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ABSTRACT 

Saskatchewan Highways and Transportation (SDHT) rely on dense-graded hot 

mix asphalt concrete mixes for construction and rehabilitation of asphalt pavement 

surfaced highways.  As a result of increased commercial truck traffic on the provincial 

road network, over the last two decades, some of Saskatchewan’s recently placed dense 

graded hot mix asphalt concrete (HMAC) pavements have been observed to show a 

susceptibility to premature permanent deformation in the asphalt mix.  One of the 

aggregate properties thought to have significant influence on mix performance under 

traffic loading is the shape of the aggregate.  Specifically, the physical properties of the 

fine aggregate (smaller than 5 mm in diameter) are of particular importance in dense 

graded mixes.  Although empirical evidence suggests that there are performance benefits 

associated with using angular fine aggregate, the relationship of this parameter on 

mechanistic mix performance and resistance to permanent deformation has not yet been 

clearly defined. 

The primary objective of this research was to conduct laboratory analysis to 

determine the physical, empirical, and mechanistic behaviour sensitivity to the 

proportion of manufactured and natural fine aggregate in SDHT Type 72 hot mix asphalt 

concrete.  The second objective of this research was to compare the mechanistic 

behaviour of the Type 72 mixes considered in this research to conventional SDHT Type 

70 structural hot mix asphalt concrete. 

Physical and mechanistic properties of a SDHT Type 72 mix at levels of 20, 40, 

and 60 percent manufactured fines as a portion of total fines (smaller than 5 mm), and 

for a SDHT Type 70 mix (which contained 38 percent manufactured fines) were 

evaluated.  Ten repeat samples were compacted for each mix using 75-blow Marshall 

compaction, and ten samples for each mix were compacted using the Superpave™ 

gyratory compaction protocols.  Marshall stability and flow testing was conducted on the 

Marshall-compacted samples.  Triaxial frequency sweep testing was conducted on the 

gyratory-compacted samples using the Rapid Triaxial Tester (RaTT) at 20°C. The 

testing was conducted at axial loading frequencies of 10 and 0.5 Hz, and at deviatoric 
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stress states of 370, 425, and 500 kPa, respectively.  The resulting dynamic modulus, 

axial and radial microstrains, Poisson’s ratio, and phase angle were evaluated. 

The research hypothesis stated that the increased amount of manufactured fines 

improves mechanistic properties of the Type 72 mix under typical field state conditions, 

and Type 72 mix with increased manufactured fines can exhibit mechanistic properties 

equivalent to or exceeding those of a typical type 70 mix.   

Based on the improved densification properties, increased Marshall stability, 

increased dynamic modulus, and reduced radial and axial strains, it was demonstrated 

that increasing manufactured fines content in the SDHT Type 72 mix does improve the 

mechanistic properties of this dense-graded asphalt mix.  It should be noted that there 

appears to be a minimum level of manufactured fines content that is required to affect 

mix response to loading, and that this threshold lies somewhere between 40 and 60 

percent manufactured fines content for the Type 72 mix tested as part of this research. 

Further, the Type 72 mix exhibited comparable or improved mechanistic 

properties relative to the Type 70 mix, which SDHT consider a structural mix.  This is 

illustrated by the Type 72 mix with 60 percent manufactured fines resulting in higher 

Marshall stability and dynamic modulus, and lower axial microstrains than the Type 70 

mix evaluated in this study. 

It is recommended that other Type 72 and Type 70 mixes are evaluated using 

similar testing protocols.  In addition, field test sections should be used to further verify 

the research hypothesis investigated here.   

Economic analysis indicates that substantial savings in life cycle costs of SHDT 

asphalt concrete surfaced roadways can be realized by engineering well-performing, rut-

resistant mixes.  The life cycle costs can be reduced annually by approximately $7.4 

million, which translates into $102.5 million savings over 18 years, during which the 

entire pavement network would be resurfaced with well-performing asphalt concrete 

mixes. 
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Further, enhanced crushing of smaller aggregate top size decreases the amount of 

rejected material, and increases manufactured fines to coarse aggregate ratio, resulting 

not only in better engineering properties, but also in the optimized use of the province’s 

diminishing gravel resources.  Pressures on aggregate sources are also reduced by 

improving life cycle performance of Saskatchewan asphalt concrete pavements.  The 

total potential aggregate savings that can be realized by implementing well-performing 

Type 72 HMAC mixes amount to 4.3 million metric tonnes of aggregate in the next 42 

years.  These aggregate savings can help decrease the predicted shortage of aggregate 

between 2007 and 2049 by approximately 6 percent.  The total potential cost savings 

after 18 years of paving 500 km per year with rut-resistant, well-performing HMAC 

mixes amount to $112.4 million in present value dollars.  The 42 year savings amount to 

$193.7 million in present day dollars.  It is recommended that a more detailed economic 

analysis be carried out.   
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CHAPTER 1 INTRODUCTION 

Saskatchewan Highways and Transportation (SDHT) currently operate and 

maintain 8,975 km of structural hot mix asphalt concrete (HMAC) pavements (Kalyar 

2005).  As a result of increased commercial truck traffic on the provincial road network, 

over the last two decades, some of Saskatchewan’s recently placed dense graded HMAC 

pavements have been observed to show a susceptibility to premature permanent 

deformation in the form of rutting in the asphalt mix (Huber and Heiman 1987, Carlberg 

et al. 2002, SDHT 2003-A).  This problem is significantly decreasing the expected in-

service life of the affected pavements thus creating a concern for long term sustainability 

of the highway infrastructure. 

Saskatchewan is not the only agency experiencing premature permanent 

deformation problems.  Higher traffic volumes, increased loads and decreasing 

aggregate quality in many jurisdictions, have resulted in premature rutting becoming a 

problem for many road authorities in North America (Brown and Cross 1992), and 

significant resources have been directed toward creating long lasting pavements 

(Asphalt Institute 1996). 

To achieve more structural, rut resistant mixes, SDHT implemented a 75 blow 

Marshall mix design, replacing the traditional 50 blow design on the National Highway 

System in 1999, and increased coarse aggregate fracture requirements for all SDHT 

mixes.  This increase in mix design standards resulted in the use of coarser aggregate 

gradations, which has increased aggregate costs and accelerated aggregate source usage.  

In addition, these coarser Saskatchewan HMAC mixes have also become more sensitive 

to handling and placement. 

Construction problems such as segregation and difficulties in achieving 

compaction associated with the placement of coarse mixes have resulted in  
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Saskatchewan contractors requesting the use of finer HMAC mixes as surface course.  

Contractors reason that finer mixes are more workable and less sensitive to handling, 

therefore reducing the potential for placement problems, especially segregation, and 

improving the visual quality as well as the durability of the finished surface.  The 

contractors’ interest in improving surface quality relates directly to the segregation, 

compaction, and ride and roughness penalties imposed by SDHT. 

Although utilizing smaller top size and finer aggregate would improve the 

HMAC pavements construction process, there is a concern that finer mixes may be more 

susceptible to permanent deformation under heavy vehicle loading due to their reduced 

aggregate skeleton.  In light of already substantial problems with premature permanent 

deformation, there is a need to determine the performance feasibility of using finer 

mixes, without further increasing the potential for permanent deformation, while at the 

same time mitigating the susceptibility to permanent deformation. 

One of the aggregate properties thought to have significant influence on mix 

performance under traffic loading is the shape of the aggregate (Brown and Cross 1992, 

Button et al. 1990).  Angular rocks are thought to provide better stone on stone interlock 

than rounded aggregate, therefore reducing the susceptibility to rutting (Asphalt Institute 

1996, Ahlrich 1996, Marks et al. 1990).  Further, the physical properties of the fine 

aggregate (smaller than 5 mm in diameter) are of particular importance in dense graded 

mixes, because the coarse aggregates (greater than 5 mm in diameter) are usually not in 

contact with each other, rather, they are suspended in the fine aggregate, which is forced 

to carry the load (Roberts et al. 1996, Perdomo et al. 1992, Parker and Brown 1992).  

Although empirical evidence suggests that there are performance benefits associated 

with using angular fine aggregate, the relationship of this parameter on mechanistic mix 

performance and resistance to permanent deformation has not yet been clearly defined. 

1.1 Research Goal 

The goal of this research project is to improve the field performance of hot mix 

asphalt pavements in Saskatchewan. 
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1.2 Importance of Research 

Investigating the influence of manufactured fines on the conventional and 

mechanistic properties of Saskatchewan hot mix asphalt concrete mixes is important to 

the province of Saskatchewan for several reasons, some of which are listed below: 

• With limited funding and increased budget pressures in the province, 

providing well-performing asphalt pavements is critical toward supporting 

the provincial economy, and sustaining efficient and effective transport in the 

province. 

• In light of the documented rutting problems in the province, improving 

rutting performance of Saskatchewan mixes would reduce the amount of 

preservation funds required to fill in premature ruts, and extend the period 

between initial construction and first rehabilitation. 

• In addition to the operations and preservation problems directly related to 

permanent deformation, the presence of ruts also contributes to increased 

severity and acceleration of other distresses.  Engineering rut-resistant mixes 

should also decrease pavement susceptibility to other distresses and increase 

pavement life. 

• Rutted pavements pose a safety concern for the road users, resulting in 

increased user, social, and agency operating costs.  Reducing rutting 

susceptibility could potentially increase the safety of the road user and 

therefore reduce the society’s costs associated with highway collisions and 

fatalities. 

• If increasing manufactured fines outweighs the benefits of larger top size of 

aggregate, crushing of smaller top size of aggregate may decrease the amount 

of rejected material, better utilizing the province’s diminishing gravel 

resources. 

• Increasing coarse aggregate angularity and implementing coarser aggregate 

specifications for hot mix asphalt concrete mixes further increases pressures 

on non-renewable aggregate resources.  Improving the performance of 
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pavements and therefore increasing their life cycle can result in the decrease 

of volume of material required annually. 

• Given the limitations of conventional Marshall properties to accurately 

predict rutting, characterizing the mechanistic properties of SDHT asphalt 

mixes is one of the necessary steps towards implementing performance-

related structural parameters in the SDHT asset management system. 

• With Saskatchewan aggregate being manufactured from glacial gravel 

deposits, it is current practice to incorporate natural sands in hot mix 

aggregate gradations. Determining the sensitivity of SDHT mixes to the 

amount of natural versus manufactured fines content with respect to the 

physical and mechanistic properties of the mixes is necessary to provide 

insight into maximizing aggregate source utilization, by incorporating natural 

fines into the hot mix aggregate without compromising field performance. 

• Although using finer mixes may be a feasible solution for the asphalt 

pavement contractors to reduce penalties, it may, in the long term, result in 

increased network management and user costs, if permanent deformation 

susceptibility is not investigated and mitigated within the specified material 

constitutive relations of SDHT dense graded HMAC mixes.   

• SDHT does not control the proportions of natural and manufactured fine 

aggregate for hot mix asphalt, nor are any physical properties that would 

address fine particle shape included in current specifications.  It is therefore 

not known how SDHT dense graded mixes will perform at various levels of 

manufactured fine aggregate content.   

Permanent deformation is a problem that continues to affect not only 

Saskatchewan, but the entire flexible pavement engineering community (Sousa et al. 

1991), and understanding the mechanistic material constitutive properties as a function 

of the various field state conditions is the first step towards being able to confidently 

predict pavement performance.   
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1.3 Research Objectives 

The primary objective of this research has been to conduct laboratory analysis to 

determine the physical and mechanistic behaviour sensitivity to the proportion of 

manufactured and natural fine aggregate in SDHT Type 72 hot mix asphalt concrete.  A 

second objective of this research is to compare the mechanistic behaviour of the Type 72 

mixes considered in this research to conventional SDHT Type 70 structural hot mix 

asphalt concrete. 

1.4 Research Hypothesis 

It is hypothesised that the increased amount of manufactured fines improves 

mechanistic properties of the Type 72 mix under typical field state conditions.  It is also 

hypothesized that Type 72 mix with increased manufactured fines can exhibit 

mechanistic properties equivalent to or exceeding those of a typical type 70 mix. 

1.5 Scope 

Three Type 72 HMAC mixes were considered for this research, based on a mix 

design used for a SDHT pavement rehabilitation project of Highway 11, south of Craik 

(Contract No. M01091).  The aggregate blends had 20, 40, and 60 percent of 

manufactured fine aggregate, respectively, as determined by weight on the portion of 

total fine aggregate within the mix (passing the 5 mm sieve).  The amount of 

manufactured coarse aggregate (retained on the 5 mm sieve) was maintained constant 

across the Type 72 mixes considered, and the manufactured fines were substituted for 

natural fines in order to vary the manufactured fines content only.  The structural Type 

70 mix used in the study had 38 percent fine aggregate, as manufactured for the above 

mentioned Highway 11 paving project.  All HMAC samples were created with 

150/200A straight run asphalt cement and 0.7 percent of liquid anti-stripping agent by 

weight of asphalt cement. 

The laboratory characterization involved assessing volumetric properties using 

the standard 75 blow Marshall mix design method, as well as SHRP Level 1 gyratory 

compaction.  Marshall stability and flow were determined, and triaxial frequency sweep 
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testing was performed across various frequencies and stress states at 20°C. 

1.6 Methodology 

The following project elements and tasks were employed in this research: 

 Project Element 1:  Background and Literature Review. 

• Task 1 - Literature review of previous research investigating the effect of 

manufactured fines and aggregate properties on the physical and mechanistic 

performance of hot mix asphalt concrete. 

• Task 2 - Review of SDHT specifications for HMAC and the mix design 

process. 

 Project Element 2:  Material Sampling. 

• Task 1 - Aggregate sampling from Contract No. M01091. 

• Task 2 - Asphalt cement sampling from same supplier and of the same grade 

(150/200A) as used on the Hwy 11 construction project. 

• Task 3 - Anti-stripping agent sampling from the same supplier and of the 

same grade as used on the Highway 11 construction project. 

 Project Element 3:  Sample Preparation. 

• Task 1 - 75 blow Marshall mix design (STP 204-10). 

• Volumetric analysis (STP 204-21 based on ASTM D2726). 

• Marshall stability and flow (STP 204-11 based on ASTM D1559). 

• Task 2 - SHRP Level 1 gyratory compaction (AASHTO TP-4). 

• Task 3 - Volumetric analysis of gyratory samples (STP 204-21 based on 

ASTM D2726). 

 Project Element 4:  Aggregate Characterization. 

• Task 1 - Specific Gravity (STP 206-07). 

• Task 2 - Flat and Elongated Particles (ASTM D4791). 

• Task 3 - Lightweight Pieces (STP 206-09 based on ASTM C123). 

• Task 4 - Atterberg Plasticity Index (STP 206-04 based on ASTM D4318). 

• Task 5 - Uncompacted Void Content of Fine Aggregate (ASTM C1252-03 
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Test Method A). 

• Task 6 - Coarse Aggregate Fracture (STP 206-14). 

