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Abstract: We investigate effects of the electron traps on adiabatic charge transport in

graphene nanoribbons under a longitudinal surface acoustic wave (SAW) potential. Due

to the weak SAW potential and strong transverse confinement of nanoribbons, minibands of

sliding tunnel-coupled quantum dots are formed. Therefore, as the chemical potential passes

through minigaps, quantized adiabatic charge transport is expected to occur. We analyze the

condition for a closed minigap, thereby destroying the current quantization in a nanoribbon.

We present numerical calculations showing the localized energy states within minigaps.

Additionally, we compare the results with the minibands of corrugated nanoribbons.

Keywords: localized trap states; graphene nanoribbons; charge transport; surface

acoustic wave

1. Introduction

A considerable amount of research work has been carried out so far on the design and improvement

of electronic devices that are based on the use of quantized adiabatic charge transport. [1–11] Moreover,
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under a surface-acoustic wave (SAW), the inelastic capture and tunneling escape effects on the

non-adiabatic transport of photo-excited charges in quantum wells was also investigated. [12] The

underlying challenge is to produce a device with an accuracy for the quantized current of one part in

108 on the plateaus. When this goal is achieved, one application of this device would be in metrology

for standardizing the unit of current.

At the present time, an SAW is launched on a piezoelectric heterostructure, such as GaAs/AlGaAs,

and GHz single/few-electron pumps have been gaining close scrutiny due to the fact that the measured

currents lie within the nanoamp range, high enough for the measured current to be suitable as a current

standard. However, these pumps have so far been capable of delivering electrons/holes in each cycle

of a sliding dynamic quantum dot (QD), giving rise to a quantized current with an accuracy of one part

in 106 as reported in [4–9]. Interestingly, in [13] a measurement of the noise accompanying a 3-GHz

SAW pump was carried out. It was observed in this experiment that the current near the lowest plateau,

corresponding to the transfer of one electron per SAW cycle, is dominated by shot noise. However, away

from the plateau, the noise is attributed to electron traps in the material. There have been some attempts

to increase the flatness of the plateaus by applying magnetic fields. [14,15]

On the other hand, there has been a high-level of research and device interests on both the

electronic and optical properties of two-dimensional graphene material [16–20] since the report on

the first successful isolation of single graphene layers as well as the related transport and Raman

experiments performed for such layers [21]. The most distinctive difference between a graphene sheet

and a conventional two-dimensional electron gas in a semiconductor quantum well is the electronic

band structure, where the energy dispersions of electrons and holes in the former are linear in

momentum space but they become quadratic for the latter. As a result, electrons and holes in graphene

behave like massless Dirac fermions and show a lot of unexpected physical phenomena in electron

transport and optical response, including anomalous quantum Hall effect [22,23], bare and dressed

state Klein tunneling [24–27] and plasmon excitation [28–30], a universal absorption constant [31,32],

tunable intraband [33,34] and interband [35,36] optical transitions, broadband p-polarization effect [37],

photoexcited hot-carrier thermalization [38] and transport [39], electrically and magnetically tunable

band structure for ballistic transport [40], field-enhanced mobility in a doped graphene nanoribbon [41],

electron-energy loss in gapped graphene layers [42], and dipole coupling between a quantum dot and a

graphene nanodisk [43].

Some time ago, a proposal was put forward by Thouless [11] to make use of quantized adiabatic

charge transport. This adiabatic approach involves the use of a one-dimensional (1D) electron system

subjected to a slowly-sliding periodic potential. Relatively simple analysis indicates that in such

a 1D system minigaps are generated in instantaneous electronic spectra as a function of the SAW

amplitude. With the use of a gate, the chemical potential can be varied by applying a voltage to

the gate. Consequently, when the chemical potential lies within a minigap, there will be an integral

multiple of electron charge transported across the system during a single time period. [1] In other

words, by combining with the strong transverse confinement of a nanoribbon, the weal longitudinal

SAW potential has induced a series of dynamic (sliding) tunnel-coupled QDs whose impenetrable wall

is constructed through destructive interference of the electronic wave functions around a minimum

of the SAW potential. In principle, such an adiabatic-transport device could provide an important
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application, like a current standard. Talyanskii et al. [1] investigated the physical mechanisms of

quantized adiabatic charge transport in carbon nanotubes for an SAW to produce a periodic potential

required for miniband/minigap formation.

