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The new generation of tank ammunition is characterized by
high operating pressures and hence could be particularly
susceptible to pressure wave problems. With the protrusion of
the projectile base well into the chamber (or cartridge case),
configurally complex regions adjacent to the projectile boattail
can be occupied by either propellant or ullage. Pressure
readings at or near these locations may be- significantly
influenced by localized combustion, grain damage, or pressure
wave focusing (associated with a change in cross-sectional area),
resulting in inconsistent or misleading data, particularly as
manifested in the pressure difference measurement. Since these
data are used to assess pressure wave safety, an issue of great
concern for high performance tank ammunition, accurate pressure
measure:ments are essential.

-' In this study, test projectiles were fabricated with both
conical and cylindrical bases. Firings were conducted in a
highly instrumented 105-mm, M68 tank gun, and detailed analysis
of pressure-time and pressure difference-time data was conducted
to assess the influence of base configuration on the formation of
pressure waves and their measurement. Representative data are
presented and discussed in detail.., .
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I. INTRODUCTION

In the past few ysars, much attention has been given to the effects of
longitudinal gas pressure waves in guns and howitzers on the safe and
efficient operation of the weapon. Much of the attention has gone to
howitzer systems firing high-zone charges such as the M203AI which
incorporates both a variety of parasitic components and a low-pressure igniter
into its fabrication. Recent experience has shown that small changes within
the charge or between the charge/chamber interface can produce large changes
in charge stability. Studies have shown the causal connection between
combustion instability in guns as exhibited by pressure waves with high
chamber pressures. If the pressures get too large for the particular gun
desitn, the results are breechblows, ballistic variability, projectile
prematures, fuze malfunctions, and possible fin damage to the new generation
of projectiles currently being used and new ones being designed.

In a high-performance weapon such as a 120-mm or 105-mm gun (Figure 1),
wherein maximizing muzzle velocity without exceeding specified maximum breech
pressure limits is an ongoing requirement, small changes in charge and/or
projectile configuration could lead to increased pressure wave problems which
could increase chamber pressure beyond acceptable limits. Firings with
projectile base configurations that protrude into the propellant bed, such as
an M827 or M829, can influence initial ignition sequence in the densely-packed
cartridge case resulting in an occasional firing having large pressure waves.

Figure 1. Typical 105-mm, M68 Gun Used in Firing Program

A comprehensive understanding of the nature of pressure waves in gun
chamber volumes surrounding boattails and kinetic energy penetrators is
critical to the design of high-performance propelling charges for such
projectiles and to the assessment of safety for such rounds. Since both
currently-used HEAT and kinetic energy ammunition in the 105-mm gun all have
significant intrusion of projectile fins into the propellant bed requiring
shortened ignition systems, slight changes in propellant, igniter or
projectile base configuration might induce large pressure wave formation in
this weapon system.
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A study was done to provide experimental data to characterize both
pressure gage placement with respect to boattail interface and pressure waves
caused by these projectile systems that protrude into the gun chamber and
propellant bed of the 105-mm gun. Data was acquired by test firings with both
generic projectile base configurations with and without ullage and modified
M489 projectiles to identify mechanisms that influence pressure waves during
propellant charge ignition and early combustion.

II. TEST SETUP

A. Wea o

A 105-mm, M68 gun tube, Serial Number 31259, modified with pressure ports
at three axial locations was the test weapon for all the firings. In order to
measure system breech pressure, the standard M115 brass cartridge case was
modified with two back-mounted, steel adapters for pressure gages without
altering the threaded adapter port for the electric primer integral to the
M115 case. An M158 recoil mechanism in conjunction with the upper cartridge
from a 155-mm, M59 gun was used to mount the APG sleigh which housed the 105-
mm, M68 Gun. All tests with this weapon were done at the Sandy Point Firing
Facility (Range 18) located at the Ballistic Research Laboratory (BRL).

B. Instrumentation

Instrumentation on all tests consisted of eight Kistler 607C3
piezoelectric pressure transducers housed in the gun: five in the chamber,
one downtube, and two in the base of the cartridge case (Figure 2). These
gages (a redundant, cross-chamber gage at three positions) were sufficient to
yield- an approximation to the pressure-time/displacement profile in the
chamber. By differencing either of the rear chamber with the forward chamber
gages, the first negative pressure difference, -Pi' was determined. Since
the forward chamber gages were at three slightly different locations, three
slightly different -'Pi could be calculated (Pl P2, P1 - P3, and PI - P4).

