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An analysis of the effects of ion trapping on ion acoustic waves excited by the stimulated Bril-
louin scattering of crossing intense laser beams is presented. Ion trapping alters the dispersion of
ion acoustic waves by nonlinearly shifting the normal mode frequency and by reducing the ion Lan-
dau damping. This in turn can influence the energy transfer between two crossing laser beams in
the presence of plasma flows such that stimulated Brillouin scattering (SBS) occurs. The same ion
trapping physics can influence the saturation of SBS in other circumstances. A one-dimensional ana-
lytical model is presented along with reasonably successful comparisons of the theory to results from
particle simulations and laboratory experiments. An analysis of the vulnerability of the National
Ignition Facility Inertial Confinement Fusion point design is also presented.

PACS numbers: 52.40.Nk, 52.35Mw, 52.65.Rr

I. INTRODUCTION

Nonlinear laser-plasma interactions involving the scat-
tering of intense lasers by collective modes in a plasma
have been important in inertial confinement fusion for
many years. In many current laser-plasma experimental
facilities, multiple intense laser beams interact with tar-
get plasmas in which there can be hydrodynamic flows. If
two laser beams, the “pump” and the “probe” at frequen-
cies ω0 and ω1 respectively, cross at a finite angle in the
presence of a flow V such that the following resonance
condition is satisfied, then energy transfer from pump to
probe by stimulated Brillouin scattering can occur:

ω0 − ω1 = (k0 − k1) · V + |k0 − k1|cs (1)

where k0,1 are the wavenumbers of the two crossing laser
beams and cs is the ion sound speed appropriately defined
for the particular plasma. In a single ion species plasma,
with ZTe ≫ Ti, cs = (ZTe/mi)

1/2 where Te,i are the elec-
tron and ion temperatures, Z is the ion charge state, and
mi is the ion mass. We will restrict ourselves, without
loss of generality, to the important case where the two
lasers have the same frequency, where the condition (1)
for energy transfer from pump to probe becomes:

(k0 − k1) · V + |k0 − k1|cs = 0 (2)

We note that in order to satisfy the resonance condition
in Eq. (2), we must have |V| ≥ cs, such that the compo-
nent of the flow velocity V in the direction of transfer,
k1 − k0, is equal to the sound speed. Viewed in the
moving frame of the plasma flow, the two crossing laser
beams have unequal Doppler-shifted frequencies; and if
the ponderomotive beat wave frequency and wavenum-
ber of the two lasers resonate with the local ion acoustic
wave dispersion relation, the stimulated Brillouin scat-
tering interaction will transfer energy from the higher
frequency to the lower frequency laser beam. [1–7]

Current designs for inertial confinement fusion exper-
iments on the National Ignition Facility (NIF) [8] have
multiple laser beams crossing as they enter a cylindri-
cal radiation enclosure (“hohlraum”). A finite transfer
of energy between the crossing beams can spoil the high
degree of illumination symmetry required for the fusion
experiments in NIF. [2, 9] Thus, it is important to un-
derstand the plasma physics affecting energy transfer be-
tween crossing beams in flowing plasmas. Furthermore,
the physics of this interaction is relevant to the nonlin-
ear saturation of stimulated Brillouin scattering (SBS) in
some circumstances, as has been demonstrated in recent
experiments at the TRIDENT facility. [10–14] The sat-
uration of ion acoustic waves in laser plasma interaction
experiments is of general interest. [13]

In this paper we present a model for the influence of
ion trapping in ion acoustic waves resonantly excited by
the ponderomotive force of two nearly parallel, crossing
laser beams in a flowing plasma. With the use of a one-
dimensional analytical model, we incorporate the effects
of ion trapping producing an amplitude-dependent fre-
quency shift in the ion acoustic wave and a reduced level
of ion Landau damping into the coupled mode equa-
tions for SBS in a flowing plasma. We obtain an ana-
lytical solution for the steady-state amplification of the
“probe” laser beam (lower frequency laser in the mov-
ing frame of the plasma flow) due to its SBS interac-
tion with the “pump” laser (higher frequency laser in
the moving frame) in the limit of negligible pump de-
pletion and convection of the driven ion wave. Inclusion
of pump depletion leads to a single first-order, nonlinear
ordinary differential equation in the one spatial dimen-
sion. We present solutions for the probe amplification
and the driven ion acoustic wave amplitude with and
without pump depletion, and with an imposed frequency
mismatch which can represent the influence of having
a slightly off-resonant flow velocity. In the limit that
there is a gradient in the flow velocity that is oppositely
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directed to the direction of the amplifying probe prop-
agation, the nonlinear frequency shift in the ion wave
can influence the SBS three-wave matching condition in
such a way as to produce “auto-resonance”. A bifur-
cation arises in the nonlinear solution of the driven ion
acoustic wave amplitude that is resolved with a bound-
ary layer analysis in which convection of the ion wave is
included in the boundary layer. We apply our analysis of
ion trapping effects on SBS-resonant crossed-beam inter-
actions to BZOHAR simulations [5, 15] of experiments
on the NOVA laser facility published previously. [4, 6]
We also review applications of this analysis of ion trap-
ping effects to results from crossing beam experiments in
the OMEGA facility at the University of Rochester, [7]
to SBS experimental data obtained on TRIDENT at Los
Alamos, [10–12, 14] and to a NIF experimental scenario.

A principal conclusion of this paper is that ion trap-
ping provides a potent mechanism for detuning and sat-
urating crossed-beam SBS. The analysis of the simple
one-dimensional model presented has some subtlety (bi-
furcations, auto-resonance, and boundary layer analysis),
and the calculations presented provide valuable estimates
for use in understanding simulations and experimental
results. To be sure, multi-dimensional calculations of
crossing-beam phenomena are needed. However, it is
useful to have the one-dimensional model as a standard
for comparison. Later in the paper we remark on how
two-dimensional effects may influence the ion trapping
physics and the crossed-beam interaction.

The outline for this paper is as follows. In Sec. I we
present an introduction and motivation for the calcula-
tions. In Sec. II we give a brief overview of the mod-
ifications to the frequency and Landau damping of an
ion acoustic wave at finite amplitude when there is ion
trapping. We also show how an ion velocity distribution
that has been flattened over a trapping width in veloc-
ity space can support small-amplitude waves with fre-
quency and damping characteristics approaching those of
a finite-amplitude wave with trapping. This quasi-linear
treatment of ion waves in a modified ion distribution is
used to show the effects of ion wave frequency detuning
and dissipation reduction on SBS when the flattening of
the ion velocity distribution persists after the primary
SBS ion wave has relaxed in amplitude. In Sec. III we
present the formalism for a simple one-dimensional model
of the influence of ion trapping on crossed-beam SBS in
a flowing plasma and exhibit explicit solutions for the
steady-state energy transfer between the two laser beams
and the concomitant saturated ion wave amplitudes. The
effects of pump depletion and flow gradients (parallel and
perpendicular to the principal laser propagation direc-
tion) are examined. In Sec. IV we discuss the applica-
tion of our ion trapping model to crossed-beam SBS par-
ticle simulations and related experiments on TRIDENT
and OMEGA. Our calculations of crossed-beam energy
transfer in NIF include multidimensional beam geome-
try and evolving plasma effects. For the specific NIF
inertial confinement fusion (ICF) scenario investigated,

the transfer process is found to be non-resonant and ion
wave nonlinearities are weak. In an Appendix we present
a calculation of the transfer of momentum to the plasma
that accompanies crossed-beam energy transfer. Section
V concludes the paper with a summary and discussion.

