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Effects of x
„3… nonlinearities in second-harmonic generation
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We investigate the effects of higher-order, x (3), nonlinearities on the process of second-harmonic genera-

tion. In the traveling-wave case we find substantive differences in the macroscopic behavior of the fields when

the x (3) components are present. In the intracavity case, which has been investigated before using a linearized

analysis, we investigate regions where these analyses may not be valid, comparing and contrasting the full

quantum simulations with previous results.

DOI: 10.1103/PhysRevA.63.033801 PACS number~s!: 42.65.Ky, 42.50.Dv, 42.50.Lc

I. INTRODUCTION

It has long been known that nonlinear parametric pro-
cesses such as second-harmonic generation ~SHG!, optical
parametric oscillation ~OPO!, and amplification ~OPA! can
produce nonclassical states of the electromagnetic field @1#.
Much theoretical and experimental work has been done on
these cases, in both of which electromagnetic fields at differ-
ing frequencies are coupled by a second-order, x (2) nonlin-
earity.

There have also been a number of theoretical analyses of
systems in which both x (2) and higher-order nonlinearities
are present. Gerry and Rodrigues @2# investigated a system of
traveling-wave down-conversion with an added x (3) anhar-
monic term. Making the approximation that the pump field
was classical and undepleted during the interaction with the
nonlinear medium, they predicted squeezing and antibunch-
ing effects for short interaction times. Tombesi @3# analyzed
a system with two external pumping fields and x (2), x (3),
and x (4) nonlinearities. He predicted enhanced quadrature
squeezing via reduced interaction length, although he also
assumed classical, undepleted pumping. Garcı́a Fernández
et al. @4# analyzed the degenerate parametric amplifier with
added fourth-order interaction and undepleted classical
pumping, using a linearized fluctuation approach.

Cabrillo and Bermejo @5# dropped the undepleted pump
approximation to analyze the optical parametric oscillator
with a x (3) interaction in the low frequency mode only. Us-
ing a linearized analysis, they found that even though the
quadrature noise in the total field tended to increase, there
was a spectral redistribution so that they actually found bet-
ter squeezing at some frequencies. Cabrillo et al. @6# studied
the quadrature squeezing and mean fields for an OPA with
added x (3), using a linearization of Wigner representation
stochastic differential equations, again using the undepleted
pump approximation. Kryuchkyan and Kheruntsyan @7# used
the complex P representation to perform an analysis of a
driven OPO with third-order nonlinearity, calculating the ef-
fects of the quantum noise on the nonlinear dynamics and
quantum statistics of the signal field. They again used a clas-
sical pump approximation. Kheruntsyan et al. @8# used the
complex P representation to calculate the Wigner function
for a similar system, but with a quantum treatment of both
high and low frequency modes, although only the degenerate
low frequency mode was subject to the x (3) interaction.

The process of intracavity second-harmonic generation
with an added x (3) nonlinearity which affects the fundamen-
tal mode only has been analyzed by Cabrillo et al. @9#. The
authors, using a linearized analysis, calculate that the Hopf
bifurcation normally found in SHG can be shifted towards
higher photon numbers and that, for a high enough value of
x (3), the system can be completely stabilized. Calculating
the quadrature noise spectra, the authors also find a supres-
sion of the excess noise in the antisqueezed quadrature,
caused by the Kerr nonlinearity. The authors calculate that,
for the appropriate combination of parameters, perfect
quadrature squeezing can be found at the critical operating
point, although a linearized fluctuation analysis is not ex-
pected to be fully valid at this point.

Our aim in this work is to perform a fully quantum inves-
tigation of the system of SHG with competing x (2) and x (3)

nonlinearities in both modes, using the positive P represen-
tation @10# and a linearized fluctuation analysis where appro-
priate. We wish to calculate how the inclusion of the Kerr
nonlinearities may affect the mean fields and the quantum
statistics in both the traveling-wave and cavity configurations
of second-harmonic generation. In the traveling-wave case
we use numerical stochastic integration as it has been shown
previously that linearization in the case of pure SHG has
limited validity, not even giving the correct solutions for the
mean fields @11–13#. In the intracavity case, we use both
numerical stochastic integration and, where we can demon-
strate its validity, a semianalytical linearization method.

