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Abstract: In this study, we investigated multilayer coatings fully developed with steady Newtonian
and non-Newtonian fluids through parallel inclined plates. The channel was rotating about the y-axis
with angular velocity Ω. The channel contained three regions; Region 1 and Region 3 were filled
with Newtonian fluid, while Region 2 had Jeffrey fluid through a porous medium. The governing
equations were formed by using Navier stokes and energy equations. The equations were coupled
and were non-linear due to the involvement of Darcy’s dissipation terms. The systems of equations
for Region 1 and Region 3 were solved analytically, while the equations of Region 2 were solved
by using the regular perturbation method. The effects of governing parameters such as magnetic
field, Grashof number, the ratio of heights, angle of inclination, and ratio of viscosities on velocity
and temperature were investigated, and the results are presented graphically in this paper. It is
noted that the increase in buoyancy force incorporated through the Grashof number and the angle of
inclination enhanced the axial and transverse velocities and the temperature for the three layers. We
found that the Nusselt number increases by increasing the couple stress parameter and magnetic field
parameters, and skin friction decreases at the lower plate. The main observation is that temperature
and both velocity profiles increased in Region 2 with the increase in the Jeffrey parameter.

Keywords: convective flow; Jeffrey fluid; magnetohydrodynamics; inclined three-region channel;
porous sandwich medium

1. Introduction

In recent decades, non-Newtonian fluid has become a valuable area of research because
of its extensive applications in engineering and technology, such as in plastics produc-
tion, production of lubricants, food clearing, and motion of biological liquid. Several
models have been put forward to estimate and narrate the physico-chemical conduct of
non-Newtonian fluid. The major non-Newtonian fluid category is Jeffrey fluid, which plays
an important role in the present work. This fluid is an approximately plain viscoelastic that
shows relaxation and retardation effects together. Akram and Nadeem [1] presented an
exact and close-form of Adomian solutions of the peristaltic motion of a two-dimensional
Jeffrey fluid in an asymmetric channel under the effects of induced magnetic field and
heat transfer. They observed that the pressure rise for the sinusoidal wave was less than
the trapezoidal wave and greater than the triangular wave. Santhosh and Radhakrishna-
macharya [2] examined the incompressible laminar magnetohydrodynamic Jeffrey fluid
movement through a permeable channel in a thin tube and obtained an analytical solution
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for the equations of motion and continuity equation. They found that the effective viscosity
increases with the Jeffrey parameter in the system. Abd-Alla et al. [3] analyzed the impact
of gravity and the magnetic field of Jeffrey fluid in the channel. Dhananjaya et al. [4] studied
the incompressible laminar fully developed natural convection flow and heat transfer of
a Jeffrey fluid between two vertical parallel pates partially filled with porous medium
and obtained an analytical solution for the governing coupled equations. Abd-Alla and
Abo-Dahab [5] analyzed the influence of magnetic field and rotation effects on the peri-
staltic transport of a Jeffrey fluid in an asymmetric channel. Krishna Murthy [6] analyzed a
two-dimensional MHD steady incompressible free convective Couette flow of Jeffrey fluid
in a porous medium in the presence of heat sources and chemical reactions; the flow was
generated due to constant normal suction/injection at the plates and a numerical solution
was obtained by the shooting method. Raju et al. [7] reconstructed flow field equations
solved numerically by Newton’s method onward with the Runge–Kutta method. Several
investigations on recent trends in coatings and thin film modeling and application can be
found in [8] and several studies referenced therein.