In the presence of an SAW, the scattering effects from impurities embedded in a 1D electronic system

are expected to play an important role on the flatness of a current plateau. The current quantization should

be completely smeared out when the level broadening from impurity scattering becomes comparable

to the minigaps of dynamic tunnel-coupled QDs. On the other hand, we can also simulate localized

electron traps by superposing a series of negative δ-potentials onto an SAW potential within each spatial

period. Consequently, we expect a set of localized trap states occurring within the minigaps of dynamic

QDs. This provides an escape channel for the QD-confined electrons being carried by the SAW. This

trap mechanism is quite different from the impurity one [1] where a spatial average with respect to the

distribution of impurities within a dynamic QD is inevitable due to an SAW.

In this letter, we consider a 1D Dirac-like electron gas in a graphene nanoribbon in the presence of an

SAW. We will introduce two mechanisms for miniband formation. First, the nanoribbon is modulated

by a longitudinal potential from an SAW. Secondly, the nanoribbon is periodically corrugated. We

notice that the second mechanism does not lead to a quantized current but instead produces traps for

Dirac electrons, thereby limiting electron mobility. Our numerical calculations reveal that localized

electron trap states are an effective mechanism to adversely affect the adiabatic transport because the

localized-trap levels lying within the minigaps are very sensitive to the phase of either the SAW or the

corrugation-induced potential. Varying the weight or the position of the δ-potential leads to different

positions of localized trap levels within the minigaps of the nanoribbon. Therefore, these inevitable

fluctuations of the trap potential in a realistic system would most likely impede the current quantization.

The rest of the letter is organized as follows. In Section 2, we present the formalism for calculating

band structure with localized trap states for nanoribbons in the presence of an SAW. In Section 3,

numerical results for nanoribbons in the absence/presence of an SAW and those for corrugated

nanoribbons in the absence of an SAW are presented to demonstrate and explain the localized trap states

within the minigaps. The conclusions drawn from these results are briefly summarized in Section 4.

2. Miniband Structure with Localized Trap States

The work done by Talyanskii et al. [1] on quantum adiabatic charge transport focused on the coupling

between a semimetallic carbon nanotube and an SAW. The electron backscattering from the SAW

potential is used to induce a miniband spectrum. The electron interactions enhance the minigaps, thereby

improving current quantization. The effect due to impurities in the carbon nanotube is averaged by an

SAW potential.

For the cases of a semimetallic carbon nanotube, semiconducting carbon nanoribbon with applied

SAW potential and corrugated nanoribbon, the energy levels are given by the spectra of discretized 1D

Dirac Hamiltonian (see the Appendix A for detailed derivations)
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The eigenvalue problem is defined within the spatial interval 0 < x < 2π/k and assumes periodic

boundary conditions. In this notation, k stands for either the wave number kSAW of the SAW potential

or the wave number kc of an effective potential induced by the corrugation. The discretization of the

Hamiltonian is provided by the mesh xn = nδx with n ∈ 0 . . . N − 1 and δx = 2π/kN .

For either the carbon nanotube or graphene nanoribbon, the parameters for the Hamiltonian matrix in

Equation (1) are given by

an = 0 , (2)

bn = ∆e
−iα(xn) ,

cn =
i~ṽF
2δx

,

where we have introduced the SAW and impurities combined phase

α(x) =

x
∫

0

du [VSAW (u)− Vtrap(u)] = λ cos(kSAWx) + V0 θ(x− x0) , (3)

with λ = 2A/(~ṽFkSAW ) the normalized SAW amplitude, ṽF is the Fermi velocity of graphene.

Additionally, V0 = Vtrap/(~ṽFkSAW ) and x0 denote the normalized trap-potential amplitude and position

of the short-range dynamic trap for electrons, respectively, and the trap is sliding together with the SAW

potential. The mass term involving ∆ is the original energy gap, associated with a finite width of a

nanoribbon, for the system in the absence of an SAW. In case of a nanotube, ∆ may be generated by a

magnetic field. For a nanoribbon, the gap is structural for the semiconducting nanoribbon ~ṽFk
(m)
y with

k
(m)
y being the transverse electron wave number due to finite size across the ribbon. For nanoribbons, the

explicit form for the phase introduced in Equation (3) can be found from the Appendix A.

