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Abstract: This paper evaluates the effects of JPEG compression on image classification using the
Vision Transformer (ViT). In recent years, many studies have been carried out to classify images in
the encrypted domain for privacy preservation. Previously, the authors proposed an image classifi-
cation method that encrypts both a trained ViT model and test images. Here, an encryption-then-
compression system was employed to encrypt the test images, and the ViT model was preliminarily
trained by plain images. The classification accuracy in the previous method was exactly equal to
that without any encryption for the trained ViT model and test images. However, even though the
encrypted test images can be compressible, the practical effects of JPEG, which is a typical lossy
compression method, have not been investigated so far. In this paper, we extend our previous method
by compressing the encrypted test images with JPEG and verify the classification accuracy for the
compressed encrypted-images. Through our experiments, we confirm that the amount of data in
the encrypted images can be significantly reduced by JPEG compression, while the classification
accuracy of the compressed encrypted-images is highly preserved. For example, when the quality
factor is set to 85, this paper shows that the classification accuracy can be maintained at over 98%
with a more than 90% reduction in the amount of image data. Additionally, the effectiveness of
JPEG compression is demonstrated through comparison with linear quantization. To the best of our
knowledge, this is the first study to classify JPEG-compressed encrypted images without sacrificing
high accuracy. Through our study, we have come to the conclusion that we can classify compressed
encrypted-images without degradation to accuracy.

Keywords: JPEG compression; vision transformer; encryption-then-compression system; encrypted
domain; image classification

1. Introduction

Significant advances in deep-learning technology have made it possible to automate
and accelerate various tasks. In particular, image classification has been put to practical use
in a variety of applications, such as face recognition and anomaly detection. In addition,
cloud services have become popular among common organizations and individuals for the
purpose of reducing costs, facilitating data sharing, and so on. For these reasons, image
classification tasks are increasingly being accomplished through cloud servers. To utilize a
model on a cloud server, a user should transmit test images to the server.

However, cloud servers are generally not reliable, and thus test images are under
threat of being compromised outside of the servers. As a result, the copyright and privacy
information in the test images might be disclosed to third parties. Additionally, the user
generally needs to classify a large number of images; in other words, a large amount of
image data should be transmitted to the server in succession. Therefore, it is desirable to
minimize the data amount of the test images.
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Many compression methods have been proposed to reduce the data amount of images.
Compression methods can be classified into two categories: lossless and lossy methods.
In general, lossy methods can more efficiently reduce the data amount compared with
lossless methods. A typical lossy method is JPEG, which is one of the image compression
standards. On the basis of human visual features, JPEG compression significantly reduces
the information of high-frequency components and commonly applies 4:2:0 downsam-
pling, i.e., horizontal and vertical downsampling of chrominance. Consequently, we can
notably reduce the data amount while preserving high image quality. It is noted that JPEG
compression can adjust the image quality and data amount by varying the quality factor.

In recent years, there has been a great amount of effort to develop secure image-
classification systems with copyright and privacy protection for images. Federated learning
is one technique that can be used in developing such systems [1–3]. Multiple clients
individually train a single model by using their own data, while a central server integrates
the parameters trained by each client. This technique can protect training images but
not test images. On another front, secure computation is also drawing attention. This
technique can directly adapt computational operations to encrypted data. A large number
of methods have been proposed that automatically classify data encrypted with secure
computation [4–6]. These methods can protect test data; however, the encrypted data can
hardly be compressed. Even if the encrypted data is successfully compressed, it is difficult
to decrypt the data.

Another approach for protecting copyright and privacy information in test images is
to conceal the visual information. Image encryption is a typical technique for concealing
visual information, and image-encryption methods have been actively studied to train
encrypted images using deep neural networks [3,7–17]. The method in [3] combines
federated learning with image encryption for test images. Encrypted image classification
via a cloud server assumes that a user encrypts test images and transmits the encrypted
images to a server. Thus, it is desirable to be able to compress the encrypted images in
terms of the transmission efficiency; however, most such methods [3,9–16] do not consider
image compression. Aprilpyone et al. employed the encryption-then-compression (EtC)
system [18] as an image encryption algorithm so that the encrypted images (hereafter,
EtC images) possess a high compression performance [8]. Some other methods protect
visual information using machine learning instead of encryption and classify protected
images [19,20]. The methods [8–15,19,20], however, degrade the classification accuracy due
to the protection of visual information.

The method in [8] employs the Vision Transformer (ViT) [21] and ConvMixer [22],
which are called isotropic networks, as image-classification models. They are known to
provide a higher classification accuracy compared with convolutional neural networks,
which are the conventional mainstream image-classification models. Kiya et al. focused
on the properties of ViT to maintain the classification accuracy for encrypted images [16].
This method prepares a series of encryption keys (hereafter, key set) and uses it to encrypt
not only test images but also a trained ViT model. The encrypted ViT model is eventually
suitable for the encrypted images. This is the first study that perfectly preserves the
classification accuracy for encrypted images. However, the image encryption process in
this method employs a pixel-wise transformation, so the encrypted images can hardly
be compressed.