The presence of MHD two-phase motion between two parallel plates is of critical
importance in engineering and technology. In chemical production, two-phase motion
occurs in heat interchange equipment, gas–liquid coatings, fabrication, and chemical atomic
reactors such as load columns, spray and sparkle columns, agitated vessels, etc. Another
important area where understanding two-phase motion is vital is in nuclear reactor design
(water-cooled atomic reactors and sodium-cooled quick breeder reactors, etc.). The steady
magnetic field is applied to manage the framework of the material, refine non-metallic
compounds and molten metals, cool unbroken filaments and strips, etc. The application
of MHD occurrence has significant value in many technological fields such as medical
science [9], direct numerical simulation of helical generator action [10], drag reduction
within physical phenomena [11], and seawater propulsion [12]. Romig [13] investigated the
effects of electric and magnetic fields on heat transmission to electrically conducting fluid.
Rudraiah et al. [14] analyzed non-linear magnetoconvection and its implementation in the
solar move problem. Shail [15] discussed the different region flow of plates in which one
side of the plate was a conductor and the other side of the plate was insulated. Lohrasbi
and Sahai [16] investigated the MHD two-region flow with heat transmission features in a
horizontal station in which one region was electrically conducting and the other region was
electrically non-conducting. Malashetty and Leela [17] carried out the preceding work and
theoretical study on MHD heat transmission in two-region flow for short-circuit situations.
Malashetty and Leela [18] investigated the MHD heat transmission in two-region flow by
considering fluid in all phases to be electrically conducting for the open-circuit situation.
Chauhan and Rastogi [19,20] examined heat transmission impacts and Hall current on
MHD flow in a medium partially filled with a permeable channel in a revolving system.
Seth et al. [21] presented the Hartman flow in a revolving system in the presence of a
slanted magnetic field with Hall impacts.

For engineering and industrial implementation, researchers have considered the
rotating fluid’s application in engineering. Fiza et al. [22] determined the rotational flow of
Jeffrey fluid and MHD between two equal and similar plates with the effect of room current.
Greenspan and Goodman elaborated on the study of fluid in a rotating system [23,24].
MHD in a rotating scheme and extended porous medium have been studied by Attia and
Kotb [25]. Borkakoti and Bharali [26] contributed to the determination of heat transfer
between two horizontally arranged plates. Vajravelu and Kumar [27] came up with the
task of providing numerical and analytical solutions in a non-linear system. Das et al. [28]
explained the concept of nano-fluids in science and technology. Mohyud-Din et al. [29]
emphasized mass and heat transfer investigation, keeping in mind the flow of nanofluids
between two parallel plates. Murty et al. [30] examined the rotating system and the MHD
effects and heat transfer of two-fluid flow in a leaning channel that contained porous and
fluid layers. Chitturi et al. [31] examined the convective flow between two parallel plates
containing porous layers of fluids in a rotating system. The phenomena of highly coupled
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nonlinear differential equations constructed in different fluid coating models are tackled by
different techniques [32–37].

In this paper, we develop a theoretical model for analyzing the convective flow of
multilayer coatings of Newtonian and non-Newtonian fluids. The rotating channel contains
three regions; Region 1 and Region 3 are filled with Newtonian fluid, while Region 2 is filled
with Jeffrey fluid via a porous medium. For all the physical parameters, temperature is
linear in Region 1 and Region 3 but nonlinear in Region 2. The governing highly non-linear
and coupled equations are solved analytically with the regular perturbation method. The
effects of governing parameters such as magnetic field, Grashof number, ratio of heights,
angle inclination, and ratio of viscosities on velocity and temperature are investigated and
depicted graphically.

2. Formulation of the Problem

The steady flow of a multilayer fluid is between two infinite parallel plates along
the x and z directions. The temperature of the upper plate Tw1 and lower plate Tw2 are
kept constant, with φ representing the angle of inclination of the channel with a horizontal
surface. The geometrical representation of the problem is shown in Figure 1.

Figure 1. Physical configuration.