II. TRAVELING-WAVE CASE

We consider a nonlinear x (2) and x (3) crystal, in which a
pump field at frequency v produces a harmonic field at fre-
quency 2v . We consider here only the case of perfect phase-
matching between the two fields, with both fields considered
as plane waves. In the traveling-wave regime we can write
an interaction Hamiltonian, with the trivial v dependence of
the fields removed, as

H5

i\k

2
@ â† 2b̂2 â2b̂†#1\x@ â† 2â2

1 b̂† 2b̂2#

12\xabâ†â b̂†b̂ , ~1!

where â and b̂ are the annihilation operators for photons at
frequencies v and 2v , respectively, at position z inside the
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nonlinear crystal, k represents the effective strength of the
nonlinear interaction between the two modes, x represents
the effective strength of the self-phase modulation x (3) non-
linearity, and xab represents the strength of the cross-phase
modulation x (3) nonlinearity. We consider here the case
where the Kerr type interaction has equal effective strengths
for each mode. The cross phase modulation strength will
depend on such things as the mode overlap and can typically
vary up to the maximum of the self-interaction strength. The
operator equations of motion for the system are found as

dâ

dz
5k â†b̂22ix â†â2

22ixabâ b̂†b̂ ,

~2!

db̂

dz
52

k

2
â2

22ix b̂†b̂2
22ixabâ†â b̂ ,

for which no analytical solution is known.
The first level of approximation often used in solving op-

erator equations is linearization, or assuming that the opera-
tors can be directly replaced by complex numbers to give the
mean values of the fields. In the case of traveling-wave SHG,
this method has been shown to have limited validity @12#, but
in the present case we find an analytical solution for the
photon number which more closely follows the full quantum
solutions, at least when we set the cross-phase modulation

term xab to zero. Making the substitutions â→a5^â& and

b̂→b5^b̂& gives the following classical equations:

da

dz
522ixuau2a22ixabubu2a1ka*b ,

~3!

db

dz
522ixubu2b22ixabuau2b2

k

2
a2.

Note that we have not bothered with the normal method of
calculating fluctuations around the classical solutions, as ex-
perience with the pure SHG system has shown the results to
be highly inaccurate after a short interaction length and we
would expect this to be the case here also.

In this situation, as opposed to the situation of pure
traveling-wave SHG, we can find a reasonably accurate ana-
lytical solution for the field intensities. After much manipu-
lation ~see the Appendix!, and setting xab to zero, we find an
equation of motion for the new variable x52x@5ub(z)u2

22ua(0)u2# ,

dx

dz
56Aa01a1x1a2x2

1a3x3
1a4x4, ~4!

where a052E , the pseudoenergy obtained by treating
d2x/dz2 as a pseudoacceleration resulting from a pseudopo-
tential

U~x !52

1

2
~a1x1a2x2

1a3x3
1a4x4!, ~5!

so that (dx/dz)2
12U(x)52E is a constant of the motion.

In the above equations, defining C158x2ua(0)u4, we also
have

a152

14k2x

5
C0

2 ,

a25

4

5
k2C01C1 ,

~6!

a35

2k2

5x
,

a452

1

4
.

We can now rearrange and integrate Eq. ~2! to give

z56E
x(0)

x(z) dx

Aa01a1x1a2x2
1a3x3

1a4x4
, ~7!

where x(0)524xua(0)u2. Using energy conservation, it is
clear that any solution for x(z) also implies a solution for
ua(z)u2. We find that there are three cases where Eq. ~7! has
periodic solutions. Defining

f ~x !5 (
k50

4

akxk,

52l2)
k51

4

~x2xk!, ~8!

where a452l2 and l.0, we examine the roots of f (x)
50.

In the first two cases, there are four real roots: x1.x2

.x3.x4 and the solution can be written as

x~z !5M1

N

D1sn2~Vz1f ,k !
, ~9!

where sn is the Jacobi sine amplitude of modulus k @14# and

V5

l

2
A~x12x3!~x22x4!,

~10!

k5A~x12x2!~x32x4!

~x22x4!~x12x3!
,

and the constant f is determined from the initial condition
by

f5sn21SAN2D@x~0 !2M #

@x~0 !2M #
,k D . ~11!

