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Abstract

Background: A complete explanation of the mechanisms by which Pb2+ exerts toxic effects on

developmental central nervous system remains unknown. Glutamate is critical to the developing brain

through various subtypes of ionotropic or metabotropic glutamate receptors (mGluRs). Ionotropic N-

methyl-D-aspartate receptors have been considered as a principal target in lead-induced neurotoxicity.

The relationship between mGluR3/mGluR7 and synaptic plasticity had been verified by many recent studies.

The present study aimed to examine the role of mGluR3/mGluR7 in lead-induced neurotoxicity.

Methods: Twenty-four adult and female rats were randomly selected and placed on control or 0.2% lead

acetate during gestation and lactation. Blood lead and hippocampal lead levels of pups were analyzed at

weaning to evaluate the actual lead content at the end of the exposure. Impairments of short -term

memory and long-term memory of pups were assessed by tests using Morris water maze and by detection

of hippocampal ultrastructural alterations on electron microscopy. The impact of lead exposure on

mGluR3 and mGluR7 mRNA expression in hippocampal tissue of pups were investigated by quantitative

real-time polymerase chain reaction and its potential role in lead neurotoxicity were discussed.

Results: Lead levels of blood and hippocampi in the lead-exposed rats were significantly higher than those

in the controls (P < 0.001). In tests using Morris Water Maze, the overall decrease in goal latency and

swimming distance was taken to indicate that controls had shorter latencies and distance than lead-

exposed rats (P = 0.001 and P < 0.001 by repeated-measures analysis of variance). On transmission

electron microscopy neuronal ultrastructural alterations were observed and the results of real-time

polymerase chain reaction showed that exposure to 0.2% lead acetate did not substantially change gene

expression of mGluR3 and mGluR7 mRNA compared with controls.

Conclusion: Exposure to lead before and after birth can damage short-term and long-term memory

ability of young rats and hippocampal ultrastructure. However, the current study does not provide

evidence that the expression of rat hippocampal mGluR3 and mGluR7 can be altered by systemic

administration of lead during gestation and lactation, which are informative for the field of lead-induced

developmental neurotoxicity noting that it seems not to be worthwhile to include mGluR3 and mGluR7 in

future studies.
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Background
In spite of extensive documentation of the toxic effects of
Pb2+ on human health, a complete and detailed explana-
tion of the mechanisms by which Pb2+ exerts its effects on
the central nervous system has not yet been found.
Numerous studies have shown [1-3] that prenatal and
early postnatal exposure to lead results in a long-term
potentiation (LTP) decrease, cognitive deficits, and behav-
ioral problems.

Interference with the glutamatergic neurotransmitter sys-
tem has proved to be one of the key mechanisms that
explains neurotoxicity of lead [4]. Glutamate is the major
excitatory neurotransmitter in the mammalian brain and
it mediates activity-dependent processes critical to both
the developing and mature brain [4-6]. Glutamate exerts
its effects through various subtypes of ionotropic or
metabotropic (mGluRs) receptors [7]. Activation of the
ionotropic N-methyl-D-aspartate receptors (NMDARs)
plays a central role in brain development and learning
and memory, which have been considered as principal
consequences of lead-induced neurotoxicity [4,8-10].
However, little is known about whether mGluRs are
involved in lead neurotoxicity.

mGluRs have recently been extensively studied. mGluRs
are composed of eight isoforms (mGluR1~8) which are
classified into groups I, II, and III. Group II (mGluR2 and

