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Abstract We consider a new model for biological invasions

in periodic patchy environments, in which long-range taxis

and population pressure are incorporated in the framework

of reaction-diffusion-advection equations. We assume that

long-range taxis is induced by a weighted integral of stimuli

within a certain sensing range. Population pressure is incor-

porated in the diffusion coefficient that linearly increases

with population density. We first analyze the model in

the absence of population pressure and demonstrate how

the sensing length of long-range taxis influences the range

expansion pattern of invasive species and its rate of spread.

The effects of population pressure are examined for both

homogeneous and periodic patchy environments. For the

homogeneous environment, an exact and explicit travel-

ing wave solution and the spreading speed are obtained.

For the periodic patchy environment, we find numerically

that a population starting from any localized distribution

evolves to a traveling periodic wave if the null solution of

the RDA equation is locally unstable, and that the traveling

wave speed significantly increases with increasing popu-

lation pressure. Furthermore, the population pressure and
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taxis intensity synergistically enhance the spreading speed

when they are increased together.

Keywords Reaction-diffusion-advection · Periodic patchy

environment · Traveling periodic wave · Long-range taxis ·
Population pressure

Introduction

The environments of living organisms are often frag-

mented by natural or artificial destruction of habitats.

Invading organisms also expand their range in hetero-

geneous/fragmented landscapes. Whereas most theoretical

studies on biological invasion have assumed that environ-

ments are homogeneous (Skellam 1951; for review, see

Shigesada and Kawasaki 1997; Okubo and Levin 2001;

Lewis et al. 2016), recent theoretical developments have

increasingly been directed toward more realistic situations

involving environmental heterogeneity, temporal variability,

or interactions with other species (Chesson 2000; Hastings

et al. 2005). Specifically, in the case of environments that

change periodically in space, the spatio-temporal process of

biological invasion has been investigated intensively in the

framework of a reaction-diffusion equation (RDE model) or

integro-difference equation (IDE model) to provide various

new insights into the range expansion pattern and its spread-

ing speed (RDE model: Shigesada et al. 1986; Weinberger

2002; Kinezaki et al. 2003, 2010; Berestycki et al. 2005a, b;

Roques and Stoica 2007; IDE model: Kawasaki and Shige-

sada 2007; Lutscher 2008; Weinberger et al. 2008; Dewhirst

and Lutscher 2009; Samia and Lutscher 2010; Gilbert et al.

2014; Musgrave and Lutscher 2014; Musgrave et al. 2015;

Bengfort et al. 2016). More recently, increasing attention

has been focused on the effects of directed movement
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toward more favorable habitats (taxis) on biological inva-

sion (Mistro et al. 2005; Lutscher et al. 2006; Cantrell et al.

2006; Kawasaki et al. 2012; Vergni et al. 2012; Maciel and

Lutscher 2013, 2015; Li et al. 2015; Shigesada et al. 2015).

Many organisms, from bacteria to mammals, have the

ability to migrate in response to stimuli or signals that

indicate food, favorable or unfavorable habitat, prey or

predators, etc., through various senses such as sight, hear-

ing, smell, touch and so on. Thus, these organisms are

actively driven toward more favorable regions in heteroge-

neous environments. In the present study, we classify taxes

into two major types, short-range taxis and long-range taxis,

depending on the sensing range of the organisms. With

respect to short-range taxis, we consider the case in which

the sensing range is so narrow, i.e., close to or less than the

body size, that organisms can only perceive the local inten-

sity of the signal and/or its gradient (Shigesada et al. 2015).

On the other hand, long-range taxis, as typically seen in

higher animals, represents the case in which organisms can

perceive environmental stimuli over a range wider than the

body size, by means of sight and other appropriate senses,

and move in the direction where a weighted integral of

stimuli within their sensing range is larger.

A classical example of short-range taxis is chemotaxis,

i.e., the movement of organisms in response to chemi-

cal gradients (Keller and Segel 1970; see also Hillen and

Painter 2009). Such gradient-based taxis has been extended

to higher animals in an ecological context (Shigesada et al.

1979; Shigesada and Roughgarden 1982; White et al. 1996;

Turchin 1998; Okubo and Levin 2001; Cantrell et al. 2006).

On the other hand, in small organisms such as bacteria, the

body length is too short to measure gradients along the body

axis. To resolve this problem, Othmer and Hillen (2002)

presented a non-local model by using an integro-differential

equation (see also Hillen and Painter 2009). However, this

type of model is beyond the scope of the present work (but

see the “Discussion” section).

Recently, Shigesada et al. (2015) studied a reaction-

diffusion-advection equation with short-range taxis in peri-

odic patchy environments in one dimension and investigated

how short-range taxis and the patchy environment interplay

to determine the spatio-temporal distribution of invasive

species and its rate of spread (see also Maciel and Lutscher

2013). As a further step, the present study addresses a

model that incorporates long-range taxis and compares its

effects on the range-expansion of invasive species with

those obtained from the corresponding short-range taxis

model.

In the presence of taxis, either short-range or long-range,

the population in the favorable patches should inevitably

become overcrowded. However, it has been observed with

various insects and animals that as the population density

becomes higher, repulsive interferences among individuals

could induce density-dependent accelerated dispersal (Kono

1952; Watanabe et al. 1952; Myers and Krebs 1974; Okubo

and Levin 2001). This effect is referred to as population

pressure. Since Gurney and Nisbet (1975) first constructed

density-dependent diffusion models, several authors have

explored the density-dependent dispersal phenomenon from

various angles (Gurtin and MacCamy 1977; Namba 1980;

Shigesada 1980; Mimura and Kawasaki 1980; Sánchez-

Garduño and Maini 1994; Lutscher 2008).

On the other hand, Morisita (1954) and Morisita (1971)

quantitatively evaluated population pressure by counting the

numbers of antlions that settled in a patchy environment

which consisted of a favorable patch filled with fine sands

and an unfavorable patch with coarse sands. The antlions

showed a strong preference for fine sand over coarse sand

for pit formation, when the population density was low.

However, this tendency was gradually diminished with

increasing densities, until almost equal numbers of individ-

uals were settled in both sands. In order to quantitatively

explain this result, he derived an empirical formula for the

probability of settlement of an individual in each patch as a

function of the total number of antlions initially released and

the environmental favorabilities of the two patches. Based

on Morisita’s experimental data, Shigesada et al. (1979)

proposed a non-linear diffusion model for population pres-

sure, in which the diffusion coefficient is given by a linearly

increasing function of population density (see also Shige-

sada 1980). In the present study, we apply this non-linear

diffusion term to the reaction-diffusion-advection equation

for the periodic patchy environment and investigate how

long-range taxis, population pressure, and environmental

heterogeneity mutually influence in determining the rate of

spread of invading species.

The layout of this article is as follows. In the “Reaction-

diffusion-advection equations incorporating active move-

ment toward favorable environments” section, the short-

and long-range taxis functions are defined in the frame-

work of a reaction-diffusion-advection equation for periodic

environments in one dimension, and a brief summary of

our previous related work is presented. In the “Long-range

taxis model in periodic patchy environments” section, the

reaction-diffusion-advection equation with long-range taxis

for periodic patchy environments is mathematically ana-

lyzed to obtain the formula for the minimum speed of trav-

eling waves. In the “Effects of population pressure” section,

a non-linear reaction-diffusion-advection equation incorpo-

rating population pressure is introduced. First, we derive an

exact traveling wave solution of this model for a special case

when the environment is homogeneous, so that the effect of

population pressure on the traveling wave speed is explicitly

evaluated. Then, the asymptotic spreading speed of the same

model for periodic patchy environments is numerically ana-

lyzed. In the “Discussion” section, we summarize the results
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and discuss our findings in comparison with other relevant

works.

Reaction-diffusion-advection equations

incorporating active movement toward favorable

environments

Short- and long-range taxis models

We consider a periodically varying environment with spa-

tial period L in one dimension and investigate the invasion

processes of a single species by employing the following

reaction-diffusion-advection equation:

∂n

∂t
= D

∂2n

∂x2
− ∂u(x)n

∂x
+(r(x)−μn)n for x ∈ (−∞, ∞),

(1)

where n represents the population density n(x, t) as a func-

tion of position x and time t . D, u(x) and (r(x) − μn)n

are the diffusion coefficient, taxis velocity and growth func-

tion of the logistic type, respectively, where u(x) and r(x)

are periodic functions of spatial period L, and D and μ are

positive constants. The taxis velocity, u(x), is supposed to

change with species, depending on by what means and how

far they sense the favorability of the environment. Here, we

propose two kinds of advection velocities, short-range and

long-range taxis velocities, as defined below.

(i) Taxis velocity caused by short-range taxis

Let f (x) be the favorability of an environment at x for

an organism. Here, we assume that the organism has a very

narrow sensing range so that it can perceive the gradient

of favorability only within its immediate vicinity. Thus, the

taxis velocity at x is given by

u(x) = α
df (x)

dx
, (2)

where α is referred to as the sensitivity to gradient-based

stimulus (Shigesada et al. 2015).