• Task 7 - Sand Equivalent (STP 206-05 based on ASTM D2419). 

 Project Element 5:  Triaxial frequency sweep mechanistic characterization at 20°C. 

• Task 1 – Laboratory testing evaluation at two load frequencies (0.5 Hz and 

10 Hz) and three deviatoric stress states (370 kPa, 425 kPa, and 500 kPa). 

 Project Element 6:  Statistical Analysis consisting of summary statistics, analysis of 

variance (ANOVA), Tukey’s pairwise comparison, and analysis of level of 

confidence of laboratory characterization results across independent variables stress 

state, temperature, and mix type at each loading frequency. 

• Task 1 – Quantify relationship between amount of manufactured fines and 

volumetric properties of compacted gyratory samples. 

• Task 2 – Quantify relationship between amount of manufactured fines and 

Marshall stability and flow. 

• Task 3 – Quantify relationship between amount of manufactured fines and 

dynamic modulus. 

• Task 4 – Quantify relationship between amount of manufactured fines and 

Poisson’s Ratio. 

• Task 5 – Quantify relationship between amount of manufactured fines and 

Recoverable Axial Microstrains. 

• Task 6 – Quantify relationship between amount of manufactured fines and 

Recoverable Radial Microstrains. 

• Task 5 – Quantify relationship between amount of manufactured fines and 

phase angle. 

 Project Element 7:  Economic Analysis of Implementing Type 72 Mixes. 

• Task 1 – Life cycle cost analysis and determination of benefits in improved 

rutting performance of SHDT asphalt concrete mixes. 

• Task 2 – Analysis of impacts on gravel source utilization when 

manufacturing Type 72 mix aggregate and Type 70 mix aggregate. 

• Task 3 – Analysis of aggregate savings from the reduction of preservation 
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treatments during a pavement life cycle. 

 Project Element 8:  Summary, Conclusions and Future Research. 

1.7 Layout of Report 

Chapter One provides the introduction to and the significance of the work 

undertaken in this research.  This section also includes the goal, objectives, scope and 

methodology relevant to this work, as well as the layout of the thesis.  Chapter Two 

summarizes background information and previous research on issues relevant to this 

thesis, in context of Saskatchewan Highways and Transportation pavement mix design 

and specifications.  The definition of permanent deformation, description of common 

types of HMAC mixes, brief discussion on aggregate and HMAC physical properties of 

relevance to pavement engineering, as well as an introduction to the Marshall, Hveem, 

and Superpave™ Level I mix design methods are discussed.  Chapter Two also contains 

an introduction to the mechanistic material characterization, and specifically to repeated 

load triaxial frequency sweep testing.  Chapter Three summarizes the conventional 

material properties of the research mixes that were evaluated as part of this research.  

The various physical aggregate properties of the research mixes, as well as the 

volumetric properties of each the Marshall and gyratory compacted samples are 

discussed.  Analysis of Marshall stability and flow testing is also included.  Finally, 

statistical significance of the results is investigated.  Chapter Four reports the 

mechanistic material properties evaluated with the use of the triaxial frequency sweep 

testing, including the dynamic modulus, the recoverable portions of axial and radial 

microstrains, Poisson’s ratio, and phase angle.  The applicability of the sample size used 

for this research is verified based on the mechanistic test results.  Chapter Five contains 

an economic assessment related to implementing well-performing, rut-resistant Type 72 

mixes, with respect to SDHT pavement life cycle costs and provincial gravel source 

management.  Chapter Six presents the summary, conclusions, and recommendations 

that can be made based on the results of this study. 
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CHAPTER 2 BACKGROUND AND LITERATURE REVIEW 

This chapter summarizes background information related to issues relevant to this 

thesis, including challenges facing Saskatchewan Highways and Transportation in the 

area of asphalt mixes.  Definition of permanent deformation in hot mix asphalt concrete 

pavements and description of common types of HMAC mixes, as well as a brief 

discussion on physical aggregate and HMAC mix properties of relevance to pavement 

engineering and mix performance is included.  An introduction to the Marshall mix 

design method with reference to SDHT specifications and other mix design methods are 

also discussed, followed by an introduction to mechanistic characterization of hot mix 

asphalt concrete mixes.  Limitations of empirical measures will be discussed. 

2.1 Saskatchewan Highways and Transportation Challenges 

Saskatchewan Highways and Transportation (SDHT) currently operate and 

maintain 8,975 km of hot mix asphalt concrete (HMAC) pavements (Kalyar 2005).  The 

shift in transportation policy over the last two decades has resulted in the abandonment 

of branch rail lines, and prompted a large increase in commercial traffic on 

Saskatchewan roads (SDHT 1999).  Across the entire provincial road system, annual 

traffic loading on the provincial pavement network increased 56 percent over the last 

decade, from 2.54 billion Equivalent Single Axle Loads (ESALs) in 1994, to 3.96 billion 

in 2004 (Anderson 2005).  Other contributing factors such as an increase in trans-border 

trade, economic diversification, and the expectation of just-in-time delivery have also 

increased commercial road transportation in Saskatchewan.  Along with the increase in 

demand for road transportation of goods, there has been an associated need for increased 

load capacity and more efficient truck configurations, potentially resulting in significant 

increase of loading on the already aged and distressed Saskatchewan highway system.  
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As a result of the increased commercial truck traffic on the provincial road 

network, some of Saskatchewan’s recently placed dense graded HMAC pavements have 

demonstrated a susceptibility to premature permanent deformation in the asphalt mix 

(Huber and Heiman 1987, Carlberg et al. 2002, SDHT 2003-A), significantly decreasing 

the expected in-service life of the pavements and creating a concern for long term 

sustainability of the highway infrastructure.  Specifically, the permanent deformation 

conditions on the provincial asphalt pavement road network are increasing.  Between the 

years 2003 and 2006, provincial asphalt pavements have deteriorated from 8.3 to 11.5 

percent of poor condition in terms of rutting, meaning that average rut depths across the 

road segments evaluated are equal to or greater than 10 mm (Kalyar 2006).   

Saskatchewan Highways and Transportation have operated the provincial 

network for the last three years within the means of an annual budget of approximately 

$300 million.  During the fiscal year 2005-2006, from a total budget of $307.6 million, a 

total of $40 million (13 percent) was spent on infrastructure rehabilitation, and $82 

million (27 percent) was allocated to preservation of the transportation system (SDHT 

2006).  Approximately $44 million (14 percent) was spent directly on the material 

purchase and placement of close to 600,000 metric tonnes of hot mix asphalt concrete, 

used on capital and preservation road construction projects during the 2005/06 

construction season.   

Based on these expenditures and given the extent of the Saskatchewan road 

network, there is a need to ensure that the small amount of funding dedicated directly to 

hot mix asphalt paving is spent on quality paving products with maximized service life.  

With limited funding and increased budget pressures in the province, providing value-

engineered asphalt pavements is critical toward supporting the provincial economy, and 

sustaining efficient and effective transport in the province. 

Improving rutting performance of Saskatchewan mixes would reduce the amount 

of preservation funds required to fill premature ruts, and extend the period between 

initial construction and first rehabilitation required.  For instance, the cost to rehabilitate 

the 11.5 percent of roads currently in poor rutting condition, by removing 50 mm of the 

rutted layer and replacing it with a new structural HMAC pavement overlay, is estimated 
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at approximately $103 million (Marjerison 2005).  Although this is a commonly used 

rehabilitation approach for prematurely rutted pavements, SDHT has not conducted any 

studies to ensure that this treatment is in fact sufficient to improve rutting performance 

given current mix types used by SDHT. 

SDHT designs HMAC pavements for a 15 year design life, based on projected 

number of Equivalent Single Axle Loads (ESALs), expecting only to invest in routine 

maintenance during this period (Widger 2005).  However, in addition to the operations 

and preservation problems directly related to permanent deformation, the presence of 

ruts can also contribute to increased severity and acceleration of other distresses.  As an 

example, the accumulation of moisture in wheel paths weakens the pavement structure 

due to water infiltration through transverse and fatigue cracks that intercept the ruts in 

the pavement surface.  Concentrated water infiltration results in increased surface 

distortion and loss of structural integrity caused by water movement and freeze-thaw 

action within the pavement substructure.  Therefore, engineered rut-resistant mixes 

should also decrease pavement susceptibility to other distresses and increase structural 

performance and pavement life. 

Along with increased direct costs of rehabilitation and decreased asset life, rutted 

pavements pose a safety concern for the road users, therefore resulting in increased user, 

social, as well as agency operating costs.  The longitudinal depressions in the wheel 

paths accumulate water, causing drivers to have reduced control of the vehicle.  In the 

winter, ruts can accumulate ice and snow, making snow/ice removal difficult, and 

creating a further safety hazard.  Changing lanes can also be inhibited, and since the ruts 

are mainly formed by heavy commercial vehicles, passenger vehicles which have a 

narrower wheel base may experience difficulties steering (Emery 1990).  Road surface 

conditions caused by weather and short-term maintenance operations were listed as a 

contributing factor in eight fatal collisions on provincial highways in Saskatchewan in 

2002 (SGI 2002). 

To mitigate rutting, other North American road authorities are investigating the 

use of more coarse and larger top size mixes, such as Superpave™, open graded friction 

courses (OGFC), and stone mastic asphalt (SMA).  Although SDHT has conducted trials 
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using some of these types of mixes in the past (Siciliano and Qayyum 1994, Berthelot 

1999), the agency continues to rely on three dense graded hot mix aggregate gradations, 

with 18 mm, 16 mm, and 12.5 mm top size, respectively.  While coarse mixes often 

provide better rutting resistance when designed and constructed properly, they rely on 

large top size and highly fractured coarse aggregate to obtain the mechanical 

performance benefits.  In light of declining availability of quality aggregate resources in 

the province, and challenges with limited funding, the increased requirement for larger 

stone, and high fracture aggregates, renders coarse mixes economically prohibitive in 

most cases in Saskatchewan. 

With the exception of the Cypress Hills area, Saskatchewan has been glaciated at 

least four times (Sauer 2000).  Most of Saskatchewan’s highway network is located in 

the southern portion of the province, in an area of thick glacial deposits, and all of the 

HMAC aggregate is manufactured from surface glacial gravel sources.  While there are 

aggregate-rich areas in Saskatchewan, it is becoming increasingly difficult to locate new 

aggregate sources, and existing quality sources suitable for HMAC aggregate production 

are being exhausted.  Most areas in the province now require average truck hauls of 30 

km or greater for delivering aggregate to construction sites, and these distances are 

estimated to increase for some areas by as much as 30 percent in the next fifty years 

(SDHT 2001-A).   

Increasing coarse aggregate angularity and implementing coarser aggregate 

specifications for hot mix asphalt concrete mixes further increases pressures on non-

renewable quality aggregate resources.  SDHT has recognized these issues and has put 

effort into optimizing the use of existing sources, along with developing a long term 

aggregate management strategy (SDHT 2001-A).  From this study, it is estimated that 

193.3 million cubic metres of quality aggregate will be required to meet the provincial 

needs up to the year 2049.  Based on a summary of known provincial sources at the time 

of the study, it is estimated that the province currently has 150 million cubic metres in 

available gravel sources of varying degrees of quality.  Improving the performance of 

pavements and therefore increasing their life cycle can result in the decrease of volume 

of material required annually. 
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As an alternative to larger top size and coarser mixes, polymer-modified asphalt 

cement and other modified asphalt cement products are also being investigated by many 

agencies to increase the resistance to permanent deformation (Ponniah and Kennepohl 

1996, Prowell 2001).  Although this approach is worth considering, modified asphalt 

products cost substantially more than straight-run asphalt products, and they are more 

difficult to place (Brule 1996, Zubeck 2003, Better Roads 2005). 

In addition to potential savings due to improved pavement performance and 

extended performance life cycle, if the permanent deformation resistance can be 

engineered in mixes with finer gradations and smaller top size aggregates, Saskatchewan 

will benefit from reducing aggregate wastage.  For example, a typical crushing process 

involves screening off any natural material smaller than 9 mm, and crushing the 

remaining aggregate larger than 9 mm.  The resulting manufactured material is usually 

split on the 5 mm sieve, into a manufactured fines and a manufactured coarse pile, 

respectively.  When manufacturing coarse hot mix aggregate, it is also common practice 

to screen off “pea gravel” (ranging in size from 9 mm up to top size of the mix being 

produced), since it is thought to be too small to obtain good fracture through the 

crushing process.  These practices can result in high quantities of rejected material, 

rendered useless in the hot mix aggregate manufacturing process.  Enhanced crushing of 

smaller top size of aggregate may decrease the amount of rejected material, better 

utilizing the province’s diminishing gravel resources. 

With Saskatchewan aggregate being manufactured from glacial gravel deposits, it 

is current practice to incorporate natural sands in hot mix aggregate gradations.  This is 

done partly to provide workability in the mixes, but more importantly to utilize as much 

of the gravel source as possible.  Another mix design practice is to utilize blender/filler 

sands when necessary to increase or decrease the air voids in the mix to obtain the 

desired volumetric properties, which at this point are the primary quality control 

parameters of HMAC used in SDHT mix design and specifications.  However, using 

large amounts of natural sands in the aggregate structure increases the possibility of 

creating “tender” mixes – ones that densify too quickly, and are therefore prone to 

premature plastic deformation (Hesp et al. 2002).  Large amounts of fine aggregate also 
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decrease asphalt cement film thickness in the mix, therefore creating a potential for 

moisture susceptibility and durability problems.  Determining the sensitivity of SDHT 

mixes to the amount of natural versus manufactured fines content with respect to the 

physical and mechanistic properties of the mixes is necessary to provide insight to 

maximize aggregate source utilization, by incorporating natural fines into the hot mix 

aggregate without compromising field performance. 

Further challenges for Saskatchewan road infrastructure management come from 

a lack of structural parameters in the current road asset management systems used by 

SDHT.  To date, funding is allocated strictly based on surface condition.  In striving 

towards a structural asset management system, there is a need to quantify the 

mechanistic structural properties of road materials commonly used in Saskatchewan.  

Although improving structural properties of SDHT asphalt mixes will not be directly 

measurable by the asset management tools currently in use, improving structural 

performance is critical given the increased traffic loadings.  Characterizing the 

mechanistic properties of SDHT asphalt mixes is one of the necessary steps towards 

implementing performance-related structural parameters in SDHT asset management 

methods. 

Although using finer mixes may be a feasible solution for the asphalt pavement 

contractors to reduce penalties, it may, in the long term, result in increased network 

management and user costs, if permanent deformation susceptibility is not investigated 

and mitigated.  SDHT does not control the proportions of natural and manufactured fine 

aggregate for hot mix asphalt, nor are any physical properties that would address fine 

particle shape included in current specifications.  It is, therefore, not known how SDHT 

dense graded mixes will perform at various levels of manufactured fine aggregate 

content. 