As far as the minigaps are concerned, the effect due to the SAW potential on the nanoribbon may be

compared with corrugation. A sinusoidal corrugated semiconducting ribbon can be mapped on to a flat

ribbon. The mapping introduces an additional σ̂1 term into the Dirac equation, as described in Appendix

A. This yields
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an = ~ṽF

[

−
√
2C2k3c sin(2kcxn)

∆c(x)[2 + C2k2c cos(2kcxn) + C2k2c ]
3/2

+ i
C2k3c

4∆3
c(x)

sin(2kcxn)

]

, (4)

bn = i~ṽFk
(m)
y e

−2iαc(xn) ,

cn =
i~ṽF

∆c(xn) 2δx
,

where the corrugation-induced gap is given by ∆c(xn) =
√

1 + C2k2c cos
2(kcxn), with C being the

normalized amplitude of the corrugation, and k
(m)
y is the quantized wave number across the nanoribbon.

3. Numerical Simulation and Discussions

In our numerical calculations, all the energies in Figures 1 and 2, such as ε, ∆ and Eg, are normalized

to ~ṽFkSAW . The SAW potential amplitude A is also normalized to ~ṽFkSAW . Additionally, all the

energies in Figure 3, such as ε and ∆, are measured in units of ~ṽFkc, and the corrugation amplitude C
is normalized to 1/kc. Besides, the transverse wave number k

(m)
y in all the plots is scaled by 2π/3a0. In

this way, we are able to draw some universal conclusions concerning the effects due to minigaps.

Figure 1. Scaled electron energy spectrum ε(k)/(~ṽFkSAW ) in the absence of electron

traps as a function of the normalized SAW amplitude A/(~ṽFkSAW ) for semiconducting

nanoribbons subjected to an acoustically induced SAW potential. In this figure, we choose

∆/(~ṽFkSAW ) = 1.0 (upper panel) and 1.5 (lower panel). Only the eigen-spectra arising

from the two lowest dispersion curves in the absence of an SAW are displayed. Higher

subbands contribute significantly at larger SAW amplitude. The lighter shaded regions arise

from the lowest energy dispersion curves, whereas the darker shaded regions are associated

with the energy dispersions of the next subband.

In Figure 1, we compare the energy band structure of nanoribbons for two values of ∆ in the absence

of electron traps. Two values of k
(m)
y were chosen (light and dark colors) to describe the two lowest

energy levels (see the discussions in the Appendix A). The minigaps are generated by a sliding dynamic

QD and they oscillate as a function of the SAW amplitude A, as may be verified using perturbation

theory, vanishing at values close, but generally not equal, to the roots of Bessel functions. Increasing

or decreasing the value of ∆ results in a shift of the nodes on the graph as evidenced by comparing our

results in Figure 1. Therefore, ∆ determines not only the magnitude of the original gap in the absence
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of an SAW but also the size of the minigaps in the presence of an SAW. Higher energy minigaps are

partially closed by the energy levels corresponding to a larger value of k
(m)
y (not shown here).

Figure 2. (Color online) Scaled electron energy spectrum ε(k)/(~ṽFkSAW ) in the presence

of electron traps as a function of the normalized SAW amplitude A/(~ṽFkSAW ) for

semiconducting nanoribbons subjected to an acoustically induced SAW potential. In

this figure, we chose the energy gap ∆/(~ṽFkSAW ) = 1.0 and the trap weight V0 =

Vtrap/(~ṽFkSAW ) = 1.0 for all four panels. As in Figure 1, only the eigen-spectra due

to the two lowest dispersion curves in the absence of the SAW are shown. Here, the

position x0kSAW/(2π) of electron traps, moving with the SAW potential, is located at: 1/3

(upper-left panel), 1/5 (lower-left panel), 1/7 (upper-right panel), and 1/11 (lower-right

panel). Two induced trap-state energy levels within the energy gap are indicated by arrows

in the lower-left panel for emphasis.

We now introduce electron traps into our nanoribbon by superposing a negative δ-potential onto the

SAW potential so as to simulate a short-range Coulomb interaction. In this case, the position of the trap

is fixed in the moving SAW frame of reference, which is quite different from embedded impurities in

a nanostructure. In the moving SAW frame, the embedded impurities are moving against the dynamic

QDs created by both the transverse dimension of the nanostructure and the longitudinal SAW potential.