II. ION TRAPPING EFFECTS ON ION WAVES

When the thermal motion of a charged particle is such
that its velocity is close to the phase velocity of a travel-
ing longitudinal wave, then in the wave frame the particle
can be trapped in the wave trough and its longitudinal
excursion is limited because it has insufficient kinetic en-
ergy in the wave frame. The trapping of ions and elec-
trons in longitudinal waves has been studied for many
years,[16–21] and the influence of trapping on longitudi-
nal waves that are involved in laser plasma interactions
has been of great interest. [22–28]
When a longitudinal wave has finite amplitude, the

electric field at the particle position is influenced by the
finite oscillatory displacement of the particles. An ele-
mentary analysis of the nonlinear fluid response of the
plasma to a wave leads to the result that there are har-
monic generation and quasi-linear effects that produce
modifications to the dispersion relation at second order
in the wave amplitude [16, 26, 29]. However, the kinetic
nonlinearity produced by trapped particles produces a
nonlinear modification to the dispersion relation for lon-
gitudinal waves that scales with the trapping velocity
vt = (qsφ/ms)

1/2 for small amplitudes. [17–19, 21, 26]
(The trapping velocity, vt, is the largest characteristic ve-
locity in the wave frame of a particle that can be barely
trapped by the longitudinal wave.) Because of its square
root scaling, the trapped-particle nonlinearity is domi-
nant at small amplitudes over nonlinearities that scale
quadratically. The ion-trapping effects in an ion acoustic
wave are quite analogous to the electron-trapping effects
in an electron plasma wave. [21] In the absence of colli-
sions, the Landau damping of the resonant particles van-
ishes after just a few bounce times of the deeply trapped
resonant particles. [18] In the presence of weak collisions,
the Landau damping remains finite but is reduced by
the ratio of the the collision frequency to the trapping
frequency. [17] Rose and Russell [28] have extended the
Morales and O’Neil[19] calculation to the case of a driven
longitudinal wave and obtained a similar result for the
frequency shift due to the trapping of a single species
(for small frequency shifts such that a perturbation the-
ory is valid).
The expression for the nonlinear frequency shift due to

trapping is[19]

δΩ

ω
= −α

ǫ
vt

(ωps

k

)2 ∂2f0

∂v2
, (3)

where α = O(1) (Morales and O’Neil calculated α =
1.63), vt = |qsφ/ms|1/2 is the trapping velocity for
species s (charge qs, mass ms, plasma frequency ωps) ǫ =



3

ω∂ǫ(ω, k)/∂ω, ǫ(ω, k) is the linear longitudinal dielectric
function which has been expanded perturbatively around
ǫ = 0, and f0 is the normalized one-dimensional velocity
distribution function for the species that can trap in the
longitudinal wave. Equation (3) is readily extended to
a multiple ion-species plasma. [10] (See Eq. (17).) The
formal condition for the validity of the perturbation ex-
pansion used in Morales and O’Neil’s derivation of Eq. (3)
is vt(ω/k)/v

2
th << 1, where vth = (Ts/ms)

1/2 is the ther-
mal speed of the species that traps. For ion acoustic
waves in a single ion-species plasma the condition that
there are some ions that can be trapped is approximately
ZTe/Ti < 20, where Z is the ion charge state, Te is the
electron temperature, and Ti is the ion temperature.

One-dimensional particle simulations[5, 20] of pon-
deromotively driven, monochromatic electron plasma
and ion acoustic plane waves have yielded results in rela-
tively good agreement with the nonlinear frequency shift
in Eq. (3) over more than an order of magnitude in lon-
gitudinal wave amplitude, which results extend beyond
the validity condition of the Morales and O’Neil pertur-
bation theory. [19] These simulations were dominated by
particle trapping, and the velocity distribution functions
were flattened in the vicinity of the driven wave phase
velocity.

In a collisionless plasma, resonant ions in an ion acous-
tic travelling wave (or resonant electrons in an elec-
tron plasma travelling wave) can trap and flatten their
respective velocity distribution functions over a trap-
ping width vt and relax the Landau damping to zero
in a few bounce periods of the deeply trapped particles.
Both the resonant particle trajectories and the distribu-
tion functions are self-consistently modified by the finite-
amplitude wave. In the analysis leading to the result in
Eq. (3), the wave amplitude is assumed constant. How-
ever, in physical situations where the wave amplitude is
time dependent and can relax to zero non-adiabatically
(compared to the trapped-particle bounce period), the
trapped-particle flattened velocity distribution can per-
sist on a long time scale in the absence of the wave that
produced the trapping. Such a situation is sometimes re-
alized in stimulated Brillouin and Raman backscattering
wherein the principal ion acoustic and electron plasma
waves are observed to have a strong bursty time depen-
dence in particle simulations. [5, 15, 22, 24, 27] One
mechanism for rapid collapse of high large amplitude ion
waves observed in PIC simulations is the two-ion-wave
decay instability. [5, 15] In laser-plasma-interaction ex-
periments where trapping can occur, we expect that the
modified velocity distribution functions persist until col-
lisions (classical or turbulent) or thermal motion across
the laser beams restore the flattened distribution func-
tion to a Maxwellian.

In the absence of finite-amplitude waves, a flattened
distribution function will give rise to reduced Landau
damping and to a frequency shift compared to the re-
sulting dispersion for a Maxwellian, which can be much
like that of Eq. (3). Consider the following model distri-

bution function:

f(v) = fM (v) + βf1(v − vr) + γf2(v − vr), (4a)

f1(w) = w exp(−w2/2δ2), (4b)

f2(w) = (δ2/3)(w2/δ2 − 1) exp(−w2/2δ2) (4c)

where fM is a Maxwellian, vr = ω/k is a resonant veloc-
ity chosen to match the phase velocity of a longitudinal
test wave, β and γ are constants; and f1 and f2 con-
serve particles, are localized with a width of δ around vr,
and modify the slope and second derivative of f at vr,
repectively. The standard linear Vlasov calculation of
the dispersion relation for a small-amplitude longitudi-
nal wave shows that f1 affects the Landau damping (for
β > 0 the slope at v = vr and the Landau damping are
reduced), while f2 induces a frequency shift:

δω

ω
=
2
√
2π

3ǫM

ω2
ps

k2
γδ (5)

where ǫM = ω∂ǫM/∂ω and ωps is the plasma frequency
of the resonant species s. If we set δ = vt (the trapping
width of the finite-amplitude wave responsible for the
flattening) and γ = −∂2fM/∂v2 at v = vr = ω/k, then
from Eq. (5),

δω/ω = −0.83vtv
2
r d

2fM/dv2|v=vr
, (6)

which agrees with the result of Morales and O’Neil[19]
to within 2% except that this frequency shift is for a
linear test wave. β can be independently chosen so that
∂f/∂v = 0 at v = vr and f(v) supports no Landau damp-
ing. This calculation is in the spirit of a quasi-linear cal-
culation of the linear dispersion relation for a test wave
as influenced by a flattened velocity distribution.

