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Weighted averages of class means using different sets of weighting 

factors are compared in terms of sampling variances and of relative weights 

given to the class means. Details are given for the 1-way classification, 

and extensions to other models are indicated. 

l. INTRODUCTION 

When subclasses of data have unequal numbers of observations, averages 

of the subclass means can be defined in a variety of ways, depending on the 

weights used for (linearly) combining the subclass means. At least three 

different weighting systems are often used: (I) weighting by the number of 

observations, which leads to the grand mean; (II), weighting equally, which 

yields the simple average of the subclass means, and (III), weighting in-

versely according to variances of the observed subclass means. In the 

1-way classification, with the fixed effects model, III is the same as II; 

but with the random effects model (which we call the mixed model, see 

Section 3.1) in which the class effects are taken as random, I and II are 

special cases of III corresponding to the intra-class correlation being 0 

and 1, respectively. 
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Variances of these weighted averages are compared, in both models, and 

the manner in which changes in the intra-class correlation affects the 

relative weights given to the class means is described. Extensions to 

2-way classifications are suggested. 

2. FIXED EFFECTS MODELS 

2.1 A .adel 

Suppose yij is the j'th observation of the i'th class of a 1-way 

classification, with i • l,···,a and j • 1,···,ni; i.e., a classes and ni 

observations in the i'th class. Then the model equation for yij can be 

taken as 
(1) 

in which ~i = ~ + a 1 is the population mean of the i'th class, and the eij 

terms are random variables, identically distributed with zero mean, 

variance a 2 , and zero covariances. Under these conditions the BLUE (best 
e 

linear unbiased estimator) of ~i and the sampling variance of that esti-

mator are, respectively, 

~ • y = 
i i 

(2) 

similar to Searle (1971, pages 235 and 339). In (2) the subscript Fin 

vF(yi) emphasizes that the variance is based on the fixed effects model. 

2.2 Weighted Averages 

We begin with weighted averages I and II of the introduction. The 

first is denoted ~ , in which weights proportional to the numbers of obser­
n 

vations are used: 

(All summations are with respect to i, over the range i • 1,2,···,a.) The 

second weighted average is denoted ~ , and is based on equal weights: 
e 
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The third average mentioned in the introduction uses weights inversely pro-

portional to v(yi) and so, on using (2), is the same as ~n: 

A quite general form of weighted average is to use arbitrary, (usually) 

positive weights wi: 

Then ~n and ~e are special cases of ~w' since wi • ni gives ~w • ~n' and 

w .. 
i 1 gives ~w • ~e· The BLUEs of these three averages and their sampling 

variances are 

iln '"' !niyi I !ni - y .• , with vF(]ln) = a! I !ni ' 
( 3) 

jle .. LYila, with vF(]le) = a!(!llni)la2 ( 4) 

jlw .. !wiyi I Iwi, with vF(jJ.w) • a 2 (!w2 1n) I <!wi)2 . ( 5) 
e i i 

Clearly, jln is the grand mean Y •. • whereas ile is the average of observed 

class means, LYila. 

2.3 Discussion 

Estimators (3), (4) and (5) are BLUEs of different parametric func-

tions, so that comparing their sampling variances does not seem, a priori, 

to be beneficial. However, in Section 3 we are interested in the case in 

which the subclass means pi are all the same, namely ~. whereupon the three 

estimators all estimate ~· Comparing variances of those estimators is then 

of interest. As prelude to this, the variances in (3) - (5) are compared, 

beginning with those of il and il . 
n w 

From applying the Cauchy-Schwartz inequality, !P2!q2 ~ (!pq) 2 , 

we have 
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Hence 

and so from (3) and (5) 

(6) 

Therefore, in the fixed effects model, no weighted average of the ~is has a 

BLUE with variance smaller than that of ~ . 
n 

This is an attractive 

property for ~n· In particular, it applies for wi K 1, giving 

This is perhaps a little surprising, since defining an overall mean as ~ 
e 

seems more natural than does ~ because of the dependence of ~ on the 
n n 

numbers of observations in the classes. 

In applications, ~w for a particular set of wi-values can well be a 

parameter of interest; e.g., if three varieties of wheat are grown in a 

county in acreages proportional to w1 :w2 :w3 , the county's mean wheat yield 

per acre is ~ • Therefore, if in some experiment designed to measure yield 
w 

the areas in which the three varieties are grown are proportional to 

estimated mean of interest. Nevertheless, (6) shows that ~ always has 
w 

variance greater (strictly, never less) than that of v . This suggests 
n 

one reason for having subclass sizes in data proportional to subclasses 

population sizes. 