As an extension of the method [16], we previously introduced an EtC system for the
image encryption process [17]. The EtC system is based on a block-wise transformation,
and thus the EtC images can maintain high compression performance. Further, this method
does not cause any degradation to the classification accuracy for EtC images by using a
model encryption algorithm that corresponds to the EtC system. Therefore, we not only
successfully avoid any degradation to the classification accuracy but also compress the
encrypted images. In [17], we surveyed the performance of lossless compression using
JPEG-LS [23].
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On the basis of our previous method [17], this paper, for the first time, investigates the
effects of JPEG compression, which is a widely used lossy compression standard, on the
classification accuracy. In our experiments, we confirm that a high classification accuracy
can be preserved even for JPEG-compressed EtC images. Moreover, this paper verifies the
effectiveness of JPEG compression in terms of classification and compression performance
compared with linear quantization.

In this paper, we demonstrate that JPEG noise added to the high-frequency component
barely degrades the accuracy of ViT classification. To the best of our knowledge, this is the
only study that successfully compresses encrypted images using the JPEG lossy standard
and classifies the compressed encrypted-images with very little degradation to accuracy.
Through a series of studies, we reach the conclusion that compressed EtC images can be
classified without degradation to accuracy.

2. Preparation

We give an overview of ViT [21] and summarize our previous method [17] in this
section. We previously proposed an image classification method using ViT with novel
advantages; copyrights for both a trained ViT model and test images can be protected
simultaneously without any decrease in the accuracy of classification, and the test images
are effectively compressed using lossless image compression standards. This paper verifies
the effects of JPEG lossy compression on the classification accuracy of ViT on the basis of
our previous method.

2.1. Vision Transformer

An attention mechanism dynamically identifies the location that should be focused
on within input data. This mechanism has notably contributed to enhancing accuracy
in deep learning. In the field of natural-language processing, there is a transformer in
which an attention mechanism is implemented that enhances the performance of machine
translation [24]. By using the transformer for image classification tasks, ViT has achieved
higher accuracy than with conventional methods, such as convolutional neural networks.

Figure 1 shows an overview of ViT. ViT receives an input image x ∈ RH×W×C and
outputs a prediction class y for the image. Here, H, W, and C denote the height, width,
and number of channels of the input image, respectively. First, ViT divides x into patches
xα

p ∈ RP×P×C, where P is the patch size, and α ∈ {1, 2, · · · , N}. N represents the number
of xα

p. Here, we define a patch set xp ∈ RN×P×P×C as

xp = (x1
p x2

p · · · xN
p ). (1)

1 2 3 4 5 6 7 8 90

MLP
head

Output

Input

Divide
into patches

Conduct linear transforma�on by E

Transformer encoder ( layers)

Fla�en patches

Figure 1. Overview of ViT [21].
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Each patch is then flattened to generate xα
fp ∈ RP2C with a single dimension. We

call xα
fp a flattened patch. xα

fp is linearly transformed into a vector with D dimensions

using a matrix E ∈ R(P2C)×D, where D is the number of vector dimensions received by
the transformer encoder. Further, a class token xclass ∈ RD is located at the head of the
sequence of vectors. The position information Epos ∈ R(N+1)×D is then embedded into
the sequence of vectors so as to generate a matrix z0 ∈ R(N+1)×D that is input to the
transformer encoder. In summary, z0 is represented as

z0 = (xclass x1
fpE x2

fpE · · · xN
fpE)T + Epos. (2)

The transformer encoder contains L layers, and each layer consists of multi-head
self-attention (MSA), multi-layer perceptron (MLP), and layer normalization (LN). The
transformer encoder receives and transforms z0 as{

zl = MLP(LN(z′l)) + z′l , l ∈ {1, 2, · · · , L},
z′l = MSA(LN(zl−1)) + zl−1.

(3)

Here, zl denotes the output from the l-th layer; thus, zL means the output from the
final layer of the transformer encoder. Finally, y is derived from z0

L, which is the head row
in zL:

y = LN(z0
L). (4)

From Equation (2), it is clear that the β-th pixel in every flattened patch is transformed
by the β-th row in E, where β ∈ {1, 2, · · · , P2C}. On the other hand, the (α + 1)-th row
in Epos is added to xα

fpE. By focusing on these properties of ViT, the authors previously
proposed a model-encryption method that corresponds to EtC images [17]. Our previous
method can classify EtC images without any degradation to the classification accuracy. We
outline our previous method in the following section.

2.2. Previous Classification Method for EtC Images through Encrypted ViT Model

This section describes our previous method that enables us to protect both a trained
ViT model and test images while preserving high classification accuracy [17]. The test
images can be efficiently compressed using lossless image compression standards. Figure 2
shows a block diagram of the previous method. Note that any images used in this method
have RGB color channels. In this method, we assume a model in which there exist a single
user, provider, and trusted third party. First, the trusted third party trains a ViT model with
training images in the plane domain.

The parameters E and Epos in the trained ViT model are then transformed by a key
set K = {K1, K2, K3, K4, K5} to encrypt the trained model. This process is called model
encryption. The trusted third party transmits the encrypted model to the provider and the key
set K to the user. The user encrypts test images using the EtC system [18] with K. This process
will hereafter be called image encryption. The EtC images are subsequently transmitted to
the provider. The provider obtains the classification results for the EtC images through the
encrypted model and finally sends the classification results back to the user. The image and
model-encryption procedures are detailed in Sections 3.2 and 3.3, respectively.

