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High-pressure blast waves can cause extensive CNS injury in human beings. However,
in combat settings, such as Iraq and Afghanistan, lower level exposures associated with
mild traumatic brain injury (mTBI) or subclinical exposure have been much more common.
Yet controversy exists concerning what traits can be attributed to low-level blast, in large
part due to the difficulty of distinguishing blast-related mTBI from post-traumatic stress
disorder (PTSD). We describe how TBI is defined in human beings and the problems posed
in using current definitions to recognize blast-related mTBI. We next consider the problem
of applying definitions of human mTBI to animal models, in particular that TBI severity in
human beings is defined in relation to alteration of consciousness at the time of injury,
which typically cannot be assessed in animals. However, based on outcome assessments,
a condition of “low-level” blast exposure can be defined in animals that likely approximates
human mTBI or subclinical exposure. We review blast injury modeling in animals noting
that inconsistencies in experimental approach have contributed to uncertainty over the
effects of low-level blast. Yet, animal studies show that low-level blast pressure waves are
transmitted to the brain. In brain, low-level blast exposures cause behavioral, biochemical,
pathological, and physiological effects on the nervous system including the induction of
PTSD-related behavioral traits in the absence of a psychological stressor. We review the
relationship of blast exposure to chronic neurodegenerative diseases noting the paradoxical
lowering of Abeta by blast, which along with other observations suggest that blast-related
TBI is pathophysiologically distinct from non-blastTBI. Human neuroimaging studies show
that blast-related mTBI is associated with a variety of chronic effects that are unlikely to
be explained by co-morbid PTSD. We conclude that abundant evidence supports low-level
blast as having long-term effects on the nervous system.

Keywords: animal models, blast, human studies, post-traumatic stress disorder, traumatic brain injury

INTRODUCTION
While an uncommon cause of traumatic brain injury (TBI) in
civilian life (1), blast-related TBI has been of long-standing interest
in military head trauma. During World War I, it was first recog-
nized that blast exposure could be associated with psychological
and neurological symptoms that were reminiscent of both the
post-concussion syndrome and what would now be called post-
traumatic stress disorder (PTSD) (2–9). Recently, there has been
renewed interest in blast-related TBI because of its frequency in
the conflicts in Iraq and Afghanistan (8, 10–32). Indeed, estimates
are that 10–20% of veterans returning from these conflicts have
suffered a TBI with blast exposure most commonly related to
improvised explosive devices (IEDs) being the most frequently
attributed cause (10, 33).

Most attention focused initially on the moderate to severe end
of the TBI spectrum (34), the type of TBI that would be recognized

in theater and the war in Iraq has resulted in the highest num-
ber of service-related severe TBIs since the Vietnam era (35).
However, what soon became apparent was that many returning
veterans began appearing at Veterans Affairs (VA) Hospitals and
other facilities with symptoms suggestive of the residual effects of
mild TBIs (mTBIs) that were never recognized prior to discharge.
In fact, mTBIs vastly outnumber moderate to severe TBIs in this
population (10, 33).

This renewed interest has lead to a rapid expansion of clini-
cal as well as animal studies related to blast. Despite these efforts,
questions remain concerning how blast exerts its effects on the
nervous system and even what effects can reasonably be attrib-
uted to blast. Indeed, a recent Institute of Medicine report (36)
concluded that in terms of long-term adverse health outcomes in
human beings, there was sufficient evidence of a causal relation-
ship to blast only for penetrating eye injuries and some long-term
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effects on the genitourinary system. For post-concussion symp-
toms and persistent headaches following blast-related mTBI, the
report concluded that there was only sufficient evidence for an
association (36).

Questions have also emerged as to whether pathophysiolog-
ically blast-related TBI is different from the type of non-blast
TBI (nbTBI) typical of civilian trauma where injury is caused
by inertial and rotational forces along with the effects of blunt
impact (37, 38). The most direct physical effects of these forces are
bleeding, direct tissue damage, and mechanical shear stress along
white matter tracts, which in turn leads to activation of a vari-
ety of pathophysiological cascades that are associated with further
tissue damage (37, 39). Blast injuries by contrast result from a
pressure wave generated at a distance and transmitted though air,
which may induce stresses in the brain without significant global
motions being imparted. Damage to the nervous system is thought
to occur through biophysical mechanisms related to the traveling
shock wave’s interaction with the brain (40–42), although it has
also been suggested that a blast wave striking the body can induce
oscillating pressure waves, which can be transmitted through the
systemic circulation to the brain (12, 43).

Blast injuries have typically been divided into four or five cat-
egories (13, 19, 44). Injuries directly related to the blast wave are
referred to as primary blast injuries. The blast explosion can propel
objects including shrapnel contained within the IED causing what
is referred to as secondary injury. The blast wave may also cause
victims to be knocked down or thrown into solid objects result-
ing in what is called tertiary injury. Quaternary injuries comprise
a group of miscellaneous injuries not classifiable into other cat-
egories including burns or the effects of inhaling noxious gases.
Finally, the term quinary injury is sometimes used to refer to ill-
nesses that result from chemical, biologic, or radiologic substances
released during an explosion (19). Development of this blast tax-
onomy began during World War II (45) and remains useful today.
However, it does not encompass all injury mechanisms encoun-
tered today such as platform shock acceleration where energy is
transferred through the ground or a vehicular structure (46). This
phenomenon, which is particularly relevant to the common situ-
ation where injury occurs to personnel in a vehicle hit by an IED
occurs due to complex mechanisms unrelated to the primary blast
wave itself (44).

Close exposure to a high-pressure blast wave can cause exten-
sive CNS injuries in human beings with high-level blast expo-
sures appearing to be particularly prone to inducing hemorrhagic
lesions (47). High-level blast exposures in animals can also pro-
duce a variety of gross as well as histological pathology (11, 26).
However, the relative importance of the blast injury mechanisms
discussed above varies depending on the severity of injury. Blast
injuries severe enough to cause moderate to severe TBI are with-
out doubt a mix of secondary and tertiary injuries combined with
the contribution of the primary blast wave. In both human beings
and animals, secondary and tertiary injuries likely activate many
of the same pathophysiological cascades seen in nbTBI. What is
less clear is how the primary blast wave damages the brain. Blast-
related mTBI differs in that secondary and tertiary injuries are less
prominent with most cases presumed to reflect mostly the direct
effects of the primary blast wave.

DEFINING BLAST-RELATED mTBI IN HUMAN BEINGS
Blast-related TBI is currently defined using the same criteria used
for defining nbTBI. In human beings, TBI severity is defined in
relation to the degree of neurological dysfunction at the time of
injury. TBI severity is thus considered separate from TBI outcome,
i.e., the chronic signs and symptoms as well as functional impair-
ment that may persist after a TBI. TBI also requires an event. In
the case of nbTBI, the head is struck or strikes an object or in
blast-related TBI is enveloped by the blast overpressure wave. His-
torically, TBI has been graded as mild, moderate, or severe based
primarily on the immediate effects of the TBI on consciousness.

The first widely used staging system for TBI was the Glasgow
Coma Scale (48), which divides TBIs into mild, moderate, and
severe based on three clinical criteria: eye opening, best motor, and
best verbal response (48–50). Subsequently, several classifications
have been proposed (51–54). Four of the more commonly used
criteria are those developed by the American Congress of Reha-
bilitation Medicine (51), the Centers for Disease Control and Pre-
vention (CDC) (52), the World Health Organization (WHO) (53),
and the Department of Defense (DoD)/Department of Veterans
Affairs (54). The features of these are summarized in Table 1.

All use alteration or loss of consciousness as the primary indi-
cator that a TBI occurred. This alteration may range from any
transient alteration of consciousness including being as little as
momentarily dazed or confused up to loss of consciousness for
30 min. All incorporate the Glasgow Coma Scale and exclude cases
with scores less than 13 as well as allow for a period of post-
traumatic amnesia lasting up to 24 h. The CDC criteria include
pre-injury as well as post-injury amnesia, while the DoD/VA
and WHO criteria only consider post-traumatic amnesia. The
American Congress of Rehabilitation Medicine, CDC, and WHO
guidelines allow focal neurological deficits to be present as long
as other criteria are met while focal symptoms or signs are not
mentioned in the DoD/VA guidelines. Brain imaging results are
not considered as a factor in the American Congress of Rehabili-
tation Medicine guidelines. The CDC and WHO guidelines allow
focal lesions on brain imaging if other criteria are met or in the
case of the WHO guidelines if surgery is not required. By contrast,
the DoD/VA guidelines state that routine neuroimaging must be
normal. In the CDC guidelines, penetrating craniocerebral injury
is excluded and the WHO guidelines add the stipulation that any
neurological dysfunction must not be due to drugs, alcohol, med-
ications, or be caused by other injuries, treatments, psychological
trauma or other factors that could confound diagnosis.

Thus, while there is no universally accepted definition of mTBI
in human beings, all four sets of criteria use some level of alter-
ation or loss of consciousness as the primary indicator that a TBI
occurred. However, the definitions encompass a wide range of
severity ranging from as little as being momentarily dazed or con-
fused up to loss of consciousness for 30 min. Three of the four
allow focal findings on exam or focal lesions on imaging as long
as other criteria for mTBI are met. Inclusion of such cases broad-
ens the mTBI spectrum. Indeed, other criteria separate off into a
category labeled “complicated” mTBI that subset of patients who
could clinically be classified as mTBI but in whom neuroimag-
ing reveals focal intracranial lesions (55). While the concept of
complicated mTBI has not made its way into the major consensus
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Table 1 | Consensus criteria for the classification of human mTBI.