The function x(z) is periodic, with the period given by
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T5

2

V
E

0

1 dt

A~12t2!~12k2t2!
5

2

V
K~k !, ~12!

where K(k) is the full elliptic integral. It is clear that the
period of x(z) is the same as that of ua(z)u2.

We find that there are two separate cases for the solution
given by Eq. ~9!. The first of these cases, which is that en-
countered for the parameters we have used in this investiga-
tion, is where ~i! x3>x>x4 : In this case M5x1 , N5

2(x12x4)(x12x3)/(x32x4), and D5(x12x3)/(x32x4);
~ii! x1>x>x2 : In this case, M5x4 , N5(x12x4)(x2

2x4)/(x12x2), and D5(x22x4)/(x12x2). These two
cases correspond to motion of a pseudoparticle in the two
different branches of a quartic pseudpopotential.

The other type of periodic solution arises when we find
two real roots, x1 and x2 , with x1.x2 , and two complex
roots for f (x). Writing

f ~x !52l2~x2x1!~x2x2!~x2
22mx1n !, ~13!

the solution has the form, for x1>x>x2 ,

x~z !5M 01

N0

D02cn~V0z1f0 ,k0!
, ~14!

where cn signifies the Jacobi cosine amplitude. Defining

y15Ax1
2
22mx11n ,

~15!
y25Ax2

2
22mx21n ,

we have

M 05

y1x22y2x1

y12y2

,

N05

2y1y2~x12x2!

~y12y2!2
,

D05

y11y2

y12y2

,

V05lAy1y2,

k05Ay1y22x1x21m~x11x2!2n

2y1y2

,

f05cn21S D0@x~0 !2M 0#2N0

x~0 !2M 0

,k0D . ~16!

In this case the period of x(z) has the form

T05

4

V0
E

0

1 dt

A~12t2!~12k0
2t2!

5

4

V0

K~k0!. ~17!

Solving the classical equations numerically using a fourth
and fifth order Runge-Kutta method also shows that the
mean-field intensities undergo periodic revivals, as shown in

Fig. 1. The horizontal axis is a normalized interaction dis-

tance, j5kzua(0)u/A2. Note that there is no visible differ-
ence in these solutions whether we ignore the effects of the
cross-phase modulation or set it to its maximum value, xab

5x . Although interesting in itself when compared with the
classical solution for traveling-wave SHG, which does not
exhibit any periodicity @15#, neither the analytical or numeri-
cal solutions of the classical equations allow us to reliably
calculate any of the quantum statistics of the two fields. To
do this we turn to one of the phase space representations of
quantum optics.

Using the usual methods @16#, this system can be mapped
exactly onto positive-P equations, via the master and
Fokker-Planck equations. For purposes of comparison, we
first give the equations with xab set to zero, which allows a
particularly simple factorization of the diagonal diffusion
matrix, giving

da

dz
5ka†b22ixa2a†

1Akb22ixa2h1~z !,

da†

dz
5kab†

12ixa† 2a1Akb†
12ixa† 2h2~z !,

~18!

db

dz
52

k

2
a2

22ixb2b†
1A22ixb2h3~z !,

db†

dz
52

k

2
a† 2

12ixb† 2b1A2ixb† 2h4~z !.

In the above system of equations, there is a correspondence

between @ â , â†, b̂ , b̂†# and @a ,a†,b ,b†# , although the latter
are c-number variables that are not complex conjugate except
in the mean of a large number of stochastic trajectories. This
is due to the independence of the real noise terms, which

FIG. 1. The classically calculated intensities of the fundamental

and harmonic as functions of the normalized interaction distance, j ,

for ua(0)u2
5106, k50.01, and x51027.
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have the properties h j(z)50 and h i(z)h j(z8)5d i jd(z

2z8). The positive P equations can then be numerically in-
tegrated to calculate not only the mean-field behavior, but
also the quantum statistics of the fields. The mean-field in-
tensities, calculated using 105 stochastic trajectories, are
shown in Fig. 2 for an initial photon number in the funda-

mental of ^â†â&5106 and nonlinearities of k50.01 and x
51027, a ratio which is realistic for many materials. We can
readily see that, unlike the case of pure SHG, the behavior is
close to that found classically.