(ii) Taxis velocity caused by long-range taxis

For long-range taxis, we assume that an organism can

survey and evaluate spatial changes in favorability on both

right and left sides, and move toward the direction where a

weighted integral of the stimuli is larger. More specifically,

we denote by F(x) the difference between the weighted

integrals of favorabilities on the right and left sides as

follows (Kawasaki 1978; Turchin 1998):

F(x) =
∫ ∞

0

s(ξ)f (ξ +x)dξ −
∫ 0

−∞
s(ξ)f (ξ +x)dξ, (3a)

where s(ξ) represents the sensory acuity for objects at

distance ξ from the organism, which satisfies

s(ξ) = s(−ξ) ≥ 0 and
ds(ξ)

dξ
< 0 for ξ > 0 , (3b)

and

∫ ∞

0

s(ξ)dξ = m,

where m is a positive constant. F(x) is hereafter referred

to as the integral-based stimulus. We further assume that

the integral-based stimulus would be processed through the

organism’s nervous and locomotive systems to induce taxis

with velocity u(x) that is generally given in the following

form:

u(x) = G(F(x)), (4a)

where G(y) with y substituting for F(x) satisfies

dG(y)

dy
≥ 0, G(y) = −G(−y), and lim

y→±∞
G(y) = ±û.

(4b)

The first inequality means that the taxis velocity

increases with increase in the integral-based stimulus, y.

The second equation indicates that G(y) is odd with respect

to y = 0 (i.e., the magnitudes of the taxis velocity are the

same for integral-based stimuli, y and −y, although their

directions are opposite). In the last equation, û represents

the maximum taxis speed physiologically attainable for the

organism and is referred to as the taxis intensity. For exam-

ple, the following function satisfies the above conditions

(White et al. 1996; Okubo and Levin 2001)

G(y) = û tanh(θy), (5)

where θ(> 0) is referred to as the sensitivity to integral-

based stimulus. Particularly, when θ is very large, G(y) is

approximated by

G(y) = û sgn(y), (6)

where sgn(y) = 1 for y > 0, 0 for y = 0 and −1 for y < 0.

Previous work — existence of asymptotic spreading

speeds and traveling periodic waves

Recently, Shigesada et al. (2015) investigated the follow-

ing general class of reaction-diffusion-advection equations

to address the large-time asymptotics of a solution and its

spreading speed:

∂n

∂t
= ∂

∂x

(

D(x)
∂n

∂x

)

− ∂u(x)n

∂x

+R(x, n)n in x ∈ (−∞, ∞), (7)

where D(x), u(x), and R(x, n) are periodic functions of

L in x. They presented a theorem about the existence of
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asymptotic spreading speeds and periodic traveling waves,

and the relations between the asymptotic spreading speeds

and the speeds of certain traveling wave solutions (see

Theorem 2.1 of Shigesada et al. (2015)). Since (1) is a

special case of Eq. 7 in which D(x) and R(x, n) are substi-

tuted by constant D and the per capita logistic growth rate,

r(x)−μn, respectively, the theorem for the general class of

reaction-diffusion-advection Eq. 7 is simplified for Eq. 1 as

follows:

Theorem 1 Let the prescribed functions in Eq. 1 satisfy the

following properties: (i) r(x) is uniformly bounded, (ii) u(x)

is integrable, uniformly bounded and piecewise continuous,

and (iii) the equilibrium solution n = 0 of Eq. 1 is unstable.

Then, the following statements hold.

I. Existence of traveling periodic waves: There exist

traveling periodic wave solutions (TPWs) to the left

and right. A rightward TPW of speed c is defined as

follows:

n(x, t − L/c) = n(x + L, t) for any x and t, (8)

lim
x→∞

n(x, t) = 0, lim
x→−∞

(n(x, t) − n∗(x)) = 0,

where n∗(x) is a uniformly positive L-periodic equi-

librium solution of Eq. 1. Equation 8 means that the

spatial pattern of the TPW at any t shifts forward by

one spatial period L with the lapse of time interval

τ = L/c. The leftward TPW is defined in a similar

way.

II. Existence of asymptotic spreading speeds: There exist

two numbers c∗
− and c∗

+ with −c∗
− ≤ c∗

+ such that

every solution n(x, t) of Eq. 1 with 0 ≤ n(x, 0) <

n∗(x), n(x, 0) > 0 on an open interval, and n(x, 0) =
0 outside a bounded set propagates to the right and

left, and has the following properties:

lim
t→∞

max
x≤−c t

n(x, t) = 0 when − c < −c∗
−.

lim
t→∞

max
−c−t≤x≤c+t

(n∗(x) − n(x, t)) = 0

when − c∗
− < −c− < c+ < c∗

+,

lim
t→∞

max
x≥c t

n(x, t) = 0 when c > c∗
+. (9)

That is, c∗
+ and c∗

− are the rightward and leftward

asymptotic spreading speeds, respectively.

III. Relation between asymptotic spreading speeds and

TPW speeds: The rightward asymptotic spreading

speed c∗
+ can be characterized as the smallest c for

which a rightward TPW of speed c exists. Also c∗
− is

the smallest speed of a leftward TPW of Eq. 1.

IV. Relation between asymptotic spreading speeds and

certain TPW speeds of the linearized equation of

Eq. 1: c∗
+ can be characterized as the smallest speed c

for which the linearization

∂n

∂t
= D

∂2n

∂x2
− ∂u(x)n

∂x
+ r(x)n, (10a)

of (1) has a solution of the form,

n(x, t) = e−s(x−c t)g(x), (10b)

with s > 0 and g(x) being L-periodic (see also

Shigesada et al. 1986; Weinberger 2002; Berestycki

et al. 2005b).

By using Theorem 1, we have already examined (1) for

periodic environments in which favorable and unfavorable

patches are alternately arranged in one dimension and the

taxis velocity u(x) is caused by the short-range taxis as

given by Eq. 2 with the favorability f (x) proportional to

r(x) (Shigesada et al. 2015). Solving its linearized equa-

tion as given by Eq. 10, we obtained the formula for the

asymptotic speed c∗ as a function of parameters involved in

Eq. 1.

In the next section, we again deal with Eq. 1 in the same

periodic patchy environments as described above except that

the taxis velocity is given by the long-range taxis model

defined in the “Short- and long-range taxis models” section

(ii).

Long-range taxis model in periodic patchy

environments

Taxis velocity

Consider (1) in a periodic patchy environment with favor-

able and unfavorable patches alternately arranged. Here, we

assume that r(x) is a piecewise constant function as follows

(Shigesada et al. 1986; Shigesada et al. 2015):

r(x) =
{

r1 (x2m ≤ x < x2m+1)

r2 (x2m+1 ≤ x < x2m+2)
(11)

x2m = mL, x2m+1 = mL + l1 and L = l1 + l2

(m = 0, ±1, ±2, . . . ),

where l1 and l2 are the widths of the favorable and unfa-

vorable patches, respectively; and x2m and x2m+1 indicate

the left and right boundaries of the favorable patch located

between x = mL and mL + l1. The intrinsic growth rate

r(x) is set to r1 (> 0) and r2(< r1) in the favorable and

unfavorable patches, respectively.

As for the taxis velocity u(x), we need to fix explicit

forms of the three functions, f (x), s(x), and G(y) defined

in the “Short- and long-range taxis models” section (ii). As
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a simple and mathematically tractable candidate, here, we

adopt the following functions:

f (x) = r(x), (12a)

s(ξ) = s(−ξ) > 0 for |ξ | < σ, s(ξ) = 0 for |ξ | ≥ σ

and
ds(ξ)

dξ
< 0 for 0 < ξ < σ, (12b)

G(y) = û sgn(y). (12c)

In Eq. 12a, r(x) is chosen for the favorability of the envi-

ronment at x (Shigesada and Roughgarden 1982; Cantrell

et al. 2006). In Eq. 12b, conditions of s(ξ) > 0 for |ξ | < σ

and s(ξ) = 0 for |ξ | ≥ σ are additionally imposed on

the sensory acuity defined in Eq. 3b, because any organ-

ism generally has a limit to its sensory ability. Hereafter, σ

is referred to as sensing length. For G(y), we adopt (6) for

simplicity so that an organism undergoes taxis to the right

or left at the maximum speed û as long as the integral-based

stimulus y is not zero, and there is no taxis where y = 0

(but see the “More generalized models” section for G(y) in

a more general case).