mGluR3) and group III (mGluR4, mGluR6, and mGluR7)
receptors are negatively coupled to adenylate cyclase by
Go and possibly Gi protein [11,12]. Previous studies have
shown that antagonists and agonists of mGluRs can mod-
ulate the induction, formation, and maintenance of LTP
[11-15], a form of neuronal plasticity that is involved in
memory and learning. The mGluR3 receptors are localized
at high densities in brain areas associated with cognition
and memory, such as the hippocampus, cortex and olfac-
tory bulb [16-18]. Expression of mGluR7 is relatively high
on CA3 neurons in the CA1 region [19]. The relationship
between mGluR3/mGluR7 and synaptic plasticity had been
verified by many recent studies. Pharmacological activa-
tion of mGluR3 revealed that mGluR3 may be of marked
significance in the regulation of excitability in neuronal
networks, as well as of synaptic plasticity [20-23]. In the
study by Pöschel et al [22], activation of postsynaptic
mGluR3 receptors were found necessary for long-term
depression (LTD), presynaptic mGluR3 receptors func-
tioned as modulators of both LTP and LTD [22]. On the
other hand, the presynaptic axons of CA3 pyramidal neu-
rons primarily express mGluR7, and mGluR7 modulate
synaptic transmission at a variety of central synapses [24-
26]. For example, Bushell et al. [24] reported that the ini-
tial decremental phase of LTP, known as short-term
potentiation, was greatly attenuated in the mGluR7 knock-

out mouse (mGluR7-/-), which suggested a role for
mGluR7 in short-term potentiation in the CA1 region.

We therefore undertook this study to examine the possi-
ble role of mGluR3 and mGluR7 in lead neurotoxicity. We
used a whole-animal model and real-time polymerase
chain reaction (PCR) to analyze the expression of mGluR3

and mGluR7 in the hippocampus of developmental rats
exposed to lead during the pre- and postnatal periods. We
wish to ascertain the impact of lead exposure on mGluR3

and mGluR7 expression and their potential roles in lead
neurotoxicity.

Methods
Animal protocol and Pb2+ exposure

Rats were exposed to Pb2+ during development as previ-
ously described [9,27]. Briefly, twenty-four adult Sprague-
Dawley rats were individually housed in plastic cages with
bedding at 22 ± 2°C under a 12-hour light: dark cycle
(male-female ratio 2:1, weight 200~250 g). Eight female
rats were randomly selected and placed on control or
0.2% lead acetate water (Sigma-Aldrich, St. Louis, MO)
from 10 days prior to mating and until postnatal day 21,
namely gestational and lactational lead exposure. The
lead-exposed group (4 litters) and control group (4 litters)
both received the same treatment throughout the study
and food and water were provided ad libitum. One day
after parturition, litters were culled to 8 pups (male-
female ratio 1:1) and the pups were weaned at 21 days of
age. After weaning, all pups were fed deionized drinking
water. All procedures complied with institutional guide-
lines regarding the ethical care and use of animals.

Blood lead and hippocampal lead analysis

In each litter, four weaning pups including 2 male and 2
female rats were randomly selected to analyze the blood
lead and hippocampal lead levels to evaluate the actual
lead content at the end of the exposure. Blood samples
(0.3–0.5 ml) were collected by cardiac puncture in tubes
containing EDTA-disodium. Blood lead levels were deter-
mined via Thermo Elemental Solaar M6 Series (Thermo
Elemental, Franklin, MA, USA) by Graphite Furnace
Atomic Absorption Spectrometry and the quality control
procedure for the assessment of lead exposure was per-
formed. Hippocampus from both left and right sides were
collected from each rat, rinsed softly with saline, sopped
up water with filter paper, pooled together as one sample
and weighed. After hippocampal tissues were digested by
nitric acid and hydrogen peroxide, they were heated in the
microwave digestion oven (CEM MARS5, USA). After that,
hippocampal lead levels were measured by inductively
coupled plasma mass spectrometry (ICP-MS, Agilent
7500 CE, Agilent Technologies, USA). The operations are
all performed in our ICP-MS lab, which meets the Chinese
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Standard (GBJ173-1984) and provides air to meet class
100 (class I) conditions.