American Congress of

Rehabilitation Medicine (51)

Centers for Disease

Control and Prevention (52)

World Health Organization

(WHO) (53)

Department of

Defense/Department

of Veterans

Affairs (54)

Alteration of

consciousness

Any alteration of mental state

at the time of the accident

(e.g., feeling dazed

disoriented or confused).

Any period of observed or

self-reported transient confusion,

disorientation, or impaired

consciousness; any period of

observed or self-reported

dysfunction of memory (amnesia)

around the time of injury.

Confusion or disorientation for

30 min or less.

A moment up to 24 h.

Loss of

consciousness

(LOC)

Any period of less than

30 min.

Any period of observed or

self-reported loss of consciousness

lasting 30 min or less.

30 min or less. 0–30 min

Post-traumatic

amnesia (PTA)

Any loss of memory for

events immediately before or

after the accident but not

greater than 24 h.

Post-traumatic amnesia less

than 24 h.

Post-traumatic amnesia for less

than 24 h.

0–1 day.

Glasgow coma

scale (GCS)

13–15 at 30 min post-injury. 13–15 as assessed by a qualified

healthcare provider at the first

opportunity.

13–15 at 30 min post-injury or later

upon presentation for healthcare.

13–15

Focal neurological

signs

Focal neurological deficits

that may or may not be

transient allowed as long as

other conditions are met.

Focal neurological deficits (e.g.,

hemiplegia) allowed if other criteria

are met.

Transient neurological abnormalities

such as focal signs, seizures,

allowed.

Brain imaging Focal lesions on neuroimaging (e.g.,

computed tomography) allowed if

other criteria are met.

Intracranial lesions allowed as along

as not requiring surgery.

Routine brain imaging

must be normal.

Other Other neurological or

neuropsychological dysfunction,

such as seizures acutely following

head injury allowed; penetrating

craniocerebral injury excluded.

Effects not due to drugs, alcohol,

medications, caused by other

injuries or treatment for other

injuries (e.g., systemic injuries,

facial injuries, or intubation); not

caused by other problems (e.g.,

psychological trauma, language

barrier or coexisting medical

conditions) or caused by

penetrating craniocerebral injury.

criteria, a number of studies suggest that complicated mTBI is
associated with more prolonged recovery and residual neurocog-
nitive impairments (56–66). While a variety of ancillary studies
including advanced neuroimaging techniques and serum markers
such as S-100 protein have been investigated as markers of brain
injury severity (67, 68), none has gained general acceptance as
diagnostic markers of mTBI.

DIFFICULTIES IN APPLYING CURRENT DEFINITIONS OF mTBI
TO BLAST INJURY
Within the TBI model, blast exposures are dichotomized into TBI
or not TBI i.e., either an event has occurred that can be labeled a

“TBI”or it has not. If there is no TBI event, then it is concluded that
no clinically significant blast exposure occurred. The first difficulty
posed by this approach is the defining of a TBI event. The term
“concussion” is today treated as being largely synonymous with
mTBI. Yet concussion once required a transient loss of conscious-
ness as part of its definition. However, largely due to research in
the sports medicine literature (69), it has become clear that loss of
consciousness is not necessary for a clinically significant TBI event
to have occurred. Thus, current definitions of mTBI, as discussed
above, include even the most transient alteration of consciousness
including being as little as momentarily dazed, confused, or“seeing
stars.” These newer criteria greatly expand the definition of mTBI

www.frontiersin.org December 2014 | Volume 5 | Article 269 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Neurotrauma/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Elder et al. Effects of low-level blast

and most blast-related mTBIs in veterans returning from Iraq and
Afghanistan do not involve loss of consciousness (10, 70–73).

Expanding the mTBI definition represents progress if it cap-
tures a larger spectrum of clinically significant blast exposures.
However, it may be misleading, if it labels clinically insignificant
blast exposures as TBI as suggested by some of the TBI/PTSD
overlap literature discussed below. Indeed, the expanded defini-
tion can sometimes make deciding whether a mTBI has occurred
difficult, which is often done based on histories obtained long after
an event that occurred in settings where it may be difficult to sep-
arate a transient neurological disturbance from a psychologically
based stress reaction.

Current definitions of mTBI pose another problem in that if
an exposure just sufficient to produce the most minimal alteration
of neurological functioning can be considered clinically significant
then could exposures beneath the threshold to produce a TBI event
matter clinically as well. This issue seems particularly relevant to
blast due to the nature of blast exposure that involves a blast wave
propagated for considerable distances through air thereby expos-
ing large areas to a continuous range of air-shock conditions. If
subclinical blast exposure affects the brain, then any definition of
TBI requiring a transient neurological disturbance would fail to
capture the full spectrum of blast effects and indeed would sug-
gest that the TBI model may fail to capture a wider spectrum of
blast-related brain injury.

Indeed, under such a scenario, multiple subclinical exposures
might matter more than a single exposure sufficient to be identi-
fied as a TBI event. Multiple blast exposures have been common in
the war zones in Iraq and Afghanistan even in subjects not known
to have suffered a TBI. For example, in the study of Hoge et al. (10)
over 55% of non-injured controls reported two or more occasions
in which they were near an IED explosion suggesting that most
controls in these settings have been subjected to blast exposure.
Comparisons in multivariate regressions are performed along a
dichotomy of TBI vs. no TBI. However, if a continuous gradient
of subclinical exposures matter, especially cumulative exposures
just below the TBI threshold then the dichotomy may not be real
and cumulative exposure may matter more.

SEPARATING BLAST-RELATED mTBI AND PTSD
One of the striking features of the mTBI cases being seen in
veterans from Iraq and Afghanistan is the frequent presence of
PTSD (11). Indeed, PTSD or depression is present in over one-
third of Iraq veterans with suspected post-concussion syndromes
secondary to mTBI (10, 74). The frequent presence of PTSD
has complicated diagnosis since the clinical distinction between
a post-concussion syndrome and PTSD is often difficult with
the two disorders having many overlapping symptoms (11). In
both somatic complaints including fatigue, irritability and poor
sleep are frequent. Impaired concentration, attention, and mem-
ory are also common, and neuropsychological test profiles can
look similar with deficits in attention, working memory, executive
functioning, and episodic memory present in both (74).

The problem of distinguishing the two disorders is not new
and has roots dating back to the entity first recognized during
World War I known as “shell shock” (2–8). During this era, a
debate raged concerning whether shell shock was a physical injury

or the result of psychic trauma. The debate ended without deci-
sive resolution but with the British government clearly favoring
psychological over organic explanations. Indeed, the 1922 South-
borough report of the War Office’s Committee of Enquiry into
“Shell-Shock” concluded that regular units with high morale were
virtually immune from shell shock (75). At the beginning of World
War II, the British government suppressed the use of the term“shell
shock” (76). However, soldiers continued to be exposed to blasts
and to present with a similar range of symptoms. The controversy
regarding physical vs. psychological injury continued again with-
out any clear resolution (2). Following the Vietnam War, PTSD
became conceptualized as a diagnostic entity and was added to
the third edition (DSM-III) of the Diagnostic and Statistical Man-
ual of Mental Disorders of the American Psychiatric Association
(APA) (77). The role of blast exposure in this symptom complex
remerged in the popular press and scientific literature following
the onset of the conflicts in Iraq and Afghanistan (78). While sim-
ilar in many ways to the war exposures of the past, blast exposures
in the most recent conflicts have differed in first their high preva-
lence. Indeed, it has been estimated that 75% of casualties in Iraq
and Afghanistan have been due to explosions (36). Improved per-
sonal protective equipment seems to have mitigated in particular
the severity of blast-related lung injuries. Such factors along with
improved frontline medical care have lead to a lower percentage
of blast fatalities and thus increased the number of survivors who
may live to experience the effects of blast-related TBI.

TBI and PTSD have an interesting relationship in that the two
disorders can be considered different ends of a spectrum with TBI
being the classic example of an organic brain disease and PTSD a
psychologically based reaction to a stressor that was not associated
with physical injury. Indeed, it has been suggested that the post-
traumatic amnesia associated with TBI may protect against the
development of PTSD, based on the notion that amnesia for the
event precludes formation of the core affective responses needed
to develop PTSD (79). While PTSD can clearly develop after even
moderate to severe TBI, evidence does suggest that PTSD rates are
higher in subjects who remember the TBI incident compared to
those with no memory for the event (80, 81).

The association of PTSD with mTBI might be explained by dual
exposures to PTSD stressors as well as independent TBI events.
However, other studies have suggested that the apparent epidemic
of mTBI in veterans from Iraq and Afghanistan may be an arti-
fact of current definitions of mTBI, which lower the threshold for
diagnosing an mTBI to the most transient alteration of conscious-
ness. The study of Hoge et al. (10) first raised such questions. They
surveyed over 2700 U.S. Army infantry soldiers from two brigades,
3–4 months after returning from a 1-year deployment in Iraq. In
this study, the most frequent cause of TBI was blast and all but 4
of 384 TBIs were mTBI. Among the mTBI, 5% reported loss of
consciousness and 10% occurred without loss of consciousness.
In soldiers who reported an mTBI complaints of headache, poor
memory and concentration were frequent suggesting that a per-
sistent post-concussion syndrome was present. However, using a
multivariate logistic regression analysis, after adjusting for the fre-
quent co-existence of PTSD and depression, an mTBI history was
no longer associated with any post-concussion symptoms, except
for headache.
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Hoge et al. (82) argued later that current-screening criteria for
mTBI are flawed. Multiple subsequent studies from this group as
well as others have supported this interpretation suggesting that
post-concussion symptoms and other adverse physical or neu-
ropsychological outcomes following blast-related mTBI are only
non-specifically related to blast, better explained by PTSD or only
related to blast when there has been loss of consciousness, which is
the minority of cases using current definitions of mTBI (70, 72, 73,
83–92). Indeed, the 2014 Institute of Medicine report (36) on the
long-term consequences of blast injury concluded that based on
human studies, there is “limited/suggestive evidence that most of
the shared symptoms are accounted for by PTSD and not a direct
result of TBI alone” and that for post-concussion symptoms and
persistent headaches following blast-related mTBI, there was only
sufficient evidence to suggest an association. While other studies
suggest that a blast-related mTBI might be more than a coinciden-
tal exposure (93–100), the clear message from many studies is that
much of what is presently being called post-concussion syndrome
secondary to blast-related mTBI is really PTSD.