Now applying (12) to (1) and rewriting u(x) and F(x) to

uσ (x) and Fσ (x), respectively, we have a long-range taxis

model with the sensing length σ in the framework of a

reaction-diffusion-advection equation,

∂n

∂t
= D

∂2n

∂x2
− ∂uσ (x)n

∂x
+ (r(x) − μn)n, (13a)

where

uσ (x) = û sgn(Fσ (x)), (13b)

Fσ (x) =
∫ σ

0

s(ξ)r(ξ + x)dξ −
∫ 0

−σ

s(ξ)r(ξ + x)dξ. (13c)

Since r(x) is L-periodic in x (i.e., r(x) = r(x + L)) and

even with respect to x = l1/2 (i.e., r(x) = r(l1 − x)) and

s(ξ) is even with respect to ξ = 0, Fσ (x) has the following

general properties for any given σ > 0 (see Appendix A for

proof):

Fσ (x)=Fσ (x + L) (L -periodic in x), (14a)

Fσ (x)=−Fσ (l1 − x) (odd with respect to x = l1/2). (14b)

Applying the above equations to Eq. 13b, we have

uσ (x) = uσ (x + L) (L -periodic in x), (15a)

uσ (x) = −uσ (l1 − x) (odd with respect to x = l1/2). (15b)

Thus, we focus on the region 0 ≤ x < L and calculate

(13c) to have uσ (x) for σ > 0 as follows (see Appendix B

for proof):

uσ (x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

û (0 ≤ x < σ1)

0 (σ1 ≤ x ≤ l1 − σ1)

− û (l1 − σ1 < x < l1 + σ2)

0 (l1 + σ2 ≤ x ≤ L − σ2)

û (L − σ2 < x ≤ L)

(16)

where σ1 = min(σ, l1/2) and σ2 = min(σ, l2/2).

Figure 1 illustrates uσ (x) and r(x) when l1 ≥ l2 by the

solid and dashed lines, respectively. In Fig. 1a, where the

organism has a sensing length σ such that 0 ≤ σ < l2/2, there

are six subintervals in one spatial period, (0, σ ), (σ, l1 −σ),

(l1 − σ, l1), (l1, l1 + σ), (l1 + σ, L − σ), and (L − σ, L). In

each subinterval, both r(x) and uσ (x) are constant, whereas

at the interfaces between adjacent subintervals, either r(x)

or uσ (x) is discontinuous. When the organism is located

within σ from the nearest interface, it undergoes taxis with

velocity û or −û, because the weighted integral of favorabil-

ity differs between the left and right sensing ranges. How-

ever, when the organism is located away from the interface

by more than σ but less than l2/2, its taxis velocity becomes

zero, because the weighted integral of favorability is the

same on both sides. In Fig. 1b, in which the organism has a

sensing length σ such that l2/2 ≤ σ < l1/2, there remains

no subinterval where uσ (x) = 0 within the unfavorable

(a)

(b)

(c)

Fig. 1 Taxis velocity function uσ (x) of the long-range taxis when

l2 ≤ l1. The solid and dashed lines indicate uσ (x) and the intrinsic

growth rate, r(x), respectively. Depending on the sensing length, σ ,

uσ (x) shows three different patterns that consist of 6, 5, and 4 subin-

tervals in one spatial period ranging 0 ≤ x < L, when a 0 ≤ σ < l2/2,

b l2/2 ≤ σ < l1/2, and c l1/2 ≤ σ , respectively. In all cases, uσ (x) is

L-periodic in x and even with respect to x = l1/2
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patch. Thus, the number of the subintervals is reduced to

five. Furthermore, in Fig. 1c for which σ ≥ l1/2, there is no

subinterval where uσ (x) = 0 in either the favorable patch or

the unfavorable patch except for the points at x = l1/2 and

x = l1 + l2/2, so that the number of subintervals becomes

four. This means that organisms located in the areas between

the centers of unfavorable patches and their respective right

adjacent favorable patch move toward the right at speed û,

whereas those located in the remaining areas move toward

the left at the same speed.

On the other hand, when l1 < l2, three types of patterns

of uσ (x) that are similar to those in Fig. 1 appear, though

the figure corresponding to Fig. 1b contains no subinterval

where uσ (x) = 0 within the favorable patch, rather than the

unfavorable patch. Overall, as the sensing length σ increases

from 0, the area where the taxis occurs enlarges until it cov-

ers the whole space when σ reaches max (l1/2, l2/2) and

stays constant thereafter.

It should be noted that when l1 = l2 = L/2, the pattern

in Fig. 1b disappears. Incidentally Kawasaki et al. (2012)

previously studied, a similar problem for a specific case of

l1 = l2 = L/2, σ = L/4, s(ξ) = 1 for |ξ | < σ and

s(ξ) = 0 for |ξ | ≥ σ .

Asymptotic spreading speed of Eq. 13

Since both r(x) and uσ (x) in Eq. 13 are piecewise con-

stant and L-periodic as seen in Fig. 1, assumptions (i) and

(ii) in Theorem 1 are satisfied. Therefore, if assumption (iii)

is satisfied, i.e., the equilibrium solution n = 0 of Eq. 13

is unstable, all the statements (I)–(IV) of Theorem 1 in the

“Previous work — existence of asymptotic spreading speeds

and traveling periodic waves” section hold. Hereafter, under

the condition that n = 0 is unstable, we use statement (III)

to estimate the rightward asymptotic spreading speed c∗ by

the minimum speed of TPWs of Eq. 13, which will be des-

ignated the minimum TPW speed c∗ hereafter. To be noted,

from statements (III) and (IV) of Theorem 1, the minimum

TPW speed c∗ equals the minimum speed of solutions of

the linearized Eq. 10a in the form of Eq. 10b. The left-

ward asymptotic spreading speed is evidently the same as

the rightward spreading speed, because r(x) is L-periodic

in x and even with respect to x = l1/2.

Consider the linearized equation of (13) about n = 0,

∂n

∂t
= D

∂2n

∂x2
− ∂uσ (x)n

∂x
+ r(x)n, (17)

and a solution of Eq. 17 having the following form:

n(x, t) = e−szg(x), (18)

where z = x − c t , g(x) = g(x + L) and s > 0.

Since the right-hand side of (18) can be factored into a

product of functions of t and x, we set p(x) = e−sxg(x),

substitute n(x, t) = ecstp(x) in Eq. 17 and further put

q(x) = Dp′ − uσ (x)p. Then, Eq. 17 becomes a system of

first order differential equations,
(

p′

q ′

)

=
(

uσ (x)/D 1/D

cs − r(x) 0

) (

p

q

)

. (19)

On the other hand, since uσ (x) and r(x) are L-periodic,

the condition that g(x) is L-periodic is rewritten in terms of

p and q as
(

p(x + L)

q(x + L)

)

= e−sL

(

p(x)

q(x)

)

. (20)

Thus, we only need to solve (19) with (20) for one spa-

tial period. Here, we focus on the interval, (0, L). As shown

in Fig. 1, one interval contains six, five, or four subin-

tervals, depending on the sensing length, σ . Since all the

coefficients in Eq. 19 are uniformly bounded and piecewise

constant, there exists a solution of (19) that is continuous

across each boundary between subintervals:

p(x+
i ) = p(x−

i ), (21a)

q(x+
i ) = q(x−

i ), (21b)

where xi is the location of an interface between two adjacent

subintervals. Since n(x, t) = ecstp(x) and −D∂n/∂x +
uσ (x)n = −ecstq(x), Eqs. 21a and 21b correspond to con-

tinuity conditions of the population density and the flux at

the interface, respectively. As these conditions are biologi-

cally reasonable and feasible, we adopt conditions (21) in

the following analyses.

We first solve (19) on (0, L) for the case of 0 ≤ σ ≤
l2/2 that involves six subintervals, (0, σ1), (σ1, l1 − σ1),

(l1 −σ1, l1), (l1, l1 +σ2), (l1 +σ2, L−σ2), and (L−σ2, L)

(see Fig. 1a). Since r(x) and uσ (x) are constant in each

subinterval, we can easily solve (19) for each subinterval.

Combining the resultant solutions with Eq. 21 successively,

we have
(

p(L)

q(L)

)

= A(0,L)

(

p(0)

q(0)

)

, (22a)

where

A(0,L) = A
(L−σ2,L)

(û,r2)
A

(l1+σ2,L−σ2)
(0,r2)

A
(l1,l1+σ2)

(−û,r2)

× A
(l1−σ1,l1)

(−û,r1)
A

(σ1,l1−σ1)
(0,r1)

A
(0,σ1)

(û,r1)
, (22b)

A
(a,b)
(u,r) = e

u(b−a)
2D

×

⎛

⎜

⎜

⎝

cosh w + u

2Dv
sinh w

1

Dv
sinh w

λ − r

v
sinh w cosh w− u

2Dv
sinh w

⎞

⎟

⎟

⎠

,

(22c)

w = v(b − a), v =

√

λ − r

D
+ u2

4D2
and λ = cs.
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Substituting (20) for x = 0 into (22a), we have the

dispersion relation between c and s as follows:

det
(

A(0,L) − e−sLI
)

= 0. (23)

When there is a set of c > 0 and s > 0 that satisfies (23),

the smallest c should be the asymptotic spreading speed c∗

of Eq. 13 (cf. Theorem 1 IV). It should be noted that for

the case of l2/2 ≤ σ ≤ l1/2 corresponding to Fig. 1b,

A
(l1+σ2,L−σ2)
(0,r2)

= I holds because σ2 = min(σ, l2/2) = l2/2,

and for the case of σ ≥ l1/2 corresponding to Fig. 1c,

A
(σ1,l1−σ1)
(0,r1)

= I further holds because σ1 = min(σ, l1/2) =
l1/2. Therefore, Eqs. 22 and 23 are valid for all these three

cases.