The regions with −h ≤ y ≤ 0 and h ≤ y ≤ 2h contain Newtonian fluid. The porous
region 0 ≤ y ≤ h is filled with Jeffrey fluid of density ρ2, electrical conductivity σ, dynamic
viscosity µ2, thermal conductivity k2, and porous materials of permeability K. The system
is rotated with angular velocity Ω about the y-axis. The channel temperature gradient
is ∆T = Tw1 − Tw2 , whereas the pressure gradient (−∂p/∂x) is constant. The fluid is
assumed to be electrically conducting under the impact of a uniform transverse magnetic
field of strength B0 and is applied to the plates. The essential equation for Jeffrey fluid
is S = µ2

I+λ1

(
I + λ2

d
dt

)
A, where S is the extra stress tensor, λ1 is the ratio of relaxation to

retardation times, λ2 is the retardation time, and A is the Rivlin–Ericksen tensor defined
by A = (∇V) + (∇V)T . The mathematical equations of motion and energy are given
as [31,38]:

Region 1:

µ1
d2u1

dy2 + ρ1gβ1Sinφ(T1 − Tw2) =
∂p
∂x

+ 2ρ1Ωw1 + σB2
0u1, (1)

µ1
d2w1

dy2 = −2ρ1Ωu1 + σB2
0w1, (2)

d2T1

dy2 = 0. (3)
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Region 2:

∂sxx

∂x
+

∂sxy

∂y
+

∂sxz

∂z
+ ρ2gβ2Sinφ(T2 − Tw2)−

µ2

K
u2 =

∂p
∂x

+ 2ρ2Ωw2 + σB2
0u2, (4)

∂szx

∂x
+

∂szy

∂y
+

∂szz

∂z
− µ2

K
w2 = −2ρ2Ωu2 + σB2

0w2, (5)

d2T2

dy2 +
µ2

k2K

(
u2

2 + w2
2

)
= 0. (6)

Region 3:

µ1
d2u3

dy2 + ρ1gβ1Sinφ(T3 − Tw2) =
∂p
∂x

+ 2ρ1Ωw3 + σB2
0u3, (7)

µ1
d2w3

dy2 = −2ρ1Ωu3 + σB2
0w3, (8)

d2T3

dy2 = 0. (9)

where ui and wi are x and z components of velocity, respectively, and Ti is the temperature,
with subscripts i = 1, 2, 3 representing the value for the regions. The velocity becomes
equal to zero at the wall due to the no-slip condition.

The respective boundary and interface condition with the above conditions for velocity
and temperature distribution are:

u1(y) = 0, w1(y) = 0, T1(y) = Tw1 at y = 2h

u1(y) = u2(y), w1(y) = w2(y), µ1
du1(y)

dy = µ2
(1+λ1)

du2(y)
dy and

µ1
dw1(y)

dy = µ2
(1+λ1)

dw2(y)
dy , T1(y) = T2(y), k1

dT1(y)
dy = k2

dT2(y)
dy

 at y = h

u2(y) = u3(y), w2(y) = w3(y),
µ2

(1+λ1)
du2(y)

dy = µ1
du3(y)

dy and
µ2

(1+λ1)
dw2(y)

dy = µ1
dw3(y)

dy , T2(y) = T3(y), k2
dT2(y)

dy = k1
dT3(y)

dy

 at y = 0

u3(y) = 0, w3(y) = 0 , T3(y) = Tw2 at y = −h


(10)

We can change Equations (1)–(10) into dimensionless forms by using the following [31]
transformations:

u1
u1

= u∗1 , u2
u1

= u∗2 , u3
u1

= u∗3 , w1
u1

= w∗1 , w2
u1

= w∗2 , w3
u1

= w∗3 , y1
h = y∗1 , y2

h = y∗2 , y3
h = y∗3 ,

m = µ1
µ2

, Sxx = 0, Sxy = µ2
(1+λ1)

∂u2
∂y , Sxz = 0, Syy = 0, Szz = 0, Syz =

µ2
(1+λ1)

∂w2
∂y ,

M1 =
√

σ
µ1

B0h, θ1 = (T1−Tw2)
(Tw1−Tw2)

, θ2 = (T2−Tw2)
(Tw1−Tw2)

, θ3 = (T3−Tw2)
(Tw1−Tw2)

, R2 = Ωh2

ν1
,

Gr = gβ1h3(Tw1−Tw2)
ν1

, b = β1
β2

, Pr = µ1Cp
k1

, λ = h√
K

, n = ρ1
ρ2

, M2 =
√

σ
µ2

B0h,

Ec =
[

u1
2

Cp(Tw1−Tw2)

]
, Re = u1h

ν1
, k = k1

k2
, P = h2

µ1u1

(
∂p
∂x

)
.