DEFINING BLAST-RELATED mTBI IN ANIMAL MODELS
Animal models should allow effects of primary blast to be deter-
mined free of many confounding variables present in natural
human exposures (11, 26). Recently, Cernak (101) has discussed
the general requirements for animal models of blast-induced neu-
rotrauma. Developing an animal injury model involves both a
choice of species as well as exposure simulation. Choice of species
has practical as well as theoretical implications. Rodents, mostly
rats, have been most commonly used (11, 26), a choice that without
doubt has been driven more by practical than theoretical consider-
ations. Besides availability, rodents offer advantages in the power
of the genetic systems that exist particularly in mice. Rodents may
be less than ideal; however, in that rodent brains lack the gyri and
sulci found in human beings, a factor that likely affects the brain’s
mechanical response to acceleration impulse (102). The white/gray
matter ratio is also less in rodents, another factor that may affect
the brain’s reaction to injury. Pigs and non-human primates have
brains more similar to human beings but their cost and in the case
of non-human primates, availability limits their wider use.

Animals have been exposed to various forms of blast ranging
from direct exposure to live explosives to more commonly con-
trolled blast waves produced by compressed-air generators (11,
26). Although live explosives may best model exposure in the field,
this approach affords less experimental control over the physi-
cal characteristics of the blast wave as well as depending on the
injury paradigm may involve difficulty in separating effects of the
primary blast wave from secondary, tertiary, or even quaternary
injuries. Pressure generators allow blast overpressure effects to be
studied in isolation, offering more experimental control. How-
ever, conventional shock tubes can only approximate some aspects
of explosive blast conditions. While they replicate the ideal blast
wave, they lack the capability of modeling the non-ideal blast wave
with its multiple shock and expansion fronts that occur in real-life
settings.

Interpreting the shock tube literature is also complicated by
there being no standardized conditions for conducting shock
tube research (101, 103). Shock tube apparatus and blast insult

conditions, as well as specimen mounting, degree of head restraint,
and location relative to the tube can vary greatly between labs.
Blast waves are characterized by their peak overpressure, duration,
and impulse. Different shock tubes may produce pressure waves
with differing characteristics leading to different biological effects.
For example, large peak pressures delivered over short durations
may be better tolerated than lower pressures experienced over long
durations (103). Yet, many studies report only peak pressures mak-
ing it difficult to sometimes compare studies even within species.
Sundaramurthy et al. (104) have also shown that the biomechan-
ical loading experienced by rats in a shock tube can vary widely
depending on whether the animal is placed inside or outside the
tube and at different locations along the length of the tube. Choice
of species also affects scaling considerations important in choosing
shock wave parameters (105). In addition to size, skull biomechan-
ical properties as well as anatomy of the orbits and sinuses likely
affect how external loads become imparted to the brain. Pigs for
example have relatively thick skulls compared to human beings
while rodents have much thinner skulls, factors that apart from
size must be considered in experimental design.

Finally, it is not clear that all injury to the brain occurs through
direct effects. For example, it has been suggested that blast waves
hitting the thorax or abdomen can be transmitted through the
vasculature to the brain causing injury (43, 106). The importance
of this mechanism remains unclear. However, it is interesting that
in the most recent conflicts, there has been little evidence of “blast
lung” implying that the Interceptor Body Armor being provided
to soldiers may be effective in mitigating blast injury to the thorax.
If so, animal models allowing thoracic exposures may be repro-
ducing effects that are no longer as relevant to current wartime
exposures.

However, whatever animal model is chosen, the question arises
how to define mTBI given that in human beings TBI severity is
defined in relation to the degree of alteration of consciousness at
the time of acute injury. While studies of experimental blast injury
in animals have been conducted without anesthesia (107, 108),
essentially all studies being conducted today are done under gen-
eral anesthesia, which precludes observing any transient alteration
of neurological functioning at the time of exposure. The prob-
lem thus becomes how to apply a definition of mTBI in human
beings in which severity is judged by alteration of consciousness
at the time of injury to animal studies conducted under anesthesia
where alteration of consciousness at the time of injury cannot be
assessed.

Thus, in animal models, injury severity can only be assessed by
the residual effects observed after anesthesia has worn off, i.e., out-
comes. Even if animals could be studied without anesthesia, the
problem of how to operationalize being “dazed or confused” or
“seeing stars” in an animal with no capacity for self-report seems
formidable. Given the difficulty of applying definitions of human
mTBI to animal studies, the label “mTBI” probably has only lim-
ited usefulness in animals. Indeed from here forward, we refer to
animal studies thought to be the equivalent of human mTBI based
on outcomes as “low-level” blast.

Outcomes that might be considered in animal models
include behavioral, pathological, physiological, biochemical, or
neuroimaging results. Among these, behavior and pathology are
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readily available in animals. However, since it is rare that mTBI
patients come to postmortem exam, little is known about the
pathology of mTBI especially in the acute phase (38). Modern
neuroimaging may provide one of the best opportunities for com-
parative studies since this modality is well developed in human
beings (38) and being applied more to animal models (see below).

The issue then becomes how to develop a relevant animal
model of low-level blast. One approach taken by Ahlers et al.
(107) was to expose animals to sequentially higher blast levels
and to determine whether a threshold could be identified where
outcomes would mirror those expected of a human mTBI without
features inconsistent with mTBI. In these studies, which utilized
the pneumatically driven shock tube at the Walter Reed Army
Institute of Research (WRAIR) (107), initially unanesthetized rats
were exposed to progressively higher blast exposures in different
orientations at peak pressures of 36.6 kPa (associated with a dura-
tion of 4.1 ms and impulse of 75.2 kPa*ms), 74.5 kPa (duration
4.8, impulse 175.8), and 116.7 kPa (duration 6.8, impulse 335.5).
Exposures up to 74.5 kPa (equivalent to 10.8 psi) lead to no per-
sistent neurological impairments, although anterograde memory
deficits were observed in rats exposed to 74.5 kPa blasts when fac-
ing the blast wave. In addition, 36.6 and 74.5 exposures produced
no gross neuropathological effects and histological examination
of the lung showed no hemorrhage or other abnormalities. By
contrast, 116.7 kPa exposures lead to overt pathology with approx-
imately 30% of rats having subdural hemorrhages and cortical
contusions,a finding not consistent with human mTBI. All animals
exposed to 116.7 kPa blasts had frequent pulmonary hemorrhages
suggesting that these levels of exposure produce a state of poly-
trauma. Similar studies conducted using anesthetized rats in the
WRAIR shock tube exposed to single or multiple blasts have also
found that 36.6 and 74.5 level exposures are consistent with a
low-level blast exposure (107, 109–111).

Thus, based on studies using the WRAIR shock tube, a dividing
line seems to exist between 74.5 and 116.7 kPa that separates low-
level blast in rats from moderate to higher level blast exposures that
are more equivalent pathologically to human moderate to severe
TBI in the context of polytrauma. The findings in the WRAIR stud-
ies are consistent with other investigations that have noted similar
patterns of injury at pressures of 116.7 kPa and above in rats (112–
115). Studies from other labs using exposures of 74.5 kPa or lower
also seem largely consistent with the WRAIR findings suggesting
that exposures in rats up to 74.5 kPa across a range of durations can
reasonably be called low-level blast exposure (116–121). Indeed
very similar to the WRAIR studies, Baalman et al. (121) found
that while 74 kPa (duration ≈ 4 ms) peak pressures resulted in
only subtle pathology, the next highest exposure (98 kPa) resulted
in lung trauma and death.

Pressures that mimic low-level blast in other species may of
course differ and require validation in relation to outcomes in
those species. Of interest are several studies in mice that have
examined blast overpressure exposures similar to those that appear
consistent with low-level blast in rats. For example, Goldstein et al.
(122) studied mice exposed to a single blast exposure of 77 kPa.
However, while this exposure is within the range that might be
reasonably considered low level in rats, the extent of neuropathol-
ogy seen in this model seems more equivalent to higher level blast.