Electron microscopy

Ultrastructural details of hippocampus were studied with
electron microscopy as described [9,28]. Briefly, after 32
weaning rats (8 litters, 4 pups/litter) were sampled by car-
diac puncture as above, they were immediately decapi-
tated and collected from both sides of hippocampi and
immediately cut into tissue blocks (1 mm × 1 mm × 5
mm) and were processed for electron microscopy.
Ultrathin sections (50 nm) were cut with an ultramicro-
tome (Ultracut, Reichert-Jung) and stained with 4% ura-
nyl acetate for 20 minutes and with 1% Pb for 10 minutes
prior to examination by electron microscopy (H-500,
HITACHI, Japan). The slides were read by a designated
and experienced pathologist who was blinded to the dose
groups.

Morris water maze (MWM)

A test using the MWM was performed when young rats
were 30 days old. In each litter, only one male and one
female pups were randomly selected. The MWM was orig-
inally designed by English psychologist Morris in the
1980s [30], which consisted of a dark circular pool 150
cm in diameter and 50 cm in height. The pool was filled
to a height of 35 cm with water at 22°C ± 0.5°C stained
by black ink. A transparent Plexiglas® escape platform (12
cm in diameter) 5 cm below the water surface and invisi-
ble to the rats was located in the center of the southwest
quadrant. The room had numerous extramaze cues that
remained constant throughout the experiment and no
intramaze cues to ensure that the rats had to rely on the
location of extramaze cues to locate the platform. The pro-
cedure included a training portion and test portion. Each
training day consisted of 4 trials per animal, with a quasi-
randomly selected release location from each compass
point (N, E, S, W). On trial 1 of day 1, the animal was
released from the appropriate starting location and once
the rat located the platform it was allowed to stay on it for
10 seconds. If the rat did not find the platform within 120
seconds, it was guided to reach it and allowed to remain
on it for 10 seconds and then was returned to its heated
cage following completion of the task. Twenty-four hours
after last training trial (postnatal day (PND) 35), 7 days
later (PND 42), and 1 month later (PND72), spatial mem-
ory was repeatedly examined. On each occasion experi-
mental procedures and surroundings were kept constant.
The time required to reach the platform (escape latency),
distance swimming to the platform, and the swimming
speed as well as the time and distance spent in each quad-
rant were recorded by a video tracking system. The meas-
ures were averaged per rat within each daily session.

The MWM originally was aimed to test short-term mem-
ory (STM), namely spatial reference memory. In previous
studies, the retention tests including the inhibitory avoid-
ance task [31], hippocampal dependent discrimination
task [32], and conditioned taste aversion [33], were per-
formed to examine long-term memory (LTM) of rats
which were conducted at 5 days [33], 7 days [32] or 1
month [34] after training. However, there have not any
studies to assess the MWM test for evaluation of LTM. In
this study, we tried to modify the classic MWM procedure
and add our self-designed retention test, which might be
a new and practical way to apply the MWM to evaluate
LTM.

Total RNA isolation

At 21 days of age, both sides of hippocampus of pups (8
litters, one male and one female pups/litter) were har-
vested and stored frozen at -80°C prepared for PCR. RNA
was isolated using a Trizol kit (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer's instructions.
Extracted RNA concentrations and purity were evaluated
by measuring the A260 nm-to-A280 nm absorbance ratio
with an ultraviolet spectrophotometer (Perkin Elmer,
Wellesley, MA, USA). Integrity of RNA was assessed by
agarose gel electrophoresis.

Real-time reverse transcription (RT)-PCR

Highly purified oligonucleotide primers were commer-
cially generated (SBS Genetech, China). Primer design
and optimization were performed with Oligo software
(National Biosciences Inc., Plymouth, MN, USA) [29].
The primers used were the following: mGluR3 [GenBank:
M92076], sense 5'-GAC GTG GTC CTG GTG ATC CTA T-
3', antisense 5'-CTA ACG GAG ATG CAC ATT G-3', 197
bp; mGluR7 [GenBank: D16817], sense 5'-CCA GAC AAC
AAA CAC AAC CAACC-3', antisense 5'-GCG TTC CCT TCT
GTG TCT TCT TC-3', 173 bp; β-actin, sense 5'-AGA CCT
CTA TGC CAA CAC AGT GCT G-3', and antisense 5'-TCA
TCG TAC TCC TGC TTG CTG A-3', 218 bp.