Here, we briefly explain how to derive c∗ = min c(s)

from the dispersion relation. Since e−sL is the eigenvalue

of A(0,L) in which c and s are included only as λ = cs,

the dispersion relation (23) can be rewritten in the form (see

Appendix C):

s = 1

L
cosh−1 tr A(0,L)

2
≡ Q(λ), (24)

where the positive branch of cosh−1 is taken. Substituting

(24) into c = λ/s yields c = λ/Q(λ). Thus, the minimum

TPW speed of Eq. 13 is given as

c∗ = min
λ>0

λ

Q(λ)
. (25)

The criterion for successful invasion, i.e., the condition

for the equilibrium n = 0 of Eq. 13 to be unstable, is given

by trA(0,L)|λ=0 < 2 (see Appendix C.2).

Numerical results

We first numerically examine what spatio-temporal pattern

the solution of Eq. 13 exhibits for a sufficiently large time.

Numerical simulations are done for varying parameter val-

ues with initial distributions localized around the origin.

We confirm that populations eventually go to extinction

or evolve to a unique asymptotic wave that fits well with

the TPW defined by Eq. 8 in Theorem 1, depending on

whether the equilibrium n = 0 of Eq. 13 is stable or not

(i.e., trA(0,L)|λ=0 > 2 or trA(0,L)|λ=0 < 2). We also cal-

culate the minimum TPW speed c∗, from Eq. 25. These

results are shown in Figs. 2 and 3, in which the three major

parameters relevant to taxis, û, σ, and r2, are varied, while

the other parameters are fixed as l1 = 1, l2 = 0.5, and

D = r1 = μ = 1. Note that we can set D = r1 = μ = 1

without loss of generality, if we non-dimensionalize (13)

by putting μn/r1 → N, r1t → T , and
√

r1/Dx → X

(Kawasaki et al. 2012; Shigesada et al. 2015).

Panels (I), (II), and (III) in Fig. 2a illustrate asymptotic

solutions numerically calculated for σ = 0.1, 0.3, and 0.5,

respectively, that fall within the ranges specified in Fig. 1a,

(a)

(b)

Fig. 2 Effects of the sensing length σ on the pattern and speed of

large-time asymptotic solutions of the long-range taxis model. a The

asymptotic solutions numerically obtained for (I) σ = 0.1, (II) σ =
0.3, and (III) σ = 0.5, taken at time interval τ̄ ∗, are plotted. The other

parameters are D = 1, û = 2, r1 = 1, r2 = −2, l1 = 1, l2 = 0.5, and

μ = 1. The asymptotic solutions closely satisfy the conditions for the

TPW solutions defined by (8), where the values of t , τ̄ ∗ and c̄∗ are (I)

177.0, 1.49, and 0.99; (II) 148.1, 1.24, and 1.19; and (III) 143.7, 1.22,

and 1.22, respectively. b The solid lines indicate the minimum TPW

speed c∗ obtained from Eq. 25 as a function of σ for r2 = −3, −2, −1,

0, and 0.5. The other parameters are the same as in a. When σ exceeds

l1/2, the speed c∗ is kept constant at the same value as at σ = l1/2.

The black circles labeled (I), (II), and (III) correspond to the speeds c̄∗

numerically obtained in (I), (II), and (III) in a, respectively

b, c. The values of r2 and û are chosen as −2 and 2, respec-

tively. In each panel, three successive solutions taken at a

given interval τ̄ ∗ (the overline signifies the value numer-

ically obtained) are illustrated. Since these three patterns

can be almost perfectly superimposed when one of them

is moved toward the other by a spatial period L, these

asymptotic solutions are supposed to have closely attained

a TPW. Thus, we numerically estimate the TPW speed by

c̄∗ = L/τ̄ ∗ (see Fig. 2a). As for the spatial patterns of the

asymptotic solutions for any fixed t , population density n

sharply increases or decreases with x where uσ (x) > 0 or

uσ (x) < 0, respectively, whereas it changes only gently
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(a)

(b)

Fig. 3 Effects of the taxis intensity û on the pattern and speed of

asymptotic solutions of the long-range taxis model. a Asymptotic solu-

tions numerically obtained when (I) û = 1, (II) û = 3, and (III) û = 6,

taken at time interval τ̄ ∗, are plotted. In all cases, σ is chosen as 0.3

and the other parameters are the same as in Fig. 2a. The asymptotic

solutions closely satisfy the conditions for the TPW defined by Eq. 8,

where the values of t , τ̄ ∗ and c̄∗ are (I) 177.1, 1.49, and 0.99; (II) 138.5,

1.17, and 1.27; and (III) 156.1, 1.33, and 1.12, respectively. b The solid

lines indicate the minimum TPW speed c∗ obtained from Eq. 25 as a

function of û for r2 = −3, −2, −1, and 0. The other parameters are

the same as in a. The black circles labeled (I), (II), and (III) corre-

spond to the speed c̄∗ numerically obtained in (I), (II), and (III) in a,

respectively

where uσ (x) = 0. Particularly, when σ = 0.5 (i.e., case

(III) in Fig. 2a), there is no place at which uσ (x) = 0 so that

organisms located within ±L/2 of the center of the favor-

able patch are all attracted toward that center, resulting in a

highly pointed distribution in the middle of each favorable

patch.

In Fig. 2b, the minimum TPW speed c∗ analytically

obtained from Eq. 25 is shown by solid lines as a function of

σ for varying values of r2. The speeds c∗ for r2 = 0 and 0.5

show slightly one-humped curves within the range 0 ≤ σ ≤
l1/2 and then stay constant for σ ≥ l1/2. This is explained

as follows. The initial increase in the speed is brought about

because a moderate long-range taxis induces an accumu-

lated distribution of organisms in the favorable patches, by

which the overall growth rate is enhanced to result in accel-

erated speed. As σ increases further up to l1/2, however, the

speed tends to gradually decrease because excessive taxis to

favorable patches hinders the dispersal of organisms through

the adjacent unfavorable patches, thereby cancelling out the

effect of the increased overall growth rate. Once σ exceeds

l1/2, the speed becomes constant, because the pattern of

uσ (x) no longer depends on σ (see Fig. 1c). When r2 = −1

or −2, the speed initially shows rapid increases for the range

0 ≤ σ ≤ l2/2 (= 0.25) (Fig. 1a), but the rate of increase

gradually diminishes for l2/2 ≤ σ ≤ l1/2 (= 0.5) (Fig. 1b),

and then becomes zero when σ exceeds l1/2 (Fig. 1c).

When r2 is further reduced to −3, the speed c∗ becomes

zero for 0 < σ < 0.722, because the equilibrium state

n = 0 of Eq. 13 is stable (i.e., trA(0,L)|λ=0 > 2), and then

abruptly shows a sharp rise followed by a saturating curve

that becomes constant after σ > l1/2. Black circles labeled

(I), (II), and (III) represent the asymptotic speeds c̄∗ numer-

ically obtained in (I), (II), and (III) of Fig. 2a, respectively,

which closely fit the minimum TPW speed c∗ as indicated

by the solid curve for r2 = −2.

We next examine the effects of the taxis intensity û.

Figure 3a illustrates the asymptotic solutions for û = 1, 3,

and 6 with the other parameters fixed as σ = 0.3 and r2 =
−2 (i.e., the pattern of uσ (x) is fixed to the case shown in

Fig. 1b). We again confirm that those solutions have closely

attained TPWs. As û increases, the amplitude of the pop-

ulation density between favorable and unfavorable patches

markedly increases, while the population density in the cen-

tral region of the favorable patch where uσ (x) = 0 remains

almost flat. Particularly, when û = 6, the population den-

sity is highly elevated in the favorable patches, whereas it

is extremely reduced in the unfavorable patches. We also

numerically estimate the asymptotic speed, c̄∗ = L/τ̄ ∗, to

be 0.99, 1.27, and 1.12 for û = 1, 3, and 6, respectively.

Figure 3b shows the minimum TPW speed c∗ obtained from

Eq. 25 as a function of û for r2 = 0, −1, −2, and −3.

Closed circles labeled (I), (II), and (III) represent the speeds

indicated in (I), (II), and (III) of Fig. 3a, respectively. For

any value of r2, c∗ exhibits a one-humped curve and tends to

zero as û → ∞, because we have c∗ = O(1/û) as û → ∞
in Eq. 25. Comparing (a) and (b) in Fig. 3 suggests that the

reduction in speed c∗ at a large û could be associated with

extremely low population densities in the unfavorable patch

as seen in Fig. 3a (III).

To summarize, although both the sensing length σ and

the taxis intensity û involved in long-range taxis are critical

in controlling the minimum speed c∗, their effects essen-

tially differ in that the speed c∗ with respect to σ shows

either monotonic or one-humped curves that become con-

stant for σ > max (l1/2, l2/2), whereas the speed c∗ with
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respect to û always shows one-humped curves that tend to

zero at û → ∞.

More generalized models

In the “Short- and long-range taxis models” section (ii), we

have presented a general taxis velocity function, u(x) =
G(F(x)) where F(x) and G(y) are defined by Eqs. 3 and

4, respectively. Actually, we have focused on Eq. 13 only

with the simplest taxis function u(x) in which r(x), s(ξ),

and G(y) are given by Eqs. 11, 12b and 12c, respectively.