3. MIXED MODELS 

3.1 A model 

Suppose with the model equation {1) we take the ais as uncorrelated 

random effects with zero means and variance a 2 , with the covariance be­
a 

tween every ai and every ehk being zero. The eij terms retain the same 

mean, variance and covariance properties as described following (1). With 

these properties, the model is usually called the random effects model, or 
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random model, of the 1-way classification. But since ~ is a fixed effect 

and the ais are random effects it is strictly a mixed model, and we think 

of it in that manner for purposes of estimating ~ in the presence of the 

random effects. 

3.2 Weighted averages and estiaators. 

In the preceding mixed model the BLUE of ~. to be denoted ~r is, 

similar to Searle (1971, page 463), 

The subscript Min vM of (7) denotes variance based on the mixed model. 

The estimator ~ in (7) 
r 

variance is 

is, of course, a special 

3.3 Comparing variances of estiaated averages 

First, from (8) and (5) it is easily seen that 

case of ~ with 
w 

(8) 

Thus every weighted average has variance in the mixed model that exceeds 

its variance in the fixed model - as one would expect. (When a 2 = 0 the 
a 

variances are equal.) What is more interesting is that by applying the 

same reasoning to (7) and (8) as is used in deriving (6), it is easily 

shown that 

(9) 
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This shows that in the mixed model no weighted average ~ has smaller 
w 

variance than does~ {as is to be expected because~ is the BLUE of~). 
r r 

A special case of {9) is vM{~r) ~ vM(~n). Nevertheless, vF(~n) of 

{3) is less than vM(~r) of {7), as may be seen by observing that 

Hence 

Thus the variance of p in the mixed model is between that of p in the 
r n 

fixed and mixed models, with these variances being equal when a 2 • 0, for 
Ct 

then p = ~ . n r 

3.4 Relative weights for observed subclass aeans in ~ 
r 

In ~n the observed subclass means, y 1 , are weighted in proportion 

to their n.-values; and in p they are weighted equally. In the mixed 
1 e 

model with intra-class correlation p = a2J(a2 + az) it is interesting to 
Ct Ct e , 

see how the weights in ilr change from those of iln when p = 0 to those of 

~e when p = 1. To observe this, write ~r of (7) as 

~ -r,p 
(11) 

Then p • 0 yields ~ 0 = ~ = Y r, n 
of (3) and p a 1 gives t. = JLA of 

~""r, 1 e 

(4). This is not surprising. p • 0 is equivalent to a 2 • 0 which reduces 
Ct 

the mixed model to being a fixed effects model yij = J1 + eij and so ~r,O = 

~n' the BLUE of JL in that model. And p • 1, although equivalent to 

a 2 = 0 is more interestingly the case of observations within each class 
e ' 

being perfectly correlated - in effect, identical. Hence, no matter what 

the value of ni is, yi has variance a~ and so the linear combination of 

yis that has minimum variance is ~e • IY1/a. 
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Despite these consequences of putting p • 0 and p • 1 in p , it is 
r 

nevertheless surprising how quickly the weights given to each yi change 

from being proportional to ni in p 0 • p to approaching being equal in 
r, n 

t. • n as p increases from 0 to 1. Consider two classes, one des-rr ,1 re 

cribed as having a large number of observations, nL' and the other having a 

small number, n 8 , with of course, nL > n 8 . In p the ratio of the weight 
r 

given Yg to that given to yL is ~P say, where, from (11), 

coefficient of Ys in fir,p nS(nLp + 1 - p) p + 1-p 

nL 
'[ - - = (12) 

p 
coefficient of in fir,p nL(nsp + 1 - p) p + 1-p 

YL ns 

Corresponding to p = 0 with fir,O • fin we have 'tO • nS/nL; and as P 

increases from zero to unity ~P increases from 'tO • nS/nL to 't 1 • 1. Thus 

as p ~ 1 we see that Ys• the data mean of the smaller-sized class, gets 

increasingly larger weights in fi , relative to yL. It is interesting r,p 

to see that this increase can, depending on the magnitudes of nL and nS, be 

quite appreciable, even for very small values of p. This is so because 

the first derivative of 't with respect to p is 
p 

a~ 
'r' = __ P 

P ap (13) 

and for small values of p and not-too-small values of nS this can be rela-

tively large. In particular, for p = 0 

't' • n ( 1 - ns ) 
0 S nL 

(14) 

and so when nS/nL is small and ns is not too small, ~O can be relatively 

large: e.g., for ns = 20 and nL • 100, 'tO • 20(1-0.2) • 16. This is the 

slope at p • 0 of ~ plotted against p. The value 16 represents an angle 
p 
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of 86.4° from the horizontal, which means that, for values of p near zero, 