In this case we are also interested in the quadrature vari-
ances, as unusual behavior has previously been found in the
pure x (2) case. Defining the quadratures by

Xu5ae2iu
1a†eiu, ~19!

we see that the coherent state value for any quadrature vari-
ance is equal to 1. The X0 quadrature variances for the fun-
damental and harmonic are shown in Fig. 3, with the same
quantities for pure SHG shown by dotted lines. It can imme-
diately be seen that the maximum obtainable squeezing is
less when the x (3) interaction is included, with the squeezing
being available over a smaller interaction length. This
change in the statistics of the fields, from squeezed to highly
antisqueezed, is explained by the spontaneous nature of the
downconversion process as energy is transferred back from
the harmonic to the fundamental.

One interesting question with the present system is
whether other quadratures at different u may exhibit better
squeezing for different interaction lengths. After all, the x (3)

term essentially operates on the phase of the fields and could
well produce a quadrature rotation effect. This quadrature
rotation effect is apparent in simulations, with the variances
for different u actually crossing at different interaction
lengths, but is such a small effect for the parameters that we

have used that it only happens well after the squeezing has
essentially disappeared. This means that even though the
minimum noise is found in a different quadrature, this
quadrature never exhibits better squeezing than X0 around
j'2→3. The variances in the fundamental are shown for
various quadratures in Fig. 4.

Effect of cross-phase modulation

Although the inclusion of what we would expect to be the
maximum value of the cross-phase term made no visible
difference to the mean fields, it is still of interest to investi-
gate what effect it may have on the quantum statistics of the
two fields. Proceeding as above, we find that the positive-P

FIG. 2. The intensities of the fundamental and harmonic as

functions of the normalized interaction distance, j , for ua(0)u2

5106, k50.01, and x51027, calculated using the positive P rep-

resentation. The dotted lines are for x50, the case of pure second-

harmonic generation.

FIG. 3. The X quadrature variances for the traveling-wave case

in the fundamental and harmonic, calculated using 105 stochastic

trajectories. The parameters are the same as in Fig. 2. The variances

for pure SHG are shown by the dotted lines.

FIG. 4. The Xu quadrature variances for the traveling-wave case

in the fundamental, calculated using 105 stochastic trajectories. The

u values are equally spaced from 0 to p/2. It can be seen that the

maximum squeezing is found for u50.
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Fokker-Planck equation for the system no longer has a diag-
onal diffusion matrix, which means that no simple and obvi-
ous factorization resulting in the stochastic differential equa-
tions suggests itself. However, the factorization we have
chosen ~which is by no means unique!, leads to the following
system of stochastic equations:

da

dz
5ka†b22ixa2a†

22ixabab†b1A22i

x
xabah1~z !

1Akb22ia2~x2xab
2 /x !h3~z !,

da†

dz
5kab†

12ixa† 2a12ixaba†b†b1A2i

x
xaba†h2~z !

1Akb†
12ia† 2~x2xab

2 /x !h4~z !, ~20!

db

dz
52

k

2
a2

22ixb2b†
22ixaba†ab1A22ixb2h1~z !,

db†

dz
52

k

2
a† 2

12ixb† 2b12ixaba†ab†

1A2ixb† 2h2~z !,

where all variables and noises are defined as in Eq. ~18!.
From numerical integration of these equations we find

that the intensities of the two fields are not noticeably
changed, whether xab50 or is equal to x . In parameter re-
gions where quadrature noise reduction is found with no
cross-phase modulation present, the addition of the maxi-
mum xab value does not perceptibly change the squeezing
found. However, for the quadrature angles and regimes
which exhibit excess noise, the maximum cross-phase modu-
lation can increase this noise by a factor of approximately
10%.

III. INTRACAVITY CASE

The case of intracavity SHG with added x (3) interaction
has been previously examined in the case where this interac-
tion affects only the fundamental mode @9#. This analysis
also used a linearized fluctuation analysis about the steady
state values of the fields. Here we wish to include the higher
order nonlinearity in both the modes and calculate the field
statistics without necessarily using the linearization ap-
proach. We also compare noise spectra calculated in the lin-
earized approach with those obtained by stochastic integra-
tion of the full quantum equations. We will first investigate
the case without cross-phase modulation, where xab50.

