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Large energy shifts in the luminescence emission from strained InGaAs quantum dots are observed

as a result of postgrowth annealing and also when raising the upper cladding layer growth

temperatures. These blueshifts occur concurrently with narrowing ~from 61 to 24 meV! of the full

width at half-maxima for the emission from the quantum dot ensemble. These energy shifts can be

explained by interdiffusion or intermixing of the interfaces rather than strain effects due to

variations in capping layer thickness. Temperature behavior of the luminescence in annealed and

nonannealed samples indicates a change in the shape and depth of the quantum dot confining

potential. Quenching of the wetting layer luminescence after interdiffusion is also observed.

© 1996 American Institute of Physics. @S0003-6951~96!00139-8#

Blueshifts in quantum wells ~QW! can be induced by

intermixing1 assisted by dielectric capping,2,3 impurity

diffusion,4 ion implantation,5 and simple thermal treatments.6

Interdiffusion of heterointerfaces is expected to play a major

role in structures of reduced dimensionality where the area of

the interface is increased due to island formation, and where

the overall dimensions are small ~15–50 nm diam!. Blue-

shifts in luminescence could be adjusted in situ ~in the

growth chamber, during or after growth! offering a range of

tunability that might be desirable to incorporate into devices.

Achieving narrower luminescence lines for a large en-

semble of quantum dots ~QDs! is a major goal for both future

device applications and fundamental studies of the physics of

zero-dimensional ~0D! structures. Size uniformity correlates

with inhomogeneous broadening of the photoluminescence

~PL! emission.7 It has been predicted8 that the 0D laser prop-

erties of low current threshold and higher quantum efficien-

cies can only be of benefit if size uniformity is achieved.

The presence of a so called ‘‘wetting layer’’ @effectively

a very thin quantum well ~1–4 ML! connecting the islands#,

is an inevitable result of the Stranski–Krastanow9 growth

mode upon reaching a strain-defined critical thickness. This

wetting layer has been shown to have its own distinct lumi-

nescence emission,10 often appearing as a shoulder on the

brighter PL emission peak for the quantum dot ensemble. Its

presence might be responsible for some nonideal 0D behav-

ior reported in these structures10,11 as well as constituting a

technical barrier in the development of 0D lasers.

Results presented here show that blueshifts in the PL

emission from a large number of quantum dots can be ob-

tained reproducibly. These blueshifts occur as a result of

thermally induced interdiffusion and are concurrent with nar-

rowing of the full width at half-maxima ~FWHM! of the PL

emission from the QDs. Furthermore, quenching of the wet-

ting layer luminescence is observed, suggesting the possibil-

ity of using interdiffusion to achieve more nearly ideal three-

dimensional confinement in semiconductor quantum dots.

These structures were grown by metalorganic chemical

vapor deposition using a horizontal reactor cell operating at

76 Torr. A specially designed laminar flow cell allows large

areas of uniform growth. Partial pressures for (CH3)3Ga and

(CH3)3In were 5.3631026 and 5.1831026, respectively.

AsH3 was used for the group V source and the V/III ratio

was 351. The hydrogen flow rate was 17.5 standard liters per

minute. The flow of (CH3)3In was monitored and controlled

by an EPISON ultrasonic sensor.

After growth of a GaAs buffer layer at 650 °C on semi-

insulating ~100! GaAs substrates, quantum dots in the form

of nanometer size InGaAs islands, were grown by depositing

4.5 ML ~nominally! of In0.49Ga0.51As at 550 °C. The tem-

perature was raised to the chosen GaAs upper cladding

growth temperature while growing the GaAs capping layer,

or the GaAs capping layer was grown at the same growth

temperature as the islands. Except in one case, the capping

layer thicknesses were nominally 100 nm and a similar layer

containing InGaAs islands was grown on the surface. The

surface was kept in an inert atmosphere and scanning probe

microscopy ~Nanoscope III with etched SiN tips! was used to

verify island formation and obtain structural information on

average size and areal density.

Post-growth annealing was done in argon using a rapid

thermal annealer at temperatures of 850–950 °C for 30 s.

Low-temperature ~12 K! photoluminescence spectra were

obtained using the 488 nm line of an argon ion laser and

dispersed using a 75 cm spectrometer. The signal was col-

lected using a Si detector and lock-in techniques.

Plan-view transmission electron microscopy ~TEM!

specimens were prepared by chemical etching from the sub-a!Electronic mail: rp1109@rsphysse.anu.edu.au
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strate side using H2SO4 :H2O2 :H2O58:1:1 after a 1 min

etch in H2SO4 :H2O2 :H2O (51:8:500) to remove the top

surface QDs. TEM specimens were investigated in a Philips

EM 430 operating at 300 keV.

Results from two growth experiments are presented: in

one, the same QD structure was annealed at different tem-

peratures; in the other, the structures were grown separately

but identical conditions were used except for the temperature

of the 100 nm upper cladding layer. In one case, the thick-

ness of the upper cladding was changed to eliminate possible

in lapido strain effects12 and both layers were grown at the

same temperature as the QDs.

The preannealing average diameters and areal concentra-

tions were 43 nm and 131010/cm2 for the QDs producing

the luminescence in Fig. 2 and 33 nm to 93109/cm2 for Fig.

3. Figure 1 shows a scanning probe image of the surface

morphology for one of the samples showing the nanometer

size InGaAs islands. Figure 2 shows dark field plan-view

TEM images of both unannealed and annealed samples with

QDs.

All structures showed very bright QD luminescence.

Figure 3 shows that a large blueshift can be observed with a

corresponding narrowing of the peak with progressively

higher annealing temperatures. Emission from GaAs ~free

and impurity related excitonic transitions! and wetting layer

luminescence are also shown. Figure 4 shows PL spectra for

quantum dot samples grown under identical conditions but

with varying upper cladding growth temperature.