P2 m P4 P2 P4

LEFT P1 P1p

RIGHT P 1 P P P P31

V PP4 12 U P4

43 CM 43 CM
I CM ' - 4.5CM T 1ICM 4.5 CM

Figure 2. Locations of Pressure Transducers in the 105-mm, M68
Gun Chamber for Projectiles with Both

Conical and Cylindrical Bases
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Projectile displacement was determined by using a 15 GHz doppler radar to
measure projectile motion both inbore and 10 metres beyond the gun muzzle.
Projectile muzzle velocity was calculated by using the distance between a
known time interval just after the projectile exited the gun tube. Ignition
delay was determined by using the time interval from the application of the
firing voltage to the M83 electrical primer (Lot LS-200-70) until the spindle
pressure r6ached 7 MPa. Generally, the data were recorded in real time by the
Ballistic Data Acquisition System (BALDAS) under the control of a PDP 11/45
minicomputer. If the data were not recorded online because of some unusual
ignition delay or computer malfunction, they were later digitized from an
analog tape recording made of each test firing.

C. Fing monents

T382-type projectiles fabricated in-house with base ends modified to take
either a cylindrical or conical base extension were used for most tests
(Figure 3). The generic projectiles were to simulate actual types as
illustrated in the figure. The length of the cylindrical extension was
determined such that this projectile would have the same volume as the one
with the 15-cm long conical extension. All generic projectiles had both a
nylon rotating band and forward bourrelet for maximizing obturation and
minimizing balloting during in-tube travel. Projectile condition (burrs,
indentations, etc.) and weight (6.8, + 0.05 kg) were ascertained prior to
loading and firing. M489 projectiles modified to give the same weight as the
generic projectiles were used in the final phase of testing to ascertain the
effects of fin versus generic base configuration on pressure wave formation.

BOATTRIL FINS

GENERIC CYLINDER GENERIC CONE

Figure 3. Projectile Types Used in Firings

The propelling charge was loaded into an MIlS Brass Cartridge Case (Lot
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NOR-5-10) containing both an M83 electrical primer and two Kistler pressure
gages. The gages were housed in backnounted steel adapters in the base of the
cartridge case (case cut down to expose the adapter) as illustrated in Figure
4. Prior to loading the propellant into the brass case, a titanium dioxide-
impregnated liner ( Lot IND 18-12) was glued into the case to minimize erosion
of the gun tube.

Figure 4. Technique for Backmounting Kistler Pressure Gages

III. RESULTS

A. Initial Selection of Propellant

Propellants used for this project are shown in Table 1. The initial
rationale was to do tests with a single base propellant such as Ml and compare
its response to that of a multiple base propellant such as M30 for a variety
of test conditions. Using the inhouse IBHVG code5 , lumped-parameter,
interior-ballistic simulations (Figure 5) were performed for each of these
available granular propellants (Appendix A). Depending on the propellant type
and web (Table 1), different charge weights were used. For the M30MP
propellant, charge weight and web for charges fired with either axial or
circumferential ullage containment were 4.65 kg and 1.02 mm, respectively;
for charges fired completely filled (minimum axial or circumferential ullage
containment), the charge weight and web were 5.78 kg and 1.22 mm,
respectively. For the MlMP propellant in which only axial ullage confinement
was done, the charge weight and web were 4.54 kg and 0.84 mm, respectively.

TABLE 1. Granular Multi-Perforated Propellants Used In Tests

Propellant Web Length Diameter Perf
(mm) (mm (mm) (mm)

MiMP 0.04 10.32 5.00 0.55

M30MP 1.02 13.28 5.54 0.48

M30MP 1.22 15.88 7.11 0.74
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For the MIMP, 0.84-mm web propellant, both the pressure range and minimum
loading constraint of 300-425 MPa and 4.55 kg, respectively, suggested its
acceptability for the initial tests where both axial and circumferential
ullage of 819 cc were to be the variables. For the maximum loading
constraint where no ullage would be present, predicted pressure of 500 MPa was
considerably above the upper pressure limit of 425 MPa. If, however, firing
data tends to fall below predicted values or density-of-loading is less than
that calculated, this web of propellant may be acceptable, at least for tests
at 210 C. No other available MlMP propellant is of the proper web size to
fall within the pressure range of 300-425 MPa.

For the M30MP propellant, two different webs were needed to bracket the
pressure range with test conditions of 819 cc ullage and no ullage present.
Whereas the M30MP, 1.02-mm web propellant was acceptable for ullage equal
to 819 cc (predicted pressure of 420 MPa), its predicted pressure of 650 MPa
with no ullage present was much too high for safe operation of the weapon.
Conversely, for the M30MP, 1.22-mm web propellant, predicted pressure of 280
MPa, while low for an ullage condition of 819 cc, was, for no ullage present,
well within the pressure range at 405 MPa.

/ M30MP (RAO 472-39)
700 / 1.02-9 WEE

/
600

M P/ M (RAO 69275)

Soo 0.84-. 