(11)

where u1 indicates the average velocity. Using the above transformation, Equations (1)–(9)
can be obtained in the following forms by ignoring asterisk:

Region 1:
d2u1

dy2 +
Gr
Re

(Sinφ)θ1 = P + 2R2w1 −M1u1 (12)

d2w1

dy2 = −2R2u1 −M1w1 (13)

d2θ1

dy2 = 0 (14)
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Region 2:

1
1 + λ1

d2u2

dy2 +
mGr
nbRe

(Sinφ)θ2 −
λ2u2

h2 = mP + 2R2w2 −M2u2 (15)

1
1 + λ1

d2w2

dy2 −
λ2w2

h2 = −2R2u2 −M2w2 (16)

d2θ2

dy2 + PrEc
λ2

h2
k
m
(u2

2 + w2
2) = 0 (17)

Region 3:
d2u3

dy2 +
Gr
Re

(Sinφ)θ3 = P + 2R2w3 −M1u3 (18)

d2w3

dy2 = −2R2u3 −M1w3 (19)

d2θ3

dy2 = 0 (20)

The dimensionless forms of the interface and boundary condition are:

u1(y) = 0, w1(y) = 0, θ1(y) = 1 at y = 2

u1(y) = u2(y), w1(y) = w2(y),
du1(y)

dy = 1
m(1+λ1)

du2(y)
dy ,

dw1(y)
dy = 1

m(1+λ1)
dw2(y)

dy , θ1(y) = θ2(y),
dθ1(y)

dy = 1
k

dθ2(y)
dy

 at y = 1

u2(y) = u3(y), w2(y) = w3(y), 1
(1+λ1)

du2(y)
dy = m du3(y)

dy ,
1

(1+λ1)
dw2(y)

dy = m dw3(y)
dy , θ2(y) = θ3(y),

dθ2(y)
dy = k dθ3(y)

dy

 at y = 0

u3(y) = 0, w3(y) = 0, θ3(y) = 0 at y = −1


(21)

Considering q1 = u1 + iw1, q2 = u2 + iw2 and q3 = u3 + iw3, Equations (12)–(20) can
be written in a complex form. Non-dimensional momentum and energy equations for the
regions are defined below:

Region 1:
d2q1

dy2 +
Gr
Re

(Sinφ)θ1 = P− 2iR2q1 −M1q1 (22)

d2θ1

dy2 = 0 (23)

Region 2:

1
1 + λ1

d2q2

dy2 +
mGr
nbRe

(Sinφ)θ2 −
λ2

h2 q2 = mP− 2iR2q2 −M2q2 (24)

d2θ2

dy2 + PrEc
λ2

h2
k
m
(q2q2) = 0 (25)

Region 3:
d2q3

dy2 +
Gr
Re

(Sinφ)θ3 = P− 2iR2q3 −M1q3 (26)

d2θ3

dy2 = 0 (27)

where q2 is the complex conjugate of q2.
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The respective boundary and interface conditions are:

q1 = 0, θ1 = 1 at y = 2
q1 = q2, dq1

dy = 1
m(1+λ1)

dq2
dy , θ1 = θ2, dθ1

dy = 1
k

dθ2
dy at y = 1

q2 = q3, 1
(1+λ1)

dq2
dy = m dq3

dy , θ1 = θ2, dθ2
dy = k dθ3

dy at y = 0
q3 = 0 , θ3 = 0 at y = −1

 (28)

The skin friction coefficient is C f = 2τw
ρ1u1

2 , and the walls’ shearing stress can be
determined by:

τw = µ1

(
∂u
∂y

)
y=−h and 2h

(29)

Using the dimensionless variables given in Equation (11), dimensionless skin friction
is obtained as:

C f =
2

Re
u′(y)