2.2 Permanent Deformation in Flexible Pavements 

Permanent deformation in asphalt (flexible) pavements, commonly referred to as 

rutting, usually consists of longitudinal depressions in the wheel paths, which are an 

accumulation of small amounts of unrecoverable deformation caused by each load 
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application (Asphalt Institute 1996).  Depending on the specific failure mode, these 

wheel path depressions may be accompanied by small heaves on either side.  The 

depressions are a direct result of repeated load applications, and are caused by either 

densification, or shear deformation, or a combination of both, in any one or more of the 

pavement structural layers and/or in the subgrade (Sousa et al. 1991). 

Based on the origin of the deformation within the road structure, rutting can be 

divided into two main types.  The first type of rutting is a result of structural integrity 

problems within the road structure, including the subgrade, subbase or base.  The layers 

are either lacking in strength or thickness to handle the applied loading, or are weakened 

by excess moisture.  For example, if the thickness of structural surfacing with select 

materials is inadequate for the amount and type of traffic loading, the in-situ soils 

(subgrade) will deform due to the excessive stresses.  As another example, excess fines 

in the granular base course or subbase layers can increase moisture attraction and 

retention, therefore resulting in permanent deformation.  These types of rutting will 

result in depressions within the weak layer, and subsequent deformation of the surface 

asphalt layer in order to conform to the underlying distorted cross-section, as shown in 

Figure 2.1 and Figure 2.2.   

 

Figure 2.1 Rutting of Underlying Pavement Layers (after Asphalt Institute 1996) 
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Figure 2.2 Structural Rutting (courtesy Dr. C. F. Berthelot) 

The second type of rutting is commonly known as visco-plastic rutting, or plastic 

flow rutting.  This type of rutting is caused by deformation within the asphalt layers, and 

results from a lack of shear strength within the mixture to withstand repeated heavy 

loading.  Multiple studies have identified this mechanism as a primary cause of rutting 

problems in North America (Huber and Heiman 1989, Sousa et al. 1991, Brown and 

Cross 1992).  Prior to this research, SDHT has carried out other laboratory and field 

investigations to gain more insight into the plastic flow rutting mechanisms, as a result 

of continued problems with this type of rutting on Saskatchewan highways (Huber and 

Heiman 1986, Duczek 1987, Carlberg et al. 2002, Carlberg 2003, SDHT-2003-A). 

Since hot mix asphalt concrete is a multi-phase particulate composite material 

that consists not only of asphalt cement and aggregate, but also air, the proper amount of 

asphalt for durability and the right balance between air voids and voids that are filled 

with asphalt are essential to achieve well-performing, rut resistant pavements (Roberts et 

al. 1996).  Weak asphalt pavement can accumulate small, permanent strains under 

repeated load application, due to temperature effects on the mechanical behaviour of the 
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asphalt mix.  The strains can be a compilation of vertical consolidation as well as lateral 

shear, resulting in a depression caused by downward and lateral movement of the 

mixture, as illustrated in Figure 2.3.  This is the primary reason why multi-axial testing 

is needed to properly characterize the mechanistic behaviour of asphalt mixes.   

 

Figure 2.3 Rutting of Weak Asphalt Pavement Layer (after Asphalt Institute 1996) 

When field temperatures are high, asphalt cement expands, due to its relatively 

high coefficient of thermal expansion, which increases with increasing temperature.  

Due to the considerable difference in the coefficients of thermal expansion for asphalt 

cement and aggregate (60 x 10-6/°F for asphalt cement, and 3 to 6 x 10-6/°F for 

aggregate), asphalt cement within HMAC will attempt to expand more than the 

aggregate skeleton, resulting in thermally induced stresses on the aggregate.  When the 

air voids in the mix reach a low threshold, which is considered to be two to three percent 

for dense-graded mixes (Parker and Brown 1992), there is insufficient space to 

accommodate the expansion of the asphalt cement.  The aggregate particles are pushed 

apart by asphalt cement, therefore losing interlock, and resulting in a weakened 

aggregate skeleton.  Once the aggregate skeleton structure is compromised, additional 

loading results in the mixture being displaced outside of the rut, forming ridges on either 

side of the rut, similar to Figure 2.4.  To compound the susceptibility to permanent 

deformation, asphalt cement viscosity decreases with increased temperature, making the 

asphalt concrete mix more vulnerable to deformation under load (Asphalt Institute 

1996).   
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There are many factors that affect asphalt concrete mix susceptibility to 

permanent deformation (Huber and Heiman 1989, Sousa et al. 1991).  In addition to the 

proportions of voids within the mix, the physical and mechanistic properties of the 

asphalt cement and aggregate used to engineer the asphalt concrete mix are also critical 

to its performance.  Asphalt cement must be selected with consideration of field state 

conditions, with particular attention to local historic high temperatures and expected 

traffic loading.  Given that aggregate is the main load carrying component of an asphalt 

concrete mix, especially at high temperatures, aggregate properties are critical in 

providing resistance to deformation under load (Field 1958, Davis 1995).  It is 

commonly understood that larger, more angular aggregates, with rough surface texture 

increases rutting resistance (Brown and Bassett 1999, Button et al. 1990, Sousa et al. 

1991, Kandhal and Mallick 2001). 

 

Figure 2.4 Visco-plastic Rutting in Asphalt Pavement Layer (courtesy Dr. C .F. 

Berthelot) 

2.3 Types of Hot Mix Asphalt Concrete Mixes 

Flexible pavements distribute and transfer traffic loads to the prepared roadbed 

(subgrade), and consist of one or more lifts of HMAC and/or aggregate base and subbase 
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placed above the prepared subgrade.  In general, hot mix asphalt concrete can be defined 

as a particulate composite mixture of aggregate and asphalt cement.  The term “hot mix” 

comes from the fact that the materials are heated during mixing, to remove any presence 

of moisture in the aggregate, to heat the aggregate, and to liquefy the asphalt cement for 

proper mixing and coating of aggregate (Asphalt Institute 1997).  There are many 

different types of hot mix asphalt mixtures, serving a multitude of roles in road 

transportation applications.  Typically, the different types of mixes are classified based 

on their aggregate gradation characteristics.  This section covers only the common mix 

types, as they relate to this research, including dense-graded, open-graded, and gap-

graded mixes.  The grain size distributions of these mixes are illustrated in Figure 2.5. 
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Figure 2.5 Aggregate Gradations of Common Asphalt Mix Types 

2.3.1 Dense-Graded Mixes 

Dense-graded asphalt mix relies on an aggregate skeleton that is well-graded, 

meaning that its gradation is relatively evenly distributed ranging from fine to coarse 

aggregate particles.  Dense graded mixes are particularly useful in areas where hot mix 

aggregate is manufactured from glacial gravel deposits (Yoder and Witczak 1975), 

because gravel deposits tend to also be well graded.  Although different types of mixes 
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have been evaluated in the past (Siciliano and Qayyum 1994), Saskatchewan Highways 

and Transportation relies on dense graded mixes for all provincial hot mix asphalt 

concrete needs due to their economics and constructability.   

An example of a SDHT dense-graded gradation is shown in Figure 2.5 and 

Figure 2.6.  A surface photograph of a SDHT dense-graded mix is shown in Figure 2.7.  

Due to the uniform distribution of particle sizes and the gradation near maximum 

density, dense-graded mixes are relatively impermeable.  Dense-graded mixes are 

versatile and can be used in all pavement layers, for all traffic conditions (NAPA 2001).  

They have been proven to work in a multitude of applications, including structural 

layers, surface friction courses, and levelling and patching, making it the most common 

asphalt mixes used today.   
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Figure 2.6 SDHT and Superpave™ Dense-Graded Gradation Comparison 

The performance of dense-graded HMAC mixes was studied extensively under 

the Strategic Highway Research Program (SHRP) implemented by the US Congress in 

1987 (Roberts et al. 1996).  As a result of this research program, a new asphalt concrete 

mix design system called Superpave™ (Superior Performing Asphalt Pavements) was 

introduced.  The Superpave™ mix design method specifies dense-graded mixes by 
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implementing control points and a restricted zone on the standard gradation plot, to 

control the shape of the gradation curve, as illustrated in Figure 2.6 (Asphalt Institute 

1996).  In addition, Superpave™ encouraged coarse mixtures passing below the 

restricted zone, similar to the mix shown in Figure 2.7.  Avoiding the restricted zone was 

incorporated to eliminate mixes that possess too much fine sand in relation to total 

amount of sand, which was known to result in compaction problems during construction, 

and increased susceptibility to permanent deformation (Asphalt Institute 1996).  Recent 

research indicates that well-performing mixes can be achieved by going above and 

through the restricted zone, as well as below it, suggesting that the restricted zone could 

be eliminated altogether (Hand and Epps 2001, Kandhal  and Cooley 2002). 

 

Figure 2.7 SDHT Type 70 Dense Graded HMAC Mix and Superpave™ Dense 

Graded HMAC Mix Cross Section 

2.3.2 Open-Graded Mixes 

Open-graded asphalt mixtures are porous mixes with interconnected voids, 

resulting in increased permeability.  Their gradation is referred to as open, due to the 

mixtures have a larger portion of one-sized coarse aggregate, and only a small portion of 

fine aggregate, resulting in more air voids, since there is not enough fine aggregate to fill 

the spaces between the large rocks.  As shown in Figure 2.5, the gradation line of an 

open-graded mix has a flat appearance in the small size range and is very low on the 

SDHT Type 70 HMAC Mix Superpave
TM

 HMAC Mix 
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vertical scale, indicating a low amount of fine particles.  The open-graded mixtures 

typically consist entirely of crushed stone, or in some cases they are made with crushed 

gravel with small amounts of manufactured sands (NAPA 2001).  Open-graded mixes 

are used when a permeable asphalt mix layer is desired, and/or when increased traction 

in wet conditions is important.   

The most common applications of the open-graded mixes in North America are 

the Open Graded Friction Courses (OGFC).  The OGFC mixes are used as surface 

courses only, usually in areas of high rainfall and high traffic speeds, since their 

advantages include reduced tire splash in wet weather, good skid resistance, and tire-

noise reduction.  Modified asphalts and fibre additives are recommended with OGFC 

mixes to increase the asphalt cement content, to provide better durability and 

performance, and to prevent asphalt cement draindown during the curing period.  In 

addition to issues with increased cost for premium crushed material and modified 

asphalt products, open-graded mixes may experience performance concerns related to 

clogging of the open pores with time, resulting in reduced drainage properties (Kuennen 

2003-A).  Winter maintenance is also a concern with OGFC mixes, since traditional 

applications of sand and salt blend would clog the mix.   

2.3.3 Gap-Graded Mixes 

Another type of HMAC is the gap-graded mix.  Gap-graded aggregate is one that 

consists of only a small percentage of particles in the mid-size range of the gradation, 

resulting in the gradation curve being flat in the mid-size region, as illustrated in Figure 

2.5.  A popular gap-graded application is the stone matrix asphalt (SMA).  The SMA 

mixture typically consists of high quality stone-on-stone skeleton, asphalt cement, 

manufactured sands, mineral filler and additives such as dust, polymers and/or fibres 

(NAPA 2001).  The main benefit of SMA mixes is their resistance to permanent 

deformation, which is largely attributed to the use of cubical, angular crushed stone, and 

the stone-on-stone contact of the coarse aggregate.  In SMA mixes, the coarse aggregate 

distributes and transfers the load to the underlying layers (Roberts et al. 1996).  

Although the capital costs to construct gap-graded mixes can be as high as 50 percent 
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greater than those of conventional asphalt mixes, SMA mixes are known for their 

durability and high level of service, they are said to outperform Superpave™ mixes, and 

their service lives can be up to 20 to 30 percent longer than those of dense-graded 

HMAC (Kuennen 2003-B). 

2.4 Physical Properties of Aggregate 

Aggregates comprise 94 to 95 percent of an asphalt concrete mix by weight (Root 

1989), and they are the main load carrying component.  It, therefore, follows that 

selecting aggregates with desirable chemical and physical properties is an important step 

in achieving pavement quality and durability (Asphalt Institute 1998).  Agencies usually 

rely on internally developed aggregate specifications, which are based on past 

experience.  The researchers involved in the Strategic Highway Research Program 

(SHRP) adopted some of the commonly used material selection guidelines as part of the 

recently developed SuperpaveTM mix design method, by specifying “consensus” and 

“source” properties (Kennedy et al. 1994).  Consensus properties are ones that pavement 

experts widely agreed on were critical to HMAC performance, and their critical values 

were also widely accepted.  Those properties are coarse aggregate angularity, fine 

aggregate angularity, flat and elongated particles, and clay content.  Source properties 

are ones that are also critical to HMAC performance, but a consensus could not be 

reached by experts as to what the specified values should be because they tend to be 

source-specific.  Source properties that are listed by SHRP include toughness, 

soundness, and deleterious materials (Asphalt Institute 1996). 

2.4.1 Aggregate Gradation and Top Size  

Particle size and distribution are two of the most influential aggregate properties 

in hot mix asphalt concrete.  Gradation characteristics influence the permanent 

deformation potential of a hot mix asphalt (Sanders and Dukatz 1992, Haddock et al. 

1999, Kandhal and Mallick 2001).  Gradation influences stability, permeability, 

durability, fatigue resistance, frictional resistance and resistance to moisture damage 

(Roberts et al. 1996).  It is for that reason that gradation is one of the main properties 

included in most asphalt mix specifications and used to classify aggregates.   
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The American Society for Testing and Materials (ASTM) defines coarse 

aggregates as particles retained on a No. 4 (4.75 mm) sieve, and fine aggregate as that 

which passes the 4.75 mm sieve (Roberts et al. 1996).  SDHT uses Canadian Metric 

Sieve Series for particle size and gradation determination, applying the 5 mm metric 

sieve to differentiate between the fine and coarse aggregate for laboratory testing 

purposes. 

Along with gradation, the top size of the aggregate is also thought to be an 

important parameter, especially when considering the susceptibility to permanent 

deformation.  Mixes with larger aggregate design are thought to be stronger than mixes 

prepared with smaller aggregate.  (Brown and Bassett 1990, Kandhal and Mallick 2001).  

SDHT currently specifies three types of aggregate gradations for Hot Mix Asphalt 

Concrete mixes; Type 70, Type 71 and Type 72.  The tolerance bands for each SDHT 

gradation type are listed in Table 2.1 and illustrated in Figure 2.8 (SDHT 2003-B). 

The coarsest gradation used by SDHT is Type 70, with a top aggregate size of 18 

mm, and a nominal maximum aggregate size of 16 mm.  This type of gradation is 

thought to be well suited for high traffic loading roadways.  Type 71 gradation has a top 

size of 16 mm, and a nominal maximum size of 12.5 mm, and is frequently used if the 

Type 70 gradation is not feasible to manufacture, or if the Type 72 gradation is thought 

to be too fine to withstand the predicted loadings over the life of the pavement.  Type 72 

gradation is the finest hot mix aggregate specified by SDHT, with a top size of 12.5 mm, 

and a nominal maximum size of 9 mm.  Type 72 gradation is only used for asphalt 

mixes intended for top lifts.  As can be seen, there is significant overlap between the 

three gradation bands. 