WEB

CL 400
M30MP (RAO 69644)

1.22494 WEB

*300

200 _.+ ULLAIE (U) .0 CC
200 --.%U 8

19 
cc

4.5 5.0 5.5 6.0

CHARGE WEIGHT (KG)

Figure 5. Simulations for MIMP and M3OMP Propellant at
Various Charge Loadings

B. Firings with MlMP 0.84-mm Web Propellant

The initial firings with 0.84-mm web propellant were done with the
propellant and all auxiliary components conditioned at 210 C for a minimum of
24 hours. Axially-coLnfined propellant was used with projectiles having
conical and cylindrical extensions on the projectile base (Figure 6).
Confinement was achieved by using a cardboard disc and cylinder. The disc
which covered the propellant was held at its proper axial location for the
ullage desired by the cardboard cylinder inserted between the disc and the
base of the projectile.
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SPACE -~ SPACERS
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Figure 6. Axial and Circumferential Ullage Confinement for
Projectiles with Both Conical And Cylindrical Base Extensions

Results for the six firings (three each for each base configuration) are
listed in Table 2. As shown in the plots (Figure 7 and Appendix B) chamber

TABLE 2. Firing Results for Projectiles with Conical and
Cylindrical Bases using MIMP, 0.84-mm Web Propellant

at 210 C with a Standard M83 Primer**

Type POS P1 P2 P3 P4 Pl-* P1-* Pl-* Vel. 1g.
Base P2 P3 P4 Del.

(--------------- MPa --------------- ) (m/s) (ms)

CYL R --- 323 304 307 19 20 26 1199 7
L 331 304 301 15 19

CYL R 316 317 298 301 12 12 13 1202 7
L 325 306 299 10 17

CYL R 321 321 300 304 13 12 19 1207 7
L 331 --- 302 9 16

CONE R 324 321 304 306 -- 15 23 1207 7
L 336 308 304 8 24

CONE R 322 326 300 304 16 12 20 1206 9
L 330 307 299 11 15

CONE R 331 336 310 313 27 21 28 1208 7
L 340 327 309 19 26

*First negative pressure difference maximum for each set of gages

**Nominal weights for projectile and charge are 6.85 t 0.05 kg and 4.54 ± 0.01

kg, respectively. All items conditioned for a minimum of 24 hours prior to
firing. Charges were loaded with axial ullage present. Gage position P3 was
at 12 o'clock. All others either right(R) or left(L).
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pressure versus chamber position indicate the expected trend although since
P2 is 45 cm from P1 and P2, P3, and P4 are each separated by only 4.5 cm
(Figure 2), one would expect P2 to be closer in value to P3 and P4.
Although the averaged pressure at each chamber location was higher for the
conical-based projectiles, the differences were too small to be considered
relevant since they are well within the round-to-round and gage-to-gage
variations between the two types of projectiles. The pressure difference,
-APit for any of the possible combinations (P1 - P2, P1 - P3, P1 - P4)

indicated only minor differences between axial locations or projectile types.

340r

320

S300

28o

260 P2 P3 P4
P1 P

OAIBER GAGE

a 20 40 45 so 55

DISTANCE FROM BREECH (C4)

30 AXIAL CONFINEMENT

30 r(CoL)N t} A (CONE) -

1o

P1-Pz PI-P3 PI-P4

PRESSURE GAGES DIFFEENCEO

Figure 7. Firing Results for MIMP, 0.84-mm Web Propellant

Because the peak chamber pressures were higher than originally predicted
with an ullage of 819 cc, several firings at various charge weights were
done to ascertain if the predicted curve was essentially correct at the higher
loading densities. Results (Figure 8) showed that both experimental pressures
and the amount of propellant needed for a no ullage condition were
considerably higher than predicted (625 MPa experimental versus 500 MPa
predicted for a no ullage condition primarily because the case could hold 5.45
kg rather than the 5.25 kg predicted). Since these results precluded
additional firings both with a no ullage condition and at elevated
temperatures (630 C), no additional firings were done with MIMP propellant.

A typical plot for MIMP firings is shown in Figure 9. Maximum - &P
occurred very early in the ignition process and damped out well before peak
pressure was reached suggesting minimum feedback into the combustion process.
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Figure 9. Typical Plots for Pressure and Pressure Difference
Versus Time for Firings with MiMP, 0.84-mm Web Propellant at
210 C, Standard Primer, Cylindrical and/or Conical Bases

C. Firings with H3OMP. 102-mm Keh Progellant

Since no firings could be done at an elevated temperature of 630 C with
this web of propellant because of the high pressures predicted, only firings
at 210 C were done to compare with results obtained for M1MP. As in the
previous tests, all components were conditioned at 210 C for at least 24 hours
prior to firing. Both axially- and circumferentially-confined propellant was
used with projectiles having both conical and cylindrical extensions on the
projectile base (Figure 3). Axial confinement (axial ullage) was as described
in the previous test with M1MP propellant except polyethylene foam was used in
place of cardboard. Circumferential confinement (radial ullage) was achieved
by making large cylinders of rigid polyethylene foam and placing them between
the propellant and Ml15 case wall (Figure 6). This reduced slightly, the
diameter of the propellant charge thus forcing it to fill out the total
length of the volume between the base of the case and projectile. Results for
the 14 firings are listed in Table 3 and Appendix B.
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TABLE 3. Firing Results for Projectiles with Conical and Cylindrical Bases
using M30MP, 1.02-MM Web Propellant at 210 C with a Standard M83 Primer**

TYPE POS P1 P2 P3 P4 PI-* PI-* Pl-* Vel. Ign.
BASE P2 P3 P4 Del.