∣∣∣∣
y=−1 and 2

(30)

The Nusselt number is Nu = dqw
k1(T1−Tw2)

, where qw is the heat transfer rate and is

defined as:

qw = −k1

(
∂T
∂y

)
y=−h and 2h

(31)

Using Equation (11), the dimensionless Nusselt number is found as:

Nu = − θ′(y)
∣∣
y=−1 and 2 (32)

3. Solution Methodology

The leading momentum and energy equations for Region 1 and Region 3 are given
above, and for Region 2, the leading momentum and energy equations are coupled and
highly non-linear. Hence, we use the perturbation technique to obtain approximate solu-
tions. The small perturbation parameter PrEc = ε is used as the perturbation quantity. The
solution for Region 2 is considered as:

(qi, θi) = (q10, θ10) + ε(q1i, θ1i) + . . . , (33)

where q10 and θ10 are the solutions for the situation when ε is zero, qi1 and θi1 are perturbed
quantities associated with qi0 and θi0, respectively. We replaced the overhead solution
in Equations (39) and (40) by comparing the factors of identical existing powers of ε and
obtained solutions of zeroth and first-order order approximation of Region 2 as follows:

Region 2:
Equations (24) and (25) for zeroth and first-order approximation are:

1
1 + λ1

d2q20

dy2 +
mGr
nbRe

(Sinφ)θ20 −
λ2

h2 q20 = mP− 2iR2q20 −M2q20, (34)

d2θ20

dy2 = 0, (35)

and
1

1 + λ1

d2q21

dy2 +
mGr
nbRe

(Sinφ)θ21 −
λ2

h2 q21 = mP− 2iR2q21 −M2q21, (36)

d2θ21

dy2 + PrEc
λ2

h2
k
m
(q20q20) = 0 (37)
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The boundary conditions for Region 2 for zeroth and first-order approximation are:

q1 = 0, θ1 = 1 at y = 2h
q1 = q20, q21 = 0, dq1

dy = 1
m

dq20
dy , θ1 = θ20, θ21 = 0, dθ1

dy = 1
k

dθ20
dy at y = h

q20 = q3, dq20
dy = m dq3

dy , dq21
dy = 0 , θ1 = θ20, dθ20

dy = k dθ3
dy , dθ21

dy = 0 at y = 0
q3 = 0 , θ3 = 0 at y = −h

. (38)

Therefore,
q2 = q20 + εq21, (39)

θ2 = θ20 + εθ21, (40)

and
q = q1 + q2 + q3, (41)

θ = θ1 + θ2 + θ3 (42)

The solutions of Equations (39)–(42) by using boundary conditions given in Equation (38)
are:

q1 =


e(−2
√
−M1−2iR2y)

(
−1+e2

√
−M1−2iR2y

)2

P

4(−M1−2iR2)
−

e(−2
√
−M1−2iR2y)

(
1+e2
√
−M1−2iR2y

)2

p

4(−M1−2iR2)
+

. . . + 2ie

(
2
√
−M1−2iR2+2

√
−M3−2iR2+

2i
√

h2 M2+2ih2R2−λ2

h
√

1
1+λ1

)
h2m2r12

√
−M3−2iR2

1+λ1

 (43)

q20 =



e

(
−

iy
√

h2 M2+2ih2R2−λ2

h
√

1
1+λ1

−−
iy
√

h2 M2+2ih2R2−λ2

h
√

1
1+λ1

)1+e

(
2iy
√

h2 M2+2ih2R2−λ2

h
√

1
1+λ1

)
1+e

(
2iy
√

h2 M2+2ih2R2−λ2

h
√

1
1+λ1

)h2mP

4(h2(M2+2iR2)−λ2)
−

. . . + 4e

(
2

√
−M3−2iR2

1+λ1
(1+λ1)+2

√
−i(−iM1−2iR2)

1+λ1
(1+λ1)