In this system, the user transmits the EtC images to the provider to obtain the classifi-
cation results. Thus, the encrypted model is not disclosed to anyone outside the provider.
This means that no one outside the provider can access and manipulate the encrypted
model. The user, therefore, cannot decrypt the encrypted model despite having K. On the
other hand, it is difficult to decrypt the EtC images without using K. The trusted third party
does not provide K but the encrypted model itself to the provider, so the provider cannot
decrypt the EtC images and expose the image content. Therefore, this system prevents
unauthorized persons/organizations from obtaining plain test images and a plain model.
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Training images
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Trained
model

Encrypted
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Ⅲ. Encrypt

User Provider

Encrypted
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Figure 2. Block diagram of the previous method [17].

Using the previous method, we can obtain a suitable model for EtC images by en-
crypting the trained model. Accordingly, the classification results for EtC images through
an encrypted model are identical to those for plain test images through a plain model.
Furthermore, EtC images are expected to have a high compression performance since the en-
cryption system employs a block-wise transformation. The previous method demonstrated
that JPEG-LS compression [23] could significantly reduce the data amount of EtC images.

In contrast, JPEG is the most popular standard for lossy image compression. Thus,
in this paper, we examine the effects of JPEG compression for EtC images on the classi-
fication accuracy and further assess the tradeoff between the accuracy and compression
performance. To the best of our knowledge, this is the first study on image classification
that maintains high classification accuracy against JPEG compression.

3. Evaluation of JPEG-Compression Effects on the Classification Results

This paper extends the previous method [17] to verify the effects of JPEG compression
for EtC images on the classification results. This section first outlines evaluation schemes to
investigate the JPEG-compression effects and then details the image and model-encryption
procedure. Finally, we describe the evaluation metrics in our experiments.

3.1. Overview

Figure 3 illustrates the flows of our evaluation schemes. We prepared two types of
schemes to elaborately examine the effects of JPEG compression. Hereafter, the schemes
shown in Figure 3a,b will be called evaluation schemes A and B, respectively. Note that all
images used in this paper have RGB color channels.

First, a ViT model is trained by using plain training images in scheme A. In scheme
B, the plain training-images are preliminarily compressed by JPEG, and the ViT model is
trained by using the compressed images (JPEG training images, hereafter). The flow after
model training is the same between the two evaluation schemes. A trusted third-party
encrypts the trained model with a key set K = {K1, K2, K3, K4, K5}, and K and the encrypted
model are transmitted to a user and a provider, respectively. The user encrypts test images
using the EtC system [18] and compresses the EtC images by JPEG. The JPEG-compressed
EtC images are then sent to the provider to be classified. The provider classifies each JPEG-
compressed EtC image through the encrypted model and finally returns the classification
results to the user.

In scheme A, test images encrypted by the EtC system are compressed by JPEG. Thus,
we verify the compression effects for test images through comparison with our previous
method [17]. In comparison, both training and test images are compressed by JPEG in
scheme B. Through a comparison between schemes A and B, we examine the compression
effects for training images on the classification of JPEG-compressed test images.
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Training images
(Plain)

Trained
model

Encrypted
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Ⅳ. Compress
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(a)

Training images
(Plain)

Trained
model

Encrypted
model

Ⅱ. Train
ViT model
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Ⅰ. Compress
by JPEG

Classifica�on
results

Ⅵ. Classify through
encrypted model
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EtC images

(b)

Figure 3. Classification flow of evaluation schemes. (a) Classification flow for JPEG-compressed
EtC images using the encrypted model trained with plain training images (evaluation scheme A,
hereafter). (b) Classification flow for JPEG-compressed EtC images using the encrypted model trained
with JPEG training images (evaluation scheme B, hereafter).

3.2. Image Encryption

Figure 4 shows an image-encryption procedure. This encryption algorithm is an
extension of the block-based image-encryption method [18], which is one of the EtC
systems. We preliminarily prepare a key set K = {K1, K2, K3, K4, K5} so as to encrypt
an input image. Note that K1, K2, and K3 are key sets consisting of three keys {KR

q , KG
q , KB

q }
(q = 1, 2, 3), and K4 and K5 represent single keys. The image-encryption procedure is
described as follows.

Step i-1: Divide an input image into main blocks, and further divide each main block
into sub blocks.

Step i-2: Translocate sub blocks within each main block using K1.
Step i-3: Rotate and flip each sub block using K2.
Step i-4: Apply a negative–positive transformation to each sub block using K3.
Step i-5: Normalize all pixels.
Step i-6: Shuffle the R, G, and B components in each sub block using K4.
Step i-7: Translocate main blocks using K5.
Step i-8: Integrate all of the sub and main blocks.

In Step i-1, the input image is divided into main and sub blocks as shown in Figure 5.
We call Steps i-2 to i-6 sub-block encryption and Step i-7 main-block encryption.

Sub-block encryption includes five operations. Each operation, except normalization,
is a sub-block-wise transformation in each main block, and K1, K2, K3, and K4 are shared
among all the main blocks. Kq (q = 1, 2, 3) consist of three single keys KR

q , KG
q , and KB

q
corresponding to the R, G, and B components, respectively. Thus, each component can be
transformed independently when KR

q , KG
q , and KB

q are different from each other. In contrast,
all the components are transformed commonly when the three keys are identical.
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The former is called independent transformation, and the latter is called common trans-
formation in this paper. The main-block encryption consists of a single operation, where
the main blocks are translocated. Since K5 for the main-block encryption is not a key set but
a single key, the R, G, and B components should be translocated commonly. The encryption
algorithm transforms an input image while preserving the pixel-to-pixel correlation in each
sub block, and so the encrypted image is expected to be highly compressed.