(--------------- MPa -------------- ) (m/s) (ms)

CYL(AX) R 438 426 427 428 10 15 10 1348 --

L 431 429 422 14 17

CYL(AX) R 446 432 432 434 10 14 13 1348 15
L 439 439 421 14 12

CYL(AX) R 442 432 431 --- 16 20 -- 1338 17

L 433 440 435 17 23

CYL(AX) R 459 435 440 426 14 18 14 1353 13
L 443 440 416 15 17

CONE(AX) R 438 424 425 433 12 13 12 1338 17
L 431 426 399 11 14

CONE(AX) R 439 425 422 427 9 10 12 1338 23
L 433 427 405 10 14

CONE(AX) R 444 426 429 427 8 16 8 1341 18
L 435 429 405 15 14

CONE(AX) R 434 418 419 410 11 15 16 1343 15
L 426 412 405 17 18

CYL(CR) R 453 434 435 425 21 25 23 1368 18
L 444 435 423 24 25

CYL(CR) R 444 --- 428 422 -- 22 21 1355 17

L 432 406 428 24 22

CYL(CR) R 440 426 420 414 15 22 23 1351 18
L 428 408 413 18 22

CONE(CR) R 448 436 433 421 11 21 21 1362 17
L 439 429 422 17 25

CONE(CR) R 441 428 422 419 14 20 25 1358 18
L 431 410 417 17 20

CONE(CR) R 442 426 422 416 15 22 23 1363 18

L 432 411 417 18 23

*First negative pressure difference maximum for different gages

**Nominal weights for projectile and charge are 6.85 ± 0.05 kg and 4.65 + 0.01
kg, respectively. All items conditioned minimum of 24 hours prior to firing.
Charges were loaded with both axial (AX) and circumferential (CR) ullage. Gage
position P3 was at 12 o'clock. All others either right(R) or left(L).
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The averaged pressures (Figure 10) for both the axially-confined and
circumferentially-confined rounds with cylindrical base extensions are,
essentially, the same. Both round-to-round and gage-to-gage variations within
and between series suggest no difference in chamber pressure profiles. Within
a particular ullage configuration, the - 4&Pi profiles indicate no difference
between using conical or cylindrical base extensions. Although there is
some difference in - Pi between axially- and circumferentially- confined
charges, the differences are, again, small in comparison to the large
variations in pressure measurements. The indication (Table 3) that axial
confinement results in smaller pressure waves than circumferential confinement
is contrary to our understanding of the hydrodynamics involved and can be
explained from our method of circumferential confinement (Figure 6). By not
extending the circumferential wrap along the full length of the case, the 6 cm
next to the projectile base had a higher loading density than the rest of the
charge. This could have contributed to the level of pressure waves being
greater.

460

440

m 420
JJ

o 400 P3 P4

CHAMBER GAGE

0 20 40 45 50 55
DISTANCE FROM BREECH (CM)

< 30 CONFINEMENT
- AXIAL (CYL)

20 CIRCUMFERENTIAL(CYL)

10

P1-P2 P1-P3 P1-P4

PRESSURE GAGES DIFFERENCED

Figure 10. Firing Results for M3OMP, 1.02-mm Web Propellant

As in the previous tests for M1MP and illustrated in Figure 11, " Pi
was essentially the same and did not feed back into the ballistic cycle even
though the peak chamber pressure for the M3OMP was 100 MPa higher than for
the M1MP. Pressure and pressure difference versus time plots, shown in
Figure 11 are typical for all firings for this web of M30MP propellant even
though peak levels of pressure difference varied from 8 to 25 MPa.
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D. Firings withM30MP. 1.22- Web Propellant, Standard Primers

Predicted pressure versus charge weight indicated that chamber pressure
would not be excessive for firings at an elevated temperature of 630 C.
Therefore, firings with this propellant were done at three temperature
extremes (-430 C, 210 C and 630 C ) with the case completely filled with
propellant (minimum axial and/or circumferential ullage). As in previous
tests, all components except the projectiles were conditioned at their
respective temperatures for at least 24 hours. Projectiles with both conical
and cylindrical base extensions, regardless of propellant temperature
conditioning, were kept at 210 C. Even for this no ullage condition that
used a loose pack, 5.78 kg, rather than the 5.45 kg predicted, were needed
to fill the case, thus making the actual peak pressures higher than those
initially predicted.