By contrast, Huber et al. (123) studied mice exposed to 108 kPa
pressures and describe what seems like a more mild pathology. In
a third set of studies, mice were exposed to 68, 76, or 105 kPa
exposures (124, 125). With 68 kPa exposures, scattered axonal
pathology was found in multiple CNS tracts (125) with no mor-
tality if the mice were exposed in the prone position although
5% of the mice died if exposed in the supine position. At higher
exposures, there was between 11% (76 kPa) and 33% (105 kPa)
mortality, if the mice were exposed in the prone position and 37%
(76 kPa) to 53% (105 kPa) if exposed supine, levels of mortality
that would not be expected of an mTBI exposure. These studies
emphasize not only the importance of species specific differences
but also that outcomes within the same species may vary with sim-
ilar pressure exposures. One factor in particular differing between
the studies discussed above was that Goldstein et al. (122) used
no head restraint allowing the head to be subjected to significant
rotational motion as well as likely focal impact injury. Notably,
when Goldstein et al. (122) restricted head movement, hippocam-
pal dependent leaning and memory deficits disappeared. Effects
on pathology after head restraint were not reported (122). Restrict-
ing exposure to the head may also influence effects as Heldt et al.
(126) have described a model in which mice exhibited only limited
CNS pathology with exposures of 20–60 psi if the blast wave was
delivered to a small area on one side of the cranium.

EFFECTS OF LOW-LEVEL BLAST EXPOSURE IN ANIMAL
MODELS
Most studies of blast in animals have utilized relatively high-
level exposures that likely more approximate moderate to severe
TBI (11, 26). However, particularly in recent years studies have
appeared assessing effects of lower level blast. To search for papers
reporting low-level blast exposure in animal models, we searched
Pubmed using the terms“blast”and“traumatic brain injury.”Arti-
cles were selected for review based on the relevance of the title and
abstract. References in the studies that were selected for review
were examined for additional relevant citations.

In rats, we considered as low-level blast those studies that
utilized blast exposures of ≈ 75 kPa or less based on the consid-
erations discussed above and where sufficient pathological infor-
mation was available to conclude there was no gross pathology
particularly hemorrhages that would be incompatible with mTBI.
Studies in mice were more difficult to judge due to there being
fewer studies and the seeming variability in response to blast in the
68–108 kPa range (122–125) (although see discussion above con-
cerning differences in these studies). However, a series of studies
in mice using exposures to live explosives in the 2.5–5.5 psi range
seem compatible with a definition of low-level blast (127–129).

Table 2 summarizes studies of exposures in what we term the
low-level blast range. These papers first document that low-level
blast exposures are transmitted to the brain (130). Chavko et al.
(130) showed that pressures as low as 35 kPa are transmitted to the
brain in rats although the patterns and durations of pressure traces
inside the brain depended on the orientation to the blast with
frontal exposures resulting in pressure traces of higher amplitude
and longer duration than with other orientations. Peak pressures
measured in brain were very similar to those in air (131). Interest-
ingly, the observation of higher pressures with frontal exposures
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Table 2 | Effects of low-level blast exposure in animal models.

Species Peak overpressure (shock

tube unless otherwise

indicated); duration and

impulse given when reported

Pathological, biochemical, physiological,

and imaging findings

Behavioral findings Reference

Rat 2.8 or 20 kPa (duration ≈ 2 ms) 20 kPa exposure resulted in decreased

performance on rotametric and grip-strength tests;

scattered hyperchromatic cells visible in the

cerebral cortex at 1 day or 1 week post-exposure;

animals receiving aminoguanidine before or after

blast protected.

(134)

Rat 40 kPa (duration 4 ms) Sensor in third ventricle detected blast pressure

wave in brain with similar magnitude to that in air.

(131)

Rat 10, 30, or 60 kPa (duration

4–6 ms)

Intracranial pressure (ICP) increases of 80–145% at

10 h post-blast at 30 and 60 kPa exposures; ICP

increases less in rats fed processed cereal feed.

Morris water maze (MWZ) impaired

2 days after exposure to 10 or 30 kPa

blast; no functional impairment on MWZ

in rats fed processed cereal feed.

(119)

Rat Open-field exposure (120 kg

TNT) 48.9 kPa (7.1 psi; duration

14.5 ms) or 77.3 kPa (11.3 psi;

duration 18.2 ms)

Cortical neurons darkened and shrunken with

narrowed vasculature in cerebral cortex 1 day after

blast; TUNEL-positive oligodendrocytes and

astrocytes in white matter at day 1; more amyloid

precursor protein immunoreactive cells in white

matter; altered expression of over 5700 genes in

the brain post-blast.

(118)

Rat 35 kPa (duration 4.1 ms) Pressure wave transmitted to brain; frontal

exposures (head facing blast) resulted in pressure

traces of higher amplitude and longer duration than

side exposure or head facing away from blast.

(130)

Mouse Open-field explosives; 4 and

7 m distance from blast (5.5

and 2.5 psi)

Increased blood–brain barrier permeability 1 month

post-blast on MRI T1 weighted images; increase in

fractional anisotropy (FA) and decrease in radial

diffusivity on diffusion tensor imaging (DTI);

upregulation of manganese superoxide dismutase

2 in neurons and CXC-motif chemokine receptor 3

around blood vessels in fiber tracts.

Reduced preference for a novel object at

7 and 30 days post-blast; more rearing

events in a staircase climbing task at 7

and 30 days post-blast; less alteration in

a Y-maze task at 7 days (2.5 and 5.5 psi

exposures) and 30 days (5.5 psi

exposure) after blast exposure.

(127)

Rat 11.5 kPa (duration 200–250 µs) Delayed cytoskeletal proteolysis of alpha II-spectrin

in cortex and hippocampus by 12 h post-injury; cell

death minimal and localized predominantly in

corpus callosum and periventricular regions;

evoked compound action potentials (CAP) in the

corpus callosum increased in duration at 14 and

30 days post-injury with depression of

unmyelinated fiber amplitudes; shielding head

attenuated alpha II-spectrin cytoskeletal

breakdown.

(117)

Rat Single 36.6 kPa (duration of

4.1 ms, impulse 75.2 kPa*ms)

and 74.5 kPa (duration 4.8 ms,

impulse 175.8 kPa*ms); repeat

(12) 36.6 kPa

No general histopathology; no evidence of axonal

pathology based on APP immunohistochemical

staining.

Anterograde memory deficits on a

passive avoidance task after 74.5 kPa

exposure; repeat exposure to 36.6 kPa

produced transitory learning deficits on

MWZ.

(107)

(Continued)
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Table 2 | Continued

Species Peak overpressure (shock

tube unless otherwise

indicated); duration and

impulse given when reported

Pathological, biochemical, physiological,

and imaging findings

Behavioral findings Reference

Rat Repeat (three) 74.5 kPa (duration

4.8 ms, impulse 175.8 kPa*ms)

Elevation in the amygdala of the protein stathmin 1. Increased anxiety, enhanced acoustic

startle, and enhanced response in the

contextual phase of a fear-conditioning

paradigm in blast exposed; altered

response to a predator scent after blast

exposure.

(109)

Rat Single 36.6 or 74.5 kPa (duration

4.8 ms, impulse 175.8 kPa*ms)

Brain Aβ levels decreased acutely following

exposure; levels of APP protein increased on

Western blotting although no evidence of axonal

pathology based on APP immunohistochemical

staining; no change in levels of β-site APP cleaving

enzyme 1 (BACE1), or the γ-secretase component

presenilin-1.

(135)

Rat Single or multiple (three)

74.5 kPa (duration 4.8 ms,

impulse 175.8 kPa*ms)

No general histopathology but focal cortical lesions

thought to represent shear-related lesions found in

many brains.

(110)

Mouse Single live explosive detonations

(2.5–5.5 psi peak overpressure).

Increased ganglioside GM2 in hippocampus,

thalamus, and hypothalamus with depletion of

ceramides.

(129)

Mouse 2.5 psi (17.2 kPa) Compared hippocampal transcriptome in mice

subjected to weight drop or blast injury; divergence

in hippocampal transcriptome observed between

models; Alzheimer’s disease-related pathways

displayed a markedly different form of regulation

depending on the type of TBI.

Reduced preference for a novel object at

7 and 30 days post-blast; no changes in

Y-maze, passive avoidance, or elevated

plus maze.

(128)

Rat 74 kPa (duration ≈ 4 ms) Two weeks after exposure, little or no changes in a

panel of common injury markers in cortex, corpus

callosum, or hippocampus; no change in spectrin

breakdown products in brain; significant shortening

of the axon initial segment (AIS) in cortex and

hippocampus of blast-exposed; next highest

pressure (98 kPa) resulted in lung trauma and

death.

Rats exposed to a blast spent less time

exploring a novel object at 2 weeks

post-exposure.

(121)

Rat 100 kPa (duration 0.46 ms) Region specific decreases in fractional anisotropy

on DTI in blast-exposed animals at 4 and 30 days

post-exposure; evolution of DTI changes during the

4–30-day post-blast period with greater changes at

30 days.

Deficits in memory in MWZ and less

activity in an open field at 4 and 30 days;

no changes blast vs. control in an

elevated plus maze.

(116)

Mouse 100 db noise exposure coupled

with a 2 psi (duration 0.5 ms) air

blast administered in sessions

of 60 exposures over 1 min.

Impaired object recognition and

evidence of anxiety in an elevated

O-maze; following noise/blast exposure

mice spent less time at the edges of an

open-field chamber.

(108)

(Continued)
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Table 2 | Continued

Species Peak overpressure (shock

tube unless otherwise

indicated); duration and

impulse given when reported

Pathological, biochemical, physiological,

and imaging findings

Behavioral findings Reference

Rat Repeat (three) 74.5 kPa (duration

4.8 ms, impulse 175.8 kPa*ms)

Blast exposure caused more rapid

extinction of a conditioned fear response

if the overpressure injury was

administered after learning of the

conditioned fear response.

(136)

Mice 20–60 psi blast exposures

delivered to a focal area on one

side of the cranium.