The results of this section and prior publications
demonstrate that trapping produces a negative frequency
shift and reduces the Landau damping for a resonant elec-
tron plasma wave or an ion acoustic wave with or without
the simultaneous presence of a large-amplitude wave. In
the next section we incorporate the frequency detuning
effects of ion trapping into a model for the nonlinear sat-
uration of the stimulated Brillouin interaction of crossed
laser beams in a flowing plasma.

III. STIMULATED BRILLOUIN INTERACTION

AND ION TRAPPING

A. Stimulated Brillouin scattering coupled-mode

equations with ion trapping detuning

We consider the following steady-state coupled-mode
equations for stimulated Brillouin scattering in one spa-
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tial dimension: [30, 31]

vgda0/dx = −Γa1as

(7a)

±vgda1/dx = Γa0a
∗

s (7b)
(

vs
d

dx
+ ν + i(∆0 − ηωs|as|1/2)

)

as = Γa0a
∗

1 (7c)

where a0 and a1 are the electromagnetic wave ampli-
tudes of the “pump” and “probe” waves (e.g., higher
and lower-frequency crossing laser beams in the flow-
ing plasma frame), as = δne/ne is the relative electron
density perturbation in the ion wave, the ± in Eq. (7b)
corresponds to forward and backward scattering, respec-
tively, vg is the group velocity of the electromagnetic
waves (taken equal here because ωs ≪ ω0, ω1), η is re-
lated to the numerical factor determined by Eq. (3) or
(6), ν is the ion wave dissipation rate, vs is the group
velocity of the sound wave (vs ≈ cs), ∆0 is a constant fre-
quency mismatch factor, Γ2|a0|2 = (ωs/ω0)ω

2
pe(v

2
0/16v

2
e)

is the square of the SBS homogeneous-medium growth
rate, v2

e = Te/me, and v0 = eE0/meω0 is the transverse
electron quiver velocity in the pump wave. We can assign
values to ∆0 to accommodate the effects of a gradient in
the flow that is perpendicular to the laser-beam propa-
gation direction.
In the limits that |a1| << |a0| and ion wave convec-

tion in Eq. (7c) is negligible compared to the dissipation
and mismatch terms, Eqs. (7b) and (7c) can be solved
analytically. We use Eq. (7c) to solve for a1 in terms of
as, introduce as = r2eiθ, use real and imaginary parts
of Eq. (7b) to determine dθ/dx in terms of dr/dx, and
obtain

d ln r2

dx
+

1

ν2 (3η
2r − 5η∆+

2∆
2

r
)
dr

dx
= κ, (8)

where ν = ν/ωs, ∆ = ∆0/ωs, and the linear spatial gain
rate for the probe amplitude is κ = Γ2/vgν. We integrate
Eq. (8) to obtain

[

(1 +∆
2
)lnr2 +

3

2

η2

ν2 r
2 − 5η∆

ν2 r
]

∣

∣

∣

∣

∣

r(x)

r(0)

= κx, (9)

for near forward scatter (−κx for backward scatter). If
the nonlinear frequency shift is a weak effect compared to
the dissipation, i.e., η/ν << 1, the probe beam amplifies

exponentially in space with rate κ/(1 + ∆
2
). For the

detuning due to ion trapping to be significant, η/ν≥O(1).
For η/ν >> 1, the ion wave and probe beam amplitudes
grow algebraically in space.

B. Pump depletion effects

To include pump depletion, we relax the assumption
that |a1| << |a0| and retain Eq. (7a). Equations (7a)

and (7b) admit the conservation law,

vg
d

dx

(

|a0|2 ± |a1|2
)

= 0, (10)

for forward and backward scatter, respectively. Hence,
|a0|2 ± |a1|2 = |a0(0)|2 ± |a1(0)|2 = P ± S, where P
and S are the pump and probe (i.e., scattered) beam
intensity boundary conditions at x = 0. It then follows
that |a0|2 = P ± S ∓ |a1|2 for forward and backward
scattering, respectively. From Eqs.(7b) and (7c) we then
obtain

±vg
d

dx
|a1|2 = 2ν|as|2, (11a)

|as|2(ν2 +∆2) = Γ2|a1|2(P ± S ∓ |a1|2), (11b)

for forward and backward scatter, where ∆ = ∆0 −
ηωs|as|1/2. We solve Eqs.(11), in the forward scatter ge-
ometry, by solving the second relation algebraically for
|as| with a convergent iterative solver at each position,
substituting the result into the right side of the first rela-
tion, and numerically integrating the differential equa-
tion for |a1|2 using a centered, second-order-accurate,
predictor-corrector scheme. Examples of the solutions
for the probe amplitudes and concomitant electron den-
sity perturbations with and without pump depletion will
be presented in Sec. IV. Because of the nonlinearities in
Eqs.(9) and (11), there are multiple physical solutions
and bifurcations possible, which are elucidated in the
next subsection and in the examples in Sec. IV.
In the case of a backscatter pump-probe geometry, S

is a priori unknown. It is |a1|2(L), the probe intensity
entering the x = L boundary of the interaction region
that is prescribed by the physical boundary conditions.
A further iteration is required to choose S to match this
condition.

C. Parallel gradients and auto-resonance

We next consider the extension of Eqs.(7b) and (7c) for
forward scattering to include a spatial gradient affecting
the ion-wave dispersion (e.g., a spatial gradient in the
flow) and assume that there is negligible pump depletion
(a0 is a constant):

vg
da1

dx
= γ0sa

∗

s,

(12a)

(vs
d

dx
+ ν + iκ′vs(x− xr)− iηωs|as|

1

2 )as = γ01a
∗

1,

(12b)

where κ′vs = d∆ωs/dx, ∆ωs = |k0 − k1|cs −
[

ω0 − ω1 +

(k0 − k1) ·vd

]

, and γ01γ0s = γ2
sbs. γsbs is the homoge-

neous temporal growth-rate for the SBS process. We next
introduce dimensionless units (temporarily suppressing
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FIG. 1: F = u2
(

1+(y−u)2
)1/2

, where u = ηωs|δne/ne|1/2/ν
determines the ion wave amplitude for a given ponderomotive
force. Multiple roots for u(F ) are possible when y >

√
24.