Results for the firings at three temperature extremes (-430 C, 210 C
and 630 C) for projectiles having conical and cylindrical base extensions
are shown on the plots of Figure 12 and Appendix B and Tables 4, 5 and 6. A
standard M83 primer was used to induce low-level pressure waves in the
charges.
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At each temperature condition, peak pressure was slightly higher for the
rounds with conical base extensions. Chamber pressure distribution was normal,
being highest at the spindle and lowest at the forward chamber position
(Figure 12).

TABLE 4. Firing Results for Projectiles with Conical and
Cylindrical Bases using M30MP, 1.22-mm Web Propellant at 210 C

with a Standard M83 Primer**

TYPE POS PI P2 P3 P4 Pl-* P1- * P1- * Vel. Ign.
BASE P2 P3 P4 Del.

( -------------- MPa-------------) (m/s) (ms)

CYL R 511 490 --- 476 14 -- 1 1481 9
L 516 500 483 14 12

CYL R 517 511 495 464 11 7 0 1487 12
L --- 478 490 -- --

CYL R 516 494 474 456 11 2 0 1488 10
L 516 487 491 9 12

CONE R 517 497 502 475 19 21 17 ---- 11
L 521 497 480 20 24

CONE R 515 497 --- 454 16 -- 10 1485 9 -.

L --- 497 483 -- --

CONE R 524 515 488 463 18 14 0 1487 10
L 528 488 483 13 0

*First negative pressure difference maximum for different gages

**Nominal weights for projectiles and charges are 6.85 + 0.05 kg and 5.78 +

0.01 kg, respectively. Charges loaded with no ullage. Charges, cases,
primers, propellant and projectiles were conditioned for 24 hours prior to
firing. Gage position P3 was at 12 o'clock. All others either right(R) or
left(L).

Averaged spindle pressure and chamber pressure of 518 MPa and 486 MPa
(Table 4), respectively, for rounds fired with a standard M83 primer at 210 C
were both considerably higher than the chamber pressures of 400 MPa predicted
for, of course, a different charge loading. Although there was considerable
pressure variation between rounds and gages, the averaged - Z Pi for
projectiles with conical bases was almost twice that of projectiles with
cylindrical bases. This was the first indication that perhaps projectile base
configuration may be important in inducing and/or supporting early combustion
perturbations leading to pressure wave formation and that the gage location is
important in accessing the level of delta pressure.

For rounds fired at -430 C, pressure and muzzle velocity, as expected,
decreased, and ignition delay increased over that observed at ambient
conditions. Even with the decrease in pressure level, the averaged "/Pi was

13



still slightly higher for conical base extensions over cylindrical base
extensions. Again the projectile base configuration seems to be important.

TABLE 5. Firing results for Projectiles with Conical and
Cylindrical Bases using M30MP, 1.22-MM Web Propellant

at -430 C with a Standard M83 Primer**

TYPE POS P1 P2 P3 P4 P1-* P1- * Pl* Vel. Ign.
BASE P2 P3 P4 Del.

( ---------- MPa ---------------- ) (m/s) (ms)

CYL R 459 436 434 432 13 12 20 1423 14
L --- 453 423 -- --

CYL R 464 434 441 429 13 13 15 1428 14
L 460 454 428 18 20

CYL R 443 440 440 429 14 7 17 1424 14
L 463 456 430 16 18

CONE R 472 442 445 437 16 18 1428 14
L 470 461 438 20 24

CONE R 477 445 446 436 21 20 24 1424 16
L 473 463 435 23 31

CONE R 472 447 441 432 21 16 21 1428 16
L 482 457 432 18 23

*First negative pressure difference maximum for different gages

**Nominal weights for projectiles and charges are 6.85 + 0.05 kg and 5.78 +

0.01 kg, respectively. Charges loaded with ,,o ullage. Charges, cases, primers
and propellant conditioned for 24 hours at -430 C. All projectiles were
conditioned at 210 C for 24 hours. Gage position P3 was at 12 o'clock. All
others were either right(R) or left(L).

For the two firings at 630 C (Table 6), breech and chamber pressures for
the conical base extension were larger than those for the cylindrical. Both
pressure levels were higher than originally predicted because of the
difference in the calculated versus actual charge loading. Although the
conical base extension induced a considerably larger averaged -Pi than the
cylindrical base extension, it was not reflected in higher muzzle velocity.
The large peak pressures coupled with the fairly large -/Pi cautioned us to
discontinue these firings after only one round at each configuration because
of the danger of tube and/or weapon component damage.
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TABLE 6. Results for Projectiles with Conical and
Cylindrical Bases using M3OMP, 1.22-mm Web Propellant

at 630 C with a Standard M83 Primer**

TYPE POS P1 P2 P3 P4 P-* P1- * P1-* Vel. Ign.
BASE P2 P3 P4 Del.