SDHT selects hot mix aggregate gradations based on the maximum aggregate 

size that can be reasonably produced from the gravel source selected for the project, 

along with expected lift thickness.  Quality of the gravel source and ability to 

manufacture the volume of aggregate required at an affordable cost also play a role in 

selecting HMAC aggregate type (SDHT 2001-B).  Workability and ease of handling and 

placement have also recently become significant, due to difficulties with segregation 

during construction. 
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Table 2.1 SDHT Hot Mix Asphalt Aggregate Gradation Specification (SDHT 

2003-B) 

Percent Passing by Weight 

Type 70  Type 71 Type 72  
Sieve Size 

(mm) 
Minimum Maximum Minimum Maximum Minimum Maximum

18.0 100 100 100.0 100.0 100.0 100.0 

16.0 78.0 98.0 100.0 100.0 100.0 100.0 

12.5 68.0 92.0 78.0 98.0 100.0 100.0 

9.0 54.0 80.0 66.0 90.0 66.0 90.0 

5.0 38.0 65.0 46.0 72.0 46.0 72.0 

2.0 18.0 46.0 23.0 51.0 23.0 51.0 

0.90 10.0 33.0 15.0 37.0 15.0 37.0 

0.40 5.0 25.0 10.0 27.0 10.0 27.0 

0.16 3.0 13.0 3.0 14.0 3.0 14.0 

0.071 2.0 9.0 2.0 9.0 2.0 9.0 
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Figure 2.8 Aggregate Gradation Bands of SDHT Hot Mix Asphalt Concrete Mixes 
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2.4.2 Aggregate Shape, Angularity, and Texture 

Particle shape, angularity and texture play an important role in bituminous mixes, 

influencing the load transfer capabilities of the aggregate structure (Field 1958, Ahlrich 

1996).  Shape and texture of the fine aggregate (smaller than 5 mm in diameter) are of 

particular importance in dense graded mixes, because the coarse aggregates (greater than 

5 mm in diameter) are usually not in contact with each other; rather, they are suspended 

in the fine aggregate, which is forced to carry the load (Roberts et al. 1996).  Figure 2.7 

shows the arrangement of aggregate particles in a saw-cut sample from a SDHT mix 

with Type 70 gradation, illustrating that the large rocks are not necessarily in contact 

with each other in this particular mix. 

Suitable HMAC aggregates are cubical rather than flat, thin, or elongated.  

Angular rather than rounded shape is also preferred.  Angularity creates greater interlock 

and internal friction between particles, therefore resulting in greater mechanistic stability 

than can be achieved with rounded particles (Field 1958, Sousa et al. 1991, Tayebali 

1998).  Although mixes with rounded particles, such as natural sands and gravels, are 

more workable and compact easily; they are also more likely to continue compacting 

under traffic loading, resulting in rutting due to low air voids and plastic flow (Button et 

al. 1990, Emery 1990). 

Surface texture of the aggregate also influences the strength and workability 

properties of HMAC (Ahlrich 1996).  Rough-textured surfaces, such as those of crushed 

rock, result in stronger mixes by providing more friction between aggregate faces.  

Rough-textured aggregates typically result in higher voids in the compacted mixture, 

providing additional space for asphalt cement.  The asphalt cement is thought to create 

stronger mechanical bonds with rough-textured aggregate, than with smooth aggregate 

(Roberts et al. 1996).   

2.4.2.1 Coarse Fracture 

In areas where glacial gravel deposits are used as HMAC aggregate sources, the 

only way of obtaining aggregate with angular particles, rough surface texture and 

improved distribution of particle size and range, is to manufacture it through mechanical 
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crushing and sorting of the source gravel (Asphalt Institute 1983).  The crushing process 

for SDHT HMAC aggregate typically involves screening off natural material smaller 

than 9 mm, and crushing the remaining aggregate.  The resulting manufactured material 

is split on the 9 mm screen, into a manufactured fines and a manufactured coarse 

stockpile, respectively.  Figure 2.9 illustrates the effect of mechanical crushing on 

aggregate particle shape of SDHT hot mix aggregate retained on the 5 mm sieve and 

passing the 9 mm sieve. 

In an attempt to indirectly control shape, texture and angularity of the aggregates 

manufactured for use in HMAC production, many agencies specify a minimum amount 

of fracture necessary in coarse aggregate.  Fracture is obtained by a visual count of 

coarse rocks that have mechanically fractured faces, and expressed as percent of the 

coarse portion of aggregate.  SDHT defines fractured aggregate as that which has one or 

more mechanically fractured face (STP 206-14), while some agencies use a minimum of 

two faces.   

The amount of coarse fracture required for SDHT mixes varies depending on the 

application of the HMAC, the asphalt cement used, and the type of aggregate gradation.  

SDHT employs the Marshall mix design method with 50 or 75 blows compactive effort.  

Fracture requirements are greater for pavements intended for high traffic loadings, 

which are designed with the 75 blow Marshall mix design.   

When softer asphalt cement is selected to reduce cracking susceptibility, SDHT 

decreases the fracture requirement for economic reasons, since the softer asphalts are 

typically used on roads with lower traffic volumes.  Aggregates with smaller top size are 

required to meet higher fracture expectations.  Minimum requirements for fracture 

specified by SDHT are summarized in Table 2.2 (SDHT 2003-B). 

It has been long realized that mechanically fractured coarse aggregate produces 

more stable mixtures (Field 1958, Wedding and Gaynor 1961, Emery 1990, Sousa et al. 

1991).  However, it has been suggested that increasing the content of crushed coarse 

aggregate past a certain amount (75-85 percent) in dense-graded mixes results in only 

marginal gains in mechanical stability and/or mechanical behaviour of the mix  



 

 28

 

  

Figure 2.9 Effect of Mechanical Crushing on Aggregate Shape 

(Wedding and Gaynor 1961, Carlberg 2003).  Attempts to correlate coarse fracture to 

field performance have met with marginal success.  Only when analysing field mixes 

with air voids above the minimum specified field voids for dense graded mixes were 

possible relationships visible (Huber and Heiman 1989, Brown and Cross 1992, Parker 

and Brown 1992, Carlberg 2003). 

Table 2.2 SDHT Specifications for Coarse Fracture in HMAC Aggregate 

 Gradation Type 

 Type 70 Type 71 Type 72 

150/200A or 200/300A Asphalt Cement    

          75-blow Marshall, Fracture, Minimum (%) 75 85 95 

          50-blow Marshall, Fracture, Minimum (%) 60 70 80 

300/400A Asphalt Cement    

          75-blow Marshall, Fracture, Minimum (%) 75 85 95 

          50-blow Marshall, Fracture, Minimum (%) 50 60 70 

 

Natural Aggregate Mechanically Fractured Aggregate 
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2.4.2.2 Fine Aggregate Angularity 

The voids in a packed mass of angular, rough-textured aggregate are usually 

higher than those of an aggregate with smooth, rounded particles (Roberts et al. 1996).  

This concept has been applied in various test methods to describe the physical properties 

of aggregate.  Recognizing the importance of the physical properties of fine aggregate in 

dense-graded mixes, SHRP researchers included a test method (ASTM C 1252) and 

specifications for fine aggregate angularity in the Superpave™ mix design (Asphalt 

Institute 1996). 

Fine aggregate angularity (FAA) is defined as the percent of air voids present in a 

loosely compacted aggregate that passes the 2.36 mm sieve (Cominsky et al. 1994).  In 

ASTM C 1252 fine aggregate of a prescribed gradation is poured into a cylinder with the 

use of a funnel.  The filled cylinder is weighed, and the amount of voids in the sample is 

computed using the volume of the cylinder and the specific gravity of the dry aggregate.  

The Superpave™ criteria for fine aggregate angularity are shown in Table 2.3 (Asphalt 

Institute 1996).  Although it is commonly understood that fine aggregate angularity is 

important, industry considers the current Superpave™ specifications of minimum 45 

percent excessive, even for high traffic volumes (Huber et al. 1998). 

Generally, angular and rough-textured aggregate will have a fine aggregate 

angularity greater than 45, whereas rounded, smooth-textured aggregates typically result 

in FAA values less than 43 (Ahlrich 1996).  Fine Aggregate Angularity of 43 has been 

used in the past to divide acceptable and unacceptable mix performance in terms of 

permanent deformation (Brown and Cross 1992).  Although the uncompacted void 

content test method has been proven to successfully differentiate between angular and 

rounded particles, and rank progressively angular gradations (Kandhal et al. 1991, 

Ahlirch 1996, Tayebali et al. 1998), research intended to relate fine aggregate angularity 

to performance has met with limited success.  FAA values generally do not correlate 

well to rutting experienced in the field (Brown and Cross 1992, Parker and Brown 

1992).  This may be related to the fact that FAA only measures a small portion of the 

aggregate skeleton, namely that passing the 2.36 mm sieve.  Attempts to correlate fine 

aggregate angularity to phenomenological tests such as Marshall stability and 
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accelerated rut testers have shown mixed results (Huber et al. 1998, Prowell et al. 2005).  

Attempts to correlate fine aggregate angularity to mechanical tests have also shown 

mixed results (Ahlrich 1996). 

Table 2.3 Superpave™ Fine Aggregate Angularity Criteria 

Depth from Surface Traffic 

(million ESAL) < 100 mm  > 100 mm 

< 0.3  -   -  

< 1 40  -  

< 3 40 40 

< 10 45 40 

< 30 45 40 

< 100 45 45 

> 100 45 45 

 

As discussed in the previous section, SDHT does specify minimum fracture on 

the coarse aggregate retained on the 5 mm sieve (SDHT 2003-B), and increasing coarse 

fracture can result in a higher amount of manufactured fines through the crushing 

process.  However, SDHT specifications do not directly address a minimum amount of 

manufactured fine aggregate or total manufactured aggregate to be used in the HMAC 

design and construction.  In addition, the specifications currently do not address any 

physical properties directly related to particle shape, angularity, or texture in the fine 

portion of the aggregate. 

2.4.3 Clay Content 

Amount of plastic fines is limited to prevent aggregate particles from binding 

together during production, creating weak spots in the asphalt mix.  Clay content is the 

proportion of clay sized material contained in the fine aggregate fraction.  SDHT uses 

the Sand Equivalent test to measure the amount of clay-sized fines compared to sand 

particles in the fine aggregate portion of the gradation.  Aggregate passing the 5 mm 

sieve is mixed and agitated in a flocculating solution in a graduated cylinder.  Once 

settled, the heights of suspended clay-sized particles and sedimented sand are measured.  
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The sand equivalent is a ratio of the height of sand to the height of clay-sized material 

expressed as a percentage (ASTM C 131, STP 206-5).  SDHT specifies a minimum sand 

equivalent of 45 percent for all hot mix asphalt concrete mixes (SDHT 2003-B). 

2.4.4 Flat and Elongated Pieces 

Flat and elongated particles are undesirable in HMAC aggregate structure 

because they tend to break during construction and under traffic (Asphalt Institute 1996).  

Currently SDHT does not employ any specifications that address the amount of flat and 

elongated particles; however, SDHT laboratory staff utilize the standard test procedure 

specified by ASTM whenever flat and elongated particles are of interest during the mix 

design stage.  The ASTM test is performed on aggregate coarser than 4.75 mm; 

however, as previously mentioned, SDHT employs metric sieves; therefore the 5 mm 

sieve is used to separate the coarse aggregates from the fine for the purposes of 

laboratory testing.  A calliper device is used to measure the ratio of the largest 

dimension of an aggregate particle to its smallest dimension (Asphalt Institute 1996, 

ASTM D 4791).  A particle is considered flat and elongated if its maximum to minimum 

dimension ratio is greater than five.  SHRP specifies a maximum content of flat and 

elongated particles of ten percent by mass of coarse aggregate (Asphalt Institute 1996). 

2.4.5 Deleterious Materials 

Aggregates being considered for use in hot mix asphalt concrete should be clean 

and free of undesirable materials, such as lightweight particles (wood, shale, coal, etc.), 

clay lumps, organics, and soft particles (STP 206-9 and STP 206-15).  SDHT specifies a 

maximum of one percent of lightweight pieces allowable by weight of total aggregate.  

All other deleterious materials such as clay lumps, organics, and other soft particles are 

limited to a maximum of two percent (SDHT 2003-B).   
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2.4.6 Adhesion to Asphalt Cement 

Adhesion of asphalt cement to the aggregate in hot mix asphalt concrete depends 

not only on the chemical properties of the asphalt cement, but also on those of the 

aggregate.  Chemical aggregate properties depend on the origin and history of the 

aggregate and its source.  For mix durability and long term performance, it is expected 

that the asphalt cement will bond with the aggregate surface, and that this bond will be 

durable enough to withstand intrusion of water, therefore resisting stripping of the 

asphalt film.  Adhesion properties of aggregate depend on whether the aggregate has a 

greater affinity for asphalt cement or for water, and on the electric charges of the 

aggregate surface.  For example, positively charged aggregates such as limestone and 

dolomite have a higher affinity for asphalt cement, while negatively charged siliceous 

aggregates prefer to bond with water, and therefore have a lower affinity for asphalt 

cement.  Also, the asphalt cement is thought to create stronger mechanical bonds with 

rough-textured aggregate, than with smooth aggregate (Roberts et al. 1996). 

Poor adhesion between asphalt cement and aggregate particles results in moisture 

susceptibility problems during pavement life, commonly referred to as stripping.  

Stripping is defined as the loss of bond between asphalt cement and aggregate surface, 

resulting in exposed aggregate surface with minimal or no asphalt coating (STP 204-15).  

SDHT tests the potential for stripping in all aggregate for use in hot mix asphalt, since 

stripping results in mix durability problems and, therefore, shortens pavement life 

(Kennedy 1983).  SDHT implements the Indirect Tensile Strength test procedure, which 

is based on the modified Lottman test (AASHTO T 283), to determine the loss of 

mechanical strength as measured by tensile strength in Marshall specimens water-cured 

at 60°C, compared to samples air-cured at 25°C, as shown in Equation 2.1.  SDHT 

specifies a minimum of 70 percent of Retained Tensile Strength in the water-cured 

samples (SDHT 2003-B). 

100
)25(

)60(
% ×

°
°

=
Catcuredairstrengthtensile

Catcuredwaterstengthtensile
strengthtensileretained   (2.1) 

Once the indirect tensile strength test is complete, samples are physically split 
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and visual stripping inspection is performed (STP 204-15).  When broken, a sample of 

stripped asphalt concrete will appear brown due to moisture damage, with visible 

uncoated aggregate faces (as shown in Photo A in Figure 2.10), when compared to a 

well-coated mixture, with black asphalt cement and no exposed aggregate (as can be 

seen in Photo B in Figure 2.10).  Anti-stripping additives are available to modify the 

chemical properties of aggregate surface, to facilitate bonding to asphalt cement.   