vsdas/dx):

dw

dy
=

2Λ

1 + (y − u)2
(13a)

u4(1 + (y − u)2) = 2β̂ew (13b)

where Λ = γ01γ0s/κ
′vgvs is the Rosenbluth [32] gain pa-

rameter, w = ln(|a1|2/|a1(y0)|2) is the probe intensity
gain exponent, u = ηωs|as|1/2/ν is the ratio of the mag-
nitude of the nonlinear frequency shift to the ion wave
damping rate, y = κ′vs(x − xr)/ν is the ratio of the in-
homogeneity frequency mismatch to the ion wave damp-
ing rate (which frequency mismatch increases linearly in
magnitude with distance away from the resonance posi-

tion xr), and β̂ = (1/2)(γ01/ν)
2(ηωs/ν)

4|a1(y0)|2. The
point y0 is an arbitrary reference point; we will take
y0 = 0, the linear matching point. u and w are thus
measures of the ion wave amplitude and the pump-probe

energy transfer, respectively. β̂ is proportional to the

product of the pump and probe intensities and β̂ = 1
implies u = 1 at y = y0, that is, the beat ponderomotive
force at the reference point is sufficient to drive the ion
wave to an amplitude where its nonlinear frequency shift
equals its damping rate.
Integration of Eq. (13a) through the resonant region

obtains the total exponentiation, G ≡ w|x=∞

x=−∞
of the

probe. This requires solving Eq. (13b) for u, given

F 2 ≡ 2β̂ exp(w). In the linear ion wave limit, where

η = β̂ = 0, trivially u = 0, giving a gain G = 2π|Λ|,
the Rosenbluth [32] result. However, for sufficiently large
ponderomotive force, F 2 > 12500/27, Eq. (13b) has three

roots for u over a range of y with y >
√
24. Otherwise

the (positive) root is unique. In Fig. 1, we plot F (u) for a

series of values of y bracketing y =
√
24 ≃ 4.9 where the

inflection point first occurs. The dotted envelope curve
is the resonant response F = u2.
To remove this ambiguity of the reduced model de-

4.0 4.5 5.0 5.5

 3

 4

 5

u

y

F=4.02

F=4.52

F=5.02

F=5.52

FIG. 2: Solutions of F = u2
(

1 + (y − u)2
)1/2

for u =

ηωs|δne/ne|1/2/ν as a function of y = κ′vs(x − xr)/ν for
F = 42, 4.52, 52, 5.52, where F is proportional to the pon-
deromotive force. The solid curves are the largest root, the
dashed curves the smallest, appropriate for κ′ >< 0, respec-
tively. The dotted curve is the condition for dF/du = 0:

u = 5y/6 ± (y2 − 24)1/2/6.

scribed by Eqs. (13), we restore the ion wave convective
term in Eq. (12b) and consider the singular limit vs → 0.
A perturbation analysis of Eq. (12b) readily shows that
whenever the roots of Eq. (13b) are unique they are sta-
ble attractors of the ODE (12b). When there are three
roots, those with the smallest and largest magnitudes are
stable and the intermediate root is unstable. Solutions
of the ion wave ODE (12b), with fixed or slowly varying
RHS, relax to the stable roots of the algebraic equation
on the scale of the ion damping length vs/ν.
The limiting root varies continuously as y and F

change – except that on disappearance of the root (at
a point where ∂F/∂u = 0 and u = 5y/6± (y2−24)1/2/6)
the solution jumps discontinuously to the remaining root.
Retention of the ion wave convective derivative resolves
the discontinuity into an internal boundary layer of thick-
ness of order the ion wave damping length. In Fig. 2 we
plot the stable root(s) of Eq. (13b) as a function of y
for several values of F . The physical root is the larger
one when κ′ > 0 and the smaller (shown dashed) when
κ′ < 0. In Fig. 3 we integrate Eq. (12b) directly over a
narrow range of y for fixed F and various values of vs

decreasing to zero, in the case κ′ > 0 to illustrate how
the solution converges towards the discontinuous one de-
scribed above. Note that condition for the neglect of the
ion wave convection is, for the case of backscatter geom-
etry, also that of being below the threshold for absolute
instability. Absolute instability would of course make our
steady-state treatment inappropriate.
We see from Eq. (13a) that the nonlinear frequency

shift moves the effective resonance point to y > 0. In-
deed, the maximum ion wave response occurs where
y = u =

√
F , as can also be seen in Fig. 2. If the ion
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FIG. 3: Curves A and B are the largest and smallest solutions

of F = u2
(

1 + (y − u)2
)1/2

for F = 50. Curves D and C are
corresponding solutions of Eq. (12b) with decreasing values
of vs – which converge to curve A as vs vanishes.

104 102 100
 0
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 2
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G

β

<

FIG. 4: Total gain G ≡ w|∞−∞ as a function of

β̂ ≡ (1/2)(γ01/ν)
2(ηωs/ν)

4|a1(0)|2 for linear amplifications
exp(2πΛ) = 1.2, 2, 5, 10. Solid (dashed) curves are the (anti-
)autoresonant cases.

wave nonlinear frequency shift is small compared to the
damping rate throughout the resonant region (u ≪ 1),
clearly the gain G remains close to the linear Rosenbluth
result. The same is true even if the shift is not small
provided the gain is small. In this case u is finite but
approximately constant through the resonant interaction
region.

The more interesting situation, in which the nonlinear
frequency shift is effective, is when both the shift and the
gain are finite. In this case, the u in the denominator of
Eq. (13a) cannot be treated as constant. Here, the sign
of κ′ is important. The sign of κ′ is determined by the di-
rection of the gradient. κ′ > 0 corresponds to increasing

sound speed or decreasing flow velocity in the direction
of probe amplification. In this case, ∂u/∂y > 0 giving
rise to partial cancellation in the (y−u)2 term in the de-
nominator of Eq. (13a), which nonlinearly enhances the
magnitude of the probe intensity gain (“auto-resonant”).
Conversely, when κ′ < 0, ∂u/∂y < 0 and the increas-
ing trapping nonlinearity enhances the gradient detuning
of the resonance (“anti-auto-resonant”). The nonlinear
gain in this case is less than the Rosenbluth gain. In
Fig. 4, we plot the gain G as a function of the nonlinear-

ity parameter β̂ for several values of the gain parameter

|Λ| (exp(2π|Λ|) = [1.2, 2, 5, 10]). Note that as β̂ → 0,

the gain G goes to the Rosenbluth limit 2π|Λ|. As β̂ in-
creases, the resulting gain increases in the auto-resonant
case and decreases when anti-auto-resonant. The effect
of ion wave nonlinearity increases with increasing gain.