However, we can extend r(x) somewhat to a more gen-

eral function while maintaining L-periodicity in x and

evenness with respect to x = l1/2. In this case, Eqs. 14

and 15 still hold. Particularly, when dr(x)/dx > 0 for

−l2/2 < x < l1/2, uσ (x) is given by Eq. 16 in the case

of σ1 = l1/2 and σ2 = l2/2, which corresponds to Fig. 1c.

However, if there exists a range of width d in which r(x)

is constant, we can predict that when σ < d/2, an area

of length d − 2σ where uσ (x) = 0 appears in the mid-

dle of that range. Based on these considerations, when G(y)

is given by Eq. 12c, a method similar to that used in the

“Asymptotic spreading speed of Eq. 13” section can be

applied to obtain the TPW speed.

When G(y) is given by a more generalized function such

as Eq. 5, the mathematical formula for the minimum TPW

speed, Eq. 25, is no longer available, because it is gener-

ally difficult to find an explicit solution of Eq. 19. Thus,

intensive numerical simulations become necessary to derive

TPW speeds c∗. Here, we present some numerical results for

the case that r(x) is given by Eq. 11, s(ξ) = 2(1−|ξ |/σ)/σ

for 0 ≤ |ξ | < σ and 0 for |ξ | ≥ σ , and G(y) is given

by Eq. 5. Figure 4a shows Fσ (x) (thick dashed curve) and

uσ (x) (thin solid curves) for σ = 0.4 and θ = 1/2, 1, 2, and

10 with the other parameters kept the same as in Fig. 2. As

θ increases, uσ (x) monotonically changes to attain a step-

wise function at θ = ∞, namely, uσ = û sgn(Fσ (x)). By

using uσ (x) thus obtained for various σ and θ , we perform

numerical simulations of Eq. 13. In Fig. 4b, the asymp-

totic speeds are plotted for θ = 1/2, 1, 2, and 10 on to the

same graph as Fig. 2b. As θ increases, the speed for each

r2 becomes closer to the corresponding solid line that rep-

resents the speed for θ → ∞. From this figure, we can see

that the speed dependency on σ is qualitatively conserved

for a wide range of θ .

Effects of population pressure

So far, we have investigated the long-range taxis model for

patchy environments, Eq. 13, in which both the diffusion

coefficient and the taxis velocity are assumed to be density

independent and found that as the taxis intensity increases,

(a)

(b)

Fig. 4 A generalized taxis velocity function and the asymptotic speed.

a A generalized taxis velocity is defined by uσ (x) = û tanh(θFσ (x)),

where r(x) is given by (11) and Fσ (x) is given by Eq. 13c with the

sensory acuity, s(ξ) = 2/σ(1 − |ξ |/σ) for 0 ≤ |ξ | < σ and 0 for

|ξ | ≥ σ . Fσ (x) is illustrated by the thick dashed line for σ = 0.4,

and uσ (x) is shown by thin lines for σ = 0.4 and θ = 1/2, 1, 2, 10

and ∞. uσ (x) for θ = ∞ corresponds to the solid line in Fig. 1b.

Other parameters are chosen as û = 2, r1 = 1, r2 = −2, l1 = 1, and

l2 = 0.5. b The asymptotic speeds numerically obtained for θ = 1/2,

1, 2, and 10 are plotted by triangles, open circles, squares, and closed

circles, respectively, on the same graph as in Fig. 2b. The solid lines

represent the minimum TPW speeds c∗ when θ = ∞

the population becomes overcrowded in favorable patches

while being extremely lowered in unfavorable patches, as

seen in Fig. 3a (III). However, in the overpopulated area,

animals would naturally tend to migrate to areas with a

lower population density because of population pressure

(see the “Introduction” section).

Here, we examine how non-linear diffusion caused by

population pressure influences the spatio-temporal pattern

of the asymptotic wave solution and its spreading speed. As

mentioned in the “Introduction” section, we previously pro-

posed a non-linear diffusion model for population pressure

based on Morisita’s experiments using antlions (Shigesada

et al. 1979). Incorporating that model into Eq. 13, we

have the following non-linear reaction-diffusion-advection

equation:

∂n

∂t
= ∂2

∂x2
{(D0 + βn)n} − ∂uσ (x)n

∂x
+ (r(x) − μn)n. (26)

The first term on the right-hand side of Eq. 26 represents

a Fokker-Planck diffusion that describes random diffusion
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based on local environmental information (Skellam 1973;

Aronson 1985; Shigesada et al. 2015; Bengfort et al. 2016).

D0 (≥ 0) is the diffusion constant in the absence of pop-

ulation pressure and βn represents the effect of population

pressure on diffusivity meaning that random dispersal is

more enhanced as the population density at the point of

departure is higher. β (≥ 0) is referred to as the population-

pressure coefficient. For the intrinsic growth rate r(x) and

the taxis velocity uσ (x), we adopt a piecewise constant

function (11) and the long-range taxis function defined by

(13b, c), respectively. Since Theorem 1 is not applicable to

Eq. 26 because of non-linearity in the diffusion term, we

study (26) mostly by relying on computer simulations. To

capture fundamental effects of population pressure, how-

ever, we first obtain the exact traveling wave solution of

Eq. 26 for the specific case in which the environment is

homogeneous, and then move to the full model for periodi-

cally patchy environments.

Effects of population pressure in a homogeneous

environment

When the environment is homogeneous where r1 = r2 = r

and hence uσ (x) = 0, Eq. 26 is reduced to

∂n

∂t
= ∂2

∂x2
{(D0 + βn)n} + (r − μn)n. (27)

Particularly, when D0 = 0 and β �= 0, Aronson (1980)

and Newman (1980) showed that Eq. 27 has an explicit and

exact traveling wave solution in the form,

n(z) =

⎧

⎪

⎨

⎪

⎩

r

μ

{

1 − exp

(
√

μ

4β
(z − zc)

)}

(0 ≤ z < zc),

0 (zc ≤ z),

(28)

where z = x − c t , zc is the front position of the wave at

t = 0 and c is the speed of the traveling wave as given by

c = r

√

β

μ
. (29)

Notably, the front of the wave at time t is given by

x = zc + c t , beyond which the population density is iden-

tically zero, thereby representing the so-called sharp-front

wave (Sánchez-Garduño and Maini 1994). This frontal pat-

tern fundamentally differs from the smooth-front wave that

appears in the Fisher equation (Fisher 1937), i.e., Eq. 27

with D0 > 0 and β = 0 (see Fig. 5b).

On the other hand, for the case in which both D0 and

β are positive, neither an explicit traveling wave solution

(b)

(a)

Fig. 5 Traveling wave solutions and their speeds of the non-linear

reaction-diffusion equation in a homogeneous environment given by

Eq. 31. a Mathematical formula for the minimum speed c′ of the

traveling wave, Eq. 32, is plotted as a function of the population pres-

sure coefficient β ′ by a thin line, on which asymptotic wave speed c̄′

numerically obtained is superimposed by black circles. b Asymptotic

solutions of Eq. 31 numerically calculated are illustrated for β ′ = 0,

0.5, 1, 2, and 4 by thick dashed lines. Each solution is arranged in such

a way that the inflection point of the solution falls on the vertical axis.

Exact solutions of the traveling waves given by Eq. 33 are also illus-

trated by thin solid lines for β ′ = 1, 2, and 4. For each β ′, the thick

dashed line and thin solid line perfectly coincide with each other. For

comparison, the traveling wave solution with a sharp-front as given by

Eq. 28 for r = μ = β = 1 is shown by the thin dashed line

nor its spreading speed seems to have been obtained so far.

Thus, we investigate (27) both analytically and numerically,

and find a formula for the minimum speed of traveling wave

for any β ≥ 0 and its explicit traveling wave solution for

β ≥ 1. The results are summarized below (see Appendix D

for details). Let us introduce the following non-dimensional

quantities:

n′ = μ

r
n, t ′ = rt, x′ =

√

r

D0
x, β ′ = βr

D0μ
. (30)

Then, Eq. 27 becomes

∂n′

∂t ′
= ∂2

∂x′2 {(1 + β ′n′)n′} + (1 − n′)n′, (31)
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which contains only one parameter β ′. We first carry out

extensive computer simulations of Eq. 31 for various values

of β ′ and confirm that any initial distributions with compact

support asymptotically converge to a traveling wave with a

smooth-front. We subsequently found that an exact formula

for the minimum speed of traveling waves of Eq. 31 can be

derived by using the theorem for the traveling wave solu-

tion obtained from a population genetic model by Hadeler

and Rothe (1975) and Hadeler (1983) as shown below (see

Appendix D for proof):

c′ =

⎧

⎪

⎨

⎪

⎩

2 (0 ≤ β ′ ≤ 1),

√
β ′ + 1√

β ′ (1 ≤ β ′).
(32)

It should be noted that the minimum speed for a given

β ′ > 0 corresponds to the speed of the asymptotic propagat-

ing solution of Eq. 31 that starts with the initial data having

compact support. We further find that, for any β ′ such that

β ′ ≥ 1, the exact and explicit traveling wave solution with

the minimum speed c′ is given as follows (see Appendix D):

(1 − n′)2β ′+1

n′ = e
√

β ′(z−zc), (33)

where z = x′−c′t ′, c′ =
√

β ′+1/
√

β ′ and zc is an arbitrary

constant.