 

 

Figure 2.10 Stripping in Asphalt Concrete 

SDHT mitigates aggregate stripping susceptibility by adding one percent of 

hydrated lime by weight of aggregate as an anti-stripping agent.  When the lime cannot 

be accommodated in the asphalt aggregate gradation, liquid anti-stripping additives are 

used to provide improved bonding between the asphalt cement and the aggregate 

particles.  SDHT preference for using hydrated lime stems from the fact that in addition 

to reducing moisture susceptibility, lime also improves field performance of SDHT 

mixes by reducing susceptibility to permanent deformation, oxidation, and fatigue 

cracking, and therefore lowering maintenance costs of lime-treated asphalt mixes 

(Beshara 2004).   

In addition, hydrated lime affects the mechanistic properties of SDHT mixes by 

increasing the dynamic modulus and reducing axial micro strains when tested using 

rapid triaxial frequency sweep equipment characterization (Berthelot et al. 2005). 

Photo A: No Anti-Stripping Additives Photo B: With One Percent Lime 
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2.5 Physical Properties of Hot Mix Asphalt Concrete Mixes 

Hot mix asphalt concrete consists of three components: mineral aggregate, 

asphalt cement binder, and air voids, as shown in a saw-cut cross-section of an HMAC 

pavement core in Figure 2.11.  The relative proportions of these material components 

have long been recognized as significant in terms of HMAC field performance (Coree 

1999).   

 

Figure 2.11 Saw-Cut Asphalt Concrete Surface  

Although the acceptable ranges and limits may vary, the important physical 

volumetric parameters, such as the amount of air voids and the level of air voids filled 

with asphalt, form the basis of current asphalt concrete mix design methods (Foster 

1993, Asphalt Institute 1996).  This section briefly defines the common physical mix 

properties measured, with reference to the current SDHT specifications for hot mix 

asphalt concrete. 

Aggregate 

Asphalt 

Cement 

Air 

Voids
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1.1.1 Voids in the Mineral Aggregate 

Voids in the Mineral Aggregate, or VMA, is the total volume of void space 

available in a compacted aggregate structure.  VMA governs the minimum asphalt 

content and affects the long term performance of HMAC pavements, and has been 

widely accepted as one of the main control parameters for the design of dense-graded 

mixes (Aschenbrener and MacKean 1994, Kandhal and Chakraborty 1996).  It can be 

calculated using bulk specific gravity of aggregate (Roberts et al. 1996): 

100
/

/
100 ∗−=

mbT

sbAgg

GM

GM
VMA  (2.2) 

where: 

VMA  = Voids in mineral aggregate 

Magg  = Mass of aggregate 

Gsb  = Bulk specific gravity of aggregate 

MT  = Total mass of mixture 

Gmb  = Bulk specific gravity of compacted mixture 

Appropriate VMA is required to provide space in the mix for enough asphalt 

cement to achieve proper aggregate coating and bonding, as well as to leave air voids for 

the thermal expansion of asphalt cement during high in-service temperatures.  VMA in a 

compacted asphalt concrete has two components: the volume of voids that is filled with 

asphalt cement, and remaining voids filled with air (Roberts et al. 1996).  SDHT 

specifies a range of acceptable VMA depending on the gradation of HMAC aggregate 

used, as shown in Table 2.4 (SDHT 2003-B). 

Table 2.4 SDHT Specifications for Voids in Mineral Aggregate 

VMA (%) Gradation Type 
Minimum Maximum 

Type 70 13.5 15.5 

Type 71 14.0 16.0 

Type 72 14.0 16.0 
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2.5.1 Voids in Total Mix  

Sufficient air voids in a compacted asphalt mix are required to allow for thermal 

expansion of asphalt cement at high temperatures.  Voids in Total Mix (VTM) are a 

measure of the volume of voids remaining in the mix after compaction, and is expressed 

as (Roberts et al. 1996): 
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where: 

VTM  = Voids in total mix 

MT  = Total mass of compacted specimen 

VT   = Total volume of compacted specimen 

VEAC  = Volume of effective asphalt content 

VAgg  = Volume of aggregate (bulk) 

Numerous studies have linked insufficient air voids to loss of strength during hot 

weather, resulting in permanent deformation (Brown and Cross 1992, Emery 1990, 

SDHT 2003-A).  In response to significant rutting problems on selected provincial 

highways, SDHT conducted a major rutting study in 1986.  The study concluded that 

rutting correlated with asphalt content, VTM, and voids filled with asphalt, although the 

correlation coefficients obtained were marginally acceptable (Huber and Heiman 1986).  

Another SDHT internal study in 1987 examined behaviour of full depth asphalt mix and 

found that low air voids were one of the primary contributing factors to plastic flow 

deformation (Duczek 1987). 

During the mix design stage, engineers aim to simulate an air void content in the 

laboratory compacted mix representative of that in a field mix after several years of 

service.  Similar to commonly used specifications for dense-graded mixes (Asphalt 

Institute 1997), SDHT specifies a range of acceptable VTM from three to five percent. 
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2.5.2 Voids Filled with Asphalt 

The part of VMA that is occupied by effective asphalt cement (that which is not 

absorbed by the aggregate itself) is referred to as Voids Filled with Asphalt, or VFA.  

The amount of voids filled with asphalt is directly related to the amount of void space 

available in the aggregate skeleton (VMA) and to the amount of air voids (VTM); 

therefore, it is an important parameter that is found to relate to asphalt pavement 

performance (Huber and Heiman 1986).  During an in-service rutting investigation of 

select Saskatchewan asphalt pavements, it was found that VFA influences the amount of 

rutting observed during the service life of an asphalt pavement (Carlberg et al. 2002).  

SDHT specifies a range of acceptable VFA of 65 to 78 percent.   

100∗
−

=
VMA

VTMVMA
VFA  (2.4) 

where: 

VFA  = Voids filled with asphalt 

VMA  = Voids in mineral aggregate 

VTM  = Voids in total mix 

2.5.3 Asphalt Film Thickness 

Thin asphalt coating is one of the parameters linked to excessive aging of asphalt 

binder, resulting in decreased pavement life.  Asphalt film thickness is a calculated 

parameter, which is determined by dividing the total surface area of the aggregate 

obtained from its gradation, by the effective asphalt content: 

000,1∗
∗

=
MSA

V
T

asphalt

f  (2.5) 

where: 

Tf   = Average film thickness (microns) 

Vasphalt = Effective volume of asphalt cement (litres) 

SA  = Surface area of the aggregate (m2 per kg of aggregate) 

M   = Mass of aggregate (kg) 
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The surface area of particles is calculated based on the gradation of the aggregate 

being used in the hot mix asphalt.  Total percent passing each sieve size is multiplied by 

a surface area factor, and the sum of these products represents the surface area of the 

sample in m2/kg.  The surface area factors are provided by the Asphalt Institute (Asphalt 

Institute 1997), with a caution that they assume spherical shape of aggregate, and are 

intended as an index factor only.  The factors were developed for Imperial sieve sizes; 

therefore, SDHT converts the amount passing the SDHT standard metric sieve sizes to 

what would pass the Imperial sieves, and then the surface area factors shown in Table 

2.5 are applied, and an estimated film thickness is calculated. 

Table 2.5 Surface Area Parameters for Asphalt Film Thickness Calculations 

Imperial Sieve Number Surface Area Factor (m
2
/kg) 

#4 0.0041 

#8 0.0082 

#16 0.0164 

#30 0.0287 

#50 0.0614 

#100 0.1229 

#200 0.3277 

 

Although film thickness is a purely conceptual parameter, and is based on many 

assumptions, it is a common approach used by design engineers to quantify the coating 

of the aggregate particles in the asphalt concrete mixture (Kandhal and Chakraborty 

1996).  Ensuring an adequate film thickness protects against premature pavement 

cracking caused by oxidation, because if the asphalt cement is too thin, air can more 

readily oxidize the thin films resulting in brittleness (Roberts et al. 1996).  SDHT 

specifies a minimum film thickness of 7.5 µm. 

2.6 Asphalt Concrete Mix Design Methods 

Asphalt concrete mix design methods attempt to balance the composition of 

aggregate and asphalt cement to achieve long lasting performance in a pavement 

structure.  Laboratory testing is conducted to determine the optimum proportion of the 

materials to achieve: 
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• Minimum sufficient asphalt cement content to coat the aggregate to ensure 

durability and to maximize cost effectiveness of the amount of asphalt 

cement added. 

• Adequate mix stability to withstand the traffic conditions without distortion. 

• Sufficient air voids in the compacted mix to accommodate a small amount of 

compaction under traffic, and to allow for asphalt expansion during high 

temperatures without compromise of performance. 

• An asphalt concrete mix that is relatively impermeable, to limit the intrusion 

of air and moisture which may affect durability. 

• Workability that allows for efficient placement of the mix during 

construction, without segregation, and without compromising performance. 

• Sufficient skid resistance in inclement weather (Asphalt Institute 1997). 

Besides selecting suitable aggregates and asphalt cement type, the traditional mix 

design process involves preparing and compacting laboratory samples of trial mixes, 

determining their volumetric properties, assessing stability through mechanical testing, 

and analysing results to determine the most suitable mixture composition for the 

specified conditions.   

Traditional mix design methods are based on phenomenological-empirical 

concepts that do not measure fundamental mechanistic material properties, and therefore 

do not relate directly to field performance.  The specifications for the design parameters 

used by traditional methods have been empirically developed by correlating the 

laboratory test results of phenomenological tests with the performance of the paving 

mixes in the field.  Since these correlations were made for specific conditions, their 

application is limited to those specific conditions (Cominsky 1994, Roberts et al. 1996, 

Asphalt Institute 1997).  A brief summary of the common mix design methods is 

presented in the following sections. 
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2.6.1 Marshall Mix Design 

The Marshall method of asphalt mix design was created by Bruce Marshall in the 

1930’s, for use by the Mississippi State Highway Department.  The method was studied 

and modified in the following years by the US Army Corps of Engineers for use in 

designing asphalt pavement for aircraft (Foster 1993).  The primary goal of the Corps of 

Engineers was to develop a quick, portable laboratory procedure that helped select 

proper asphalt cement content.  Since then, this method has been standardized 

(AASHTO T 245, ASTM D 1559) and is widely used by many road agencies in North 

America as the primary method of asphalt pavement design (Hafez and Witczak 1995).  

Saskatchewan Highways and Transportation relies exclusively on the Marshall method 

for the design of HMAC mixes. 

Once the aggregate proportions and the asphalt cement grade are selected, trial 

samples are compacted in the lab at various asphalt cement contents above and below 

the expected optimum.  Once trial mixes are prepared, a Marshall hammer is used to 

compact laboratory specimens of 102 mm (4 inch) diameter with a height of 64 mm (2.5 

in.).  The Marshall hammer achieves compaction in a sample by dropping a 10-lb (4536-

g) flat-faced weight onto the surface of the sample from a height of 18 inches (457.2 

mm).  The sample receives an equal number blows on each face (ASTM D 1559).  The 

traditional Marshall hammer is a hand-held device, requiring the weight to be manually 

lifted and dropped by the operator to apply each blow.  SDHT uses mechanical Marshall 

compactors such as the one shown in Figure 2.12.  The SDHT compactors have a 

rotating base that moves between blows, and a bevelled hammer head.  These 

compactors are correlated to the traditional hand-held, flat-faced hammer compactors, to 

determine the equivalent number of blows that need to be applied to the asphalt samples. 

The level of compaction varies depending on expected traffic loading.  Typically, 

for light traffic, 35 blows are used.  For medium traffic, the 50 blow design is 

implemented, and mixes intended for roads with high traffic loadings are designed using 

75 blows.  SDHT uses the 50 blow design for roads with a design traffic loading up to 

three million ESALs.  The 75 blow design is used for mixes intended for roads with 

traffic volumes higher than three million ESALs (SDHT 2001-B, SDHT 2003-B), which 
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includes 3847 lane km of roads on the National Highway System (Frass 2007), and 

selected primary economic routes which carry high volumes of truck traffic. 

To test the trial mixes for mechanical strength, the Marshall mix design utilizes 

the Marshall stability and flow apparatus, also known as the Marshall stabilometer, 

which is illustrated in Figure 2.13.   

 

Figure 2.12 Marshall Compaction Apparatus at SDHT Laboratory 
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Figure 2.13 Marshall Stabilometer at the SDHT Laboratory 

Samples are placed in a Marshall breaking head, which has an upper and a lower 

cylindrical segment with an inside width of two inches (50.8 mm), conforming to the 

diameter of the compacted asphalt concrete samples.  The samples are heated to 60°C 

and placed in the assembly on their side.  A vertical load is applied to the assembly at a 

rate of 2 inches/minute (50.8 mm/minute), until maximum load is reached.  When the 

load begins to decrease, the test is stopped and the stability (maximum load) is recorded 

in pounds (Newtons).  During the loading an attached dial gauge measures the 

specimen’s plastic flow as a result of the loading.  The flow value in 0.01 inch (0.25 

mm) increments is recorded at the time when the maximum load is reached.  This 

concept is illustrated in Figure 2.14.  SDHT specifications for Marshall stability and 

flow are shown in Table 2.6. 
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Figure 2.14 Marshall Stability and Flow Measurement 

 

Table 2.6 SDHT Specifications for Marshall Stability and Flow (SDHT 2003-B) 

Level of Marshall Compaction Marshall Property 
50 blows 75 blows 

Stability, minimum (Newton) 5,500 7,000 

Flow, range (mm) 1.5-3.5 1.5-3.5 

 

The optimum asphalt content according to the Marshall mix design is chosen 

based on examining volumetric properties of the specimens as well as their stability and 

flow test results.  Graphical plots are constructed for each parameter to observe changes 

with varying asphalt content.  Typically, asphalt mix designers aim for an air void 

content between three and five percent (Asphalt Institute 1997).  Agencies utilize 

specifications for volumetric properties, stability and flow, and the successful mix will 

meet all the requirements; otherwise, the aggregate gradation composition has to be 

modified and re-evaluated.   

Although the Marshall method is very popular, there are several limitations 

associated with its ability to reliably predict performance.  The Marshall hammer uses 
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direct impact compaction, which does not simulate field compaction conditions, given 

that the asphalt rollers create more of a kneading type action than direct impact.  Also, 

the compacted Marshall sample is very small in diameter, and studies have shown that 

four inch diameter samples have higher variability of stability and flow results than six 

inch samples, especially for mixes with large top aggregate size (Kandhal and Brown 

1990, Lim et al. 1995).  In addition, Marshall stability and flow results are different 

when sample diameter is changed (Kandhal et al. 1996).  The question of scale in 

asphalt mix testing is an important one.  Due to the fact that asphalt mix is a particulate 

composite material, in order to satisfy the concept of homogeneity of a sample, the 

sample should be large enough so that its global characteristics remain constant 

regardless of its location (Weissman et al. 1999).  The Marshall mix design method 

utilizes a phenomenological-empirical approach to characterize asphalt concrete.  The 

stability and flow parameters do not measure fundamental mechanistic material 

properties; therefore, they are not directly related to field performance, making their 

validity based solely on past experience with correlation to field performance.   