IV. APPLICATIONS TO PARTICLE

SIMULATIONS AND EXPERIMENTS

In this section we apply the foregoing analysis to ex-
amples drawn from particle simulations of crossed-beam
interactions and to crossed-beam and SBS experiments.
We also consider a crossed-beam scenario for parame-
ters proposed for experiments in the National Ignition
Facility. Our theory of the SBS interaction including
trapped ion effects indicates that trapping can lead to
significant detuning of the SBS interaction if the mag-
nitude of the numerical factor η appearing in the non-
linear frequency shift determined in Eq. (3) or (6) is big
enough so that the frequency shift term is competitive
with the ion wave damping rate. The frequency shift is
given by −ηωs(δne/ne)

1/2. In Fig. 5 we plot the value of
η as a function of ZTe/Ti for a single-ion-species plasma
for various values of kaλe, where ka is the ion acous-
tic wavenumber and λe = ve/ωpe is the electron Debye
length. We conclude that ion-trapping detuning can af-
fect the resonant SBS interaction for ZTe/Ti < 20, and
this is seen in the following examples.

A. Particle simulations of crossed-beam energy

transfer

The BZOHAR[16] fluid-particle hybrid simulation
code was used to undertake simulations of the resonant
SBS interaction of opposed laser beams for experiments
in NOVA[6], which was reported in an earlier publica-
tion. [5] These simulations were undertaken in a rect-
angular box (64λ0 in x and 4λ0 in y, where λ0 is the
laser wavelength) with periodic boundary conditions in
y and open boundary conditions on the electromagnetic
waves in x. A detailed description of the simulations is
given in Ref. 5. The simulations exhibited significant pe-
riods of high probe amplification (reflectivity) early in
the simulations followed by a general reduction in the
probe amplification toward a quasi-steady state in which
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FIG. 5: Nonlinear frequency shift coefficient η vs. ZTe/Ti for
various values of kaλe determined by Eq. (3).

there was significant trapping, flattening of the longitudi-
nal ion velocity distribution, and hot-ion tail formation.
In Fig. 6 we compare theoretical predictions based on
Eq. (9) for the intensity amplifications of the backscat-
tered probe beam exiting the plasma |a1/a1(0)|2 to those
observed at the end of the BZOHAR simulations (40
psec) as a function of the ratio of input intensities of
the pump wave to the input intensity of the probe wave
(Iin

pump = 1.6 × 1015W/cm2) in a Be plasma with time-
averaged ion acoustic damping ν/ωs = 0.03, η = 0.4,
∆0 = 0, kaλe = 0.38, λ0 = 0.35µm wavelength light,
ne/nc = 0.1, v0/ve = 0.2, Te = 2KeV , and ZTe/Ti = 9.6
with an effective interaction length L = 48λ0 determined
by an imposed modulation of the plasma drift velocity.
The ion-trapping theory agrees quite well with the simu-
lation data for the parameters used to evaluate the the-
ory.

B. Applications to experiments

The trapping theory derived here was applied to
SBS backscatter experiments in the TRIDENT Laser
Facility[33] and reported in earlier publications. [10–12]
In the TRIDENT SBS experiments, gold and berylium
target plasmas were used, and SBS reflectivities, ion wave
amplitudes (relative to thermal levels), and ion heating
were diagnosed. Based on linear theory for the SBS re-
flectivities in these experiments, one expects ∼ 100% re-
flectivities; instead ∼ 10% reflectivities were observed.
The Thomson scattering diagnostics show that ion heat-
ing correlates with higher ion-acoustic wave amplitudes
detected. In Fig. 7 (taken from Ref. 10) are shown the
observed SBS reflectivities in TRIDENT as a function of
the percent concentration of Au as well as the predic-
tions of Eq. (9) using a residual ion wave damping set by
electron Landau damping and collisions ν/ωs = 0.015,
L = 800µm, TBe/Te = 1/2, I in

pump = 3 × 1015W/cm2,

ne = 1020cm−3. Here nc is the critical density where
the laser frequency equals the local electron plasma fre-
quency. The value of η in Eq. (9) was determined as
a function of the Au concentration using Eq. (3) and is
shown in Fig. 8 (also taken from Ref. 10). The value of η
increases while the phase velocity decreases for increas-
ing Au concentration. To obtain the theoretical values in
Fig. 7, the higher value of η corresponding to the higher
ion temperature (after the ions have heated due to the
trapping) was used. We note that the nonlinear detuning
from ion trapping becomes important in this case when
|δn/ne| ≈ ν2/η2ω2

s ≈ 0.1%, i.e., when the nonlinear fre-
quency shift and the ion wave damping are comparable.
The spread of theory values in Fig. 7 is due to the uncer-
tainties in the electron density and the interaction beam
intensity. For an Au concentration exceeding 10%, in-
verse bremsstrahlung and collisional ion effects need to
be included. The theory captures the trends in the ex-
perimental data quite well, and there is semi-quantitative
agreement.

We caution that applying our ion-trapping detuning
theory to SBS raises some questions. In the crossed-beam
interaction, the beat-wave frequency and wavenumber in
the flowing plasma are well defined because of the fi-
nite amplitudes of the pump and probe waves. For the
case of SBS amplification of the probe signal from noise,
a finite-frequency-bandwidth noise source is a more ap-
propriate model for the probe boundary condition. SBS
amplification over a significant bandwidth might reduce
both the ion-trapping effects (by providing a decorrela-
tion mechanism) and the concomitant detuning influence
on the SBS. However, even with finite bandwidth and loss
of coherent wave-particle trapping, flattening of the ion
distribution function over a range of phase velocities can
still occur due to wave-particle interaction. Such flatten-
ing can result in similar levels of frequency shift in the ion
waves and reduction of the linear ion Landau damping
as those due to trapping (see Sec. II), in which case the
predictions of our trapping theory for the SBS saturation
may still be relevant.

Our analysis of the effects of ion trapping on the SBS
interaction has also been applied to crossed-beam exper-
iments at the University of Rochester OMEGA laser fa-
cility. [7] Here we provide additional calculations. The
geometry in the OMEGA experiments corresponds to
nearly forward scattering with the plasma density and
flow gradients largely perpendicular to the laser prop-
agation direction. In Figs. 9a and 9b we show solu-
tions of Eq. (9) with no pump depletion and Eq. (11)
with pump depletion included, respectively, for a scan
of pump intensities and with parameters ne/nc = 3%
and 6.4%, intensity attenuation factors to account for
inverse bremsstrahlung equal to 93% and 70% for the
low and high-density cases, residual ion wave damp-
ing due to electron Landau damping and ion collisions
ν/ωs = 0.015, ∆nl/ωs = −0.5|δn/ne|1/2, Iin

probe = 1.2 ×
1014W/cm2, λ0 = 0.35µm, Te ≈ 1.2KeV , and effective
length L = 65µm. In Ref. 7 we presented similar cal-
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FIG. 6: From BZOHAR hybrid simulations of opposed crossed beams, probe intensity amplifications and maximum relative
electron density perturbations in the ion wave vs. input ratio Iin

pump/I
in
probe.
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FIG. 7: SBS reflectivity as a function of Au concentration
for TRIDENT SBS experiments. The expectation of linear
theory is indicated by the black line. The shaded band cor-
responds to the predictions of Eq. (9) including experimental
uncertainties in the parameters.
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FIG. 8: The nonlinear frequency shift coefficient η and the
ion wave phase velocity vs. Au concentration in a Be + Au
plasma at ion temperatures before and after ion heating.