25–40 psi blast exposures produced

transient anxiety in an open field; mice

exposed to 50–60 psi blast exposures

exhibited increased acoustic startle,

perseverance of a learned fear response,

an enhanced contextual fear response,

depression-like behavior, and diminished

prepulse inhibition.

(126)

Rat Single or multiple (three)

74.5 kPa (duration 4.8 ms,

impulse 175.8 kPa*ms)

Microvascular pathology present at 24 h after injury

within an otherwise normal neuropil; chronic

changes in the microvasculature evident many

months after blast exposure.

(111)

is similar to what has been observed in helmeted manikins (132).
Sustained increases in intracranial pressure (ICP) have been docu-
mented for 10 h in rats exposed to 30 or 60 kPa blasts (119). While
as noted above, it is difficult to directly compare exposures across
species, similar observations have been made in pigs subjected to
23–45 kPa exposures from the firing of military weapons (120,
133). As in rats, peak pressures in the pig brain had similar mag-
nitudes to those recorded in air with lower blast wave frequencies
being transmitted more readily to brain than higher frequencies
(120, 133).

Pathologically (Table 2), low-level blast exposure in rats leads
to no general histopathology, although most studies have focused
on the pathology most commonly seen in moderate to severe
nbTBI, which may not be the most relevant to blast. Some studies
have described focal cortical lesions that are likely the result of
shear-related effects (110), and a selective microvascular pathol-
ogy has been described at the ultrastructural level (111). Oth-
ers have described scattered pyknotic neurons (118, 134) with
TUNEL-positive oligodendrocytes and astrocytes in white matter
and periventricular regions (117, 118). More amyloid precursor
protein (APP) immunoreactive cells in the white matter have been
observed (118). One study found shortening of the axon initial
segment in cortex and hippocampus of blast-exposed rats (121).
Biochemically, proteolysis of alpha II-spectrin in cortex and hip-
pocampus has been observed at 12 h post-injury (117) as well
as upregulation of manganese superoxide dismutase 2 (127) and
increased expression of the CXC-motif chemokine receptor 3
around blood vessels in fiber tracts (127). Increased ganglioside
GM2 has been observed in hippocampus, thalamus, and hypo-
thalamus along with depletion of ceramides (129). Physiologically
longer duration evoked compound action potentials (CAP) have

been observed in the corpus callosum at 14 and 30 days post-
injury with a depression in unmyelinated fiber amplitudes (117).
Gene expression studies have documented altered expression of
over 5700 genes in the post-blast brain (118) as well as differences
in the hippocampal transcriptome between blast and non-blast
models (128). Neuroimaging studies have found region specific
decreases in fractional anisotropy (FA) on diffusion tensor imag-
ing (DTI) (116) and increased blood–brain barrier permeability
post-blast (127).

LOW-LEVEL BLAST EXPOSURE IN ANIMAL MODELS AND
PTSD
The frequent overlap of TBI and PTSD could represent dual
exposures to TBI as well as PSTD-related psychological stres-
sors. Alternatively, TBI might induce PTSD like symptoms if blast
damaged brain structures involved in the development of PTSD.
Current biological models of PTSD postulate that key frontal and
limbic structures, including the prefrontal cortex, amygdala, and
hippocampus are involved in PTSD development (137, 138). These
models suggest that a key element is an inadequate frontal inhi-
bition of the amygdala, a limbic structure central to controlling
fear responses. Exaggerated amygdala responses are thought to
heighten responses to psychological threats. A substantial body of
functional neuroimaging data is consistent with such models, sug-
gesting that in PTSD there is heightened amygdala activity with
decreased hippocampal and orbital frontal activity (137). Dam-
age to the prefrontal cortex by TBI could, therefore, predispose
individuals to abnormally sustained responses to psychological
stressors.

Animal models should be able to isolate blast effects from
psychological stressors and studies have begun to address the
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behavioral effects of blast in animals across a range of expo-
sures (107, 119, 122, 124, 125, 127, 134, 139–142), although not
all studies have been careful to exclude subtle motor or sensory
deficits as contributing to apparent behavioral effects. These stud-
ies have reported at least short-term effects on anxiety as well as
impairments in a variety of learning and memory tasks (107, 119,
122, 124, 125, 127, 134, 139, 141). One study reported impair-
ments in prepulse inhibition immediately after blast exposure,
although the changes had mostly recovered 90 days after expo-
sure (142). A few studies have begun to address the issue of dual
exposure by examining blast in combination with repeated stress
(139) or factors such as transportation stress or anesthesia (140).
Studies that have specifically addressed behavioral effects in the
context of low-level blast exposure are summarized in Table 2.
Abnormalities reflecting impaired memory function have been
observed in the Morris water maze (MWZ) (107, 116, 119), novel
object recognition (121, 127, 128), Y-maze (127, 128), and passive
avoidance (107).

Only a few studies have addressed whether low-level blast expo-
sure alone can induce PTSD-related traits or render animals more
sensitive to subsequent PTSD-related stressors. The first of these
tested rats that received three 74.5 kPa exposures on a variety
of PSTD-related traits several months post-exposure (109). The
rats exhibited a variety of PTSD-related traits including increased
anxiety in an elevated zero maze and increased acoustic star-
tle. They also showed increased anxiety during a predator scent
challenge and an increased cued response in a fear-conditioning
paradigm (109).

Subsequently, very similar effects were noted in mice (126).
In these studies, mice were exposed to 20–60 psi blast exposures
in which the blast wave rather than being allowed to envelope
the brain was delivered to a small area on one side of the cra-
nium. While these exposures are in a range that has commonly
induced significant CNS pathology in other studies, Heldt et al.
(126) reported that using this limited focal exposure, 25–40 psi
blasts produced little histological evidence of brain damage and
50–60 psi exposures produced only scattered axonal degeneration.
Thus, on pathological grounds, the exposures appeared consistent
with low-level blast. Behaviorally, the 25–40 psi blasts produced
transient anxiety in an open field. In tests conducted 2–8 weeks
after 50–60 psi blast exposures, mice exhibited increased acoustic
startle, perseverance of a learned fear response, and an enhanced
contextual fear response along with depression-like behavior and
diminished prepulse inhibition.

A third study (108) examined non-anesthetized mice exposed
to 100 db noise exposures coupled with 2 psi air blasts adminis-
tered in sessions consisting of 60 exposures over 1 min. The mice
exhibited impaired object recognition and anxiety in an elevated
O-maze. The mice also spent less time at the edges of an open-field
chamber an effect that the authors interpreted as a fear generaliza-
tion response to the noise/blast exposure having taken place near
a chamber wall. No pathology was described to confirm the lack
of histological effects and the high frequency of exposure does not
model natural human exposures. The levels of exposure are never-
theless within what would be expected to be a low-blast exposure,
thus providing additional evidence for cognitive and emotional
effects of low-level blast although the lack of anesthesia makes it

difficult to determine how much of a psychological stressor may
have been involved.

Collectively, the above studies argue that low-level blast expo-
sure alone can induce PTSD-related traits. The increased acoustic
startle and altered fear-conditioning responses are of particular
interest because of their direct relevance to PTSD (109, 126). The
ability of a prior blast exposure to alter subsequent response to a
predator scent (109) suggests that blast may render animals more
sensitive to later PTSD-related stressors. The fact that the blast
overpressure injuries in two of these studies (109, 126) occurred
while animals were under general anesthesia, suggests that low-
level blast exposures can in the absence of any psychological
stressor induce PTSD-related traits. Altered fear responses are sug-
gestive of heightened amygdala function, an effect consistent with
current biological models of PTSD (137). Indeed, enhancing fear
responses may be a feature of both blast and nbTBI, as recent
studies have suggested that increased fear responses can be seen in
animal models of nbTBI as well (143, 144).

The studies of blast exposure in rats (109) also found elevation
in the amygdala of the protein stathmin 1. Stathmin 1 is highly
expressed in the amygdala and mice with null mutations of the
stathmin 1 gene are impaired in their ability to lean fear responses
(145). Polymorphisms in the stathmin 1 gene have been identi-
fied that influence fear and anxiety responses as well as cognitive
and affective processing in human beings (146, 147). Heldt et al.
(126) also observed in mice reduced numbers of a subpopulation
of excitatory projection neurons in the basolateral amygdala that
have been linked to fear suppression. Following blast, Xie et al.
(108) reported electrophysiological changes in the anterior cingu-
late cortex, a region implicated in processing emotional memory
and inhibitory control. Thus, multiple studies have found blast-
associated biochemical, anatomic, or electrophysiological changes
in structures relevant to the development of PTSD.

Clearly, questions remain and especially long-term studies are
needed to extend these findings. For example, it is not known
whether these traits evolve over time. However, the presence of
behavioral changes and elevation of stathmin 1, 8 months after
blast exposure in one study (109) suggests that blast can induce
PTSD-related traits that are chronic and persistent. The relation-
ship to blast may be complex, however, in that another study has
suggested that blast exposure causes more rapid extinction of a
conditioned fear response if the overpressure injury occurs after
learning the conditioned fear response (136).