In Fig. 5a, the speed formula (32) is plotted as the thin

line and the asymptotic speed c̄′ numerically obtained is

indicated by closed circles. As expected, the speed numer-

ically obtained closely fits the thin line. Interestingly, the

speed remains at 2 independent of β ′ for 0 ≤ β ′ ≤ 1 and

then increases as β ′ increases above 1. In Fig. 5b, asymp-

totic solutions n′(x′, t ′) at a sufficiently large t ′ for β ′ =
0, 0.5, 1, 2, and 4 are illustrated by thick dashed curves.

For convenience of comparison, the asymptotic solution for

each β ′ is arranged in such a way that the inflection point

of n′(x′, t ′), i.e., the point (x′, n′) at which ∂2n′/∂x′2 = 0,

falls on the vertical axis. We can see that as β ′ increases,

n′ at the inflection point is reduced. The analytical traveling

wave solution Eq. 33 for β ′ = 1, 2, and 4 is plotted by solid

thin curves, which exactly fit with the corresponding simu-

lated solutions for β ′ = 1, 2, and 4 (thick dashed curves).

According to the classification by Stokes (1976), the fronts

with minimum speed c′ = 2 for 0 ≤ β ′ ≤ 1 correspond

to “pulled fronts” as their speed is determined by the lead-

ing edge of the traveling wave solution. On the other hand,

the front with the minimum speed c′ =
√

β ′ + 1/
√

β ′ for

β ′ > 1, which is larger than the minimum speed of pulled

fronts, c′ = 2, corresponds to a “pushed front” because the

speed is determined not by the behavior of the leading edge

of the traveling wave, but by the whole wave-front (Rothe

1981; Garnier et al. 2012).

Now, by carrying out the reverse transformation of Eq. 32

using Eq. 30, we have the formula for the minimum speed

of the traveling wave in the original dimension as

c =

⎧

⎪

⎨

⎪

⎩

2
√

rD0 (0 ≤ βn̂ ≤ D0),

r

√

β

μ
+ D0

√

μ

β
(D0 ≤ βn̂),

(34)

where n̂ = r/μ, which represents the carrying capacity of

the logistic growth function. When β ≤ D0/n̂, the speed is

given by c = 2
√

rD0, which is independent of β and exactly

coincides with the traveling wave speed of the Fisher equa-

tion. Accordingly, when β ≤ D0/n̂, the population pressure

hardly influences the spreading speed. On the other hand,

once β exceeds D0/n̂, the speed is monotonically increased

as β increases. Particularly, when D0 = 0 and β > 0, i.e.,

in the case of a degenerate non-linear diffusion, the speed is

reduced to r
√

β/μ, which of course is equal to the traveling

wave speed given by Eq. 29.

Effects of population pressure in a periodic patchy

environment

Now, we examine (26) for the case in which D0 > 0

and β ≥ 0 in periodic patchy environments. Carrying out

numerical simulations of Eq. 26 for various sets of parame-

ter values, we again confirm that, when the equilibrium state

n = 0 of Eq. 26 is unstable, a population starting from any

localized distribution evolves to an asymptotic wave that

closely fits a traveling periodic wave defined by Eq. 8 in

Theorem 1. Figure 6 illustrates the range expansion patterns

when β = 0 and 1, respectively, while other parameters are

fixed as D0 = 0.1, û = 0.6, σ = 0.5, r1 = 1, r2 = −2,

l1 =1, l2 =0.5, and μ=1. Among these parameters, we put

D0 =0.1 and r1 =μ=1 without loss of generality, because

they can be arbitrarily chosen by non-dimensionalizing (26).

In Fig. 6a, where the population pressure does not work,

the central areas of favorable patches are overcrowded to a

level exceeding even the carrying capacity, n̂ = 1, whereas

the unfavorable patches are underpopulated. On the other

hand, in the presence of population pressure (Fig. 6b), the

population density becomes drastically reduced in favor-

able patches, while significantly elevated in unfavorable

patches. This means that the population pressure drives

organisms from overcrowded areas in favorable patches

to unfavorable patches, thereby making the distribution

more uniform, as originally demonstrated in the Morisita’s

experiment with antlions described in the “Introduction”

section. As a consequence, it seems that the asymptotic
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(a)

(b)

Fig. 6 Comparison of asymptotic solutions of Eq. 26 in the presence

and absence of population pressure. Parameters are chosen as β = 0 in

a. and β = 1 in b. Other parameters are fixed as D0 = 0.1, σ = 0.5,

û = 0.6, r1 = 1, r2 = −2, l1 = 1, l2 = 0.5, and μ = 1. The

asymptotic solutions closely fit the definitions for the TPW defined by

Eq. 8, where the values of t , τ̄ ∗ and c̄∗ = L/τ̄ ∗ are a 115.7, 4.13, and

0.36; and b 87.4, 3.12, and 0.48, respectively

spreading speed is accelerated. Incidentally, since (26) is

rewritten as

∂n

∂t
= D0

∂2n

∂x2
− ∂

∂x

(

uσ (x)n − 2β
∂n

∂x
n

)

+ (r(x)−μn)n,

(35)

the non-linear diffusion in Eq. 26 may be viewed as being

equivalent to a simple random diffusion with an additional

advection due to gradient-based taxis (short-range taxis)

toward the direction of lower population density (Skellam

1951, 1973; Okubo and Levin 2001). In fact, we can see

from Fig. 6b that −2β∂n/∂x < 0 where uσ (x) > 0 and

vice versa, so that the population pressure acts to attenuate

the effect of the taxis velocity, uσ (x).

In Fig. 7a, the asymptotic speeds c̄∗ numerically calcu-

lated are plotted by closed circles linked by thin dashed

straight lines as a function of taxis intensity û for varying

values of β. All curves exhibit one-humped shapes. The

lowermost curve represents the speed without population

pressure (i.e., β = 0). To be noted, the speed for β = 0.1

indistinguishably overlaps that for β = 0, but the speed for

β = 0.2 slightly deviates from them. Thus, the asymptotic

speed c̄∗ seems to be scarcely influenced by β when it is

smaller than a certain value, at least for 0 < β < 0.1 in the

present case. As β is increased further, however, each curve

shifts upwards while maintaining the one-humped shape.

This tendency is qualitatively consistent with the mini-

mum traveling wave speed in a homogeneous environment

(a)

(b)

Fig. 7 a Asymptotic speed c̄∗ of the non-linear reaction-diffusion-

advection Eq. 26 numerically obtained is plotted as a function of the

taxis intensity û for β = 0, 0.1, 0.2, 0.6, 1, 2, . . . , 6 by black

circles linked with dashed straight lines. The other parameters are the

same as in Fig. 6. The lowest curve indicates the asymptotic speed for

β = 0 that is virtually indistinguishable from the asymptotic speed for

β = 0.1. When β exceeds approximately 0.1, the speed monotonically

increases with increases in β. The maximum speed for each value of

β is indicated by an open circle. b A contour map of asymptotic speed

c̄∗ on (û, β) plane, where the other parameters are the same as in a.

The boxed numerals indicate speed c̄∗. The dashed line represents the

ridge of contours

in which the speed maintains a constant value when β is

smaller than a certain value and begins to increase as β fur-

ther increases, as described in the “Effects of population

pressure in a homogeneous environment” section.

The open circles in Fig. 7a indicate the maximum speed

for each value of β. As β increases, the maximum speed

is attained at larger values of û. To better grasp the mutual

influence of û and β on the speed, we draw a contour map

of the asymptotic speed c̄∗ on (û, β) plane in Fig. 7b, where

a lighter shade of gray indicates a higher speed. The dashed

line indicates the ridge of the contour. To be noted, in the

region for β smaller than around 0.1, the contours are all

perpendicular to the x axis, which means that the speed is

not influenced by β, as already pointed out in Fig. 7(a).

From this figure, we can infer that the speed c̄∗ increases
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most effectively when both û and β are simultaneously

increased along the ridge except for the region where β is

close to zero. In other words, the population pressure and

the taxis synergistically enhance the spreading speed.

Finally, we examine the effects of the scale of patch sizes

by changing l1 and l2. As representative examples, we con-

sider two cases in which the patch size is doubled in l2 only

or in both l1 and l2, relative to those adopted in Fig. 7 (i.e.,

l1 = 1, l2 = 0.5). In Fig. 8a, black circles for each β

indicate the speed plotted against û, when (l1, l2) = (1, 1)

with the other parameters fixed as D0 = 0.1, σ = 0.5,

r1 = 1, r2 = −2 and μ = 1. For comparison, the cor-

responding results for (l1, l2) = (1, 0.5) shown in Fig. 7a

are superimposed in gray. As a matter of course, the speed

is considerably reduced when the width of the unfavorable

(a)

(b)

Fig. 8 Asymptotic speed c̄∗ of the non-linear reaction-diffusion-

advection equation (26) as a function of taxis intensity û for β =
0, 1, 2, ..., 6. a Black circles represent the asymptotic speed when

(l1, l2) = (1, 1) with the other parameters kept the same as in Fig. 6.