2.6.2 Hveem Mix Design 

The Hveem mix design method was developed over several years by Francis 

Hveem, a California materials engineer, and finalized in 1959 (Roberts et al. 1996).  

This mix design method was adopted by several state highway agencies in the United 

States, and continues to be used as a mix design method primarily in the Western United 

States (Linden et al. 1989, ASTM D 1560, AASHTO T 246). 

A kneading compactor is used to compact samples of a diameter of 102 mm and a 

height of 63.5 mm.  The Hveem compactor applies pressure to the asphalt mix in the 

mould through a hydraulic-powered tamping foot, while the base rotates between 

pressure applications.  This kneading action is intended to simulate the rolling effect of 

pavement compaction equipment.  An illustration of this apparatus is shown in Figure 

2.15. 
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Figure 2.15 Hveem Kneading Compactor Foot and Rotating Base 

Realizing that rutting was a major distress of asphalt mixes, and that there was a 

need to assess the asphalt mix and its ability to resist shear forces applied by wheel 

loads, Hveem developed the Hveem stabilometer, shown in Figure 2.16.  In this 

apparatus, the compacted asphalt mix specimen is subject to a vertical load applied on 

the flat surface, and the amount of load transmitted horizontally is recorded.  The 

perimeter of the specimen is confined in a diaphragm, and is surrounded by an oil 

reservoir, to simulate field loading conditions (Roberts et al. 1996).  The increase of 

pressure in the oil is recorded as the horizontal pressure resulting from the vertical load.  

Once the samples have undergone stability testing, the method originally 

included testing with the Hveem cohesiometer.  This test equipment and method was 

developed to quantify cohesive strength across the diameter of a sample, and consists of 

bending the sample as a cantilevered beam until it fails.  Although it was useful for oil 

mixes, HMAs tend to have large cohesion values as measured by the cohesiometer and 

rarely, if ever, fail.  As a result, the cohesiometer is rarely used (Roberts et al., 1996). 

Based on the philosophy that hot mix asphalt requires sufficient stability to resist 

traffic loading, and that climatic durability increases with thicker asphalt films, the 
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Figure 2.16 Hveem Stabilometer (Courtesy Dr. C.F. Berthelot) 

design asphalt content is selected as that asphalt content resulting in the highest 

durability without dropping below a minimum allowable stability.  Therefore, the 

asphalt content is maximized, while meeting minimum stability requirements.  

When compared to the Marshall mix design, the Hveem mix design method has 

several advantages.  The kneading compactor better simulates field compaction than 

does the direct impact compaction of the Marshall hammer.  Also, Francis Hveem 

recognized the importance of quantifying stress and strain, and the need for creating 

equipment capable of testing both bound and unbound road materials.  Thus test 

procedures were developed utilizing the stabilometer, not only for asphalt mix testing, 

but also to characterize subgrade strength, through measuring the R-value (ASTM D 

2844).  The Hveem mix design procedure incorporates important engineering principles; 

however, it also has several limitations.  The specimen dimensions are limiting, for 

similar reasons as the Marshall method.  Although the Hveem stabilometer measures 

multiaxial behaviour of asphalt concrete mixes, the test procedure was developed based 

on correlations between laboratory and field observations, and does not directly measure 

mechanistic material properties, which are necessary for mechanistic road modelling and 

performance prediction (Berthelot et al. 1999). 
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2.6.3 Superpave™ Level I Mix Design 

The SHRP research program was initiated with one of the primary goals being to 

improve upon the shortcomings of the traditional mix design methods, and to evelop a 

new mechanistic, performance based hot mix asphalt concrete design procedure.  As a 

result of this 1987 multi-million dollar undertaking by the USA and thirteen other 

countries, the SuperpaveTM asphalt concrete mix design method was created (Asphalt 

Institute 1996).  The method consists of three levels of design, which are progressively 

more rigorous and involved.  This method of design is becoming popular as a 

replacement for the traditional Marshall and Hveem methods.  Many US and Canadian 

agencies have either already implemented, or are considering implementing the 

Superpave™ Level I method of mix design in part or in its entirety (Better Roads, 

January 2000). 

Superpave™ is the first mix design system to employ mechanistic-based asphalt 

binder specifications, and mechanistic-related aggregate specifications.  Traditionally, it 

was up to each agency to develop a rationale for aggregate and asphalt binder selection.  

This method also incorporates sophisticated compaction equipment thought to be more 

simulative of field compaction than the impact hammers used by the Marshall mix 

design method.   

Under the Superpave™ Level I mix design, once the aggregates and asphalt 

cement are selected based on Superpave™ specifications, trial mixes are manufactured 

at various asphalt contents above and below the expected optimum, similar to the 

Marshall method.  However, unlike the Marshall method, the specimens required for a 

Superpave™ mix design are considerably larger, with a diameter of 150 mm and a 

height of 150 mm.  The larger samples allow for testing of mixes with larger top size 

aggregates, and provide better representation of mix behaviour by minimizing the 

influences of sample shape and variability.  While the Marshall method attempts to 

select an asphalt content to satisfy a range of air voids of three to five percent, the 

optimum asphalt content in the Superpave™ method is selected based on a desired level 

of four percent air voids in the mixture compacted with the amount of compaction 

equivalent to what is expected during the design life of the pavement. 
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The most significant breakthrough in this asphalt concrete design method is no 

doubt the adoption of sophisticated compaction equipment, in the form of a Superpave™ 

gyratory compactor, shown in Figure 2.17.  After reviewing gyratory compaction 

procedures which have been utilized around the world since the 1930’s, the SHRP 

researchers modelled the Superpave™ gyratory compactor after the Texas gyratory 

compactor, and the French gyratory compactor used by Laboratoire Central des Ponts et 

Chaussees (LCPC) (Huber 1996). 

 

Figure 2.17 SHRP Gyratory Compactor with Compacted Sample 

The Superpave™ gyratory compactor employs a vertical pressure of 600 kPa, 

which is applied on a heated asphalt mix sample contained in a cylindrical mould with 

an inside diameter of 150 mm, while the mould itself is being gyrated around an angle of 

1.25 degrees from a vertical axis.  This computerized apparatus can monitor the increase 

in specimen density with increased compactive effort in real time.  The densification is 

measured as a percent of the theoretical maximum specific gravity (Gmm) of the asphalt 

concrete mix being compacted.   
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The design level of compaction (Ndes, or Ndesign) expressed by the number of 

gyrations of the compactor, is the amount of compaction expected in the field after the 

mix is subjected to the design number of ESALs.  Therefore, the appropriate Ndes is 

selected based on the design traffic volumes, and the local temperature regime 

(Cominsky et.al. 1994).  Table 2.7 illustrates the selection criteria for compactive effort 

required.  The Superpave™ mix design method utilizes two other critical threshold 

levels of compaction to control mix densification.   

The initial number of gyrations (Nini, or Ninitial) is used to assess the 

compactability of mixes.  If the mix densifies too quickly, problems with field densities 

and permanent deformation may be encountered.  SuperpaveTM specifies a maximum 

allowable mixture density of 89 percent of Gmm at Nini.  The maximum number of 

gyrations (Nmax, or Nmaximum) represents a level of compaction that should in theory 

never be exceeded during the life of the pavement.  The level of compaction in the 

asphalt mix should not exceed 98 percent of Gmm at Nmax (Asphalt Institute 1996). 

Table 2.7 Superpave™ Design Gyratory Compaction Effort (after Asphalt 

Institute 1996) 

Average Design High Air Temperature 

< 39
o
C 39 - 40

o
C 41 - 42

o
C 43 - 44

o
C 

Design 

ESALs 

(million) 
Nini Ndes Nmax Nini Ndes Nmax Nini Ndes Nmax Nini Ndes Nmax 

< 0.3 7 68 104 7 74 114 7 78 121 7 82 127 

0.3 - 1 7 76 117 7 83 129 7 88 138 8 93 146 

1 - 3 7 86 134 8 95 150 8 100 158 8 105 167 

3 - 10 8 96 152 8 106 169 8 113 181 9 119 192 

10 - 30 8 109 174 9 121 195 9 128 208 9 135 220 

30-100 9 126 204 9 139 228 9 146 240 10 153 253 

> 100 9 143 235 10 158 262 10 165 275 10 172 288 

 

Although the Superpave™ Level I mix design system is a significant step 

forward in the state-of-the-art of pavement design, it does not incorporate mechanistic 

testing at temperatures representative to those in the field.  Instead, the method uses 

volumetrics and mix response to compaction to indicate a suitable mix (Sousa et al. 

1995), by specifying the number of gyrations for compaction depending on traffic 
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loading, and by limiting the amount of densification at Nini and Nmax.  There is a general 

feeling by the industry that physical mix properties alone are insufficient to select 

appropriate asphalt concrete mixes, and research is currently ongoing to develop a 

simple performance test that can be incorporated into the Level I mix design (Witczak et 

al. 2002).   

2.7 Mechanistic Hot Mix Asphalt Concrete Material Characterization 

The intent of any asphalt concrete mix design is to create a mixture that will 

withstand the loading and environmental conditions to which the pavement is subjected 

in the field.  In addition to the physical characteristics of the mix, engineers focus on 

predicting the performance of the mixture under the field state conditions.  Material 

characterization is the measurement and analysis of the response of HMA mixes to load, 

deformation, and/or the environment at various rates of loading and temperatures 

(Roberts et al. 1996).  Traditional asphalt concrete mix design methods employ 

phenomenological-empirical materials tests, such as Marshall stability and flow, which 

are based on their correlation with field performance.  These methods use simulative 

tests and experience-based knowledge of material behaviour in the field.  The 

applicability of such tests is limited to the specific conditions upon which they were 

developed, and cannot be reliably adapted outside those parameters.  These tests cannot 

be relied on to correctly rank mixes with respect to their permanent deformation 

performance (Brown et al. 2004).   

In order to be able to predict material behaviour, the concepts of continuum 

mechanics and measures of fundamental material properties such as stress and strain 

need to be employed.  While pavement engineering has traditionally relied on empirical-

based materials testing, other engineering disciplines such as aerospace and mechanical 

engineering have successfully incorporated fundamental material properties for material 

characterization and mechanistic structural modeling (Allen and Haisler 1985).  In fact, 

they have taken the next step, and are now researching the mechanics of critical failure 

conditions on a micro-scale (i.e. micro-damage mechanics).  They are able to do so by 

having the necessary mechanistic material properties obtained from applying continuum 

mechanics (Goyal and Johnson 2003, McBagonluri et al. 2005). 
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Although it is more challenging to develop and implement tests that quantify 

fundamental paving material properties, the pavement engineering community has been 

interested in mechanistic testing for over fifty years (Yoder and Witczak 1975).  The 

advantage of mechanistic-based tests is that they quantify fundamental thermo-

mechanical material behaviour across various field state conditions, such as various 

stress and strain states, and temperatures.  Because the properties measured by these 

tests are fundamental, apply to all materials, and do not change with time, they are the 

best choice for the basis of any performance prediction models.   

2.7.1 SuperpaveTM Level II and III Mix Design 

The SHRP research program invested 50 million (USD) into developing new, 

mechanistic-based performance-prediction test methods, some of which were 

incorporated into Superpave™ Levels II and III designs (Kennedy et al. 1994).  The 

Superpave™ Shear Tester (SST) was implemented in Levels II and III to predict the 

development of permanent deformation and fatigue cracking in the mix over time.  This 

sophisticated testing equipment is designed to simulate the high shear stresses that exist 

near the pavement surface at the edges of the vehicle tires (Cominsky 1994).  However, 

the SST equipment is extremely expensive, the tests are complex to perform, and 

specimens need to be cut and glued before testing (Berthelot 1999, Brown et al. 2004).  

In a comprehensive study of various mixes at the Saskatchewan SPS-9A site, the 

Superpave™ Shear Tester was found to have a high coefficient of variation (CV) when 

compared with the variability of other test methods (Berthelot 1999).   

SHRP made considerable progress in developing the theoretical material science 

to mechanistically characterize asphalt mixes and predicting performance (SHRP 1993).  

However, the Level II and Level III test methods although based on mechanistic 

principles, are complex, expensive, and time consuming.  Also, recent research indicates 

that these tests may not be reliable for performance prediction (Anderson et al. 1999, 

Berthelot et al. 1999).  For these reasons, the Level II and Level III tests are rarely used. 

Although extensive research has gone into the mechanistic approach to HMAC 

materials testing and various methods exist (SHRP 1994-A, SHRP 1994-B, FHWA 
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2000), there is a lack of consistency and agreement in the industry as to which tests, if 

any, best predict pavement performance.  Despite the attempts by SHRP, a standardized 

approach to performance prediction testing that is universally accepted has yet to be 

achieved (Carpenter and Vavrik 2001, Witczak et al. 2002, Brown et al. 2004). 

2.7.2 Repeated Load Rapid Triaxial Testing 

Repeated load triaxial testing is one form of mechanistic performance-related 

testing that is showing successful results in characterizing hot mix asphalt concrete 

mixes (Berthelot 1999, Carpenter and Vavrik 2001, Crockford et al. 2002, Shenoy and 

Romero 2002).  The triaxial approach to testing materials was originally developed in 

1930 for soils testing (Holtz and Kovacs 1981) and has been adapted in various forms to 

other materials testing.   

In typical triaxial testing of bituminous materials, the sample is subjected to a 

dynamic axial load, usually applied in a sinusoidal or haversine wave form, with 

continuous radial confinement, as illustrated in Figure 2.18.  Although some unconfined 

test methods exist, applying confining pressure better represents material field state 

conditions, since the asphalt concrete in vehicle wheel paths is confined in the field by 

the surrounding pavement structure.  Also, applying confining pressure to the sample 

during characterization allows better representation in the field states without 

prematurely failing the sample (Brown et al. 2004).  Studies to determine whether 

confined or unconfined tests provide better performance prediction in terms of 

permanent deformation have presented conflicting results (Carpenter and Vavrik 2001, 

Shenoy and Romero 2002, Pellinen and Witczak 2002, Sotil et al. 2004).  However, it 

should be noted that unconfined tests do not provide the necessary material constitutive 

relations under realistic field state conditions for mechanistic road modelling; they are 

only an index of strength. 