( --------- MPa ------------------) (m/s) (ms)

CYL R 612 585 570 540 23 22 22 1539 8
L 618 565 574 21 25

CONE R 620 605 --- 549 41 42 40 1539 8
L 631 593 595 40 47

c
*First negative pressure difference maximum for different gages

**Nominal weights for projectiles and charges are 6.85 t 0.05 kg and 5.78 ±

0.01 kg, respectively. Charges loaded with no ulla e. Charges, cases, primers
and propellant were conditioned for 24 hours at 63 C. All projectiles were
conditioned at 210 C for 24 hours. Cage position P3 was at 12 o'clock. All
Others were either right(R) or left(L).

Plots, typical of the cold and ambient series, are shown in Figures 13
and 14 for projectiles with cylindrical bases. For the hot series, plots for
both the conical and cylindrical base configurations are shown since the
difference in pressure wave level was considerable (Figures 15 and 16).

For firings at 630 C, the large difference in - / Pi between the
projectiles with conical and cylindrical bases indicate that geometric shape
may be important in inducing pressure wave formation in a round. The higher
burning rate and reduced ignition time at the elevated temperature
highlighted the differences between the two geometric base configurations.
These changes, coupled with the differences in projectile/propellant geometry,
seem to induce large pressure waves. Unfortunately, the large -AP, and
feedback into large chamber pressures at elevated propellant temperature
prevented further testing in order to still insure gun integrity.

E. Firings with M30MP 1,22-mm Web Propellant. Modified Primers

A test was devised wherein M83 primers were modified to induce medium to
large pressure wave formation in an ambient charge completely filled with
propellant (maximum axial and/or circumferential ullage) thus limiting the
corresponding increase in peak pressure to an acceptable level. The
modification consisted of reducing the length of the benite in the primer by
thirds and replacing the missing benite with a wooden dowl. Thus a 1/3-benite
primer gave more localized ignition than a 2/3- benite primer which gave more
localized ignition than a standard primer (3/3- benite). By keeping the
propellant at ambient conditions, any large - Pi that might be induced
would, hopefully, not be accompanied by extremely large peak pressures as a
result of feedback from the induced -"Pi" Results are listed in Table 7 and
Appendix B.
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TABLE 7. Firing Results for Projectiles with Conical and
Cylindrical Bases using M30MP, 1.22-mm Web Propellant

at 210 C with Modified M83 Primers**

TYPE PRIMER POS P1 P2 P3 P4 Pi-* P1-* PI-* Val. Ign.
BASE TYPE P2 P3 P4 Del.

(---------- MPa --------------) (m/s) (mu)

CYL R 508 --- 477 467 -- 9 5 1478 26
L 505 486 463 3 15

Mod
CYL M83 R 505 481 481 472 36 18 33 1478 21

L 506 483 469 29 25
2/3

CYL Benite R 495 484 460 480 36 40 40 1504 24
L 499 495 475 32 24

and

CONE R 519 500 486 483 55 38 36 1482 17
1/3 L 521 498 479 51 67
wood

CONE dowl R 547 528 494 507 83 62 98 1503 18
L 542 534 494 511 83 99

CONE R 512 507 478 489 37 24 57 1483 23
L 511 503 488 45 80

CYL R --- 518 487 496 58 32 87 1481 55
L 518 531 493 55 79

Mod
C0L M83 R --- 461 452 448 -- 42 -- 1452 144

L 465 477 454 41 60
1/3

CYL Benite R 490 478 403 464 35 32 55 1453 106
L 492 482 469 26 51

and

CONE R 589 548 522 533 105 122 158 1488 46
2/3 L 592 547 528 110 144
wood

CONE dowl R 528 511 482 488 76 35 119 1475 84
L 533 522 491 81 94

CONE R 544 529 503 504 109 96 140 1487 49

L 548 542 503 101 132

*First negative pressure difference maximum for different gages

**Nominal weights for projectiles and charges are 6.85 + 1.05 kg and 5.78 +

0.01 kg, respectively. Charges loaded with no ullage. Charges, cases,
primers, propellant and projectiles were conditioned for 24 hours prior to
firing. Gage position P3 was at 12 o'clock. All others were either right(R)
or left(L).