With a cavity, the positive P-representation equations are

da

dt
5e2g1a1ka†b22ixa2a†

1Akb22ixa2h1~ t !,

da†

dt
5e*2g1a†

1kab†
12ixa† 2a

1Akb†
12ixa† 2h t~z !, ~21!

db

dt
52g2b2

k

2
a2

22ixb2b†
1A22ixb2h3~ t !,

db†

dt
52g2b†

2

k

2
a† 2

12ixb† 2b1A2ixb† 2h4~ t !.

In the above, we have assumed phase matching without the
x (3) terms and the g j are the cavity loss rates at each fre-
quency, while e represents the classical pumping field at the
lower frequency. The noise terms are as before, except that
they are now d correlated in time rather than in space. In our
calculations we will always set g15g251.

In normal SHG, it is well known that a Hopf bifurcation
exists at a critical pumping strength, ec5(1/k)(g2

12g1)A2g2(g11g2) @17,18#. It is normally assumed that a
linearized fluctuation analysis can be performed below this
critical point, which is found by writing operators as the sum
of a classical, mean value part and a fluctuations operator,

e.g., â5a1d â , where it is assumed that d â is somehow
small compared to a . This allows equations to be written for
the fluctuation operators in the form of an Ornstein-
Uhlenbeck process, allowing easy calculation of the noise
spectra. The critical point is actually found by examining the
eigenvalues of the drift matrix in the equation for the fluc-
tuations. As long as these do not have a positive real part, the
solutions will be stable, although this process in itself says
nothing about the size of the fluctuations, nor does it say how
accurately equations thus solved will give the quantum sta-
tistics of the fields.

Crucial to this stability analysis is the ability to obtain
classical steady state solutions to the system obtained by
dropping the noise terms in Eq. ~21!. With standard SHG,
this process is trivial and with the x (3) interacting only with
the fundamental, it is also easy. In our case, however, we use
a perturbation expansion, writing

ass5a01xa11x2a21••• ,

~22!

bss5b01xb11x2b21••• ,

where a0 and b0 are the steady state solutions to the classi-
cal equations with x50. With phase matching, g15g25g
and a real pump, we find that a0 is the real solution of

k2

2g
a0

3
1ga01e50, ~23!

and b052ka0
2/2g . As x much smaller than the other pa-

rameters we will only take our perturbation expansion to first
order. This leads to the solutions

bss5b02

2ixA

ka01

g2

ka0

1g
b0

a0

, ~24!

where
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A5

b0
4

a0

2a0
3
1

gb0
3

ka0

~25!

and

ass5a02

x

ka0
~gb112ib0

3!. ~26!

It can be seen from the above expressions that, to first order,
the effect of the Kerr nonlinearity is to add an imaginary
component to the two field amplitudes.

The steady state solutions thus obtained are then used to
perform a numerical stability analysis of the system. We find
that, for the values we use here, there is still a Hopf bifurca-
tion so that above a certain critical pumping amplitude, we
expect self-pulsing behavior analogous to that found in pure
SHG. Our approach here is slightly different from that of
Cabrillo et al. @9#, who define the critical point in terms of a
normalized photon number in the fundamental mode. We
feel that a definition in terms of pump amplitude should be
more experimentally useful. For small values of x , we find
that the critical pumping parameter found from our first-
order expansion is little changed from that found for pure
SHG.

A. Below the critical point

Below the critical point is where linearization should be
most valid, enabling us to calculate steady state noise spectra
by treating our system as an Ornstein-Uhlenbeck process
@19#, using our first-order perturbative solutions as the steady
states. We find that, as shown in Fig. 5, that S(v) for the X0

quadrature is effectively unchanged at e50.4ec for our pa-
rameters of k50.01 and x51027, the plotted spectra being
indistinguishable on the scale we use.

For purposes of comparison and verification of the linear-
ized spectra, we have also calculated S(v) stochastically, as
the Fourier transform of the mean value of the normally or-
dered two-time covariance of the X0 quadrature, taken over
105 trajectories of the positive P equations,

S~v !511FT^:X0~ t !,X0~ t1t !:&. ~27!

As we can only numerically integrate the equations over a
finite time interval, we would expect our numerical solution
to be most accurate for higher frequencies, as is shown in
Fig. 5. We also find that achieving a smooth noise spectrum
by stochastic integration requires more trajectories than a
smooth mean for V(X0) in the time domain. What we can
see here, however, is that the two methods are in reasonable
agreement, with no new features of the spectrum appearing
in the stochastic result.