One-step, real-time quantitative RT-PCR was carried out
with a LightCycler instrument (Roche, Mannheim, Ger-
many) by using the LightCycler SYBR Green I RNA Master
Kit (Roche, Mannheim, Germany). All reactions were con-
ducted in duplicate. Negative control was performed with
sterile purified deionized water. Each cycle of PCR
included denaturation at 95°C for 5 seconds, primers
annealing at 62°C for 5 seconds, and a final extension at
72°C for 12 seconds. The fluorescence of each sample was
measured at 5°C below the melting temperatures (Tms)
to eliminate background fluorescence due to primer-
dimer [35]. Results were analyzed with LightCycler Soft-
ware version 3.5 by using the second derivative maximum
method to set the CT. E was calculated using the equation
E = 10(-1/slope) [36-38]. Agarose gel electrophoresis analy-

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=M92076
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=D16817


Journal of Negative Results in BioMedicine 2009, 8:5 http://www.jnrbm.com/content/8/1/5

Page 4 of 8

(page number not for citation purposes)

ses were also performed to verify whether the amplified
product corresponded to the size predicted for gene-spe-
cific product.

Relative quantification was carried out with the Relative
Expression Software Tool (REST, Roche, Mannheim, Ger-
many). Because the expression level of the β-actin gene
was constant regardless of lead exposure [39], relative
qualification was presented by means of normalization
with the β-actin gene. Relative and normalized expression
ratios (R) were calculated on the basis of the median of
the performed duplicates and computed according to the
following equation: R = Etargetexp(ΔCTtarget)/Erefexp(ΔCTref)
[29,36,37].

Statistical analysis

Wilcoxon test was used in the analyses [40]. The variations
in mGluR3 and mGluR7 expression were compared using
coefficients of variability and the Wilcoxon two group
test. Blood lead levels and hippocampal lead levels were
analyzed with one-way analysis of variance (ANOVA). In
the MWM task, distance traveled (cm) and escape latency
were the principal measures to evaluate the performance
of the rats during acquisition training. The baselines of
pretraining latency and swimming distance of two groups
were analyzed with one-way ANOVA. Because the experi-
mental design involves both a between-subjects factor
(lead dose condition) and a within-subjects factor (days),
repeated measures ANOVA was performed. Data are pre-
sented as mean ± SD and the level of significance is P <
0.05 (two tailed). All statistical evaluations were per-
formed using standard statistical software (SAS Institute
Inc., Cary, NC, USA).

Results
Blood lead and hippocampal lead analysis

Lead concentrations of blood and hippocampus were 3.0
± 0.2 μg/dL and 51.9 ± 6.5 μg/kg, respectively, in 16 con-
trol rats and 56.8 ± 4.4 μg/dL and 432.9 ± 15.1 μg/kg,
respectively, in 16 lead-exposed rats. Lead levels of blood
and hippocampi in the rats exposed to lead were signifi-
cantly higher than those in the controls (n = 16, P <
0.001).

Neuronal ultrastructural alterations

On transmission electron microscopy neuronal ultrastruc-
tural alterations, such as damage of mitochondria, micro-
filaments, and microtubules, were observed. Vacuole
formation from swollen and distorted mitochondria,
chromatin condensation, nucleolus collapse or fragmen-
tation and myelin sheath degeneration were found in
lead-exposed hippocampal neurons compared with con-
trols (Figure 1).

Spatial learning and memory abilities evaluated by MWM

In testing using the MWM, the baselines of pretraining
latency and swimming distance of the controls were not
significantly different from that of the lead-exposed rats
(respectively F = 0.80, P = 0.39 and F = 1.68, P = 0.22, n =
8). With training proceeding, the overall decrease in goal
latency and swimming distance was taken to indicate that
rats in both groups were trained to swim onto the plat-
form, but control rats had higher learning efficiency, who
had shorter goal latencies and less distance than lead-
exposed rats (latency and swimming distance were respec-
tively P = 0.001 and P < 0.001 by repeated-measures anal-
ysis of variance, n = 8, Figure 2A–B). On PND 35, PND 42,
and PND 72, all the rats from control group found the
platform within 120 seconds, whereas the lead-exposed
group had a relatively lower ratio for reaching platform
(see Figure 2C). More dense movement trails were
observed in the target quadrant for the control group com-
pared with the lead-exposed group.

