate may produce a large epidemic. However, even

in this worst scenario, the feedback produced by behavioral changes due to information

may largely affect the outbreak evolution. In Figure 3 we see the effect of an higher

information coverage (k = 0.4, left panel) on the incidence of the disease which, for

model (10), is given by the quantity:

incidence(t) = β S(t) I(t) + σβR(t)I(t) + ψβV (t)I(t).
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Fig. 4 Cumulative incidence of the disease (first and third panel from the left) and percentage
variation of the cumulative incidence (second and fourth panel) by varying the information
coverage k. The first two panels refer to the case σ = 0.2. The third and fourth panel refer to
the case σ = 0.4. The parameter values are given in Table 1.

More informed people react and vaccinate and this, in turn, contribute to the

elimination of the disease. Therefore, a threshold value kc exists above which the disease

can be eliminated. An insight on the overall effect of parameter k on the epidemic may

be determined by evaluating how it affect the cumulative incidence (CI),

CI =

∫ tf

0

(β S I + σβRI + ψβV I) dt, (20)

i.e. total number of new cases in the time frame [0, tf ]. We also introduce the following

index

RCCI, p :=
CI(p1)− CI(p2)

CI(p2)
, (21)

which measures the relative change of cumulative incidence for two different values,

say p1 and p2, of a given parameter p over the simulated time frame (in other words,

the percentage variation of the cumulative incidence varying p from p2).

In Figure 4 (first plot from the left) it is shown the case of a reinfection value

σ = 0.2, that is under the reinfection threshold. It can be seen how CI is declining

with increasing k. In Figure 4 (second plot from the left) a comparison with the case

of low information coverage, k = 0.2, is given: a reduction till 80% of CI may be

reached by increasing the value of k till k = 0.99. When the reinfection value is σ = 0.4

(Figure 4, third and forth plot), that is above the reinfection threshold, the ‘catastrofic

case’ is represented in correspondence of k = 0.2. This case is quickly recovered by

increasing k, as we already know from Figure 3, because of the threshold value kc,

between 0.2 and 0.3, which allows to pass from the endemic to no–endemic asymptotic

state. Then, again CI is declining with increasing k. This means that when reinfection

is high, the effect of information coverage is even more important. In fact, in this case

the prevalence is high and a high value of k result in a greater behavioral response by

the population.

In Figure 5 it is shown the influence of the information delay T on CI. In the case

σ = 0.2 CI grows concavely with T (first plot from the left). In Figure 5 (second plot)

a comparison with the case of maximum information delay, T = 120 days, is given: a
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Fig. 5 Cumulative incidence of the disease (first and third panel from the left) and percentage
variation of the cumulative incidence (second and fourth panel) by varying the information
delay T = 1/a. The first two panels refer to the case σ = 0.2. The third and fourth panel refer
to the case σ = 0.4. The parameter values are given in Table 1.

reduction till 75% of CI may be reached by reducing the value of T till to very few

days. When the reinfection value is σ = 0.4 (Figure 5, third and forth plot), that is

above the reinfection threshold, CI increases convexly with T . A stronger decreasing

effect on CI can be seen by reducing the delay from T = 120 days to T ≈ 90, and a

reduction till 98% of CI may be reached by reducing the value of T till to very few

days.

6 Conclusions

In this paper we have investigated how a hypothetical vaccine could affect a coronavirus

epidemic, taking into account of the behavioral changes of individuals in response to

the information about the disease prevalence.

We have first considered a basic SIRI model. Such a model contains the specific

feature of reinfection, which is typical of coronaviruses. Reinfection may allow the

disease to persist even when the time-scale of the outbreak is small enough to neglect

the demography (births and natural death).

Then, we have implemented the SIRI model to take into account of: (i) an available

vaccine to be administrated on voluntary basis to susceptibles; (ii) the change in the

behavioral vaccination in response to information on the status of the disease.

We have seen that the disease burden, expressed through the cumulative incidence,

may be significantly reduced when the information coverage is high enough and/or

the information delay is short. When the reinfection rate is above the critical value, a

relevant role is played by recovered individuals. This compartment offer a reservoir of

susceptibles (although with a reduced level of susceptibility) and if not vaccinate may

contribute to the re–emergence of the disease. On the other hand, in this case a correct

and quick information may play an even more important role since the social alarm

produced by high level of prevalence results, in turn, in high level of vaccination rate

and eventually in the reduction or elimination of the disease.

The model on which this investigation is based is intriguing since partial immunity

coupled to short–time epidemic behavior may lead to not trivial epidemic dynamics
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(see the ‘delayed epidemic’ case, where an epidemics initially may decrease to take off

later [28]). However, it has many limitations in representing the COVID-19 propaga-

tion. For example, the model represents the epidemics in a closed community over a

relatively short time-interval and therefore it is unable to capture the complexity of

global mobility, which is one of the main concerns related to COVID-19 propagation.

Another limitation, which is again related to the global aspects of epidemics like SARS

and COVID-19, is that we assume that individuals are influenced by information on

the status of the prevalence within the community where they live (i.e. the fraction I

is part of the total population) whereas local communities may be strongly influenced

also by information regarding far away communities, which are perceived as potential

threats because of global mobility.

Moreover, in absence of treatment and vaccine, local authorities face with coron-

avirus outbreak using social distancing measures, that are not considered here: indi-

viduals are forced to be quarantined or hospitalized. Nevertheless, contact pattern may

be reduced also as response to information on the status of the disease. In this case the

model could be modified to include an information-dependent contact rate, as in [5,7].

Finally, the model does not include the latency time and the disease-induced mortality

is also neglected (at the moment, the estimate for COVID-19 is at around 2%). These

aspects will be part of future investigations.
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Figures

Figure 1

The information–dependent vaccination rate (8) as function of the information index M. The parameter
values are given in Table 1.

Figure 2

Time pro�les of fraction of infectious I (Left panel) and and information index M (Right panel). The
dotted line correspond to a value of the reinfection rate σ above the threshold 1/P0 = 0.259. Therefore the
disease is sustained endemically by reinfection. The continuous line correspond to a value of σ below the
threshold 1/P0 = 0.259, so that the epidemic will eventually die out. The information coverage is k = 0.2
and the average time delay of information is T = 120 days. The other parameter values are given in Table
1.



Figure 3

Time pro�le of incidence. The reinfection rate σ above the threshold 1/P0 = 0.259. The dotted line
correspond to a low value of the information coverage (k = 0.2). A greater value (k = 0.4, continuous line)
results in the elimination of the disease. The average time delay of information is T = 120 days. The other
parameter values are given in Table 1.

Figure 4

Cumulative incidence of the disease (�rst and third panel from the left) and percentage variation of the
cumulative incidence (second and fourth panel) by varying the information coverage k. The �rst two
panels refer to the case σ = 0.2. The third and fourth panel refer to the case σ = 0.4. The parameter values
are given in Table 1.



Figure 5

Cumulative incidence of the disease (�rst and third panel from the left) and percentage variation of the
cumulative incidence (second and fourth panel) by varying the information delay T = 1/a. The �rst two
panels refer to the case σ = 0.2. The third and fourth panel refer to the case σ = 0.4. The parameter values
are given in Table 1.