Sophisticated triaxial test apparatus available now is software-operated, full 

feedback controlled, capable of applying loads at various frequencies, with multiple 

combinations of axial and radial stress states, across a range of test temperatures.  The 

equipment measures the radial and axial strains resulting from the loading combinations, 
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and allows the quantification of elastic and visco-elastic material properties, such as the 

Complex Modulus (E*), Dynamic Modulus (Ed), Poisson’s Ratio (ν), and the Phase 

Angle (δ).  Studies are currently under way to evaluate repeated load triaxial test 

methods for inclusion in the Superpave™ mix design to predict rutting performance of 

HMA mixes (NCHRP 2004, NCHRP 2005). 
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Figure 2.18 Application of Stresses in Confined Repeated Load Triaxial Testing 

2.7.2.1 Complex and Dynamic Modulus 

Hot mix asphalt concrete is a multi-phase particulate composite material.  Due to 

the rheological properties of the asphalt cement binder, HMAC mixtures behave as 

visco-elastic solids under typical ranges of Saskatchewan field state conditions.  For 

visco-elastic materials, the stress-strain relationship under a continuous sinusoidal 

loading can be defined by a complex number, E*, that is comprised of a real and an 

imaginary component.  The real component is considered the recoverable (elastic) 

portion of the deformation, and the imaginary component is the non-recoverable 

(viscous) portion. 

The Complex Modulus is a ratio of the amplitude of the time-dependent 

sinusoidal stress applied to the material and the amplitude of the time-dependent 

sinusoidal strain that results from the stress application (Pellinen and Witczak 2002).  

This relationship can be expressed as follows: 
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where: 

E* = Complex Modulus (Pa) 

σ  = Applied stress (Pa) 

ε  = Strain response to applied stress (µm/µm) 

σ11p  = Peak stress applied in the X1 coordinate direction (Pa) 

e  = Exponent e 

i  = Imaginary component 

ω  = Angular load frequency (radians per second) 

t  = Load duration (seconds) 

ε11p = Peak strain response in X1 coordinate direction (µm/µm) 

δ  = Phase angle (radians) 

 
A higher stiffness modulus indicates that a given applied stress results in lower 

strain in the mixture (Roberts et al. 1996).  Implemented for ease of interpretation, the 

dynamic modulus for linear visco-elastic materials, Ed, is a measure of the absolute 

value of peak stress to peak strain during material response.  The primary purpose for 

determining the dynamic modulus is to quantify the stress-strain relationships in a 

pavement structure under an applied load.  For an elastic material, the applied stress 

results in instantaneous strain, and the phase angle is zero, therefore, after manipulating 

equation 2.5, the dynamic modulus can be expressed as the absolute value of the 

complex modulus, E* (Berthelot 1999), as is illustrated in Equation 2.7.   

p

p

d EE
11

11*

ε
σ

==  (2.7) 

2.7.2.2 Phase Angle 

The phase angle in a repeated load triaxial test is the shift in time between the 

applied stress and the resultant strain, and can be used to indicate the visco-elastic 

properties of the material tested, as shown in Figure 2.19 (Pellinen and Witczak 2002).   
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Figure 2.19 Phase Angle and Complex Modulus E* in Polar Coordinates 

In a purely elastic response, the phase angle will be zero, whereas a purely 

viscous response will be indicated by a phase angle of 90 degrees.  Phase angle can be 

expressed as (Yoder and Witczak 1975): 

)360( °=
p

i

t

t
δ  (2.8) 

where: 

δ  = Phase Angle (degrees) 

ti  = time lag between a cycle of sinusoidal stress and a cycle of strain (sec) 

tp  = time for a stress cycle (sec) 

 

2.7.2.3 Poisson’s Ratio 

Poisson’s ratio is the relationship of the lateral strain to the axial strain, resulting 

from an applied load in the axial direction.  When continuous radial confinement is 

applied to a sample in triaxial testing, radial and axial strains are monitored directly, and 

Poisson’s ratio can be expressed as (Berthelot 1999): 
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where: 

ν  = Poisson’s Ratio in X1 coordinate direction 

ε11 = Strain in X1 coordinate direction (axial) 

ε22 = Strain in X2 coordinate direction (radial) 

ε33 = Strain in X3 coordinate direction (radial) 

 
Because particulate composite materials are capable of generating significant 

ranges in Poisson’s ratio, Poisson’s ratio can be a critical measure of mechanistic 

behaviour of road materials and can significantly influence the behaviour of road 

structures, depending on the material location in the road structure. 

2.8 Chapter Summary 

This chapter presented a discussion on the challenges faced by Saskatchewan 

Highways and Transportation in the area of asphalt pavements.  A summary of the hot 

mix asphalt concrete design and evaluation concepts applicable to this research were 

also presented. 

With increasing traffic loadings and the limited funding for the maintenance and 

rehabilitation of Saskatchewan highways, there is a need to deliver value-engineered 

asphalt concrete pavements.  Saskatchewan highways have demonstrated premature 

pavement failures due to plastic flow rutting, and the amount of rutting on the provincial 

asphalt concrete road network is increasing.  Other road agencies in North America have 

also identified plastic flow as the main cause of rutting.  There is a need to design mixes 

that are capable of withstanding the increased traffic loadings and are not susceptible to 

plastic flow rutting.   

In dense-graded mixes, such as the ones used by Saskatchewan Highways and 

Transportation, aggregate gradation, shape, angularity, and texture are key in providing a 

stable and structural aggregate skeleton.  In light of Saskatchewan’s glacial history, 

asphalt mix aggregates are manufactured from glacial deposits, the quality and 



 

 57

availability of which are continually declining.  Maximizing aggregate usage and at the 

same time providing high-performance aggregate for hot mix asphalt production is 

essential for SDHT. 

The current Marshall mix design method employed by the SDHT utilizes a 

phenomenological-empirical approach to characterizing asphalt mixes.  For this reason, 

the Marshall method does not adequately quantify the fundamental mechanistic material 

properties needed to properly characterize asphalt mix behaviour, and the Marshall 

stability and flow results are not directly related to field performance.   

The Hveem mix design method, and the Superpave™ Level I mix design method 

are also used in North America.  Although they have advantages over the Marshall 

method of mix design, the Hveem and the Superpave™ Level I methods do not directly 

measure mechanistic material properties.  The mechanistic-based tests used in 

Superpave Level II and Level III mix design are complex, time consuming, expensive, 

and the debate over their ability to predict performance continues.   

This research concluded that repeated load triaxial testing is showing successful 

results in characterizing asphalt mixes, and provides fundamental material constitutive 

relations necessary for mechanistic road modeling. 
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CHAPTER 3 CONVENTIONAL PHYSICAL AND EMPIRICAL MIX 

ANALYSIS OF RESEARCH MIXES 

This chapter presents a summary of the physical properties of the research mixes 

used for this study, as well as empirical mix design properties of the research mixes 

which are measured as part of conventional Marshall asphalt mix analysis used by 

Saskatchewan Highways and Transportation.  Included are physical aggregate properties 

of the aggregate used, the volumetric properties of the compacted asphalt concrete 

samples for each research mix as a function of the method of compaction, and Marshall 

stability and flow results. 

Where applicable, statistical analysis of the test results was performed to quantify 

significant differences across the various mix types considered in this research.  Analysis 

of Variance (ANOVA) is used to identify the main interaction effects of the independent 

variable(s) on the dependent variable(s).  If significant interaction is found through 

ANOVA, Tukey’s Homogeneous Groups comparison was selected to perform more 

detailed analysis, through pairwise comparison across the multiple dependent variables.  

This approach compares the mean of each population against the mean of each of the 

other populations, creating separate groups for results that are statistically different, 

based on a level of significance, α, of 0.05.   

The final section presents the estimated level of confidence based on the ten 

repeat samples determined for the volumetric and Marshall properties measured, and 

possible experimental errors are discussed. 

3.1 Physical Properties of Research Mixes 

In order to evaluate the benefits of manufactured fines content in SDHT asphalt 

concrete mixes, asphalt concrete mix design adaptable to the manipulation of 
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manufactured fines content without compromising volumetric properties was required.  

In addition, it was desirable to compare the SDHT mixes with different levels of 

manufactured fines with a conventional SDHT mix thought to have good structural 

performance (SDHT Type 70 mix).  Another selection limitation was availability of the 

necessary amount of aggregate needed to create the samples for this research.   

The HMAC paving project on Highway 11, south of Craik, was a suitable 

candidate for material sampling because the project design required a Type 70 SDHT 

asphalt concrete mix gradation on the bottom lift, and a Type 72 gradation on the top 

lift.  Another reason for selecting this project is that both the mixes were manufactured 

from the same gravel source.  SDHT Type 70 asphalt mix gradation is a structural mix, 

with an 18 mm aggregate top size and is thought to be the most rut-resistant of the three 

SDHT mix gradations.  The Type 72 gradation is used for the top lift only, to provide a 

smooth, durable surface, due to its small top size (12.5 mm).  Therefore, the Type 72 

mix with varying amounts of manufactured fines could be compared to the Type 70 mix.  

In addition, the Highway 11 rehabilitation project was ongoing at the time of the design 

of this research; therefore, asphalt concrete material samples were readily available.  

According to discussions with SDHT laboratory staff involved in mix designs, 

typical SDHT mixes at various locations in the province range in manufactured fines 

content from as low as 20 percent of total fines (passing the 5 mm sieve), to 

approximately 40 percent of total fines.  SDHT was interested in determining the 

behaviour of Type 72 asphalt concrete mix with the typical amounts of manufactured 

fines, as well as at an increased level.  Therefore, three Type 72 HMAC mix designs 

were created for this research, based on a mix design used for the Highway 11 project.  

The amount of manufactured coarse aggregate (retained on the 5 mm sieve) was 

maintained constant across the Type 72 mixes considered, and the manufactured fines 

were substituted for natural fines in order to vary the manufactured fines content only.  

The resulting aggregate design blends for the Type 72 mix incorporated 20, 40, and 60 

percent of manufactured fine aggregate, respectively, as determined by weight on the 

portion of total fine aggregate (passing the 5 mm sieve).  The structural Type 70 mix 

manufactured for the Highway 11 paving project had 38 percent fine aggregate, and was 
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included in the study without modifications.  It should be noted that typical SDHT 

asphalt mix aggregate gradations contain approximately 40 percent manufactured fines.  

For the purposes of reporting, the research mixes were named according to their 

gradation type and respective manufactured fines contents, as shown in Table 3.1.  

Appendix A contains the mix design summary for each of the mixes that were created 

for the purposes of this research. 

The stockpile proportions used to create the research aggregate blends are 

illustrated in Table 3.1 and Figure 3.1.  The aggregate sampled from each stockpile was 

sieved into individual particle sizes in the laboratory, and aggregate was recombined by  

Table 3.1 Proportions of Aggregate Stockpiles in Research Mixes 

Mix Type Mix Name 
Manufactured 

Coarse (%) 

Manufactured 

Fines (%) 

Natural Fines 

(%) 

Type 72 (20%MF) T72(20%MF) 31.0 14.0 55.0 

Type 72 (40%MF) T72(40%MF) 31.0 29.0 40.0 

Type 72 (60%MF) T72(60%MF) 31.0 42.5 26.5 

Type 70 (38%MF) T70(38%MF) 34.0 25.0 41.0 

 

31

14

55

31

29

40

31

42.5

26.5

34

25

41

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e
rc

e
n

t 
o

f 
T

o
ta

l 
A

g
g

r
e
g

a
te

T72 (20%MF) T72 (40%MF) T72 (60%MF) T70 (38%MF)

Structural Mix

Mix Type

Manufactured Coarse Manufactured Fines Natural Fines
 

Figure 3.1 Proportions of Aggregate Stockpiles in Research Mixes 
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mass of each particle size from each stockpile to target the mix design gradation in order 

to create each repeat sample, with a tolerance of ± 0.1 grams on each sieve size.  Ten 

repeat samples for each Marshall compaction and analysis and for the gyratory 

compaction and triaxial testing were created for each of the research mixes.   

Canadian General Standards Board (CGSB) 150/200A asphalt cement grade was 

chosen to create the research mixes, because this grade of asphalt was used for the 

rehabilitation project on Highway 11, and was selected based on SDHT surfacing design 

standards (SDHT 2001-B).  The 150/200A asphalt grade is the grade most commonly 

used for SDHT HMAC mixes.  Based on previous testing of the 150/200A asphalt from 

the particular asphalt manufacturer who supplied the asphalt cement for the Highway 11 

project, the PG grade of the asphalt cement used in this research is expected to be PG 

52-28, however, this was not validated as part of this research.  Due to stripping 

potential of the aggregates as determined by SDHT during the mix design stages for the 

rehabilitation project, liquid anti-stripping additive was added to create all of the 

research mixes. 

3.1.1 Gradations of Research Mix Aggregates 

The aggregate gradations of each material stockpile were separated into 

individual particle sizes, and samples were created in the laboratory based on gradation 

stockpile averages obtained from the crushing process, and according to the stockpile 

proportions as described in the previous section.  For the gyratory compactor samples, 

the aggregate samples were combined for a total of 6500 ± 1 g of hot mix asphalt 

aggregate sample mass, whereas a 1200 ± 1 g sample size was used for the Marshall 

compaction samples.   

The aggregate gradations of the four research mixes are shown in Table 3.2 and 

Figure 3.2.  The Type 70 gradation closely resembles that of the Type 72 mixes on the 

fine side (up to the 5 mm sieve), and contains slightly coarser aggregates (greater than 5 

mm).  Since the SDHT gradation bands for the specified aggregate skeletons are very 

similar, as is illustrated in Figure 3.3 (SDHT 2003-B), the Contractor chose to create 

aggregate skeletons for the Type 72 and Type 70 mixes while utilizing the same 
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Table 3.2 Aggregate Gradations of Research Mixes 

Percent Passing by Weight Sieve Size 

(mm) T72(20%MF) T72(40%MF) T72(60%MF) T70(38%MF) 

18.0 100 100 100 100 

16.0 100 100 100 98.0 

12.5 98.8 98.8 98.8 93.0 

9.0 84.4 84.4 84.4 75.7 

5.0 65.3 64.2 63.2 62.2 

2.0 47.4 44.4 41.7 43.1 

0.90 31.7 29.8 28.1 28.9 

0.40 17.3 17.1 16.9 16.5 

0.16 8.6 8.5 8.9 8.1 

0.071 3.5 4.2 4.9 4.0 
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Figure 3.2 Aggregate Gradations of Research Mixes 
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Figure 3.3 SDHT Type 70 Research Mix Aggregate Gradation 

manufactured fines aggregate and natural fines aggregate stockpiles, with the only 

varying components being the slightly different top size of the manufactured coarse 

aggregate, as required for the two mix types (18 mm for Type 70, and 16 mm for Type 

72).  This resulted in aggregate gradations that vary mainly on the coarse end of the 

gradation.  The similarities in particle size in the fine portion of the aggregate between 

the Type 72 mixes and the Type 70 mix are beneficial for this research.  The research 

should illustrate more clearly the effects of the differences in the coarser portion of the 

aggregate between these two mix types. 