NOTE: Mod M83 Primers are fabricated so that all the Benite is at the rear of
the primer and the forward space is filled with a wooden dowl
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For the initial tests with the 2/3-benite filled primer, there was a
large increase in averaged -APi over that with standard primers (Table 4).
It increased by more than a factor of three for projectiles with cylindrical
bases ( 25 versus 7 MPa) and by more than a factor of four for projectiles
with conical bases (61 versus 14 MPa). There was also a two- to three-fold
increase in ignition delay (24 and 19 ms, respectively, for cylinders and
cones versus 10 ms for both configurations with standard M83 primers). For
cylindrical bases, the averaged peak pressure and muzzle velocity of 503 MPa
and 1478 m/s were similar to that with standard primers wherein the values
were 515 MPa and 1485 m/s, respectively; with conical bases, the averaged
peak pressure and muzzle velocity of 525 MPa and 1489 m/s were close to that
observed with the standard M83 primers, 521 MPa and 1486 m/s, respectively.
For projectiles with cylindrical bases, the increase in - A Pi over standard
M83 primer firings did not feedback into peak pressure. For the second of
three firings with conical bases, a large increase in "ZPi was accompanied by
a large increase in peak pressure and muzzle velocity, perhaps another
indication that projectile base geometry is important. Plots, typical of
projectiles with conical and cylindrical bases are shown, respectively, in
Figures 17 and 18.
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Figure 17. Typical Plots for Pressure and Pressure Difference
Versus Time for Firings with M3OMP, 1.22-mm Web Propellant at

210 C, 2/3-Benite Modified Primer, Cylindrical Base

To ascertain the effects of a more localized ignition, a 1/3- benite
filled primer was testfired with the two projectile configurations. There
were noticeable differences between the two projectile types.

19



SJ C '11
I|0'

Iw -.- Forward I
0.Chamber _J

6W . 0 ZAS

.. °' ,aE".

i. -its0I "'-0

3s 1 Ie s 2 6
TIME (MS) TIME (MS)

Figure 18. Typical Plots for Pressure and Pressure Difference Versus
Time for Firings with M30MP, 1.22-mm Web Propellant at
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For projectiles with cylindrical bases, the averaged - 46Pi increased
from 25 to 50 MPa over that observed in the previously described tests with a

2/3-benite filled primer. Averaged values for peak pressure and muzzle
velocity decreased to 491 MPa and 1462 m/s, respectively, while ignition delay
increased to 102 ms. Although the decrease in muzzle velocity followed the
peak pressure decrease and thus was consistent, the lower pressure level with
increasing "/&Pi was not expected.

i For projectiles with conical bases, the averaged -"&Pi increased from 61
' to 108 MPa, the averaged peak pressure increased from 525 to 556 MPa and the

ignition delay increased from 19 ms to 60 ms for the 1/3-benite filled
configuration over the 2/3-benite filled configuration. The averaged muzzle
velocity of 1483 m/s was similar to that with the standard and a 2/3-benite
filled primer. The expected increase in peak pressure for larger "/APi did

D occur and may be geometry-related since it happened only for the projectiles
with conical bases. An increase in ignition delay was expected for both
modified primer types with the ignition delay longer for the more severely
modified primers. Although the averaged peak chamber pressure for these

~rounds increased only 31 MPa to 556 MPa, thus not threatening gun integrity,
one of the three rounds in this series reached a level. of 590 MPa indicating

~some variability that might not be controllable. For this reason, we did not
continue the tests with primers having less benite than a 1/3 configuration.
Figures 19 and 20 show examples typical of both types of projectiles tested
with a primer having a i/3-benite filled configuration.
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The differences observed between the projectiles with cylindrical and
conical bases prompted us to examine the initial ignition and early combustion
effects on an M489 Projectile that had a conical boattail and a real fin
(Figure 3). To keep approximately the same projectile weight as in the
earlier configurations and still not alter the base-fin geometry, the forward
cylindrical portion of the M489 was reduced in length by seven centimeters.
Both standard and modified M83 primers were used in the tests. The decrease
in chamber volume caused by the M489 fin necessitated reducing the propelling
charge from 5.78 Kg to 5.67 Kg in order to maintain an ambient pressure level
similar to that observed with the earlier projectiles having conical and
cylindrical bases.
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Results for the firings are listed in Table 8. The initial firings with
the standard M83 primers at ambient conditions gave results similar to that
observed for the projectiles with the conical and cylindrical base
configurations. In comparing the data of Table 8 with that of Table 4,
average spindle pressure at 500 MPa was lower than that observed for
projectiles with cylindrical and conical base configurations (515 and 521 MPa,
respectively) while muzzle velocity and ignition delay at 1490 m/s and 14 ms
were both higher (1485 m/s and 10 ma for cylindrical bases and 1486 m/s and 10
ms for conical bases). The -"Pi variation of 0 to 31 MPa for modified M489s
was larger than the 0 to 14MKPa for cylindrical bases and about the same as
the 0 to 24 MPa for conical bases. In general, the averaged data for the
M489s using standard primers (Figure 21) seems to be from the same population
as that noted on Table 4 for the projectiles with conical and cylindrical
bases.