B. At the critical point

When the cavity is pumped at the critical rate we would
expect any linearized analysis to have lost validity, whereas
stochastic integration remains valid, given the factors of fi-
nite integration time and finite number of trajectories men-
tioned above. We have again used both methods of calculat-
ing the spectra, with all parameters unchanged except for the
pump amplitude. In Fig. 6, we show the linearized and sto-
chastic results with the x (3) component present. We can
readily see that the stochastically calculated spectrum has

two large spikes of excess noise, at v'A3 and v'3. The
lower frequency spike is hinted at in the linearized result, but
is much smaller and at a slightly higher frequency. This
spike is at the frequency of the purely imaginary eigenvalues

of the linearized fluctuations matrix @18#, v'A3 for our pa-
rameters. This lower frequency spike is a signature of the
x (3) component, not being present in the pure SHG results at
the critical point, as we can see in Fig. 7. This figure shows

FIG. 5. The X0 fundamental quadrature variances for the cavity

case with e50.4ec . The dash-dotted line is the linearized variance

and the full line is the result of stochastic integration, both for x
51027. For these parameters there is no visible difference for pure

SHG.

FIG. 6. The X0 fundamental quadrature variances for the cavity

case at the critical point. The full line is the result of 105 stochastic

trajectories and the dash-dotted line is the linearized variance, both

with x51027.
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a narrower spike at the higher frequency, but absolutely no
new structure in the linearized spectrum. The spikes at the
higher frequency seem to be related to an oscillation in the
quadrature variance which is not actually visible in the time
plots until a higher pump power is used. This is typical of
soft-mode oscillations, which will show up in the two-time
correlation function in the frequency domain before they are
visible in the time domain.

What is of interest in both these figures is that the positive
P spectra and the linearized spectra are still in broad agree-
ment, despite being at the critical point. However, from time
domain integrations we saw that the variances at any other
quadrature angle tended to increase with time, with only the
X0 quadrature showing steady state squeezing. This is an-
other feature that is not found in a linearized analysis. We
should note here that our calculations do not use the param-
eters that others have used to predict nearly perfect quadra-
ture squeezing at the critical point, with one cavity loss rate
much larger than the other @20#, as we are more interested in
looking for signatures and effects of the x (3) component than
in perfecting the squeezing.

C. Above the critical point

As expected, above the critical point we find self-pulsing
behavior, as shown in Fig. 8, calculated for e51.2ec . Again
the semiclassical solutions for the mean fields are almost
indistinguishable from those obtained using the positive P.
The pulsing behavior is different to that of pure SHG, with
the oscillations beginning earlier and having a greater ampli-
tude and lower frequency, although the time-averaged values
for the intensities are almost identical. With x (3) we also see
oscillations with two different amplitudes, another feature
not seen in pure SHG.

When we examine the quadrature variances, we see that
the X0 quadrature displays transient squeezing as shown in
Fig. 9, but soon develops excess noise, as shown in Fig. 10.

This excess noise is actually less than that found with pure

SHG, showing that the x (3) component has to some extent

stabilized the fields by comparison. The other quadrature

angles also all display excess noise as the time increases.

This tells us that, as there are no steady state squeezing ef-

fects, we would not expect to see very much quadrature

squeezing in the frequency domain.

Previously published analytical calculations @21#, ob-

tained by a linearization around the periodic solutions for

pure SHG in the self-pulsing regime, suggest that intensity
squeezing may be found in this regime. These results also
show a huge first-order correction to the amplitude spectrum,
hinting that amplitude quadrature squeezing is possibly not
observable above the critical point.

FIG. 7. The X0 fundamental quadrature variances for pure int-

racavity SHG at the critical point. The full line is the result of

105 stochastic trajectories and the dash-dotted line is the linearized

variance.

FIG. 8. The mean fields for e51.2ec , showing the self-pulsing

behavior. This is the stochastic solution for 105 trajectories

x51027. The classical solution is not visibly different at this scale.