The maximum speed for each β is indicated by an open circle. The

asymptotic speeds in the case of (l1, l2) = (1, 0.5) as shown in Fig. 7a

are superimposed by gray circles for comparison. b Black circles rep-

resent the asymptotic speed when (l1, l2) = (2, 1) with the other

parameters kept the same as in a. The maximum speed for each β

is indicated by an open circle. The asymptotic speeds for (l1, l2) =
(1, 0.5) are superimposed in gray as in a. The double circles repre-

sent the points at which the asymptotic speeds for (l1, l2) = (2, 1) and

(1, 0.5) cross each other

patch alone is doubled. This tendency is more emphasized

as both û and β become larger. This finding seems rea-

sonable, because larger unfavorable patches should cause

greater reductions in population densities in both favorable

and unfavorable patches with concomitant reductions in the

synergistic effect of population pressure and taxis.

Likewise, in Fig. 8b, the speeds for (l1, l2) = (2, 1) indi-

cated by black circles are compared with the corresponding

speeds for (l1, l2) = (1, 0.5) shown by gray circles. Upon

doubling both l1 and l2, the speeds retain similar one-

humped shapes. On closer examination, however, the point

of the black circle at û = 0 lies above that of the gray

circle for each β. Namely, the speed is higher as the scale

of the patch size is larger, as has been previously reported

(Shigesada et al. 1986). On the other hand, the order of

these speeds is reversed when û exceeds a certain value for

each β as indicated by double circles in Fig. 8b. Accord-

ingly, the maximum point (open circle) for each β is shifted

leftwards and slightly elevated compared with that of the

corresponding gray curve. In other words, the maximum

speed is attained at a smaller value of taxis intensity û for

each β. This means that the effect of taxis is enhanced by

enlargement of the patch scale (see also Kawasaki et al.

2012).

Discussion

We have presented a new model for biological invasions

in periodic patchy environments, in which long-range taxis

and population pressure are incorporated in the framework

of reaction-diffusion-advection equations. We assumed that

long-range taxis is induced by a weighted integral of stimuli

from the environment. As the simplest case, we employed

the taxis velocity function given by Eq. 13b, which is spec-

ified by two parameters, the sensing length σ and the taxis

intensity û. The population pressure is incorporated into the

diffusion coefficient that linearly increases with population

density.

We first analyzed the model in the absence of pop-

ulation pressure and demonstrated how long-range taxis

influences the asymptotic solution that starts with a local-

ized distribution and its spreading speed. The effects of

population pressure were then examined for both homoge-

neous and periodic patchy environments. The main results

are as follows. In the absence of population pressure, (i)

any solution evolves to a unique asymptotic wave or tends

to zero depending on whether the equilibrium state n = 0

is unstable or stable, respectively; (ii) with increases in

the taxis intensity û, the minimum TPW speed c∗ shows

a one-humped curve that tends to zero as û → ∞; (iii)

with increases in the sensing length σ , the minimum TPW

speed c∗ initially increases but tends to become saturated
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after σ exceeds max (l1/2, l2/2). In the presence of popula-

tion pressure, (iv) traveling wave solutions in homogeneous

environments and their speeds can be analytically obtained;

(v) in periodic environments, population pressure acts to

monotonically increase the asymptotic speed c∗. Further-

more, the speed is synergistically enhanced by population

pressure and taxis intensity when they are both increased in

a positively correlated manner.

As described in the “Previous work — existence of

asymptotic spreading speeds and traveling periodic waves”

section, we have recently investigated a reaction-diffusion-

advection Eq. 7 that incorporates short-range taxis with

the taxis velocity of u(x) = α dr(x)/dx (Shigesada et al.

2015). Since r(x) is piecewise constant, taxis occurs only

at the interfaces between the favorable and unfavorable

patches with infinitely large taxis velocities. More specifi-

cally, u(x) = α(r1 − r2)δ(x) where δ(x) is the Dirac delta

function. By solving this model both numerically and ana-

lytically, we found that if the equilibrium state n = 0 is

unstable, any solution evolves to a unique asymptotic wave

in which the population density discontinuously jumps at

the interfaces, but remains nearly flat within each patch

(Shigesada et al. 2015; see also Maciel and Lutscher 2013).

This flattened distribution in each patch with discontinuous

jumps at the boundaries between neighboring patches is in

marked contrast with the continuous but sharply aggregated

distribution within each favorable patch as observed in the

long-range taxis model (see Fig. 2a (III)). Nevertheless, the

effect of taxis intensity û on the TPW speed in the long-

range taxis model qualitatively resembles the effect of the

taxis sensitivity α in the short-range taxis model in that both

exhibit one-humped response curves (Kawasaki et al. 2012;

Shigesada et al. 2015).

In the integral-based long-range taxis model, we have

implicitly assumed that the taxis velocity, as defined by

Eqs. 3a and 4a, is density independent. There have been

a few integral-based long-range taxis models that include

density-dependent effects mostly focusing on animal or

cell aggregation. For example, Kawasaki (1978) (see also

Turchin 1998) proposed a model for animal aggregation,

in which taxis is induced by the difference between the

total populations in the habitats on the left and right sides,

and Armstrong et al. (2006) explained the aggregation

of adhesive cells in both 1- and 2-dimensions using a

sophisticated density-dependent integral-based taxis model

that they referred to as a non-local taxis model. However,

the range expansion in heterogeneous environments was

beyond the scope of their studies.

In the “Effects of population pressure in a homogeneous

environment” section, we have examined a Fisher equation

with non-linear diffusion for a homogeneous environment

as given by Eq. 27 and derived the traveling wave solu-

tion and its speed in an explicit forms. There have been

several other candidates for non-linear diffusion that incor-

porate population pressure. For convenience of comparison,

let us consider a Fisher equation with non-linear diffusion

of Fickian type as follows (Okubo and Levin 2001):

∂n

∂t
= ∂

∂x

(

D(n)
∂n

∂x

)

+ (1 − n)n. (36)

When D(n) = D0 + 2βn, the above equation is equiva-

lent to Eq. 27. Shakeel (2013) investigated (36) for D(n) =
Dmeγ (n−1) (Dm > 0, γ ≥ 0, 0 ≤ n ≤ 1) and numer-

ically found that when γ is smaller than a certain value,

the spreading speed of the asymptotic wave remains con-

stant, whereas the speed starts to increases as γ exceeds

that threshold. This result is qualitatively similar to the char-

acteristic properties found in the minimum traveling wave

speed as given by Eq. 32. Furthermore, in the two cases

above where the values of D(0) are not zero, the travel-

ing wave solutions form a smooth-front wave. On the other

hand, when the diffusion term is degenerate, i.e., D(0) = 0

with D(n) > 0 for n ∈ (0, 1], Sánchez-Garduño and Maini

(1994) proved the existence and uniqueness of a sharp-front

traveling wave for a large family of Fisher equations. How-

ever, as for the Fisher equation with non-linear diffusion in

a periodic patchy environment, the existence of a traveling

periodic wave and its rate of spread have mathematically

not yet been proven for either non-degenerate or degenerate

non-linear diffusion. Although the simulation results pre-

sented in the “Effects of population pressure in a periodic

patchy environment” are based on the simplest non-linear

diffusion model for a heterogeneous environment, we hope

that they may provide a basis for understanding how pop-

ulation pressure, long-range taxis and spatial heterogeneity

of environment interplay to influence the spatial pattern and

its rate of spread.
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Appendix A: Derivation of Eq. 14

Since s(ξ) = s(−ξ), Fσ (x) is rewritten in the following

form:

Fσ (x) =
∫ σ

0

s(ξ)Rx(ξ)dξ , (37)

where

Rx(ξ) = r(x + ξ) − r(x − ξ) , (38)

and the value of Rx(ξ) at discontinuity points is assumed to

be zero.

As mentioned in the “Taxis velocity” section, r(x) has

the following properties:

r(x) = r(x + L) (L - periodic in x) , (39a)

r(x) = r(l1/2 − x) (even with respect to x =L/2). (39b)

Using Eq. 39a, we have

Rx(ξ) = Rx(ξ + L) (L - periodic in ξ) , (40a)

Rx(ξ)= −Rx(L − ξ) (odd with respect to ξ =L/2). (40b)

Thus, if we know Rx(ξ) for 0 ≤ ξ ≤ L/2, Rx(ξ) can be

extrapolated for 0 ≤ ξ ≤ L. Furthermore, by using Eq. 39,

we have

Rx(ξ)= Rx+L(ξ) (L - periodic in x) , (41a)

Rx(ξ)= −Rl1−x(ξ) = −R2l1+l2−x(ξ)

(odd with respect to x = l1/2 and l1 + l2/2). (41b)

Combining (40) and (41) yields that if we know Rx(ξ)

for 0 ≤ x ≤ l1/2 and l1 ≤ x ≤ l1 + l2/2, Rx(ξ) can be

extrapolated for 0 ≤ x ≤ L.