Expression levels of mGluR3 and mGluR7 mRNA after 

lead exposure

Optical-density ratios at 260 to 280 nm for total RNA were
all between 1.8 and 2.0. Agarose gel electrophoresis
showed that the 28S and 18S ribosomal RNA bands were
clearly visible at a staining intensity of about 2:1
(28S:18S).

By drawing standard curves for the β-actin gene and other
targeted genes, we found a linear relationship between the
cycle threshold value and the logarithm of the starting
concentration of the cDNA standard. PCR efficiency of β-

actin, mGluR3 and mGluR7 were respectively 1.96, 1.94
and 1.76; coefficients of variability of PCR efficiency were
respectively 0, 0.2% and 0.3%; Tms were respectively
84.35°C, 81.01°C and 82.08°C, coefficients of variability
of Tms were 0.21%, 0.23% and 0.37%. Melting-curve
analysis showed that all PCR amplifications led to a single
and specific product. Products were identified on 2%
high-resolution agarose gel electrophoresis (Figure 3).
Relative and normalized expression ratios for mGluR3/β-

actin and mGluR7/β-actin were respectively 1.27 ± 0.26
and 0.99 ± 0.06 (a ratio of 1 indicates no change in gene
expression, <1 indicates reduced expression, and >1 indi-
cates increased expression, a ratio <0.5 or >2 is considered
significant). Lead exposure of 0.2% lead acetate did not
substantially change gene expression of mGluR3 and
mGluR7 mRNA compared with controls.

Discussion
Our study has assessed the impact of lead exposure during
the gestational and lactational periods on gene expression
of mGluR3 and mGluR7 mRNA, but significant difference
of expression levels is not observed in lead-exposed rats
and non-exposed controls.



Journal of Negative Results in BioMedicine 2009, 8:5 http://www.jnrbm.com/content/8/1/5

Page 5 of 8

(page number not for citation purposes)

Representative electron micrographs of coronal sections of the rat hippocampus are shownFigure 1
Representative electron micrographs of coronal sections of the rat hippocampus are shown. (A, C, and E) con-
trol hippocampus. (B, D and F) lead-exposed hippocampus in rats at weaning that were treated with 0.2% lead acetate during 
the gestational and lactational periods as described. Abnormal appearance of neurons including irregular shaped nucleus, swol-
len mitochondria, often vacuolated with disrupted cristae, a large quantity of heterochromatin collected inside the nucleus, 
demyelination or shrinkage, and denaturation of the myelin sheath were observed. These findings suggest that hippocampal 
ultrastructures were injured by lead exposure during the early stage of life. Scale bar = 1 μm. NN: normal nucleus; IN: irregular 
nucleus; SM: swollen mitochondria; VM: vacuolated mitochondria; NM: normal mitochondria; H: heterochromatin; DMS: dena-
turation of myelin sheath.
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In this study, lead exposure level of 0.2% lead acetate was
administered to Sprague-Dawley rats as was used in most
lead-exposed experiments, which was found to cause an
increase in rats' blood lead levels similar to the degree of
modest to severe lead poisoning in children. Thus we con-
sidered that the dose of lead exposure which has been
used in this study was appropriate and the hypothesis that
the exposure level of 0.2% lead acetate might be too low
to reveal any obvious change in expression of mGluR3 and
mGluR7 mRNA should be ruled out.