FIG. 9. Short time behavior of the variance in the X0 quadrature

of the fundamental, for e51.2ec and x51027. We can see that

squeezing is only a transient effect in this situation.
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D. Cross-phase modulation in the cavity

Well below the critical point we do not find any notice-
able differences in the behavior of the system when we in-
clude our maximum value of xab , either in the positive P
simulations or in linearized results, again performed using a
perturbation expansion to first order. However, as we in-
crease the pump power so as to approach the usual critical
point ~with x (2) only!, we find that the low frequency spike
in the Xa quadrature noise spectrum begins to appear earlier.
When we use the normal critical pumping, the spike is much
more pronounced, but at the same frequency. Stochastic in-
tegration also shows this spike as more pronounced and ap-
pearing at a lower pump power than with self-phase modu-
lation only. This is a strong indication that the critical point
has moved, although a linearized fluctuation analysis to first
order in x does not show any significant change. This indi-
cates that linearization is not as trustworthy with the cross-
phase terms included and we must resort to stochastic inte-
gration at lower pumping than for pure x (2), or with just the
inclusion of the self-phase modulation. We plan to further
investigate both the noise properties and the effects of the
cross-phase modulation near and above the critical point as
part of a more general study into the limits and applicability
of linearization.

IV. CONCLUSION

We have analyzed second-harmonic generation in the
case where the nonlinear crystal has added x (3) nonlineari-
ties. In the traveling-wave case we find marked differences
between the dynamic behavior of the fields with and without
the x (3) components. As far as the quantum statistics of the
fields are concerned, we find that less squeezing is achiev-
able in the x (3) case. The behavior of the fields is not sig-
nificantly changed by the inclusion of cross-phase modula-
tion terms.

When we investigate the intracavity situation, we find that
the behaviors are essentially the same below the critical

point. The amount by which the critical point is changed
depends on whether cross-phase modulation is included or
not. At and above the critical point, however, we find obvi-
ous signatures of the x (3) components. Although the Hopf
bifurcation is not moved very much, the self-pulsing behav-
ior is quite different. A new oscillation with two distinct
amplitudes emerges, with a period significantly larger than
that found for pure SHG.

As all materials have some x (3) component, and the ratio
of x (3)/x (2) that we have used is rather small, but typical of
nonlinear media, it is of interest to know what the signatures
of this component are. We have found several signatures that
should be accessible to experimental observation.
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APPENDIX: DERIVATION OF

ANALYTICAL SOLUTION

Using the fact that ua(z)u2
12ub(z)u2

5C0 is constant in
the propagation, in our case being equal to ua(0)u2 and de-
fining a(z)5ua(z)u2, b(z)5ub(z)u2 ~note that these are not

the operators â and b̂), we find that

da

dz
5kV ,

~A1!
db

dz
52

k

2
V ,

where V5a*2b1a2b*. Defining also W(z)5i(a*2b
2a2b*), we find

dV

dz
5ka~4b2a !12x~2a2b !W ,

~A2!
dW

dz
52x~b22a !V .

We now introduce the variable

x52x@5ub~z !u2
22ua~0 !u2# , ~A3!

so that we can write

dx

dz
52gV ,

dW

dz
5Vx , ~A4!

dV

dz
5a02a1x2a2x2

2Wx ,

FIG. 10. Longer time behavior of the variance in the X0 quadra-

ture of the fundamental, for e51.2ec and x51027. The noise in-

creases and becomes periodic as the self-pulsing begins. It is easily

seen that there will be no steady state squeezing in this quadrature.
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where g55kx , a057kC0
2/25, a154kC0/25x , and a2

53k/25x2. We now define another constant of the motion,

C15

1

2
x2~z !1gW~z !58x2ua~0 !u4, ~A5!

so that we can now write

d2x

dz2
52a0g1~C11a1g !x1a2gx2

2

1

2
x3. ~A6!

Treating d2x/dz2 as a pseudoacceleration and U(x) as a
pseudopotential, we can write

d2x

dz2
52

]U~x !

]x
, ~A7!

which leads to

dx

dz
•

d2x

dz2
52

dx

dz

]U~x !

]x
, ~A8!

or

d

dz
F1

2
S dx

dz
D 2G52

dU

dz
. ~A9!

From the above equation we can see that 1
2 (dx/dz)2

1U(x) is a constant, which leads immediately to Eq. ~4!.
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