Now substituting (41a) into (37), we obtain Fσ (x) =
Fσ (x + L). Thus, Eq. 14a is proved. Similarly, applying

Rx(ξ) = −Rl1−x(ξ) in Eq. 41b to Eq. 37, we have Fσ (x) =
−Fσ (l1 − x). Thus, Eq. 14b is proved.

Appendix B: Derivation of (16)

We first calculate Rx(ξ) for 0 ≤ ξ ≤ L/2 when x is a point

in 0 ≤ x ≤ l1/2 or l1 ≤ x ≤ l1 + l2/2. From the definition

(38), we have

(a) when 0 ≤ x ≤ l1/2,

Rx(ξ)=

⎧

⎨

⎩

0 (0 ≤ ξ ≤ x) ,

r1 − r2 (x < ξ < min (l1 − x, L − (l1 − x))) ,

0 (min (l1 − x, L − (l1 − x))≤ξ ≤L/2) ,

(42)

(b) when l1 ≤ x ≤ l1 + l2/2,

Rx(ξ) =

⎧

⎨

⎩

0 (0 ≤ ξ ≤ x − l1) ,

−(r1 − r2) (x − l1 < ξ < min (x, L − x)) ,

0 (min (x, L − x) ≤ ξ ≤ L/2) ,

(43)

Using Eqs. 40 and 41, Eqs. 42 and 43 are extrapolated to

Rx(ξ) for 0 ≤ ξ ≤ L and 0 ≤ x ≤ L as follows:

Rx(ξ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0 (0 ≤ ξ ≤ x1) ,

R12 (x1 < ξ < x2) ,

0 (x2 ≤ ξ ≤ L − x2) ,

−R12 (L − x2 < ξ < L − x1) ,

0 (L − x1 ≤ ξ ≤ L) ,

(44)

where

(1) when 0 ≤ x < l1/2,

R12 = r1 − r2 > 0, x1 = x and

x2 = min(l1 − x, L − (l1 − x)),

(2) when l1/2 ≤ x < l1 + l2/2,

R12 = −r1 + r2 < 0, x1 = |l1 − x| and

x2 = min(x, L − x),

(3) when l1 + l2/2 ≤ x < L,

R12 = r1 − r2 > 0, x1 = x and

x2 = min(x − l1, L − (x − l1)).

The above results indicate that Rx(ξ) is odd with respect

to ξ = L/2 as shown in Eq. 40b, and that Rx(ξ) ≥ 0 for

0 ≤ ξ < L/2 when 0 ≤ x < l1/2 or l1 + l2/2 ≤ x < L, and

Rx(ξ) ≤ 0 for 0 ≤ ξ < L/2 when l1/2 ≤ x < L − l2/2.

Taking these results into account together with the condition

for s(ξ) in Eq. 12b, the sign of Fσ (x) is given as follows:

Fσ (x) =
∫ σ

0

s(ξ)Rx(ξ)dξ

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

+ (0 ≤ ξ < σ1) ,

0 (σ1 ≤ ξ ≤ l1 − σ1) ,

− (l1 − σ1 < ξ < l1 + σ2) ,

0 (l1 + σ2 ≤ ξ ≤ L − σ2) ,

+ (L − σ2 < ξ ≤ L) ,

(45)

where σ1 = min(σ, l1/2) and σ2 = min(σ, l2/2).

Applying Eq. 45 to Eq. 13b, we obtain (16) in the text.

Appendix C: Derivation of Eq. 24 and criterion for

successful invasion

Derivation of Eq. 24

Because A(0,L) is a 2×2 matrix, Eq. 23 is rewritten as
(

e−sL
)2

− tr A(0,L)e−sL + det A(0,L) = 0 . (46)

Since the determinant of each A
(a,b)
(u,r) in Eq. 22c is e

u(b−a)
2D ,

we have det A(0,L) = 1. Thus, Eq. 46 is reduced to

tr A(0,L) = esL + e−sL = 2 cosh(sL) , (47)

which leads to Eq. 24 in the text.
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Criterion for successful invasion

As described in Theorem 1, the criterion for successful

invasion is given by the condition that the trivial solution

n = 0 of Eq. 13 is unstable. Thus, we consider the linearized

Eq. 17 and obtain the condition under which the principal

eigenvalue of the following equation is positive:

D
d2n

dx2
− du(x)n

dx
+ (r(x) − �)n = 0 , (48)

where � is the eigenvalue. Incidentally, the characteristic

equation of (48) is given by Eq. 23 in which s and λ are

set 0 and r(x) is replaced by r(x) − �, or equivalently s

is set 0 and λ is replaced by �. Thus, the condition for the

eigenvalue of Eq. 48 to be zero, i.e., � = 0, is given by

Eq. 47 with s = λ = 0:

trA(0,L)|λ=0 = 2 ,

which indicates the boundary separating stable and unsta-

ble regions in the parameter space. We numerically find that

the parameter region in which the primary eigenvalue of

trA(0,L) = 2 is positive is given by

trA(0,L)|λ=0 < 2 .

Appendix D: The minimum speed and the exact

solution of the traveling wave of Eq. 31

Consider

∂n

∂t
= ∂

∂x

(

D(n)
∂n

∂x

)

+ F(n) , (49)

where

F(0) = F(1) = 0, F (n) > 0 (0 < n < 1),

D(n) > 0 (n ≥ 0), F (n) and D(n) ∈ C1 .

A traveling wave of Eq. 49 with speed c ≥ 0 is a solution

of the form

n(x, t) = u(z), z = x − c t , (50)

which is subject to the following conditions:

lim
z→−∞

u(z) = 1, lim
z→∞

u(z) = 0 and 0 ≤ u(z) ≤ 1 .

Substituting (50) into (49) and setting u′ = v, where the

prime denotes differentiation with respect to z, we have the

following set of ODEs:

u′ = v , (51a)

v′ = −cv − D′(u)v2 − F(u)

D(u)
, (51b)

which are subject to

lim
z→−∞

u(z) = 1, lim
z→∞

u(z) = 0,

lim
z→−∞

v(z) = lim
z→∞

v(z) = 0 and 0 ≤ u(z) ≤ 1 . (52)

Hadeler and Rothe (1975) and Hadeler (1983) presented

seminal work on traveling waves of Eq. 49, of which the

part relevant to Eq. 31 is summarized as follows:

(I) Hadeler (1983) showed that with the following variable

transformations,

ũ = u, ṽ = D(u)v, z̃ =
∫ z

0

ds

D(s)
, F̃ (ũ) = F(ũ)D(ũ) ,

(53)

Equation 51 is transformed to

ũ′ = ṽ ,

ṽ′ = −c ṽ − F̃ (ũ) ,
(54)

which are subject to

lim
z̃→−∞

ũ(z̃) = 1, lim
z̃→∞

ũ(z̃) = 0,

lim
z̃→−∞

ṽ(z̃) = lim
z̃→∞

ṽ(z̃) = 0 and ũ(z̃) ≥ 0

(see also Engler 1985 and Gilding and Kersner 2004).

(II) Hadeler and Rothe (1975) showed that when

F̃ (ũ) = ũ(1 − ũ)(1 + 2βũ) , (55)

there exist traveling waves of Eq. 54 for β ≥ −1/2 and the

minimum speed for each β is given as

c∗ =

⎧

⎪

⎨

⎪

⎩

2 (−1

2
< β ≤ 1) ,

√
β + 1√

β
(1 ≤ β) .

(56)

Furthermore, when β ≥ 1, the explicit traveling wave

solution with the minimum speed c∗ is given as

ũ(z̃) = 1

1 + e
√

βz̃
. (57)

Now let us consider (49) with D(u) = 1 + 2βu and

F(u) = u(1 − u), which is equivalent to Eq. 31. By apply-

ing the transformation (53) to (51) with D(u) = 1 + 2βu

and F(u) = u(1 − u), we have Eq. 54 with F̃ (ũ) = ũ(1 −
ũ)(1 + 2βũ), which is exactly the same as Eq. 55. There-

fore the minimum speed of the traveling wave of Eq. 49 for

D(n) = 1 + 2βn and F(n) = n(1 − n) is given by Eq. 56.

To obtain the traveling wave solution of Eq. 31 cor-

responding to Eq. 57, we need to carry out a reverse

transformation of Eq. 57 by using Eq. 53 as follows:
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From Eqs. 53, 54 and 57, we have

D(u)v = ṽ = ũ′(z̃) = −
√

βe
√

βz̃

(1 + e
√

βz̃)2
(58)

= −
√

β(1 − ũ)ũ = −
√

β(1 − u)u .

Using u′ = v and the above equation, we have

u′ = −
√

β(1 − u)u

D(u)
= −

√
β(1 − u)u

1 + 2βu
. (59)

Solving Eq. 59 gives

(1 − u)2β+1

u
= e

√
β(z−zc) .

Thus, Eq. 33 is proved.
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