This results in an average of the impurity effects with respect to these dynamic QDs in the longitudinal

direction. As seen in the results presented in Figure 2, localized trap states occur within the minigaps

once the weight of the trap potential V0 becomes larger than ∆/(~ṽFkSAW ). Relative energy value of

these trap states in the presence of SAW is sensitive to the position x0 of the trap within a dynamic

QD. If we set λ = V0, then the contribution to α(x) from the trap located in the nodes of the SAW

potential is fully compensated by the cosine term in Equation (3). As a result of this compensation, the

localized trap states will disappear from the gap and minigap regions. If we extend the single-trap model

employed in this letter to a uniform distribution of traps, the fluctuations in the phase term α(x) [see

Equation (3)] would fill up the entire minigap region with a delocalized trap band. Consequently, the
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adiabatic approximation may not be applicable. In other words, to satisfy the adiabatic assumption, one

must have dominance of the SAW potential, i.e., λ≫ V0 must be satisfied.

We compare the results for SAW-based dynamic QDs in Figures 1 and 2 with those for static QDs

created by corrugation on a graphene nanoribbon in the absence of an SAW and electron traps. We do

this by displaying in Figure 3 the minigaps induced by the corrugation. We find from the figure that

minigaps only exist for finite but small values of the corrugation amplitude C. This means that these

minigaps are generally much less than those induced by an SAW. As a matter of fact, the existence of

non-vanishing diagonal terms an given in Equation (4) effectively mitigates the phase fluctuations in the

off-diagonal terms bn. This keeps the minigaps open and the energy spectra robust even after traps have

been introduced to cause a fluctuation in the phase term αc(x).

Figure 3. (Color online) Minigap spectrum ε(k)/(~ṽFkc), induced by a corrugation

potential, as a function of the normalized modulation amplitude Ckc. In this figure, the

two plots correspond to the two lowest values of the quantized transverse wave number k
(m)
y .

The graph at the top comes from the lowest quantized energy subband, whereas the graph at

the bottom is due to the first-excited subband.

Finally, let us assume that a narrow channel is formed within a two-dimensional electron-gas layer

lying in the xy-plane. We will neglect the finite thickness of the quantum well for the heterostructure

in the z-direction and consider the electron motion as strictly two dimensional. We will employ one of

the simplest models for the gate-induced or etched [44] confining electrostatic potential. In this way, a

1D channel is formed on the two-dimensional electron-gas layer and the dynamics of massive electrons

can be modeled by a discretized 1D Schrodinger equation. However, from numerical results (not shown

here), we find no evidence of the minigaps for this model, i.e., the minigaps are the characteristics of

Dirac fermions.

4. Concluding Remarks

In conclusion, we have calculated in this letter the energy band structure for graphene nanoribbons,

embedded with a single electron trap, upon which an SAW is launched. Our results show that localized
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trap states appear in the minigaps. More importantly, the location of the trap state-energy level is

determined by the positions of the trap with respect to the phase of the sinusoidal SAW. Consequently,

the adiabatic approximation might not be appropriate whenever the minigap is less or comparable with

the weight of a short-range δ-potential for the trap (see Figure 2). On the other hand, in Figure 1, where

there are no electron traps, a larger value of ∆ in the energy spectrum leads to a substantial increase in the

number of minigaps as well as the ballistic current quantization. Periodic corrugation of the nanoribbon

may be used instead of an SAW as a mechanism for inducing minigaps. Those are expected to be less

sensitive to the presence of charged impurities or electron trap potentials.
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A. Energy Band Calculations in Absence of Electron Traps

A.1. Carbon Nanotubes

The electron eigenstates in a semi-metallic nanotube are described by a 1D Dirac equation. For

simplicity, a non-interacting system is considered here. Under the stationary approximation, the single

particle energy spectrum ε(k) is obtained from the following perturbed 1D Dirac equation

ε(k)ψα(x) = −i~ṽF
∂ψα(x)

∂x
+∆ψβ(x) + A sin(kx)ψα(x) , (5)

ε(k)ψβ(x) = i~ṽF
∂ψβ(x)

∂x
+∆ψα(x) + A sin(kx)ψβ(x) . (6)

In this notation, k represents the electron wave number along the nanotube, ṽF is the Fermi velocity

of Dirac electrons, A is the SAW amplitude, ∆ is the energy gap of the system in the absence of an

SAW, α and β label the two sublattices of graphene from which the nanotube is rolled. In addition,

we require k = kSAW to satisfy momentum conservation, where kSAW is the wave number of an SAW

propagating along the nanotube. To explore the miniband structure due to quantum confinement in the

radial direction, a gauge transformation is implemented and is defined by

[

ψα(x)

ψβ(x)

]

= e
(i/2)σ̂3λ cos(kx)

[

ψ′
α(x)

ψ′
β(x)

]