culations using L = 75µm, which we have revised here
based on a more recent, improved numerical calculation
of the two-dimensional SBS coupled-mode equations tak-
ing into account a finite beam-overlap region, the relative
aiming of the two laser beams, refraction, the evolving
gradients of the expanding plasma, and nonlinear laser-
beam bending due to the flow and ponderomotive effects.
However, this numerical calculation omits ion wave non-
linearity and pump depletion. The revised effective in-
teraction length L = 65µm was calculated by equating
eκL to the observed beam-averaged amplification of the
probe amplitude in the two-dimensional numerical calcu-
lation. Including pump depletion in the calculations dis-
played in Fig. 11 reduced the probe intensity amplifica-
tion by < 10% at the highest pump power and by a lesser
amount at the lower pump powers. In Figs. 10 and 11 we
show the results of solutions for Eq. (9) with no pump
depletion and Eq. (11) with pump depletion included, re-
spectively, for a scan of probe intensities with parameters
ne/nc = 6.4%, I in

pump = 7×1014W/cm2 and other param-
eters the same as in the pump intensity scan in Figs. 9.
Inclusion of pump depletion reduces the probe amplifi-
cations by < 10% in the results shown in Figs. 9b and
11. The decrease in probe amplification with increasing
probe intensity is a clear signature of a nonlinear effect
(in the absence of nonlinear saturation the probe amplifi-
cation as a function of probe intensity is a constant). The
theoretical results in Figs. 11, 9 and 10 capture the trends
of the experimental data quite well. However, these re-
sults do not convince us that the ion trapping nonlin-
earity is the dominant nonlinearity; in these experiments
there were measurements of the transmitted beam inten-
sities but no Thomson scattering measurements of con-
comitant ion wave amplitudes or ion heating, and local
pump depletion in intense speckles may have occurred.

To address the influence of a fixed frequency mis-
match, for example due to the crossed-beam interac-
tion not occurring at the Mach 1 layer (vd = cs), we
have solved Eq. (9) as a function of the drift speed
vd/cs that determines the linear mismatch frequency for
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FIG. 9: Theoretical estimates (curves) and OMEGA experimental observations (points) of probe intensity amplifications and
maximum ion wave electron density perturbations vs. input ratio Iin

pump/I
in
probe for ne/nc = 3% and 6.4%, (a) with no pump

depletion and (b) with pump depletion included in the theory.

Iin
pump = 7× 1014W/cm2, Iin

probe/I
in
pump = 0.17 and 10−6,

ne/nc = 6.4%, L = 65µm, and other parameters the
same as for Fig. 9. The gain curve with respect to vd/cs
in Fig. 12 shows that the peak amplitude is shifted non-
linearly to lower drift velocities (where pump depletion
effects should be included for the higher input probe in-
tensity case) because of the auto-resonance effect. The
probe amplification as a function of drift speed has a
slower variation for vd > cs, which is related to anti-
auto-resonance. The discontinuous behavior observed in
the gain curve is directly related to the omission of the
ion wave convection discussed in Sec. III. The nonlin-
ear detuning effect in the crossed-beam case broadens
the gain curve and shifts it to lower drift speeds. The
nonlinear effects are much weaker in the SBS limit con-
sidered (Iin

probe/I
in
pump = 10−6). For the same parame-

ters, we did additional calculations in which the electron
density of the freely expanding target plasma was re-
lated to the drift velocity of the expanding plasma as
described by the simple self-similar solution, ne∼e−x/cst

with x = vt so that ne∼e−v/cs . There was very little
change in the probe gain and peak electron density curves
because these curves peak in a relatively narrow range
near the Mach 1 layer.

C. Application to the NIF ICF point design

In the National Ignition Facility there will be multi-
ple crossing laser beams entering the hohlraum through
two laser entrance holes (LEH). Plasma created inside
the hohlraum will stream out of the LEH supersonically
and then fan out radially. Inside the LEH the flow will
be subsonic. If the resonance condition in Eq. (2) is sat-
isfied by the crossing beams, then the power distribution
between the inner and outer laser beams may be altered,
which can then spoil the implosion symmetry of the tar-
get capsule. A specific scenario is depicted in Figs. 13
and 14 based on calculation of the hohlraum plasma and
laser dynamics performed with the LASNEX [34] two-
dimensional and HYDRA [35, 36] laser-fusion simulation
codes [37, 38]. We see in Fig. 13 that the most vulnerable
time for crossed-beam energy transfer is when the inner
beams reach their peak power at 15.2 ns. At this point in
time, the NIF laser is at its nominal design power limit
and so one could not plan to compensate for power trans-
fer by putting more power into the inner beams. At this
time the envelope focal intensity of the inner and outer
beams are 1.× 1015 and 6.7× 1014W/cm2, respectively.
There is little absorption or diffractive spreading of the
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FIG. 10: Theoretical estimates (curves) and OMEGA experi-
mental observations (points) of probe intensity amplifications
and maximum ion wave electron density perturbations vs. in-
put probe intensity (in units of 1014W/cm2) for ne/nc = 6.4%
with no pump depletion included in the theory.

beams in the crossing region outside the LEH, so these in-
tensities are also representative there. The approximate
location of the crossing-beam interaction is depicted in
Fig. 14. There are in fact four cones of beams enter-
ing each LEH. Eight quads at 50◦ and at 44.5◦ to the
hohlraum axis are termed the outer beams. Four quads
at 30◦ andat 23◦ form the inner beams. Each cone of
beams is arranged symmetrically around the azimuthal
axis. The geometry of the beams, the flow and the res-
onance condition for crossed beam energy transfer are
complicated. The radial fanning of the flow limits where
the resonance condition can be satisfied. Indeed we see
that in this design, the simulations indicate that the res-
onance condition is never satisfied inside the crossing vol-
umes despite the flow speed being supersonic throughout.
However, lack of resonance does not mean that power

transfer cannot occur, only that it will be significantly
reduced. In Fig. 16 we plot the amplitude spatial growth
rate, g for the forward SBS responsible for power trans-
fer as a function of transverse velocity for two typical

FIG. 11: Theoretical estimates (curves) and OMEGA experi-
mental observations (points) of probe intensity amplifications
and maximum ion wave electron density perturbations vs. in-
put probe intensity (in units of 1014W/cm2) for ne/nc = 6.4%
with pump depletion included in the theory.

conditions bracketing those in the crossing volume, given
by

g =
1

8

(v0
c

)2 k2

k0
Im(χe(1 + χi)/(1 + χe + χi) (14)

Except for a narrow jet of H/He plasma on the hohlraum
axis about 400µm in diameter, the crossing volume is
filled with fully ionized CH ablated from a coating on
the LEH. The curves in Fig. 16 is computed using elec-
tron and ion susceptibilities χei(−kV, k) for this material.
At the Mach 1 resonance, we see that amplitude spatial
growth rates range from 8-12 cm−1. However, the peak
transverse velocities in the crossing region are only 2-
3×107 cm/sec, reducing the growth rates by an order of
magnitude.
To quantify the expected beam to beam transfer, for

each inner/outer beam pair, the gain coefficient g (in Eq.
(14)) was integrated along the inner beam path through
the region of intersection with the outer beam. This
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FIG. 12: Theoretical estimates based on Eq. (9) for the probe
intensity amplifications and maximum ion wave electron den-
sity perturbations vs. vd/cs for Iin

probe/I
in
pump = 0.17 and 10−6

with Iin
pump = 7× 1014W/cm2 for OMEGA crossing-beam ex-

perimental conditions.