On the other hand, the putative role of G-protein-coupled
metabotropic receptors in LTP and LTD has been the sub-
ject of intense investigation recently. Although recent
studies demonstrated that mGluR3 played an essential
role in LTD and a modulatory role in LTP, and functioned
to regulate activity-dependent synaptic potentiation in the
hippocampus [21,41], and mGluR7 might mediate a
reduction in synaptic transmission through a mechanism
such as decreasing calcium influx [19,24], the results of
our studies showed that no obvious variation of mGluR3/

7 mRNA expression occurred after pre-natal and early
post-natal lead exposure. Many studies have revealed that
ionotropic glutamate receptors NMDARs acted as one of
targets of lead induced neurotoxicity, mainly by means of
the decreased expression of NMDARs subtypes NR2A

mRNA and NR1 mRNA and therefore resulting in a
decrease of calcium-dependent synaptic transmission.
There is still lack of studies of other factors, such as the
studies of effects of lead exposure on affinity of glutamate

MWM analysis of lead-exposed and control rats over 42 days of MWM acquisition revealed a statistically significant behav-ioral deficitFigure 2
MWM analysis of lead-exposed and control rats over 
42 days of MWM acquisition revealed a statistically 
significant behavioral deficit. (A) Escape latency (mean ± 
standard deviation) of the two groups. (B) Swimming dis-
tance (mean ± standard deviation) of the two groups. Base-
lines of pretraining latency and distance traveled were not 
significantly different between the two groups (P = 0.39 and P 
= 0.22, n = 8). With training proceeding, controls had higher 
learning efficiency and shorter goal latencies and distance 
than lead-exposed rats (P = 0.001 and P < 0.001 by repeated-
measures analysis of variance, n = 8). (C) Rate (mean ± 
standard deviation) of reaching goal of the two groups. On 
PND35, PND 42, and PND 72, all the control rats found the 
platform within 120 seconds whereas some of lead-exposed 
rats failed to do so.

Gene expression of mGluR3 and mGluR7 mRNA in pups' hip-pocampus after perinatal lead exposureFigure 3
Gene expression of mGluR3 and mGluR7 mRNA in 
pups' hippocampus after perinatal lead exposure. (A) 
Melting curve analysis of SYBR green I dye PCR assay. Melt-
ing-curve analysis showed that all PCR amplifications led to a 
single and specific product and the melting temperatures 
(Tm) of all target genes were as follows: mGluR3 (Tm: 
81.01°C), mGluR7 (Tm: 82.08°C), and β-actin (Tm: 84.35°C). 
(B) Confirmatory 2% agarose gel electrophoresis showing 
the target mGluR3 (197 bp) and mGluR7 (173 bp) and β-actin 
(218 bp) products. Lane 1:mGluR7; lane2: negative control; 
lane3:mGluR3; lane4: β-actin; and lane5: molecular weight 
markers.
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receptors. Several scientists had done some research about
the impact of lead on binding abilities of glutamate recep-
tors and found that developmental lead exposure altered
expression levels of components of NMDAR with no
change in binding affinity [42,43]. The binding affinity
was not considered as key elements of lead induced neu-
rotoxicity [44,45]. In conclusion, we speculate that rat
mGluR3 and mGluR7 might not involve in the pathways
mediating lead neurotoxicity. A potential limitation of the
present study is that the results are only from rats and lack
of data of other genus yet.

In neuronal ultrastructural detection and MWM task, we
found that exposure to lead before and after birth can
result in ultrastructural alterations and STM deficits,
which is consistent with previous results [44,45]. The hip-
pocampus called "time window of memory" plays an
especially important role in the storage of STM and the
transition from STM to LTM [46-49], hippocampal
ultrastructural alterations maybe one of mechanisms of
lead-induced neurotoxicity. Moreover, a modified MWM
procedure was applied and LTM was found also injured
which was another proof that lead may cause irreversible
neurological damage to neurodevelopment.

The present study suggests that lead exposure has no obvi-
ous effect on hippocampal mGluR3 and mGluR7 mRNA
expression, and rat hippocampal mGluR3 and mGluR7

might not associate with lead induced neurotoxicity. Fur-
ther studies are required to reveal the outcomes of another
spliced variants of mGluRs after lead exposure. We believe
this study is among the first to examine the role of mGluR3

and mGluR7 in lead neurotoxicity.
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