=

[

e
(i/2)λ cos(kx) ψ′

β(x)

e
(−i/2)λ cos(kx) ψ′

α(x)

]

, (7)

where λ = 2A/(~ṽFk) is the normalized SAW amplitude. Substituting Equation (7) into

Equations (5) and (6), we obtain

ε(k)e(i/2)λ cos(kx) ψ′
β(x) = −i~ṽF

∂

∂x

[

e
(i/2)λ cos(kx) ψ′

β(x)
]

(8)

+∆e
(−i/2)λ cos(kx) ψ′

α(x) + A sin(kx)e(i/2)λ cos(kx) ψ′
β(x) ,

ε(k)e(−i/2)λ cos(kx) ψ′
α(x) = i~ṽF

∂

∂x

[

e
(−i/2)λ cos(kx) ψ′

α(x)
]

(9)

+∆e
(i/2)λ cos(kx) ψ′

β(x) + A sin(kx)e(−i/2)λ cos(kx) ψ′
α(x) .

By introducing the following identities

−i~ṽF
∂

∂x

[

e
(i/2)λ cos(kx) ψ′

β(x)
]

= (10)

−A sin(kx)ψ′
β(x)− i~ṽF e

(i/2)λ cos(kx)
∂ψ′

β(x)

∂x
,

i~ṽF
∂

∂x

[

e
(−i/2)λ cos(kx) ψ′

α(x)
]

= (11)

−A sin(kx)ψ′
α(x) + i~ṽF e

(−i/2)λ cos(kx) ∂ψ
′
α(x)

∂x
,
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Equations (9) and (A.1) may be simplified as

ε(k)ψ′
β(x) = −i~ṽF

∂ψ′
β(x)

∂x
+∆e

−iλ cos(kx) ψ′
α(x) , (12)

ε(k)ψ′
α(x) = i~ṽF

∂ψ′
α(x)

∂x
+∆e

iλ cos(kx) ψ′
β(x) . (13)

Furthermore, by employing the basis set Ψ̂′(x) ≡
{

ψ′
α(x), ψ

′
β(x)

}

, the above equations can be rewritten

into a compact matrix form, given by

ε(k) Î Ψ̂′(x) = Ĥ Ψ̂′(x) , (14)

Ĥ = i~ṽF σ̂3
∂

∂x
+∆ σ̂1 e

−iλσ̂3 cos(kx) . (15)

We will solve the eigenvalue problem within the spatial interval 0 < x < 2π/k and introduce the

N -point mesh xn = n δx, where n ∈ 0 . . . N − 1 and δx = 2π/kN . In this way, the derivative on the

mesh can be approximated by ∂Ψ̂′(xn)/∂x → [Ψ̂′(xn+1)− Ψ̂′(xn−1)]/(2δx). Especially, on this spatial

mesh, the Hamiltonian in Equation (15) may be projected into the matrix given in Equation (1).

A.2. Graphene Nanoribbons

Here, we consider an armchair graphene nanoribbon lying along the x-direction. The total number of

carbon atoms (in both sublattices) across the ribbon is assumed to be M . The armchair edges mix up the

graphene K and K ′ valleys so that the wave function becomes

Ψ̂m(x, y) = e
ik

(m)
y y Ψ̂K,m(x) + e

−ik
(m)
y y Ψ̂K′,m(x) , (16)

where the transverse wave number is given by

k(m)
y =

2πm

2L+ a0
+

2π

3a0
, (17)

m = 0, ±1, ±2, · · · is an integer, L is the nanoribbon width, and a0 =
√
3a/2 (a ≈ 1.42Å) is the size

of the unit cell in graphene. Nanoribbons with width L/a0 = 3M + 1 give rise to the following relation

k(m)
y =

2πm

6Ma0 + 3a0
+

2π

3a0
=

2π

3a0

(

2M + 1 +m

2M + 1

)

, (18)

and it is clear that the minimum energy occurs at k
(−2M−1)
y = 0. Therefore, such nanoriibons are metallic.

The next miniband corresponds to k
(−2M)
y = (2π/3a0) [1/(2M +1)]. On the other hand, for nanoriibons

having width L/a0 = 3M (upper Equation) or L/a0 = 3M − 1 (lower Eq.), the two minimal values of

k
(m)
y are found to be

k
(−2M)
y = (2π/3a0) [1/(6M + 1)] and k

(−2M−1)
y = (2π/3a0) [−2/(6M + 1)] ,

k
(−2M)
y = (2π/3a0) [−1/(6M − 1)] and k

(−2M+1)
y = (2π/3a0) [2/(6M − 1)] .