FIG. 13: Beam power versus time for the NIF ICF point
design. The inner beam power peaks at 15.2ns, the outer at
16.5ns.

FIG. 14: Schematic of crossing beams in hohlraums at the
NIF and flow Mach number for the component of the flow
velocity parallel to the beat wavenumber of the crossing laser
beams. The outer beams are dotted, the inner dashed.

FIG. 15: Spatial gain for transfer from a 23◦ beam to the
adjacent 44◦ beam as a function of position in the 23◦ beam
cross-section.

yielded a total linear gain G as a function of position on
the (elliptical) beam cross-section. Fig. 15 shows the re-
sult of this calculation for the crossing of a 23◦ beam with
its neighbour 44◦ beam in azimuth. For this purpose, the
results of the 3D HYDRA simulations were used to pro-
vide the required plasma conditions at 15.2ns. However,
the azimuthal variation of plasma conditions in the cross-
ing region proved not to be significant. Two-dimensional
simulations would in fact have been adequate for this
purpose. The figure shows that the intensity gain, 2G
has a broad peak around 0.22.
In order to account for depletion of the inner beam

power by the transfer process, the Tang [39] formula was
used on a ray-by-ray basis. The amplification exp(2G)
was replaced by

exp(2G)→ (1+β) exp(2G(1+β))/(1+β exp(2G(1+β))
(15)
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Beams 0Å 1Å 2Å

23◦ → 44◦ 10% 5% 3%
23◦ → 50◦ 6% 3% 2%
30◦ → 44◦ 15% 7% 2%
30◦ → 50◦ 25% 13% 6%

TABLE I: Predicted power transfer from NIF inner to outer
beams at 15.2ns in the Scale 1.1 point design, with inner
beams red-shifted by 0, 1 and 2Å

FIG. 16: Crossed beam amplitude spatial growth rate vs.
transverse velocity. Beam intensities are 1.0×1015W/cm2 and
6.7 × 1015W/cm2. Plasma conditions are Te=4.4 (3.8) KeV,
Ti=1.2 (0.85) KeV, Ne/Nc= 0.027 (0.017) in CH plasma for
the upper (lower) curve.

where β is the initial ratio of outer and inner beam inten-
sities. Integrating the result over the beam cross-section
yielded a prediction for for the fractional power transfer,
accounting for pump depletion, shown in Table (I). In-
cluded in this table are the corresponding results when
the inner beams are red-shifted by 1Å and 2Å (at 1ω).
These shifts put the ion wave farther off resonance, reduc-
ing the transfer. The NIF laser is designed to have such
a capability, so this would be a possible way to mitigate
the effects of power transfer.
What about the nonlinear trapping-induced frequency

shifts that are the main theme of this paper? In this NIF
scenario, they appear to have negligible effect. The pre-
dicted shifts are both small and less effective because the
ion waves are driven off-resonance. In Figs. 17 and 18
the ion wave amplitude and trapping frequency shift are
plotted as a function of transverse velocity for the con-
ditions of Fig. 16. Kinetically derived expressions were
used:

eφ

Te
=

∣

∣

∣

∣

v0v1
4v2

Te

χe

1 + χe + χi

∣

∣

∣

∣

(16)

FIG. 17: Ion wave amplitude vs. transverse velocity. Beam
intensities are 1.0×1015W/cm2 and 6.7×1015W/cm2. Plasma
conditions are Te=4.4 (3.8) KeV, Ti=1.2 (0.85) KeV, Ne/Nc=
0.027 (0.017) in CH plasma for the solid (dashed) curve.

FIG. 18: Ion wave trapped particle frequency shift vs. trans-
verse velocity. Beam intensities are 1.0 × 1015W/cm2 and
6.7 × 1015W/cm2. Plasma conditions are Te=4.4 (3.8) KeV,
Ti=1.2 (0.85) KeV, Ne/Nc= 0.027 (0.017) in CH plasma for
the dark (light) curve.

and

δω

ω
= −2

√
2π

3ǫ

√

eφ
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∑
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ω2
pi

k2

√

ZiTe

Mi

d2fMi

dv2 v=ω/k
(17)

(the multi-species generalization of Eq. (6)). The trap-
ping induced shifts, even if the ion waves were driven res-
onantly, are less than 3% of the ion acoustic frequency,
which is less than the resonance width of the ion wave,
making them ineffective. Most of the contribution to the
shift comes from the hydrogen ions in the CH plasma,
which in Eq. (17) have a relatively small weight.
Ion wave steepening and harmonic generation effects
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FIG. 19: The timescale for momentum deposition by light mo-
mentum ((1/ρcs)dp/dt)

−1) is plotted versus the transverse ve-
locity (in cm/sec). Plasma conditions are Te=4.4 (3.8) KeV,
Ti=1.2 (0.85) KeV, Ne/Nc= 0.027 (0.017) in CH plasma for
the solid (dashed) curve.

scale with the square of the ion wave amplitude and so
should be negligible. Likewise, two-ion-decay [5] thresh-
olds will not be exceeded. It thus appears that ion wave
nonlinearities will not mitigate the power transfer.

Another potential mechanism that could inhibit power
transfer is the associated deposition of light momentum
in the plasma [40], which would slow the flow and push
the ion waves farther off resonance. In the Appendix,
we outline the calculation of this effect. In Fig. 19 the
time-scale for this process is plotted versus transverse
velocity for the conditions of Fig. 16. We see that the
characteristic time for the plasma flow to be slowed by
the power transfer in these conditions is about 10ns on
resonance and about 100ns in the hydrocode-predicted
transverse flow velocities of 2-3×107 cm/sec. Because
from Fig. 13, we see that the inner beams only remain
at peak power for about 3ns, it appears that momentum
deposition has insufficient time to be active.

It is not yet clear how robust these estimates are to
possible changes in the NIF ICF target design. The pre-
dicted transverse velocities are at the foot of the reso-
nance curve of Fig. 16, so relatively small changes could
cause large changes in the predicted transfer. On the
other hand, by analogy with gas dynamic flows through
nozzles, it is plausible that the Mach number distribution
outside the LEH is highly insensitive to changes in the
design. As a test of this hypothesis, we computed the
flow through a circular aperture of an ideal gas using the
method of characteristics [41]. The flow was taken to be
sonic across the aperture. The ratio of specific heats was
taken to be one, the isothermal limit. Temperatures and
densities scale to the conditions in the aperture, and the
flow is geometrically self-similar, so there are no other
free parameters in the problem. We see in Fig. 20 that
the resonant Mach 1 contour from the aperture problem

FIG. 20: Contours of the transfer component of the flow Mach
number from LASNEX (at 15.2ns) and isothermal steady
state expansion theory vs. axial and radial distance in front
of the LEH.

and from the LASNEX simulation of the NIF ICF point
design are quite close, which suggests that the Mach num-
ber distribution outside the LEH is indeed generic. The
most obvious discrepancies are in the H/He jet near the
hohlraum axis (the isothermal model assumes a single
species) and near the bottom edge of the LEH. However,
these areas lie outside the crossing region.