Before we detail the sub-block and main-block encryptions, symbols are preliminarily
defined as follows.

• H and W: the height and width of an image.
• x ∈ {0, 1, · · · , 255}H×W×3: an input image.
• Smb and Ssb: the main-block and sub-block sizes.
• Nmb: the number of main blocks.
• Nsb: the number of sub blocks within each main block.
• xmb ∈ {0, 1, · · · , 255}Nmb×Smb×Smb×3: an image after main-block division, called a

main-block image.
• xsb ∈ {0, 1, · · · , 255}Nmb×Nsb×Ssb×Ssb×3: an image after sub-block division, called a

sub-block image.
• x′sb(γ) ∈ {0, 1, · · · , 255}Nmb×Nsb×Ssb×Ssb×3: an image after the γ-th operation in sub-

block encryption, where γ ∈ {1, 2, 3, 4, 5}.
• x′sb ∈ {0, 1, · · · , 255}Nmb×Nsb×Ssb×Ssb×3: an image after main-block encryption.
• x′mb ∈ {0, 1, · · · , 255}Nmb×Smb×Smb×3: an image after sub-block integration.
• x′ ∈ {0, 1, · · · , 255}H×W×3: an image after main-block integration, i.e., an EtC image.
• xsb(m, s, h, w, c), x′sb(γ)(m, s, h, w, c), and x′sb(m, s, h, w, c): pixel values in xsb, x′sb(γ),

and x′sb, respectively.

– m ∈ {1, 2, . . . , Nmb}: a main-block number.
– s ∈ {1, 2, . . . , Nsb}: a sub-block number in the m-th main block.
– h ∈ {1, 2, . . . , Ssb}: a position in the height direction in the s-th sub block.
– w ∈ {1, 2, . . . , Ssb}: a position in the width direction in the s-th sub block.
– c ∈ {1, 2, 3}: a color-channel number.

Input image

Main-block division

1) Sub-block
transloca�on

4) Normaliza�on
5) Color component

shuffling

Sub-block integra�on

Main-block integra�on

EtC image

Sub-block division

6) Main-block
transloca�on

2) Block rota�on
and

Block flipping

3) Nega�ve-posi�ve
transforma�on

↑ ↑ ↑↑↑

Sub-block encryp�on Main-block encryp�on

Figure 4. Image-encryption procedure.

Sub block

Main block

Figure 5. Main-block and sub-block divisions.
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3.2.1. Sub-Block Translocation

We first translocate sub blocks within each main block by using K1. Vectors vi (i ∈ {1, 2, 3})
are generated by KR

1 , KG
1 , and KB

1 , respectively. Each vector vi is represented as

vi = (vi
1, vi

2, . . . , vi
j, . . . , vi

ĵ, . . . , vi
Nsb

), (5)

where vi
j, vi

ĵ
∈ {1, 2, . . . , Nsb}, and vi

j 6= vi
ĵ

if j 6= ĵ. The second dimension of xsb denotes a

sub-block number; thus, the sub blocks are translocated by replacing their numbers with vi:

x′sb(1)(m, j, h, w, i) = xsb(m, vi
j, h, w, i). (6)

3.2.2. Block Rotation and Block Flipping

Next, we rotate and flip each sub block using K2. As shown in Figure 6, there are eight
transformation patterns for each sub block. Three vectors ri (i ∈ {1, 2, 3}) are derived from
KR

2 , KG
2 , and KB

2 , respectively. Each vector ri is denoted by

ri = (ri
1, ri

2, . . . , ri
j, . . . , ri

Nsb
), (7)

where ri
j ∈ {1, 2, . . . , 8}. The third and fourth dimensions of x′sb(1) represent the position in

the height and width directions in each sub block, respectively. Therefore, each sub block is
rotated and flipped by translocating pixels within the sub block depending on ri:

x′sb(2)(m, j, h, w, i) =



x′sb(1)(m, j, h, w, i) (ri
j = 1)

x′sb(1)(m, j, h, Rw, i) (ri
j = 2)

x′sb(1)(m, j, Rh, w, i) (ri
j = 3)

x′sb(1)(m, j, Rh, Rw, i) (ri
j = 4)

x′sb(1)(m, j, w, h, i) (ri
j = 5)

x′sb(1)(m, j, w, Rh, i) (ri
j = 6)

x′sb(1)(m, j, Rw, h, i) (ri
j = 7)

x′sb(1)(m, j, Rw, Rh, i) (ri
j = 8),

(8)

where Rh = Ssb − h + 1, and Rw = Ssb − w + 1.

Original sub-block

Eight pa�erns of transforma�on

Figure 6. Transformation patterns in block rotation and block flipping.
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3.2.3. Negative–Positive Transformation

We then apply a negative–positive transformation to each sub block with K3. Vectors
ni (i ∈ {1, 2, 3}) are generated using KR

3 , KG
3 , and KB

3 and given by

ni = (ni
1, ni

2, . . . , ni
j, . . . , ni

Nsb
), (9)

where ni
j ∈ {1, 2}. The negative–positive transformation is conducted on the basis of ni:

x′sb(3)(m, j, h, w, i) =

{
x′sb(2)(m, j, h, w, i) (ni

j = 1)

255− x′sb(2)(m, j, h, w, i) (ni
j = 2).