LOW-LEVEL BLAST EXPOSURE IN ANIMAL MODELS AND
NEURODEGENERATIVE DISEASES
Recently, nbTBI has been linked to the later appearance of pro-
gressive neurodegenerative disorders. The two diseases that have
attracted the most concern are Alzheimer’s disease (AD) and
chronic traumatic encephalopathy (CTE) (148). Single severe
nbTBI earlier in life seems to predispose to the later development
of AD. By contrast, repetitive non-blast mTBI has been associated
with CTE. The disorders differ in that pathologically AD is charac-
terized by amyloid plaques and tau positive neurofibrillary tangles
while CTE is primarily a tauopathy that may have diffuse amy-
loid plaques but not typically the neuritic plaques characteristic of
AD (149). What is now called CTE was first described in boxers as
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dementia pugilistica. However, CTE has now been seen in a variety
of other sports including American football, hockey, soccer, and
professional wrestling (39, 150–154).

Whether blast exposure causes or predisposes to later develop-
ment of neurodegenerative diseases is unknown. Indeed, little is
known about long-term effects of blast exposure although one
study of 167 U.S. military service personnel who were evalu-
ated within 5 years of sustaining an mTBI in Iraq or Afghanistan
found that while many improved, a substantial minority (≈20%)
reported new symptoms (155). CTE might be of particular con-
cern with respect to blast due to its association with repetitive
mTBI, which has been common in Iraq and Afghanistan and
cases of CTE have been reported in veterans returning from these
conflicts (122, 156, 157).

Following nbTBI, several proteins associated with neurodegen-
erative diseases accumulate in brain, including tau, APP, and its
product the β-amyloid (Aβ) protein (158). The Aβ peptide is most
associated with AD where it deposits in senile plaques with many
in vitro as well as in vivo studies demonstrating that in particular
the longer Aβ 42 species can be neurotoxic and associated with
a chain of pathological events (159). Interestingly, changes in Aβ

occur rapidly after nbTBI in human beings with diffuse cortical
Aβ deposits and increased levels of soluble Aβ appearing as early
as 2 h after a severe TBI (148, 160–162).

Elevations of Aβ occur consistently in experimental animal
models of nbTBI (163–172) along with increased expression of
components of the γ-secretase complex as well as BACE1 (β-site
APP cleaving enzyme 1), the principal β-secretase (165, 173–176)
both of which process APP toward the Aβ pathway. Studies in
nbTBI animal models also consistently find elevated APP protein
acutely following TBI (176–179). All these observations are consis-
tent with increased processing of APP toward Aβ production after
TBI creating interest in whether APP upregulation following TBI
may explain the epidemiological association between a history of
prior TBI and the subsequent development of AD (148, 160).

Exploring how blast-related TBI affects expression of proteins
related to neurodegenerative diseases is just beginning. However,
interestingly the one study that has so far reported on Aβ levels
following blast found that in both rat and mouse models of blast
injury, rather than being increased, brain Aβ levels were decreased
acutely following injury (135). In these studies, rats were exposed
to single 36.6, 74.5 kPa or 116.7-kPa-exposures and Aβ 40 and 42
levels were examined 24 h and 1 week after exposure. Blast expo-
sure lead to diminished levels of Aβ 42 in rats with the effect on Aβ

42 most prominent in rats exposed to the lowest level blast expo-
sures (36.6 and 74.5 kPa), while no effects on Aβ 42 were seen at the
116.7 kPa exposure level. There were no consistent effects on Aβ

40 levels in rats, with only the 74.5 kPa exposure showing dimin-
ished levels 1 week post-exposure. Levels of APP were increased
following blast exposure although there was no evidence of axonal
pathology based on APP immunohistochemical staining. Unlike
in nbTBI animal models, levels of BACE1 and the γ-secretase com-
ponent presenilin-1 were unchanged following blast exposure in
rats. In mice, only a single blast exposure of 147 kPa was tested,
an exposure that is more equivalent to a high-level blast exposure
(180). Yet, at this exposure, both Aβ 40 and Aβ 42 were decreased
24 h after the blast.

As noted above, multiple studies in experimental animals have
found that APP expression increases acutely following TBI (176–
179). Indeed, APP accumulation in axons is widely used as a
marker of axonal injury in both human beings and experimen-
tal animal models of TBI (181–185). However, while one study
has reported APP accumulation in axons following blast exposure
(186), multiple others have not (107, 113, 115, 118). Risling et al.
(113), for example, noted no APP accumulation in axons of rats
exposed to 130 and 260 kPa exposures. Garman et al. (115) stud-
ied rats exposed to greater than 240 kPa (35 psi) blast exposures
and found evidence of widespread diffuse axonal injury by silver
staining. However, despite evident axonal injury by silver stain-
ing, APP-stained sections typically showed only minimal axonal
staining, except for rats studied at 24 h post-exposure when mild
axonal staining was described within the deep cerebellar white
matter and adjacent to some foci of acute neuronal degeneration.
Thus, while APP accumulation in axons is considered a hallmark
of acute axonal injury in both human beings and experimental
animal models of nbTBI (181–185), it is at most an inconsistent
feature of blast-related TBI.

In contrast to the seemingly paradoxical effects of blast on
Aβ, multiple studies have found that aberrant tau species are
induced by blast (122, 123, 141, 187). Indeed, Goldstein et al. (122)
described CTE-linked neuropathology in wild-type C57BL/6 mice
2 weeks after exposure to a single blast. The blast-exposed mice
also expressed multiple species of abnormally phosphorylated tau
similar to those seen in human neurodegenerative diseases. Huber
et al. (123) studying a mouse model exposed to a single 108.9 kPa
(15.8 psi) exposure found multiple aberrantly phosphorylated-
and cleaved-tau species present at 24 h post-blast that were still
present in hippocampus 30 days after exposure.

Thus, experimental animals provide support for a linkage
between blast exposure and aberrant tau processing. Lacking are
longitudinal studies to determine whether blast induces a CTE-like
neurodegenerative disease with progressive features. Indeed, there
are few studies on long-term effects of blast and whether effects
are static or can be associated with a progressive neurodegenerative
disorder although in one study (116) changes in DTI were followed
in a rat model exposed to 100 or 450 kPa exposures. Region specific
decreases in FA were found at both exposure levels 4 and 30 days
post-exposure. Interestingly, the changes evolved during the 4–30-
day post-blast period such that a wider area of decreased FA was
present at 30 days, changes suggesting an evolving lesion (116).

IS BLAST TBI DIFFERENT FROM NON-BLAST TBI?
The unexpected lowering of Aβ following blast exposure besides
having implications for understanding blast pathophysiology also
raises the question of whether blast pathophysiology is different
from nbTBI. nbTBI has been so consistently associated with ele-
vated Aβ acutely that decreased levels following blast seem to
suggest that blast is pathophysiologically different from nbTBI.
The lack of an axonopathy characterized by APP accumulation is
also different from nbTBI. These findings have practical impli-
cations for treatment of acute blast injury, since blocking Aβ

production by a variety of pharmacological or genetic means
reduces tissue damage acutely and improves outcome follow-
ing controlled cortical impact injuries in mice (165, 166, 169).
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However, such strategies may not be applicable to treatment of
acute blast injuries.

Like the issue of longitudinal effects, the question of patho-
physiologic distinctness of blast deserves more study although one
recent study comparing RNA expression changes between nbTBI
and blast TBI models suggests differences as well (128). In these
studies, the mouse hippocampal transcriptome was compared fol-
lowing injury using a weight drop model designed to approximate
an mTBI or exposure to a 17.2 kPa (2.5 psi) blast. While a common
set of upregulated or downregulated RNAs were found, most of the
transcriptome changes differed between the two models suggest-
ing that at the molecular level, the TBIs are distinct. Interestingly,
in a functional pathway analysis, genes upregulated or downreg-
ulated in AD were regulated in similar directions by nbTBI while
the opposite was seen following blast with the“Alzheimer’s Disease
Up” pathway downregulated by blast and the “Alzheimer’s Disease
Down” upregulated by blast (128). Combined with the lowering
of Aβ following blast, these studies support the notion that blast-
related TBI is pathophysiologically distinct from nbTBI and that in
particular multiple pathways related to AD are affected differently
by blast and nbTBI.

EVIDENCE FOR EFFECTS OF BLAST-RELATED mTBI IN
HUMAN BEINGS
Close exposure to high-pressure blast waves can cause extensive
CNS injury in human beings (47). However, this injury is without
doubt a combination of primary, secondary, tertiary, and some-
times quaternary effects in which the role of the primary blast
wave itself is hard to define. Determining the role of the primary
blast wave in mTBI should be more straightforward since sec-
ondary, tertiary, and quaternary effects are less prominent. Yet, as
discussed throughout this review, defining the residual effects of
blast-related mTBI has been complicated by the frequent presence
of co-morbid PTSD.

A number of clinical studies suggest that the link between
mTBI and PSTD may be more than coincidental. Mora et al. (95)
reviewed records of over 300 patients admitted consecutively to the
United States Army Burn Center for explosion-related injuries and
examined the prevalence of PTSD in burn patients with and with-
out primary blast injury or mTBI. They found a greater prevalence
of PTSD in burn patients with primary blast injury and mTBI than
in burn patients injured by other mechanisms. Walilko et al. (96) in
a study of 124 survivors of the Oklahoma City bombing explored
the relationship between PTSD and physical injuries. They found
an association between PTSD and head/brain injuries while PTSD
was not highly correlated with other injuries.

Studies of Vietnam veterans have also suggested that TBI is asso-
ciated with more severe PTSD (188), and in veterans from Iraq and
Afghanistan, PTSD is more prevalent in those reporting an mTBI,
as compared to veterans who suffered no injury or injuries not
involving the head (10). Indeed, in the study of Hoge et al. (10),
mTBI was associated with PTSD even after controlling for intensity
of combat experience and a recent study of over 27,000 U.S. Army
Special Operations Command personnel found that while a blunt
or blast-related mTBI increased the chance of reporting clinically
significant levels of PTSD symptoms, residual PTSD symptoms
were more prevalent in personnel with blast-related mTBI (91).