(19)



Electronics 2013, 2 190

Those nanoribbons are semiconducting with the energy gap determined by

∆(M) =
2π~ṽF
3a0

(

1

6M ± 1

)

. (20)

The x-component of the wave function in Equation (16) may be determined by

ε(k) ÎΨ̂K(K′),m(x) = Ĥ Ψ̂K(K′),m(x) , (21)

Ĥ = ±~ṽF

(

−iσ̂1
∂

∂x
+ ik(m)

y σ̂2

)

+ A sin(kx) Î , (22)

where the ± signs correspond to K and K ′ valleys. Additionally, the Hamiltonian in Equation (22) can

be transformed into the form in Equation (15) after applying the following unitary transformation

Û =

[

e
−iα(x) −eiα(x)

e
−iα(x)

e
iα(x)

]

, (23)

where α(x) = −A cos(kSAWx)/(~ṽFkSAW ). As a result, the transformed Hamiltonian takes the form

Ĥ′ = Û † ⊗ Ĥ ⊗ Û (24)

= ±~ṽF

[

−i∂/∂x −ik(m)
y e

i2α(x)

ik
(m)
y e

−i2α(x) i∂/∂x

]

.

Formally, this Hamiltonian is equivalent to that in Equation (15) after we apply the following

substitutions:

2α(x) → −λ cos(kSAWx) (25)

~ṽFk
(m)
y → ∆ .

The valley sign ± does not change anything due to the mirror symmetry in the energy dispersion relation

ε(k) with respect to ±k.

A.3. Corrugated Nanoribbons

We now turn to the case of a corrugated graphene nanoribbon whose modulation is sinusoidal with

amplitude C and wavelength 2π/kc along the x-axis. The model Hamiltonian for such a corrugated

graphene nanoribbon has been given in [45] as

Ĥ = −i~ṽF σ̂1
∂

∂x
+ ~ṽFkyσ̂2 − i~ṽF σ̂1

K(x)

2

df(x)/dx

∆c(x)
, (26)

where

∆c(x) =
√

1 + [df(x)/dx]2 and K(x) =
−d2f(x)/dx2
1 + [df(x)/dx]2

,

f(x) = C sin(kcx) .
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After applying the following unitary transformation

Û =
1√
2

[

e
−iαc(x) −eiαc(x)

e
−iαc(x)

e
iαc(x)

]

and Û † =
1√
2

[

e
iαc(x)

e
iαc(x)

−e−iαc(x)
e
−iαc(x)

]

,

where

αc(x) =
C2k3c
4

x
∫

0

du
sin (2kcu)

[1 + C2k2c cos
2 (kcu)]

3/2

=
1

2

[ √
2

√

2 + C2k2c cos (2kcx) + C2k2c
− 1

√

1 + C2k2c

]

,

the transformed Hamiltonian becomes

Ĥ′ = ~ṽF

[

G(x)− i∂/∂x
∆c(x)

−ikye2iαc(x)

ikye
−2iαc G∗(x) + i∂/∂x

∆c(x)

]

, (27)

where the complex function is defined by

G(x) =
−
√
2C2k3c sin(2kcx)

∆c(x) [2 + C2k2c cos(2kcx) + C2k2c ]
3/2

+ i
C2k3c

4∆3
c(x)

sin(2kcx) .

By making use of the finite-difference method for calculating ∂/∂x along with the following basis set

ϕ = {An−1, Bn−1, An, Bn, An+1, Bn+1} , (28)

the transformed Hamiltonian matrix in Equation (27) may be projected as

Ĥ = ~ṽF























G(xn−1) −ikye
2iαc(xn−1) −i

∆c(xn−1) 2δx
0 0 0

ikye
−2iαc(xn−1) G∗(xn−1) 0 i

∆c(xn−1) 2δx
0 0

i
∆c(xn) 2δx

0 G(xn) −ikye
2iαc(xn) −i

∆c(xn) 2δx
0

0 −i
∆c(xn) 2δx

ikye
−2iαc(xn) G∗(xn) 0 i

∆c(xn) 2δx

0 0 i
∆c(xn+1) 2δx

0 G(xn+1) −ikye
2iαc(xn+1)

0 0 0 −i
∆c(xn+1) 2δx

ikye
−2iαc(xn+1) G∗(xn+1)























.

The above Hamiltonian matrix has the same form as Equation (1).
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