(10)

3.2.4. Normalization

All pixels in x′sb(3) should be normalized as

x′sb(4)(m, s, h, w, c) =
x′sb(3)(m, s, h, w, c)− 255/2

S
, (11)

where S is an arbitrary constant, while S = 255/2 in this paper. In the case of ni
j = 1 in

Equation (10), x′sb(4)(m, s, h, w, c) can be expressed as

x′sb(4)(m, j, h, w, i) =
x′sb(3)(m, j, h, w, i)− 255/2

S

=
x′sb(2)(m, j, h, w, i)− 255/2

S
. (12)

Otherwise, x′sb(4)(m, s, h, w, c) is given by

x′sb(4)(m, j, h, w, i) =
x′sb(3)(m, j, h, w, i)− 255/2

S

=
(255− x′sb(2)(m, j, h, w, i))− 255/2

S

= −
x′sb(2)(m, j, h, w, i)− 255/2

S
. (13)

From Equations (12) and (13), it is clear that the negative–positive transformation with
normalization can be regarded as an operation of retaining or flipping the sign of each
pixel value. This property prevents a model encryption algorithm from being complex. We
detail the algorithm in Section 3.3.3.

3.2.5. Color Component Shuffling

We then shuffle the R, G, and B components in each sub block using K4. A vector a is
derived from K4 and represented as

a = (a1, a2, . . . , aj, . . . , aNsb), (14)

where aj ∈ {1, 2, . . . , 6}. The fifth dimension of x′sb(4) denotes a color-channel number; this
operation swaps pixel values among the color components according to a:

x′sb(5)(m, j, h, w, 1) =


x′sb(4)(m, j, h, w, 1) (aj = 1 or 2)

x′sb(4)(m, j, h, w, 2) (aj = 3 or 4)

x′sb(4)(m, j, h, w, 3) (aj = 5 or 6),

(15)
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x′sb(5)(m, j, h, w, 2) =


x′sb(4)(m, j, h, w, 1) (aj = 3 or 5)

x′sb(4)(m, j, h, w, 2) (aj = 1 or 6)

x′sb(4)(m, j, h, w, 3) (aj = 2 or 4),

(16)

and

x′sb(5)(m, j, h, w, 3) =


x′sb(4)(m, j, h, w, 1) (aj = 4 or 6)

x′sb(4)(m, j, h, w, 2) (aj = 2 or 5)

x′sb(4)(m, j, h, w, 3) (aj = 1 or 3).

(17)

3.2.6. Main-Block Translocation

Finally, the main blocks are translocated with K5. A vector k obtained by K5 is given by

k = (k1, k2, . . . , kt, . . . , kt̂, . . . , kNmb), (18)

where kt, kt̂ ∈ {1, 2, . . . , Nmb}, and kt 6= kt̂ if t 6= t̂. The first dimension of x′sb(5) represents
a main-block number, so we translocate the main blocks by replacing their numbers with k:

x′sb(t, s, h, w, c) = x′sb(5)(kt, s, h, w, c). (19)

3.3. Model Encryption

This section describes the model-encryption procedure. While image encryption can
protect visual information, it seriously deteriorates the classification accuracy. The model
encryption in this paper not only cancels out the effects but also prevents unauthorized
accesses to a trained ViT model by encryption.

We assume that the patch size P in ViT is the same as the main-block size Smb in the
image encryption and that the number of patches N is equal to the number of main blocks
Nmb. The patch set xp has N × P× P× 3 dimensions, and the main-block image xmb has
Nmb × Smb × Smb × 3 dimensions—namely, xp and xmb are identical. Here, we define both
xα

mb ∈ RSmb×Smb×3 and xα
sb ∈ RNsb×Ssb×Ssb×3 as a single main block, respectively. Note that

α ∈ {1, 2, · · · , N}, and N is equal to Nmb, and so α is an index denoting the main-block
number. xα

mb is a part of xmb without sub-block division, while xα
sb is a part of xmb with

sub-block division. They are represented as

xmb = (x1
mb x2

mb · · · xNmb
mb ), (20)

xsb = (x1
sb x2

sb · · · xNmb
sb ). (21)

xp and xmb are identical, so the patch xα
p and the main block xα

mb are treated as one and the
same. Therefore, xα

fp obtained by flattening xα
p is also derived from flattening xα

mb. Hereafter,
P and N will be denoted as Smb and Nmb, respectively, for the sake of consistency.

Figure 7 illustrates a model-encryption procedure. One of the purposes of model
encryption is to ensure that the classification results are never affected by image encryption.
Thus, we transform the parameters E and Epos in the trained model with the key set K,
which is the same as for the image encryption. Each operation in the model encryption is
compatible with each operation in the image encryption. The model-encryption procedure
is described as follows.

Step m-1: Transform E to obtain Esb ∈ RNsb×Ssb×Ssb×3×D.
Step m-2: Translocate indices in the first dimension of Esb using K1.
Step m-3: Translocate indices in the second and third dimensions of Esb using K2.
Step m-4: Flip or retain the signs of the elements in Esb using K3.
Step m-5: Translocate indices in the fourth dimension of Esb using K4.
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Step m-6: Transform Esb into the original dimension of E to derive E′ ∈ R(3·Smb·Smb)×D.
Step m-7: Translocate rows in Epos using K5 to obtain E′pos ∈ R(Nmb+1)×D.