In addition, a dose–response gradient existed between number
of blast-related mTBIs and symptom severity (94). Other clinical
studies are also consistent with blast-related mTBI, promoting the
development of or worsening of PTSD (97–99).

Thus, collectively a body of literature can be seen as arguing that
TBI may predispose to the development of or worsen the symp-
toms of PTSD. However, their interpretation is limited by their
observational nature and complicated by the contrary literature
already discussed suggesting that most post-concussive symptoms
following blast-related mTBI are only non-specifically related to
blast or better explained by PTSD (10, 70, 72, 73, 83–91).

Modern neuroimaging would seem ideal for examining the
effects of blast-related mTBI (189). By comparing subjects with
blast-related TBI/PTSD to those with PTSD alone, it should be
possible to determine whether a blast-related signature exists. A
number of neuroimaging studies of mostly blast-related mTBI
have appeared utilizing mostly DTI, functional MRI (fMRI),
or positron emission tomography (PET) scanning with fluoro-
deoxyglucose. These studies are summarized in Table 3. Studies
range from case reports or small case series to those having over 60
blast-exposed veterans and include some subjects imaged within
weeks of the TBI although most involve subjects studied several
years after exposure. Some studies are limited by the lack of a mil-
itary control group and some involve a mixture of blast as well as
non-blast injury.

Despite these limitations, some common findings emerge
across studies with the most consistent being reduced fractional
anisotropy (FA) on DTI. Indeed, of 11 DTI studies (Table 3), only
one failed to find a reduction in FA (191). The patterns across
and even within some studies appear fairly heterogeneous and
abnormalities have been found in subjects studied out to 4 years
post-blast injury. One study using high angular resolution dif-
fusion imaging (HARDI) found suggestions of lost white matter
integrity (197). Fewer studies have been conducted with fMRI and
PET. However, both resting-state fMRI studies suggested altered
patterns of activation (200, 201) and one task-activated fMRI
study suggested that activation patterns differed between blast and
nbTBI (198). Two PET studies found reduced cerebral glucose
metabolism (192, 202).

Thus, a substantial body of evidence suggests that blast-related
TBI including blast-related mTBI is associated with a variety of
neuroimaging abnormalities that are chronic and persistent. Yet,
many subjects in these studies were known to have or even if
not mentioned without doubt had PTSD raising the question of
whether abnormalities could be attributed to PTSD. Several studies
have examined DTI imaging in PTSD (209) although interpreting
these studies is often complicated by their inclusion of subjects
whose psychological stressor included TBI. Despite these limita-
tions, a recent meta-analysis of seven DTI studies of adult onset
PTSD concluded that PTSD is associated with clusters of both
increased and decreased FA in various structures (209) suggest-
ing a pattern different from the consistently reduced FA found in
blast-related TBI.

Among the blast-related neuroimaging studies, Petrie et al.
(202) examined the effect of PTSD on DTI and fluoro-2-
deoxyglucose PET imaging in veterans with blast/impact-mTBI.
They found areas of reduced FA in the corpus callosum and
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Table 3 | Human imaging studies of blast-relatedTBI.

Imaging modality Study subjects Control group Findings Reference

Diffusion tensor

imaging

Case study of soldier exposed to a large

ordinance explosion.

None; abnormal side was compared to

contralateral side.

Reduced FA in the left cerebellar hemisphere 7 months after

exposure that normalized on follow-up study.

(190)

Diffusion tensor

imaging

37 Iraq and Afghanistan veterans studied on

average 871.5 days after mild to moderate TBI.

15 Iraq and Afghanistan veterans

without blast exposure who sustained

injury to other body regions or had no

injury.

No between-group differences in FA and apparent diffusion

coefficients across white matter regions known to be

vulnerable to axonal injury.

(191)

[18F] fluoro-2-

deoxyglucose

PET (FDG PET)

12 Iraq veterans with at least 1 blast exposure

resulting in an mTBI; imaged average of

3.5 years after last exposure.

12 cognitively normal community

volunteers without a history of head

trauma.

Veterans with blast-related mTBI with or without PTSD

showed regional hypometabolism infratentorially (cerebellum,

vermis, and pons) and in medial temporal regions.

(192)

Diffusion tensor

imaging

63 U.S. military personnel with mTBI evacuated

from Iraq or Afghanistan to Landstuhl Germany;

all primary blast exposure plus another

blast-related mechanism of injury such as struck

by blunt object, injured in fall or motor vehicle

crash; scanned within 90 days of injury.

21 U.S. military personnel who had

blast exposure and other injuries but

no clinical diagnosis of TBI.

Reduced FA in veterans with blast-related mTBI in middle

cerebellar peduncles, cingulum bundles, and the right

orbitofrontal white matter; follow-up scans in 47 subjects

6–12 months later showed persistent abnormalities

consistent with evolving injuries.

(193)

Diffusion tensor

imaging

25 Iraq and Afghanistan veterans with

blast-related mTBI; injuries occurred 2–5 years

before imaging.

33 veterans who had not experienced

an explosive blast or symptoms of

mTBI.

Blast-related mTBI associated with diffuse, global pattern of

reduced FA; pattern not affected by history of previous civilian

mTBI; with history of more than one blast mTBI trend toward

larger number of low FA voxels than with a single blast injury.

(194)

Diffusion tensor

imaging

Case report of a marine exposed to multiple

primary blasts during a 14-year military career.

A composite fractional-anisotropy

template derived from 10 age-matched

male veterans without TBI.

Subject had lower FA values in major fiber bundles including

the genu, body, and splenium of the corpus callosum and

projections that extend bilaterally into the frontal and parietal

cortices.

(195)

Diffusion tensor

imaging

46 veterans who experienced blast-related

mTBI in Iraq and Afghanistan.

None; effects of altered level of

consciousness (AOC) vs. loss of

consciousness (LOC) and effects of

PTSD or major depression examined

within subjects.

LOC associated with lower fractional anisotropy (FA) than

AOC in 14 regions, including the superior longitudinal

fasciculus and corpus callosum; no regions of FA difference

between individuals with and without PTSD, or between

individuals with and without major depression.

(196)

Diffusion tensor

imaging

30 Iraq and Afghanistan veterans who served in

combat, and experienced at least one mTBI;

imaged approximately 4 years after last tour of

duty.

22 Iraq and Afghanistan veterans

without a history of TBI.

Blast exposure associated with lower 1st percentile values of

FA; lower FA in inferior cerebellar peduncle, fornix, midbrain,

and splenium of the corpus callosum before corrections for

multiple comparisons.

(93)

(Continued)
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Table 3 | Continued

Imaging modality Study subjects Control group Findings Reference

High angular

resolution

diffusion imaging

(HARDI)

30 Iraq and Afghanistan veterans with mTBI as

well as co-morbid PTSD and depression.

Non-TBI primary (n=42) and

confirmatory (n=28) control groups

from registry of military service

members and veterans who served in

Iraq and Afghanistan.

Loss of white matter integrity in primary fibers with mTBI in a

widely distributed pattern of major fiber bundles and smaller

peripheral tracts including corpus callosum, forceps minor,

forceps major, superior and posterior corona radiata, internal

capsule, and superior longitudinal fasciculus; loss of white

matter integrity correlated with duration of loss of

consciousness as well as “feeling dazed or confused” but not

with a diagnosis of PTSD or depressive symptoms.

(197)

Task-activated

functional MRI

(fMRI) (Stop

Signal Task)

Iraq and Afghanistan veterans with blast-related

mild to moderate TBI (n=21); civilians with TBI

from sports or motor vehicle accidents (n=21);

injuries occurring 1–6 years before enrollment.

Deployed Iraq and Afghanistan

veterans who never experienced blast

and/or head injury (n=22); civilians

with orthopedic injuries without TBI

(n=23).

Different patterns of activation TBI groups vs. controls; pattern

of activation different military vs. civilian TBI.

(198)

Diffusion tensor

imaging

4 U.S. military personnel deployed to Iraq with

primary blast-related traumatic brain injuries;

studied 2–4 years post-exposure.

18 US military personnel deployed to

Iraq or Afghanistan with no history of

head injury, neurological or psychiatric

disorders; studied 6–12 months

post-deployment.

DTI scans abnormal in 3 of 4 blast TBI subjects; global

comparison of relative anisotropy between blast TBI and

controls found decrease in relative anisotropy between

groups that was driven entirely by findings in the middle

cerebellar peduncle.

(199)

Resting-state

functional MRI

(fMRI)

13 veterans with blast-induced mTBI and no

history of blunt head trauma or PTSD.

50 healthy male subjects with no

history of head injuries or substance

abuse.

mTBI group exhibited hyperactivity in the temporo-parietal

junctions and hypoactivity in the left inferior temporal gyrus;

abnormal frequencies in default-mode network, sensorimotor,

attentional, and frontal networks; functional connectivity

disrupted in six network pairs.

(200)

Resting-state

functional MRI

(fMRI)

63 U.S. military personnel with concussive

blast-related TBI; initial scan within 90 days of

injury with a follow-up scan 6– 12 months later

in a subset of subjects; second independent

cohort of 40 U.S. military personnel with

concussive blast-related TBI, initial scan within

30 days post-injury.

21 U.S. military controls having blast

exposures but no diagnosis of TBI.