TABLE 8. Firing Results for Altered M489 Projectiles using M3014 , 1.22-mm
Web Propellant at 210 with Standard and Modified M83 Primers

TYPE PRIMER POS P1 P2 P3 P4 P-* P1- * P1-* Vel Ign.
BASE TYPE P2 P3 P4 Del.

------------ M Pa -------------- ) (m/s) (ms)

Fin Std R 497 495 480 469 13 29 12 1484 14
M83 L 508 471 466 21 31

Fin 3/3 R 502 481 492 464 7 19 1 1494 16
Benite L 507 464 457 21 21

Fin 0/3 R 493 488 475 454 11 15 0 1493 11
Wood L 494 457 456 9 19
dowl

Fin Mod R --- 588 582 558 --- 129 --- 1519 15
M83 L 606 --- 588 566 122 141

Fin 2/3 R 564 550 541 522 110 122 121 1501 13
Benite L 558 498 541 125 115

Fin 1/3 R 624 594 580 570 128 143 150 1517 18

Wood L 612 542 571 127 147

*First negative pressure difference maximum for different gages

**Nominal weights for projectiles and charges are 6.85 + 0.05 kg and 5.67 +

0.01 kg, respectively except for round two of the 1/3-benite filled primer
wherein the charge weight was 5.60 + 0.01 kg. Gage position P3 was at 12
o'clock. All others either right(R) or left(L).

Results changed dramatically when going from the standard M83 to the 2/3-
benite filled primer. All parameter averages except ignition delay at 15 ms
increased significantly. In comparison to the data with a standard M83 Primer,
peak pressure at 593 MPa was 18 percent higher, -"6 Pi at 129 Mpa was a huge
760 percent higher, and muzzle velocity at 1512 m/s was 1.4 percent higher.
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The averaged values for pressure, -AP ,and muzzle velocity exceeded even

that for projectiles with conical and cylindrical base configurations wherein

1/3-benite filled primer ignition was used. The high peak pressure combined

with the very high -& Pi (Figure 22) prevented us from doing tests with the

1/3-benitefilled primer and a modified M4489 projectile.

640. -Spindle

=P 7B

-_ Forward 0- oe

0.Chamber N

S26
~ 'Zn

W It

t~flCL 6

I.. .- I . 1

Id -26

26 is is is

TIME (MS) TIMP IMq)

Figure 21. Typical Plots for Pressure and Pressure Difference

Versus Time for Firings with M3OMP, 1.22-mm Web Propellant at

210 C, Standard Primer, Fin Base

766 see

a
CI.

a see -Spindle
0- 266

so - -Forward a

0-Chamber IO

-J
3Ix eat U)

94 - - a -2001
1 4i 3 s3TIME (S) TIE (MS

Figure 22. Tyia ltIo-rsue n rsueDfeec
Verss Tme fr Frins wih M0MP 1.2-mmWebPropllat-a

21 C 23-enteMoiie PimrFi Bs

6 _______________________________________________23___



IV. CONCLUSIONS

The data base, although limited in size, suggests that the gage position
with respect to the rear of the projectile is not critical in assessing the
level of "&Pi regardless of base configuration. Considering the different
types of bas configurations (cylindrical, conical and fin), the amount of
extension of projectile into the gun chamber and the gage-chamber interface
clearance for different gage positions, one might have expected greater
differences.

For the tests at 210 C and -430 C where standard M83 Primers were used,
there was no significant pressure difference noted between the projectiles
with conical, cylindrical or fin base extensions. At an elevated temperature
of 630 C, geometric base shape did make a difference. The -/&Pi for the
projectile with a conical base was twice that of the projectile with a
cylindrical base. However, because of the base chamber pressure level, sample
size was limited to one round at each configuration.

When the M83 Primer was altered somewhat, the - 6Pi difference between
projectiles with conical and cylindrical bases was large even with ambient
propellant. Although - A Pi got larger with increased alteration of the
primer (standard to 2/3-benite to 1/3- benite), the conical to cylindrical
ratio remained unchanged for the two modified primer configurations,
increasing from one for the unmodified primer to approximately two for both
the 2/3-benite filled and 1/3-benite filled primer configurations. For the
modified M489 with actual fin configurations extending into the propellant
bed, - /  Pi increased dramatically from 8 MPa to approximately 129 MPa for
the 2/3-benite primer, a ratio of altered to unaltered primer of 8.

A valid pressure wave safety assessment demands that sensitivity tests
(maximum pressure versus -/APi) must be conducted with projectiles that have
the same base configuration as the actual projectiles that are used in the
population tests.
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APPENDIX A

Description Sheets for ?I1MP and M30MP Propellants
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APPENDIX B

Computer generated plots for Selected Data Channels
of Spindle Pressure (solid line), Forward Chamber Pressure (dotted line)

and Pressure Difference (solid line)
Versus Time

(Plots are listed in the order they appear in the report tables)
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