~P increases very rapidly from ~0 • nS/nL • 20/100 • .2. This is evident 

in the second column of the following table, which shows values of ~ for 
p 

three pairs of nS,nL values and a range of values of p. 

DEPENDENCE ON INTRA-CLASS CORRELATION OF THE RELATIVE WEIGHTS GIVEN 

TO TWO OBSERVED SUBCLASS MEANS IN THE ESTIMATOR 

Intra-class 

Correlation 

t·o = il 
0 

n 

~0 = nS/nL 

.OS 

• 1 

. 3 

. 5 

. 7 

. 9 

r·l - il e 
1.0 

= 1 ~1 

fir;p 

coefficient 
~ = 

p 
coefficient 

n = 4 s 

for 

n = 20 
L 

.20 

. 33 

.45 

. 71 

.840 

.923 

.978 

1.00 

three 

of Ys in ilr,p 

of YL in ilr,p 

(n5 ,nL)-pairs 

ns ... 20 

n = 100 
L 

.20 

.61 

.75 

.92 

.962 

.983 

.996 

1.00 

p + (1-p)/nL 

p + (1-p)/ns 

ns .. 5 

nL = 100 

.05 

.28 

. 38 

.70 

.842 

.925 

.979 

1.00 



-9-

3.5 Discussion 

The BLUE of ,. in the mixed model is ~ ; it reduces to ~ • y in r r rn •• 

the fixed model wherein a~ • 0, and to ~e • Ey1/a in the trivial case 

of a2 z 0 when all observations in each class are then identical; and, 
e 

of course, if every ni has the same value then~ • ~ • y • Each of 
n e • · 

the estimators ~n' ~e and ~r has variance in the mixed model that ex-

ceeds its variance in the fixed model, as is, of course, to be expected. 

However, as in (9), in the mixed model~ has the smallest variance of any 
r 

(linearly) weighted average although in the fixed model ~ has still 
n 

smaller variance. 

In ~r the weight given to Ys having n 5 observations, relative to 

that given to yL with nL > n 5 observations, is ~P given by (12). The value 

of ~pis n 5 /nL for p = 0, i.e., in ~n; and it is 1.0 for p = 1, i.e., in 

~ • The rate of increase in ~ for p increasing from 0 to 1 is given by 
e P 

~~ of (13) with ~O = nS(1 - nS/nL). Thus for small values of p the rate of 

increase in ~P depends not only on nS/nL but also on nS; hence small 

changes in p can bring about big changes in ~ • This is illustrated in the 
p 

table where, for the example having n 5 2 20 and nL = 100, changing p from 0 

to .05 changes ~ from .20 to .61. 
p 

Thus not only can relative sizes of 

data subclasses be important in the contributions that observed subclass 

means make to ~ , but absolute sizes are also important. This is also 
r 

illustrated in the table, where in each of the first two examples 

nS/nL • .2: in the first of these, nS • 4 and ~.OS is 0.33, whereas in the 

second, with ns • 20 the value of ~.OS is .61, nearly double its value for 

ns • 4. 
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4. EXTENSIONS 

Consider a 2-way nested classification where the number of main 

classes is a, with the i'th having bi subclasses, in the j'th of which 

there are nij observations yijk for k • 1,···,nij' with i • 1,···,a and 

j - A mixed mode 1 for this situation can be taken as 

yijk • ~i + Bij + eijk with v 1 as a fixed effect and Bij and eijk as random 

effects with zero means, variances a~ and a~, respectively, and with 

all covariances zero. Then, similar to ~r of (7), the BLUE of vi is 

Discussions of this and of linear combinations of the ~is' can be 

made similar to those of Sections 2 and 3. Analogous extensions could also 

be made for a 2-way crossed classification for combining BLUEs ~ij a yij· 

in situations where v(yij·) • a~+ a!/nij· • 
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