Trained model Encrypted model

5) Row transloca�on

↑

Transforma�on of 

compa�ble with main-block encryp�on 

1) Index transloca�on
in first dimension

4) Index transloca�on 
in fourth dimension

2) Index transloca�on
in second and 

third dimensions
3) Sign flipping

↑↑↑

Transforma�on of compa�ble with sub-block encryp�on 

↑

Transforma�on Transforma�on

Figure 7. Model-encryption procedure.

Figure 8 illustrates the relationship between a divided image and E. We transform E to
Emb ∈ RSmb×Smb×3×D and then obtain Esb in Step m-1. This step allows E to be encrypted
directly by using the vectors for the sub-block encryption.

As mentioned in Section 2.1, E and Epos correspond to xα
fp and xα

fpE, respectively. Each
operation in the image encryption generally sacrifices their correspondence. Accordingly,
the common image-encryption methods significantly degrade the classification accuracy.
In contrast, an image-encryption method based on the EtC system is compatible with each
parameter of ViT. Taking advantage of this compatibility, we proposed a model-encryption
method for ViT without any degradation to the classification accuracy caused by image
encryption [17]. Our previous method demonstrated that the classification accuracy was
never affected by encryption [25].

We detail each operation in the model encryption below. Hereafter, E′sb(δ) ∈
RNsb×Ssb×Ssb×3×D , where δ ∈ {1, 2, 3, 4}, represents a parameter after the δ-th opera-
tion to E. Further, Esb(s, h, w, c, d) and E′sb(δ)(s, h, w, c, d), where d ∈ {1, 2, . . . , D}, denote
the elements of Esb and E′sb(δ), respectively.

rela�onship

Figure 8. Relationship between divided the image and ViT parameter E. Blue dots represent single
pixels in the segmented image, and green dots represent single rows in E corresponding to blue dots.
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3.3.1. Index Translocation in the First Dimension

We first translocate indices in the first dimension of Esb. On the basis of Equation (6),
the sub-block translocation replaces the indices in the second dimension of xsb with vectors
vi derived using K1. The second dimension of xsb corresponds to the first dimension of Esb.
Thus, the indices in the first dimension of Esb should be translocated by replacing them
with vi:

E′sb(1)(j, h, w, i, d) = Esb(vi
j, h, w, i, d). (22)

3.3.2. Index Translocation in the Second and Third Dimensions

Next, we translocate indices in the second and third dimensions of E′sb(1). As shown
in Equation (8), the block rotation and block flipping translocates the indices in the third
and fourth dimensions of x′sb(1) in response to vectors ri derived from K2. The third
and fourth dimensions of x′sb(1) are compatible with the second and third dimensions of
E′sb(1), respectively. The indices in the second and third dimensions of E′sb(1) should be

translocated accordingly depending on ri:

E′sb(2)(j, h, w, i, d) =



E′sb(1)(j, h, w, i, d) (ri
j = 1)

E′sb(1)(j, h, Rw, i, d) (ri
j = 2)

E′sb(1)(j, Rh, w, i, d) (ri
j = 3)

E′sb(1)(j, Rh, Rw, i, d) (ri
j = 4)

E′sb(1)(j, w, h, i, d) (ri
j = 5)

E′sb(1)(j, w, Rh, i, d) (ri
j = 6)

E′sb(1)(j, Rw, h, i, d) (ri
j = 7)

E′sb(1)(j, Rw, Rh, i, d) (ri
j = 8).

(23)

3.3.3. Sign Flipping

Here, we flip signs of the elements in E′sb(2). As described in Section 3.2.4, the negative–
positive transformation with normalization is regarded as an operation to flip or retain
the signs of the pixel values in x′sb(2). We determine whether to flip or retain the signs of

the elements in E′sb(2) responding to vectors ni generated using K3. E′sb(2) is consequently
transformed as

E′sb(3)(j, h, w, i, d) =

{
E′sb(2)(j, h, w, i, d) (ni

j = 1)

−E′sb(2)(j, h, w, i, d) (ni
j = 2).

(24)

3.3.4. Index Translocation in Fourth Dimension

We then translocate indices in the fourth dimension of E′sb(3). As shown in
Equations (15)–(17), the color component shuffling translocates the indices in the fifth
dimension of x′sb(4) on the basis of the vector a derived using K4. The fifth dimension of
x′sb(4) corresponds to the fourth dimension of E′sb(3). We, thus, translocate the indices in the
fourth dimension of E′sb(3) by using a:

E′sb(4)(j, h, w, 1, d) =


E′sb(3)(j, h, w, 1, d) (aj = 1 or 2)

E′sb(3)(j, h, w, 2, d) (aj = 3 or 4)

E′sb(3)(j, h, w, 3, d) (aj = 5 or 6),

(25)
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E′sb(4)(j, h, w, 2, d) =


E′sb(3)(j, h, w, 1, d) (aj = 3 or 5)

E′sb(3)(j, h, w, 2, d) (aj = 1 or 6)

E′sb(3)(j, h, w, 3, d) (aj = 2 or 4),

(26)

and

E′sb(4)(j, h, w, 3, d) =


E′sb(3)(j, h, w, 1, d) (aj = 4 or 6)

E′sb(3)(j, h, w, 2, d) (aj = 2 or 5)

E′sb(3)(j, h, w, 3, d) (aj = 1 or 3).