V. SUMMARY AND DISCUSSION

In this paper we have constructed model equations de-
scribing the detuning effects of trapped-ion induced non-
linear frequency shifts in ion acoustic waves on the SBS
interaction. Trapping also serves to reduce the ion Lan-
dau damping component of the total ion wave dissipation,
which has an important influence on the SBS gain. The
model is particularly relevant to the crossed-beam SBS
interaction where the driving frequency due to the beat
of the two laser beams in the plasma drift frame is well
defined. Whether there is a large-amplitude ion wave
present or not, the trapping induced flattening of the
ion velocity distribution function shifts the ion frequency
to lower values and reduces ion Landau damping. We
expect that the modified velocity distribution functions
can persist until collisions and thermal motion across the
laser beams restore the flattened distribution functions
to Maxwellian. The ion collision and ion thermal transit
times across the laser beam need to be much longer than
the ion bounce time due to trapping (2π/kavt) and longer
than the time scale for the SBS interaction to evolve to a
nonlinear state, for the detuning due to trapping to have
a significant influence on the SBS interaction.
The frequency shift and the reduced ion Landau damp-

ing are the central elements in our model of the trap-
ping effects on SBS. We have solved steady-state one-
dimensional equations for the amplification of the probe
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electromagnetic wave (the lower frequency wave in the
plasma frame of reference) and for the concomitant elec-
tron density perturbation in the ion wave. We have also
included pump depletion and the effects of a linear fre-
quency mismatch, such as would accrue from crossing
beams that interact non-resonantly. Because of the non-
linear frequency shift and the neglect of the ion wave con-
vection, there can be multiple solutions for the probe am-
plification and the self-consistent ion wave electron den-
sity perturbation. By means of a boundary-layer analy-
sis, we have resolved this ambiguity and determined the
physically correct solution.
We have applied our analysis of ion trapping and its

effects on the SBS interaction to several examples of
interest, including (i) particle simulations of a crossed-
beam experiment that was conducted in the NOVA facil-
ity, (ii) a set of SBS experiments in the TRIDENT laser
facility, (iii) crossed-beam experiments in the OMEGA
laser facility, and (iv) proposed multiple laser-beam op-
eration of the NIF laser facility. Our simplified theory
successfully tracks the data from the BZOHAR simula-
tions and the TRIDENT and OMEGA experiments for
reasonable parameters used in the theory. The projection
for NIF involves fairly complicated geometrical consider-
ations. However, detailed post-processing of hydrocode
simulations of the ICF point design indicate that the laser
beams never meet the resonance condition for crossed
beam transfer and ion wave nonlinearities are likely weak.
Nevertheless, despite this, an analysis including pump de-
pletion effects predicts significant energy transfer, which
could be mitigated by modest shifts (1-2Å) of the inner
beam laser frequency relative to the inner.
Additional research on the crossed-beam interaction

is being undertaken with more sophisticated, multi-
dimensional calculations including laser-beam speckle
structure.
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APPENDIX A: MOMENTUM DEPOSITION BY

CROSSED BEAM POWER TRANSFER

We can calculate the momentum transfer directly from
the forces on the electrons and ions. The linearized
Vlasov equation describing the small-amplitude electron
and ion response to the beat ponderomotive potential at
frequency ω and wavenumber k is

(−iω+ikv)f1s−(qs/ms)(φ+δesφp)ik∂f0s/∂v = 0. (A1)

where s is a species label. The beat ponderomo-
tive potential φp exp(−iωt + ikx) + c.c., where φp =
−(me/4e)v0v

∗

1 acts only on the electrons ( δes is a Kro-
necker delta function). The Poisson equation for the self-
consistent electrostatic potential φ

k2φ = 4π
∑

s

qsn1s = 4π
∑

s

qsn0s

∫

dvf1s (A2)

closes the system. Defining the electron and ion linear
susceptibilities in the usual manner with

χs(ω, k) =
ω2

ps

k2

∫

dv
∂f0s/∂v

ω − kv + iǫ
(A3)

we have

n1e =
k2χe

4πe
(φ+ φp) (A4)

n1i = − k2χi

4πZie
φ (A5)

φ = −φpχe/(1 + χe + χi). (A6)

Summing the forces on the particles, we obtain
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dt
=

∑

s

msn
∗

1s(−
qs

ms
ik(φ+ δesφp)) + c.c. (A7)

=
k3

2π

(

|φ|2Im(χi) + |φ+ φp|2Im(χe)
)

(A8)

=
k3

2π
|φp|2K (A9)

=

(

m2
e

32πe2

)

k3v2
0v

2
1K (A10)

=

(

1

8

)

kneTe

(

v0
vTe

)2 (

v1
vTe

)2

k2λ2
eK (A11)

where we have defined

K = Im(χe(1 + χi)/(1 + χe + χi)) (A12)

and P is the plasma momentum density. The beam inten-
sities are expressed in terms of the oscillatory velocities
I0,1 = (c/8π)(mω0v0,1/e)

2. Here me, ne, Te, vTe and
λe are the electron mass, density, temperature, thermal
velocity and Debye length, respectively.
This result takes a more transparent form in the reso-

nant, single ion species, quasi-neutral fluid limit in which
ZTe ≫ Ti and k

2λ2
de ≪ 1, when k2λ2

eK = 2ω/νa, where
ω = kcs and νa are the ion wave frequency and damp-
ing rates and c2s = ZTe/Mi is the corresponding sound
speed:

1

ρmcs

dP

dt
=

1

16
kcs

(

v0
vTe

)2 (

v1
vTe

)2
ω

νa
(A13)

In this limit, on resonance, the ion wave amplitude is
given by

δn/n = eφ/Te = (1/8)(v0v
∗

1/v
2
Te)(kcs/νa) exp(−iωt+ikx)+c.c.,

(A14)
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from which

(1/ρmcs)dP/dt = 2νa|δn/n|2rms. (A15)

We see that the momentum is first transferred to ion
waves by the beat ponderomotive force on the electrons.
Ion wave dissipation then transfers this momentum to
the bulk fluid. The characteristic time is determined by
the ion wave amplitude and damping rate.

An alternative derivation considers instead the change
in momentum of the light, in which case the factor K
then enters through the amplitude spatial growth rate g
of the forward SBS process, given by:

g =
1

8

(v0
c

)2 k2

k0
K (A16)
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