)
h2m2R4

1+λ1
− 4e

(
2i
√

h2 M2+2ih2R2−λ2

h
√

1
1+λ

)
h2m2R4

1+λ1
+ 4e

(
2

√
−M3−2iR2

1+λ1

)
1+λ1


(44)

q21 =


−e

(
iy
√

h2 M2+2ih2R2−λ2√1+λ1
h

)−1 + e

(
iy
√

h2 M2+2ih2R2−λ2√1+λ1
h

)
−e

(
2i
√

h2 M2+2ih2R2−λ2√1+λ1
h

)h2m+

. . .− 4e

(
2

√
−M3−2iR2

1+λλ1
(1+λ1)+2

√
−i(−iM1−2iR2)

1+λ1
(1+λ1)

)
h2m2R4

1+λ1
− 4e

(
2i
√

h2 M2+2ih2R2−λ2

h
√

1
1+λ

)
h2m2R4

1+λ1


(45)

q2 =



e

(
−

iy
√

h2 M2+2ih2R2−λ2

h
√

1
1+λ1

−
iy
√

h2(M2+2irR2)−λ2

h
√

1
1+λ1

)1+e

(
2iy
√

h2 M2+2ih2R2−λ2

h
√

1
1+λ1

)
1+e

(
2iy
√

h2(M2+2iR2)−λ2

h
√

1
1+λ1

)h2mP

4(h2(M2+2iR2)−λ2)
− . . .

− 4e

(
2i
√

h2 M2+2ih2R2−λ2

h
√

1
1+λ1

+2

√
− i(−iM1+2R2)

1+λ1
(1+λ1)

)
h2m2R4

1+λ1
ε + 4e

(
2

√
−M3−2iR2

1+λ1
(1+λ1)

)
h2m2R4

1+λ1
.

4e

(
2

√
− i(−iM1+2R2)

1+λ1 (1+λ1)

)
h2m2R4

1+λ1
− 4e

(
2i
√

h2 M2+2ih2R2−λ2

h
√

1
1+λ1

+2

√
−M3−2iR2

1+λ1
(1+λ1)+2

√
− i(−iM1+2R2)

1+λ1
(1+λ1)

)
h2m2R4

1+λ1



(46)
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q3 =


e(−2
√
−M3−2iR2y)

(
−1+e(2

√
−M3−2iR2y)

)2

P

4(−M3−2iR2)
−

e(−2
√
−M3−2iR2y)

(
1+e(2
√
−M3−2iR2y)

)2

P

4(−M3−2iR2)
+

. . . + 2e

(
2
√
−M1−2iR2+2

√
−M3−2iR2+

2i
√

h2 M2+2ih2R2−λ2

h
√

1
1+λ1

)
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θ10 =
k + y
2 + k

, (48)

θ20 =
(1 + ky)

2 + k
, (49)
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(51)

θ30 =
1 + y
2 + k

. (52)