(27)

3.3.5. Row Translocation

Finally, we translocate rows in Epos. As shown in Equation (19), the main-block
translocation replaces the indices in the first dimension of x′sb(5) with vector k obtained by
K5. Both α and the first dimension of x′sb(5) represent the main-block number, and so the
main-block translocation is regarded as an operation to replace α with k. To preserve the
relationship between Epos and xα

fpE, the rows in Epos should accordingly be translocated by
using k as

E′pos(t + 1, d) = Epos(kt + 1, d), (28)

where Epos(g, d) and E′pos(g, d) denote the elements of Epos and E′pos, respectively. Note
that g ∈ {1, 2, . . . , Nmb + 1} is an index corresponding to the dimensions of Epos and E′pos.

3.4. Evaluation Metrics

We verified the effectiveness of JPEG compression in terms of compression and clas-
sification performance. We calculated the average amount of image data to evaluate the
compression performance. In addition, we prepared two metrics to assess the classification
performance: the classification accuracy and change rate. In this paper, the change rate
provides the percentage of difference between the classification results for plain test images
with a plain trained model and those for target images with a target model. For instance,
the target images and target model means JPEG-compressed EtC images and an encrypted
model, respectively. In the case that the change rate indicates 0%, both classification results
are identical.

For scheme A, shown in Figure 3a, we provide five patterns for the quality factor
(Q): 100, 95, 90, 85, and 80. To compare the effects of JPEG compression, each metric
was also calculated for EtC images compressed by linear quantization. In comparison,
scheme B, shown in Figure 3b, compressed both training images and EtC images by using
JPEG with Q = 85. In common with scheme A, the classification accuracy was also
calculated for the case of using linear quantization. Hereafter, the EtC images and the
training images after the linear quantization are called quantized EtC images and quantized
training images, respectively.

4. Experiments

In this section, the effects of JPEG compression are examined in terms of classification
and compression performance by using the metrics described in Section 3.4.

4.1. Experimental Setup

We used the CIFAR-10 dataset with 10 classes in this experiment. This dataset consists
of 50,000 training images and 10,000 test images. All image sizes are 32× 32 pixels, while
we preliminarily resized each image to 224× 224 pixels by using the bicubic interpolation
method. All training and test images were stored in PPM format.

The ViT model is trained through two phases: pre-training and fine-tuning. In this
experiment, we used a pre-trained ViT model using ImageNet-21k with a patch size P = 16.
We then fine-tuned the pre-trained ViT model by using plain training images for scheme A
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or JPEG training images for scheme B. In both schemes, the ViT model was fine-tuned with
a learning rate of 0.03 and an epoch of 5000.

In the image encryption, the main-block size Smb was defined as 16, which was the
same as P, while the sub-block size Ssb was set to 8 or 16. Additionally, as mentioned in
Section 3.2, we could choose either the common or independent transformation in regard
to color components. Consequently, four types of EtC images were generated for each test
image. Figure 9 shows EtC, JPEG-compressed EtC and quantized EtC images for a single
test image. Note that we used 4:2:0 downsampling for the JPEG compression.

/
Common

/
Independent

/
Independent

/
Common

JPEG-compressed EtC images

EtC images

Test image

Quan�zed
EtC images

Figure 9. EtC, JPEG-compressed EtC, and quantized EtC images for a single test image.

4.2. Experimental Results

Table 1 shows the average amount of data in the JPEG-compressed EtC images and
the quantized EtC images. This table also includes the average amount of data in the EtC
images without compression and in the plain test images with and without compression.
After the linear quantization, pixel values of each color component are represented by a
single bit, and so the average amount of image data is 3 bpp. This table indicates that JPEG
compression with Q ≤ 95 reduced a larger amount of data than linear quantization. We also
found that the JPEG-compressed EtC images with Ssb = 16 and common transformation
had an analogous amount of data to the plain test images with JPEG compression at each
value of Q.

Table 2 summarizes the classification accuracy and change rate for scheme A. For
comparison, this table also gives the results for the quantized EtC images through the
encrypted model and for the EtC images without compression through the encrypted
model. Note that the latter results could be obtained by our previous method [17]. This
table also provides the results for the plain test images with and without compression
through the plain model. The change rate is calculated on the basis of the classification
results for the plain test images without compression through the plain model.
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Table 1. Average amount of image data.

Ssb
Transformation

Average Amount of Image Data [bpp]

Type
JPEG Compression Linear No

Q = 100 Q = 95 Q = 90 Q = 85 Q = 80 Quantization Compression

8 Common 4.19 2.08 1.47 1.20 1.04

3.00 24.00
Independent 5.50 2.80 2.01 1.64 1.42

16 Common 2.98 1.57 1.13 0.93 0.82

Independent 3.49 1.64 1.18 0.98 0.87

No encryption 2.92 1.54 1.10 0.91 0.80

With each value of Q, the classification accuracy and change rate for any encryption
pattern were nearly equal to those obtained by using the plain test images and model. It is
also clear that JPEG compression for the EtC images preserved a significantly high classifi-
cation accuracy with a low change rate in any case, while the linear quantization sacrificed
the accuracy in return for data reduction. For scheme A, the lowest classification accuracy
and highest change rate were obtained in the case of Q = 80, Ssb = 8, and independent
transformation. Even with this pattern, the classification accuracy was still 97.67%, and the
change rate was still low at 1.94%.