FIG. 1. Morphology of one of the samples used in this study before anneal-

ing or capping layer growth as imaged using scanning probe microscopy.

The width of the scan is 750 nm.

FIG. 2. Plan-view TEM 220 dark-field images taken from an ~a! unannealed

and ~b! annealed at 950 °C quantum dot samples, showing that quantum dots

are still present after annealing.

FIG. 3. Low-temperature ~12 K! photoluminescence spectra showing emis-

sion from quantum dots in as-grown and annealed samples. The smaller

peak at 1.5 eV is due to free and impurity bound excitonic transitions in the

GaAs buffer layer and substrate. Peak A is from an InGaAs/GaAs quantum

dot sample where the quantum dots were grown at 550 °C and the GaAs

buffer and cladding layers were grown at 650 °C. This sample was then

annealed for 30 s at 850 °C ~peak B!, 900 °C ~peak C!, and 950 °C ~peak D!.

The maximum blueshift observed in the sample annealed at the highest

temperature is 140 meV, and the FWHM for the inhomogeneously broad-

ened peak changes from 61 to 24 meV.

FIG. 4. Low-temperature PL for QD structures with different capping layer

growth temperatures. This is equivalent to in situ annealing at a temperature

of 675 °C for 12 min for the sample with emission peak labeled ‘‘3’’ and

800 °C for also 12 min for the peak labeled ‘‘4.’’ Peak ‘‘1’’ shows emission

from a sample where the upper cladding was grown at 550 °C. Another

sample also grown with an upper cladding growth temperature of 550 °C but

much thinner ~20 nm! produces PL emission peak ‘‘2.’’ The broader emis-

sion from peak ‘‘1’’ is due to islands with less uniformity in size. The

average diameters for the islands before annealing was equivalent in all

these samples. The magnified signal at higher energies for ‘‘1’’ and ‘‘2,’’ is

attributed to the wetting layer. Wetting layer luminescence is not observed

for samples ‘‘3’’ and ‘‘4.’’
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The normalized PL signal as a function of temperature

for the unannealed sample in Fig. 1 ~peak A! and for the

sample after annealing at 950 °C ~peak D! are displayed in

Fig. 5, showing that the temperature dependence of the lu-

minescence changes significantly after annealing.

The observed blueshifts in Fig. 3 indicate a trend with

higher temperature annealing. These shifts are a remarkable

change, given the short annealing times involved in the ex-

periment. Initial enhancement of interdiffusion and non-

Fickian behavior in strained systems6 is most likely at play.

Interdiffusion in systems where strain is as large as in the

samples studied in this work ~3.5%! has not been systemati-

cally studied for quantum wells. It is expected, however, that

the transient component of the diffusivity and deviation from

Fick’s law would be of even greater importance than in the

strained systems studied by S. W. Ryu et al.,6 where

In0.2Ga0.8As was used ~;1.4% lattice mismatch!. The large

strain present in In0.49Ga0.51As QDs might result in a greater

transient component of the diffusion causing a large effect

even for short annealing times.

Narrower FWHM with higher annealing temperatures

could be explained by a homogenization of sizes for the

individual InGaAs islands. Narrower FWHM luminescence

peak for QD ensembles has been correlated with narrower

size distribution.7 These changes could also be partly ac-

counted for by a smaller expected variation in emission in

dots of different sizes with a shallower confining potential.

Plan-view TEM of annealed and unannealed quantum dot

samples shows that the annealing process does not destroy

the QDs, but a weaker strain contrast results from the ther-

mal treatment. This observation is consistent with interdiffu-

sion of the InGaAs/GaAs interface. A more detailed TEM

study of the effect of intermixing on QD size, QD size varia-

tions, and changes in QD shape is in progress.13

The fact that blueshifts are obtained upon increasing the

cladding layer growth temperature indicates that the ob-

served shifts in emission energies are due to interdiffusion

rather than strain effects from the capping layer. This result

might have the implication that most of the recent PL studies

of self-organized QD emission arise from quantum dot

samples that do not have abrupt or square confining poten-

tials. The fact that the PL did not shift for caps grown at the

same temperature as the dots when the cap thickness was

changed from 20 to 100 nm indicates that strain effects are

unimportant beyond capping layer thickness above the reach

of the strain field ~around 20–30 nm above QDs!.

To first order, the quenching of the luminescence as a

function of temperature can be modeled by thermal emission

of the carriers out of the quantum dots. Previous measure-

ments including quantum dot systems with different confin-

ing potentials show similar behavior.14 An Arrhenius plot of

log normalized luminescence intensity shows a thermally ac-

tivated nonradiative recombination mechanism; the slopes of

the straight portions of Fig. 5 give an activation energy re-

lated to the depth of the quantum dot confining potential.15,16

The lower temperature quenching in the annealed samples as

well as the lower activation energy extracted from the slope

in the Arrhenius plot ~280–120 meV change! can be inter-

preted as a change both in the depth and in the shape of the

confining potential caused by interdiffusion during anneal-

ing.

In summary, large blueshifts result from thermal anneal-

ing of strained InGaAs/GaAs quantum dots. The FWHM

from the quantum dot ensemble PL also becomes narrower,

and wetting layer luminescence indistinct. Similar blueshifts

are obtained with high upper cladding growth temperatures,

indicating that most samples are already blueshifted, and that

interdiffusion rather than strain effects are responsible for

these shifts.
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FIG. 5. Normalized PL intensity as a function of 1/kBT for the unannealed

and annealed samples with PL emissions labeled ‘‘A’’ and ‘‘D’’ in Fig. 3.
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