4. Results and Discussion

In this section, the graphical results are shown in Figures 2–14, where n = 1.5, b = 1,
P = −5, and Re = 5 are fixed. Three fluid layers in an inclined channel, comprising a
porous medium placed in the middle of two fluid layers, are investigated. The influences of
porous parameter, ratio of heights, ratio of viscosities, Grashof number, angle of inclination,
rotation parameter, and magnetic field parameter on velocity and temperature are discussed
graphically. Figure 2a shows the effect of porous parameter λ on axial velocity, and
Figure 2b shows the influence of porous parameter λ on transverse velocity. These figures
show increased effects in axial and transverse velocities due to values of λ in all three
regions. The velocities of Region 1 and Region 3, which contain Newtonian fluid, are large
compared to Region 2, which comprises the porous medium and contains Jeffrey fluid.
It is observed that the drag caused by the porous medium on the flow of Region 2 also
affects the motion of the Jeffrey fluid in the middle region. Furthermore, it is noted that
the minimum velocity occurs in the middle of Region 2 because the porous medium exerts
a strong impact on the velocity. The influence of the height is shown in Figure 3a,b. The
increase in the values of h gives the increasing behavior in axial and transverse velocities.
The influence of the ratio of viscosities is shown in Figure 4a,b. The increase in the values
of m enhances the axial and transverse velocities. The impact of the Grashof number is
shown in Figure 5a,b. The large values of the Grashof number enhance the velocity in all
regions by increasing the buoyancy force, which supports the flow. Figure 6a,b show the
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impact of the angle of inclination φ on both axial and transverse velocities. As the buoyancy
force enhances with an increase in the inclination angle, both the axial and transverse
velocities increase with the increasing values of φ. The impression of the Jeffrey parameter
λ1 is shown in Figure 7a,b. It is noted that the velocities in Region 2 boost up against
the large values of λ1. This is because λ1, being the viscoelastic parameter, exhibits both
viscous and elastic characteristics. Thus, the fluid will always retard whenever viscosity or
elasticity increase. Figure 8a,b show the effects of rotation parameter R in the velocity field.
The axial velocity decreases for large values of rotation parameter R, and the transverse
velocity increases gradually as the rotation parameter R increases up to 1, velocity suddenly
decreases when R is greater than 1. Figure 9a,b show the effects of the magnetic field
parameter M1 in Region 1 and Region 3. A greater value of M1 in Region 1 and Region 3
leads to the decreasing behavior of velocities in these regions. The result of the magnetic
field parameter M2 is shown in Figure 10a,b. As M2 increases, the velocity of Region 2
decreases, and the velocities of Region 1 and Region 3 increase. This is due to the Lorentz
force, and it competes against the buoyancy force.

Figures 11–14 show the various influences of physical parameters on the temperature
field. In Region 1 and Region 3, the temperature is linear, but in Region 2, it is non-linear
for all the physical parameters. Figure 11a depicts the effect of porous parameter λ on
temperature. Rising porous parameters λ lower the temperature in Region 2. Figure 11b
shows the influence of the rotation parameter R. As the rotation parameter R increases, the
temperature decreases in Region 2 because increasing rotation increases the Coriolis force,
which in turn opposes the buoyancy force. Thus, the velocity will be decreased, leading to
a reduction in the temperature. Figure 12a shows that temperature is enhanced in Region 2
when the Grashof number Gr is large. Figure 12a shows the impression of φ temperature
distribution in Region 2. It is noted that as values of φ rise, the heat in Region 2 enhances.

The impact of the angle of inclination φ on temperature θ is represented in Figure 10a.
The increased values of φ enhance the temperature because as φ increases, the buoyancy
force also rises. Figure 13a shows the influence of m, indicating that the temperature
increased by increasing viscosity in Region 2. The impact of heights is shown in Figure 13b
for Region 2. It is noted from the graph that the increasing values of h reflect the decreases
in temperature in Region 2. Figure 14a shows the influence of the magnetic field M2 in
Region 2. From this figure, it is observed that a large value of M2 increases the temperature
in Region 2. The impression of the Jeffrey parameter λ1 in Region 2 is shown in Figure 14b.
This is because λ1, being the viscoelastic parameter, exhibits both viscous and elastic
characteristics. Thus, the fluid will always retard whenever viscosity or elasticity increase.
Enhancing the Jeffrey parameter λ1, the temperature factor increases in Region 2. The
effects of governing parameters on the skin friction and Nusselt number at both plates
are shown in Table 1. It is observed that by increasing the value of the Jeffrey parameter
and magnetic field parameters, the Nusselt number increases at the bottom plate while
decreasing in magnitude at the top plate. The value of magnetic field with the absence
and presence of the Jeffrey parameter and Nusselt number increases gradually at the lower
plate, but the opposite trend occurs at the upper plate. The couple stress parameter along
with magnetic field parameters decease the skin friction at the lower plate while boosting it
at the upper plate.
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Figure 2. Velocity distribution against λ: (a) axial, (b) transverse.
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Figure 3. Velocity distribution of h: (a) axial, (b) transverse.
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Figure 4. Velocity distribution of m: (a) axial, (b) transverse.
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Figure 5. Velocity distribution of Gr: (a) axial, (b) transverse.
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Figure 6. Velocity distribution of φ: (a) axial, (b) transverse.
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Figure 7. Velocity distribution of λ1: (a) axial, (b) transverse.
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Figure 8. Velocity distribution of R: (a) axial, (b) transverse.
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Figure 9. Velocity distribution of M1: (a) axial, (b) transverse.
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Figure 10. Velocity distribution of M2: (a) axial, (b) transverse.
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Figure 11. Temperature distribution against (a) λ, (b) R.
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Figure 12. Temperature distribution against (a) Gr, (b) φ.
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Figure 13. Temperature distribution against (a) m, (b) h.
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Figure 14. Temperature distribution against (a) M2, (b) λ1.
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Table 1. Variation in skin friction and heat transfer values for different physical parameters at n = 1.5,
Re = 5, b = 1, P = −5, h = 1, φ = π/6, Gr = 5, R = 1, m = 0.5, k = 1, λ = 2, and ε = 0.5.