Table 3 shows the classification accuracy for scheme B with Q = 85. Here, the model
was trained with JPEG training images. In this table, we include the results for the plain
test images with JPEG compression through the plain model. For further comparison, this
table also includes the results obtained by using linear quantization. In this case, the model
was trained with quantized training images. As shown in this table, JPEG compression for
both the training images and the EtC images hardly degraded the classification accuracy,
while the linear quantization still substantially decreased the accuracy.

Comparing scheme B and scheme A with Q = 85 in Table 2, the classification accuracy
for the JPEG-compressed EtC images was slightly improved by using the encrypted model
trained with the JPEG training images. Accordingly, the results for schemes A and B show
that JPEG compression for training images was comparatively effective in improving the
classification accuracy for JPEG-compressed EtC images.

Table 2. Classification accuracy and change rate for scheme A.

Ssb
Transformation

Classification Accuracy [%] (Change Rate [%])

Type
JPEG Compression Linear No

Q = 100 Q = 95 Q = 90 Q = 85 Q = 80 Quantization Compression

8
Common 98.83 98.83 98.80 98.75 98.71

33.29
98.89

(0.20) (0.30) (0.46) (0.61) (0.60)

(66.70)
(0.00)

Independent 98.45 98.33 98.24 98.00 97.67
(0.99) (1.17) (1.27) (1.45) (1.94)

16
Common 98.87 98.89 98.89 98.85 98.86

(0.12) (0.18) (0.17) (0.19) (0.25)

Independent 98.87 98.86 98.89 98.74 98.66
(0.10) (0.17) (0.46) (0.57) (0.66)

No encryption for 98.89 98.89 98.81 98.89 98.90 98.89
images and model (0.08) (0.10) (0.18) (0.25) (0.23) (-)
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Table 3. Classification accuracy for scheme B (Q = 85).

Ssb
Transformation Classification Accuracy [%]

Type JPEG Compression Linear Quantization

8 Common 98.84

88.20
Independent 97.94

16 Common 98.96

Independent 98.80

No encryption for 98.97images and model

4.3. Discussion

Here, we discuss the effects of JPEG compression for EtC images. Figure 10 illustrates
the compression ratio at each quality factor. This figure is derived from the results in Table 1.
The compression ratio is given by

Compression ratio [%] =
Average amount of compressed EtC-image data [bpp]

Average amount of EtC-image data [bpp]
× 100. (29)

Note that the amount of uncompressed EtC-image data is constantly 24.00 bpp. As
shown in Figure 10, the non-encrypted images, i.e., original images, had a comparable
performance to the EtC images with Ssb = 16 and common transformation. This means
that the suitable conditions for the EtC system do not affect the compression performance.
The figure also shows that JPEG compression could reduce the data amount 75–90% at the
highest quality factor, Q = 100. Further, the data amount decreased by more than 90% in
the case of Q ≤ 90. These results demonstrate that JPEG compression can significantly
reduce the amount of EtC-image data.

On the basis of Table 2, we show the degradation in classification accuracy caused by
JPEG compression in Figure 11. The negative sign indicates degradation. The maximum
degradation in this figure was 1.22% in the case of the independent transformation with
Ssb = 8 and Q = 80. Thus, JPEG compression in practical use causes little degradation to
the classification accuracy. We can conclude that JPEG compression is effective in drastically
reducing the amount of EtC-image data while preserving high classification accuracy.

JPEG compression has an option to not downsample the chrominance component.
Figure 12 shows the classification accuracy at each quality factor with and without down-
sampling. Note that Ssb is 16 in this figure. We confirmed that the classification accuracies
with and without downsampling had similar trends.
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Figure 10. Compression ratio at each quality factor.
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Figure 11. Degradation in classification accuracy at each quality factor.
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Figure 12. Classification accuracy at each quality factor with and without downsampling (Ssb = 16).

We employed the EtC system on the premise of applying JPEG compression. The
main-block size in the EtC system was the same as the patch size in ViT. It is important that
both the main-block and sub-block sizes are multiples of 8 (or 16 with downsampling) to
be equal to the block size of JPEG. Therefore, the main-block and sub-block sizes should be
defined on the basis of the block size of JPEG. When the block-size condition is not satisfied,
we confirmed that the classification accuracy and compression performance degraded
significantly. In other words, the condition allows us to keep the classification accuracy and
compression performance high.

JPEG compression generally eliminates image data in the high-frequency component.
Therefore, this study suggests that noise added to the high-frequency component has
little effect on ViT classification. Additionally, noise-added encrypted images generally
have high robustness against attacks. Thus, JPEG noise is also expected to enhance the
robustness of EtC images against attacks.

5. Conclusions

We investigated the effects of JPEG compression for EtC images on classification results
using ViT. JPEG compression never caused severe degradation to the classification accuracy
for EtC images; the maximum degradation was 1.22% even when the quality factor was 80.
Additionally, the data amount of EtC images was reduced more than 90% under the quality
factor. These results proved that JPEG compression for EtC images not only drastically
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reduced the amount of data but also caused little degradation to the classification accuracy.
Further, JPEG compression for plain training images was marginally effective in improving
the classification accuracy. Compared with linear quantization, JPEG compression was
more effective in terms of the classification and compression performance.

This paper suggests that noise added to the high-frequency component not only
keeps the classification accuracy high but also enhances the robustness against attacks.
However, the relationships between different types of noise and the classification accuracy
or robustness has not been studied in detail. In future work, we will investigate this
relationship for more reliable and robust image classification.
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