Spatially localized reductions in the participation coefficient, a

measure of between-module connectivity, in the TBI patients

relative to controls at the time of the initial scan; group

differences less prominent on follow-up scans; analysis of the

second TBI cohort provided partial replication but no

substantial differences on the follow-up scans.

(201)

Diffusion tensor

imaging; [18F]

fluoro-2-

deoxyglucose

PET (FDG PET)

34 Iraq and Afghanistan veterans with a history

of one or more combined blast/impact-related

mTBI.

18 Iraq and Afghanistan veterans

without a history of

blast/impact-related mTBI.

Subjects with blast/impact-mTBIs exhibited reduced FA in the

corpus callosum; reduced macromolecular proton fraction

values in subgyral, longitudinal, and cortical/subcortical white

matter tracts and gray matter/white matter border regions;

reduced cerebral glucose metabolism in parietal,

somatosensory, and visual cortices; neuroimaging metrics did

not differ between participants with vs. without PTSD.

(202)

(Continued)
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Table 3 | Continued

Imaging modality Study subjects Control group Findings Reference

Diffusion tensor

imaging

23 veterans of the recent military conflicts

exposed to primary blast without TBI

symptoms; 6 with mTBI due to primary blast.

16 veterans of the recent military

conflicts unexposed to blast.

Lower FA and higher radial diffusivity in veterans exposed to

primary blast with or without mTBI relative to

blast-unexposed veterans; voxel clusters of lower FA spatially

dispersed and heterogeneous across affected individuals.

(203)

Magnetic

resonance

spectroscopy of

the hippocampus

at 7T

25 veterans with mTBI due to blast exposure

and memory impairment; all at least 1 year

post-exposure.

20 controls not further specified. Hippocampal N -acetyl aspartate to choline and N -acetyl

aspartate to creatine ratios decreased in comparison to

control subjects.

(204)

Diffusion tensor

imaging

37 U.S. service members who sustained TBI (29

mild, 7 moderate, 1 severe; 17 blast and 20

non-blast).

14 non-deployed military controls. Both blast and non-blast TBI reduced FA in multiple white

matter tracts; subcortical superior–inferiorly oriented tracts

more vulnerable to blast injury than non-blast injury, while

direct impact force more detrimental effects on

anterior–posteriorly oriented tracts.

(205)

[18F]-fluoro-2-

deoxyglucose

positron emission

tomography (FDG

PET)

14 Iraq and Afghanistan veterans with a history

of blast exposure and/or mTBI.

11 veterans with no history of blast

exposure or mTBI

Blast exposure and/or mTBI was associated with lower

regional metabolic rates of cerebral glucose consumption

during wakefulness and rapid eye movement (REM) sleep in

the amygdala, hippocampus, parahippocampal gyrus,

thalamus, insula, uncus, culmen, visual association cortices,

and midline medial frontal cortices.

(206)

Functional MRI

(fMRI) during a

pain anticipation

task

18 male Iraq and Afghanistan veterans with a

history of blast-related mTBI related to combat;

studied average 4 years after most severe mTBI.

18 healthy male subjects with no

reported history of mTBI

Subjects with a history of mTBI showed stronger activations

within midbrain periaqueductual gray, right dorsolateral

prefrontal cortex, and cuneus during pain anticipation; effects

present after controlling for PTSD and depression.

(207)

Structural MRI 12 active duty service members with

blast-related mTBI within last 18 months during

deployment to Iraq or Afghanistan.

11 demographically matched control

service members without TBI scanned

within 18 months of deployment.

Blast injury associated with cortical thinning in the left

superior temporal and frontal gyri.

(208)
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decreased cerebral glucose utilization in parietal, somatosensory,
and visual cortices compared to controls. Their findings did not
differ between veterans with vs. without PTSD suggesting that the
abnormalities were not related to co-morbid PTSD. Matthews et al.
(196) also found no effect of PTSD on FA in a group of Iraq and
Afghanistan veterans all of whom had experienced blast-related
mTBI. Likewise, Morey et al. (197) using HARDI while finding a
widely distributed pattern of lost white matter integrity with blast-
related mTBI found no correlation between their findings and a
diagnosis of PTSD or depression. More research is needed but
based on available evidence it seems unlikely that co-morbid PTSD
can account for the neuroimaging changes found in blast-related
mTBI.

Whether any of these findings in blast-related mTBI can be
extrapolated to subclinical blast where by definition no TBI event
occurred is unclear. Studies of subclinical blast are quite limited at
present, although interestingly when Taber et al. (203) compared
veterans exposed to primary blast with and without mTBI relative
to veterans without blast exposure, they found lower FA and higher
radial diffusivity in veterans exposed to blast whether or not they
had been diagnosed with an mTBI. Mac Donald et al. (210) in
a prospective study involving active duty U.S. military personnel
evacuated from Iraq or Afghanistan to Landstuhl, Germany while
finding no differences in clinical outcomes based on blast vs. non-
blast mechanisms of injury found that blast-exposed controls had
worse headaches and more severe PTSD than non-blast-exposed
controls. Using data from a DTI study, Bazarian et al. (93) have
also argued that subclinical blast may play a role in the genesis
of PTSD.

Clearly, future studies directed at in particular neuroimaging
of subclinical blast will be important although study of this prob-
lem in active duty military personnel where exposures are often
a combination of clinically recognized and unrecognized events
may be difficult. Among groups that might be studied for effects
of subclinical blast, breachers provide perhaps the most acces-
sible population where blast exposure in human beings can be
studied in a semi-controlled manner. “Breachers” are a popula-
tion of military and law enforcement personnel who are routinely
exposed to low-level blast during their training and in the course
of operations. Repeated exposure in these settings has been associ-
ated with symptoms similar to those seen with sports concussion
(211). Recently, Tate et al. (211) examined the effects of repeated
low-level blast exposure without mTBI during an explosives train-
ing course in 21 members of the New Zealand Defense Force.
Self-reported symptoms, neurocognitive performance, and three
serum biomarkers (ubiquitin C-terminal hydrolase-L1, the alpha
II-spectrin breakdown product, and glial fibrillary acidic protein)
were measured before, during, and after a 2-week course. Interest-
ingly, those with the highest biomarker loads had longer reaction
times, lower cognitive test scores, and reported more symptoms
than those with the lowest biomarker loads. Preliminary studies
have also observed alterations in white matter and cortical struc-
tural MRI measures in a cohort of breachers with 7–21 years of
prior blast exposure that were not seen in a group of students
attending a 2-week breacher course (212). Indeed, breachers [and
similar populations who are exposed to repetitive blast events, e.g.,
artillery, explosive ordinance disposal, shoulder-fired weapons,

etc.] may represent a unique population in which to study how
subclinical blast affects human beings.

CONCLUSION
It has long been appreciated that high-pressure blast waves can
cause extensive CNS injury in human beings. Less clear are the
effects of lower level blast exposures, the most common exposure
in combat settings such as Iraq and Afghanistan. Indeed, the traits
that can be attributed to blast-related mTBI have been questioned
with suggestions that much of what is presently being called post-
concussion syndrome secondary to blast-related mTBI is really
PTSD. No doubt there are grounds for controversy and many
questions remain. Both PTSD and the post-concussion syndrome
are clinical diagnoses made in disorders that have overlapping
symptoms. Current definitions have lowered the threshold for
diagnosing mTBI leading to questions as to whether we are now
over diagnosing mTBI. Soldiers that have experienced blast-related
mTBI have typically been exposed to psychological stressors as well
and there are no biomarkers that can distinguish cognitive, affec-
tive, and somatic symptoms induced by a psychological stressor
from those induced by physical trauma. PTSD is a well-established
clinical syndrome while the effects of human low-level blast expo-
sure including mTBI are still being established. Thus, there is much
ground for legitimately questioning the importance of low-level
blast exposure.

Animal models would seem ideal for determining the effects of
primary blast free of many confounding variables present in nat-
ural human exposures. Indeed, a substantial literature now exists
concerning the effects of blast in animal models. Yet, it must be
admitted that this literature is also troubled by variability in exper-
imental approach as well as at times lack of attention to modeling
clinically relevant exposures or reliance on models that fail to
isolate the effects of primary injury from tertiary injury. There
has also been little attention given to defining what “mild” TBI is
in an animal model and studies often describe models as “mild”
TBI without any justification for why use of the term “mild” is
appropriate.

Yet, despite these concerns, an abundance of evidence now sup-
ports the concept that low-level blast has significant long-term
effects on the nervous system. While problems exist in applying
definitions of human mTBI to animal models, conditions of low-
level blast exposure can be defined that likely approximate human
mTBI or subclinical exposure. In animals, blast exposures in these
ranges exert a variety of biochemical, pathological, and physio-
logical effects on the nervous system. Several studies in animals
suggest that low-level blast exposure can induce PTSD-related
behavioral traits in the absence of a psychological stressor. Indeed,
if blast injury can induce PTSD like symptoms without a psycho-
logical stressor, then human cases that are presently being labeled
PTSD may in fact be part of the spectrum of blast-related brain
injury. Several observations in animal models also suggest that
blast-related TBI is pathophysiologically distinct from nbTBI. A
substantial body of neuroimaging data shows that blast-related
mTBI in human beings is associated with chronic decreases in
fractional anisotropy that are suggestive of chronic axonal injury
and unlikely to be explained on the basis of co-morbid PTSD.
In summary, while many questions remain concerning how blast
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overpressure waves affect the brain, there seems little doubt that
low-level blast exposure should be of significant concern.
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