λ1 M1 M2
Skin Friction Heat Transfer

u
′
3(−1) u

′
1(2) −θ

′
3(−1) −θ

′
1(2)

0.0
[31]

0.0 [31] 0.0 [31] 5.8695 [31] −6.2637 [31] −11.6293 [31] 11.1863 [31]
0.5 0.5 5.4254 −6.0335 −8.0079 7.6946
1.0 1.0 4.7199 −5.4964 −5.1626 4.8729
1.5 1.5 4.2326 −4.7070 −3.6740 3.2145
2.0 2.0 3.8200 −3.6645 −2.6686 2.0259

1.0

0.0 0.0 4.7704 −5.2206 −4.8238 4.6218
0.5 0.5 5.0526 −5.7268 −5.7750 5.5205
1.0 1.0 4.4984 −5.2323 −4.2559 3.8752
1.5 1.5 3.2775 −1.9684 3.6674 0.0712
2.0 2.0 3.6157 −1.6994 2.4707 0.6099

2.0

0.0 0.0 4.6498 −5.1938 −3.9341 3.8511
0.5 0.5 4.6603 −5.5360 −4.3268 4.2070
1.0 1.0 2.4857 −0.7459 8.3122 −0.2552
1.5 1.5 4.3525 −4.0577 −3.8010 2.8787
2.0 2.0 2.8249 −0.7325 7.2428 0.0711

3.0

0.0 0.0 4.77655 −5.1948 −3.3895 3.3986
0.5 0.5 4.7632 −5.5363 −3.8305 3.8203
1.0 1.0 4.5809 −5.0948 −3.6110 3.2685
1.5 1.5 3.8533 −2.4764 −0.28233 0.3619
2.0 2.0 2.3092 −0.2256 10.1205 −0.1144

5. Conclusions

In this study, we analytically investigated the multilayered convective fluid flow in a
rotating inclined path comprising a porous medium in Region 2 placed between two fluid
layers, Region 1 and Region 3. In Region 1 and Region 3, the temperature was linear, but in
Region 2, it was non-linear for all the physical parameters. Approximate solutions for axial
and transverse velocities with temperature distribution were obtained using the regular
perturbation method in Region 2. The notable outcomes of this study are as follows.

• Temperature distribution and both axial and transverse components of velocity de-
creased gradually for large values of the porous parameter λ in all regions.

• Velocity components and temperature distribution slow down due to increasing
rotation parameter R.

• Increases in the ratio of viscosities, Grashof number, and angle of inclination lead to
increases in temperature and velocity components in all regions.

• The temperature distribution and both axial and transverse components of velocity
increased thoroughly for the Jeffery parameter λ1 in Region 2.

• The temperature rose due to the influence of magnetic field parameters and reduced
velocity in all mediums. The reason behind this is drag force, which is initiated by
magnetic fields in all regions.

• Heat transfer increased with the increasing values of the Jeffrey parameter.
• The magnetic field increased the magnitude of the Nusselt number at the bottom plate

and decreased it at the top plate.
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