3.1.2 Physical Properties of Research Mix Aggregates 

Some of the physical properties that are generally accepted as being related to hot 

mix asphalt concrete design, construction, and performance behaviour are fracture in the 

coarse and fine aggregate, proportion of clay particles in the fine aggregate, flat and 

elongated particles, and lightweight materials.  Prior to manufacturing the hot mix 

asphalt concrete samples for the purposes of this research, these physical properties were 

tested during the laboratory mix design stage.  Table 3.3 lists the physical parameters 

measured, the number of repeat tests performed, and their results for each of the research 

aggregate blends.   
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Table 3.3 Physical Properties of Research Aggregates 

Mix Type 
Physical Property 

No. of 

Tests T72(20%MF) T72(40%MF) T72(60%MF) T70(38%MF)

Coarse Fracture 

(%) 
2 95.2 96.9 97.8 90.7 

Fine Aggregate 

Angularity (%) 
2 41.9 42.9 45.1 42.4 

Sand Equivalent 

(%) 
3 73 74 73 69 

Flat & Elongated 

Pieces (%) 
1 4.0 4.4 5.2 2.1 

Lightweight 

Pieces (%) 
2 0.2 0.3 0.2 0.2 

 

Appendix B contains more detailed information on these test results.  The number 

of repeat tests performed was based on standard SDHT laboratory practice, which in 

turn relates to achieving acceptable results, while maximizing time and monetary 

investment into laboratory testing.  Although each of the mixes met the SDHT 

specifications for the parameters measured (previously discussed in Section 2.3), the 

number of repeat tests could have been increased for the purpose of this research, in 

order to provide more certainty in the results. 

As can be seen in Table 3.3, percent of coarse fracture of the aggregate differs for 

each of the mix types, specifically, for the Type 72 mixes, it increases with the increased 

amount of manufactured fines, because the increase in manufactured fines content 

contributed to an increase in fractured aggregate retained on the 5 mm sieve.  The Type 

70 mix has significantly lower percent of coarse fracture when compared to the Type 72 

mixes.  The repeatability of this test is yet to be quantified, however, it is likely that the 

differences observed within a mix type are acceptable, since as previously discussed in 

Section 2.3.2.1, only marginal changes in mechanical stability and/or mechanical 

behaviour should be expected from varying the amount of fractured coarse aggregate 

when the coarse fracture levels are higher than 75 percent (Wedding and Gaynor 1961, 

Carlberg 2003).  It is possible that the increased coarse fracture in the Type 72 mixes 

could result in an improvement of mechanical properties over the Type 70 mix; 

however, these are also expected to be marginal for the reasons discussed above. 
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Fine aggregate angularity directly reflects the changes in the manufactured fines 

content, which is the control measure being investigated for its influences on the 

research mixes.  The differences in FAA across the research mixes are intentional.  The 

sand equivalent values also differ slightly across the mixes; however, SDHT laboratory 

standards allow for ± four percent points of tolerance in the accuracy of this measure, 

and the results are within this SDHT accepted tolerance.  The lower sand equivalent 

value for the Type 70 mix could result in a deterioration of mechanical properties. 

There are currently no standards on the accuracy of the measurement of flat and 

elongated and the lightweight pieces.  It is possible that the lower amount of flat and 

elongated pieces in the Type 70 mix could result in an improvement of mechanical 

properties. 

3.1.3 Volumetric Properties of Research Mixes after Marshall Compaction 

In preparation for the mechanical testing, ten repeat samples of 1200 ± 1 g were 

prepared for each research mix, using the Marshall compaction method.  The sample 

mass of 1200 g is the standard used for the Marshall mix design method (ASTM D 1559, 

STP 204-10).  The void properties for Marshall samples were determined according to 

SDHT Specifications for Density and Void Characteristics (ASTM D 2726, STP 204-

21).  The Marshall samples were compacted using 75 blows, as specified by SDHT mix 

design procedures (STP 204-10).  The volumetric properties of the four different 

research mixes meet the SDHT design criteria of VTM, VMA, and VFA (previously 

discussed in Sections 2.4.1 to 2.4.3).   

Table 3.4 and Figures 3.4 to 3.6 illustrate a summary of the mean void properties 

of the samples compacted using the 75 blow Marshall compaction protocol for each of 

the research mixes.  The main bars in the figures show the mean of ten repeat samples, 

and the error bars represent ± two standard deviations (SD).  Detailed results of 

volumetric properties after Marshall compaction can be found in Appendix C. 

As seen in Table 3.4, the coefficients of variation (CV) for VTM are slightly 

higher than those for the other two parameters, ranging from 3.3 to 6.9 percent.  An 
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examination of the individual data records did not reveal any anomalies that explain the 

increased CVs across the research mixes.  The increase appears to be caused by the 

smaller magnitude of VTM when compared to VMA and VFA.   

There is a large amount of variability within the VFA results for Mix Type 72 

with 60 percent manufactured fines, as shown by the error bars in Figure 3.6.  By 

examining the detailed VFA results (Appendix C, Table C.3), it appears that there are 

two samples which are causing the high variability.   

Although the variability in the Marshall void properties within each mix may 

play a role in the Marshall stability and flow results, it should also be noted that based 

on discussions with SDHT laboratory staff, the accepted level of accuracy for volumetric 

measurements of VMA, VTM and VFA is considered to be ± 0.2 percent for each 

respective parameter, therefore, keeping in mind this practical laboratory tolerance, the 

variability can be considered acceptable. 

Analysis of variance shows that there are differences in the void properties 

measured between the four mix types, as indicated by the F-Test being larger than 1, and 

the probability factor, p, being smaller than 0.05 (Table 3.5).  These differences are 

further explored in Table 3.6, Table 3.7 and Table 3.8, through the results of Tukey’s 

pairwise comparison.   

The Type 70 mix average VMA of 14.3 percent is statistically the same as that 

for the Type 72 mix with 60 percent manufactured fines (14.4 percent), and lower than 

the other mixes.  The Type 72 mix with 20 percent manufactured fines has the highest 

VMA with a mean of 14.9 percent. 

Table 3.4 Void Properties of Compacted Marshall Samples at 75 Blows 

 Mix Type 

 T72(20%MF) T72(40%MF) T72(60%MF) T70(38%MF) 

 Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%)

VMA (%) 14.9 1 14.6 1 14.4 2 14.3 1 

VTM (%) 4.2 5 4.1 4 4.0 7 3.9 3 

VFA (%) 71.6 2 72.2 1 72.2 3 72.6 1 
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Figure 3.4 Mean Voids in Mineral Aggregate after 75 blow Marshall Compaction 

across Research Mixes (± 2 SD) 
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Figure 3.5 Mean Voids in Total Mix after 75 blow Marshall Compaction across 

Research Mixes (± 2 SD) 
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Figure 3.6 Mean Voids Filled with Asphalt after 75 blow Marshall Compaction 

across Research Mixes (± 2 SD) 

The Type 72 mix with 20 percent manufactured fines has the highest VTM with a 

mean of 4.2 percent, while the lowest VTM is that for Type 70 mix at a mean of 3.9 

percent.  However, all the mixes have very similar VTM, as is shown by a lot of 

interaction in the Tukey’s homogeneous groups.  There are no significant differences in 

the VFA between the research mixes, which ranges from 71.6 percent for mix Type 72 

with 20 percent manufactured fines, to 72.6 percent for mix Type 70. 

Table 3.5 Analysis of Variance for Marshall Void Properties across Research 

Mixes 

Parameter Test Value 
F-Test 

Statistic 
Effect Error P-value 

Mix Type Wilks 0.2399 7 9 82.90 0.00 
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Table 3.6 Tukey’s Homogeneous Groups for Marshall Voids in Mineral 

Aggregate across Research Mixes 

Tukey’s Homogeneous Groups 
Mix Type 

Mean VMA 

(%) A B C 

T70(38%MF) 14.3 ****   

T72(60%MF) 14.4 **** ****  

T72(40%MF) 14.6  ****  

T72(20%MF) 14.9   **** 

 

 

Table 3.7 Tukey’s Homogeneous Groups for Marshall Voids in Total Mix 

across Research Mixes 

Tukey’s Homogeneous Groups 
Mix Type 

Mean VTM 

(%) A B 

T70(38%MF) 3.9 ****  

T72(60%MF) 4.0 **** **** 

T72(40%MF) 4.1 **** **** 

T72(20%MF) 4.2  **** 

 

 

Table 3.8 Tukey’s Homogeneous Groups for Marshall Voids Filled with 

Asphalt across Research Mixes 

Tukey’s Homogeneous Groups 
Mix Type 

Mean VFA  

(%) A 

T72(20%MF) 71.6 **** 

T72(40%MF) 72.2 **** 

T72(60%MF) 72.2 **** 

T70(38%MF) 72.6 **** 

 

3.1.4 Volumetric Properties of Research Mixes after Gyratory Compaction 

Although the mass of aggregate combined according to the stockpile average for 

preparation of the asphalt samples was 6500 ± 1 g, the sample mass used for gyratory 

compaction was adjusted based on a desired final sample height of 150 ± 5 mm, which is 

necessary for the mechanistic testing equipment used as part of this study.  Ten repeat 
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samples were compacted for each mix using the gyratory compaction method, with a 

sample mass of 6250 ± 1 g for Mix Type 72 with 40 percent manufactured fines, and 

with 6267 ± 1 g of HMAC per sample for the other three mixes.   

One of the many benefits of the gyratory compactor is the ability to monitor and 

record the volumetric changes in the sample during compaction.  Once the samples are 

compacted, their volumetric properties are also determined using the standard method of 

bulk specific gravity of the compacted mix (Gmb) by weight in water (ASTM D 2726).  

A correction factor consisting of the ratio of the gyratory bulk specific gravity and the 

ASTM bulk specific gravity is applied to the volumetric results of each sample.  All of 

the gyratory volumetric properties reported in this section have been corrected in this 

manner.  The gyratory compaction was conducted according to SuperpaveTM testing 

protocols, with Ndesign of 96 gyrations and Nmaximum of 152 gyrations (AASHTO TP-4).  

Detailed results of volumetric properties during and after gyratory compaction can be 

found in Appendix D. 

Table 3.9 shows the volumetric properties for samples compacted using the 

gyratory compactor at Ndesign.  Each of the volumetric properties is illustrated in Figures 

3.7 to 3.9.   

Table 3.9 Void Properties of Compacted Gyratory Samples at Ndesign 

 Mix Type 

 T72(20%MF) T72(40%MF) T72(60%MF) T70(38%MF) 

 Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%)

VMA (%) 14.3 1 14.4 3 14.2 2 13.8 2 

VTM (%) 3.3 5 3.6 12 3.4 7 3.1 10 

VFA (%) 76.8 1 75.4 3 76.0 2 77.7 2 
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Figure 3.7 Mean Voids in Mineral Aggregate after Gyratory Compaction to Ndesign 

across Research Mixes (± 2 SD) 
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Figure 3.8 Mean Voids in Total Mix after Gyratory Compaction to Ndesign across 

Research Mixes (± 2 SD) 
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Figure 3.9 Mean Voids Filled with Asphalt after Gyratory Compaction to Ndesign 

across Research Mixes (± 2 SD) 

The coefficients of variation for VTM are slightly higher than those for VMA and 

VFA, for each of the four research mixes.  This is consistent with the observed CVs in 

the Marshall compacted samples, and appears to be related to the smaller magnitude of 

VTM when compared to VMA and VFA.  As can be seen in the graphical illustrations, 

there appears to be considerable variability in the results for some of the mixes 

compacted in the gyratory compactor to Ndesign.  The coefficients of variation are higher 

than expected, especially for the VTM of the Type 72 mix with 40 percent manufactured 

fines (CV of 12 percent) and the Type 70 mix (CV of 10 percent).  Normally, the 

gyratory compactor is thought to provide highly repeatable results – discussion on the 

observed variability is presented in Section 3.3.4. 

Analysis of variance across the void properties (Table 3.10) indicates that there 

are significant differences in the volumetric parameters between mix types.  These 

differences are further illustrated in Tables 3.11 to 3.13 in the results of Tukey’s 

pairwise comparison.   
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Table 3.10 Analysis of Variance for Gyratory Void Properties at Ndesign across 

Research Mixes 

Parameter Test Value 
F-Test 

Statistic 
Effect Error P-value 

Mix Type Wilks 0.000002 2.010E+03 9 82.897 0.00 

 

 

Table 3.11 Tukey’s Homogeneous Groups for Gyratory Voids in Mineral 

Aggregate at Ndesign across Research Mixes 

Tukey’s Homogeneous Groups 
Mix Type 

Mean VMA  

(%) A B 

T70(38%MF) 13.8 ****  

T72(60%MF) 14.2  **** 

T72(20%MF) 14.3  **** 

T72(40%MF) 14.4  **** 

 

 

Table 3.12 Tukey’s Homogeneous Groups for Gyratory Voids in Total Mix at 

Ndesign across Research Mixes 

Tukey’s Homogeneous Groups 
Mix Type 

Mean VTM  

(%) A B 

T70(38%MF) 3.1 ****  

T72(20%MF) 3.3 **** **** 

T72(60%MF) 3.4 **** **** 

T72(40%MF) 3.6  **** 

 

 

Table 3.13 Tukey’s Homogeneous Groups for Gyratory Voids Filled with 

Asphalt at Ndesign across Research Mixes 

Tukey’s Homogeneous Groups 
Mix Type 

Mean VFA  

(%) A B 

T72(40%MF) 75.4 ****  

T72(60%MF) 76.0 **** **** 

T72(20%MF) 76.8 **** **** 

T70(38%MF) 77.7  **** 
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The Type 70 mix yielded lower VMA than the three Type 72 mixes (mean of 

13.8 percent), similar to the Marshall samples, while there is no significant difference in 

VMA between the three Type 72 mixes.  In terms of VTM, the only significant 

difference noted is between the Type 70 mix (mean VTM of 3.1 percent) and the Type 

72 mix with 40 percent manufactured fines (mean VTM of 3.6 percent).  Similarly, the 

only significant difference in VFA results is also between the Type 70 mix (mean FVA 

of 77.7 percent) and the Type 72 mix with 40 percent manufactured fines (mean VFA of 

75.4 percent). 

3.1.5 Densification of Research Mixes during Gyratory Compaction 

SuperpaveTM Level 1 mix design imposes restrictions on the densification rate of 

the asphalt mix by specifying a maximum percent of densification at initial compaction 

(Ninitial = 8 gyrations), and after the final compaction (Nmaximum = 152 gyrations).  The 

specifications limit the ratio of the specific gravity of the mix with respect to the 

maximum theoretical specific gravity (Gmm) to less than 89 percent at Ninitial, and to less 

than 98 percent at Nmaximum.  Table 3.14 shows the mean values of ten repeat samples for 

the percent of maximum theoretical specific gravity achieved at each milestone level of 

compaction for each of the four research mixes.  This data is also illustrated in Figure 

3.10. 

Table 3.14 Mean Densification of Research Mixes during Gyratory Compaction 

expressed as Percent Maximum Theoretical Specific Gravity (%Gmm) 

 Mix Type 

 T72(20%MF) T72(40%MF) T72(60%MF) T70(38%MF) 

 
Mean 

CV 

(%) 
Mean 

CV 

(%) 
Mean 

CV 

(%) 
Mean 

CV 

(%) 

% Gmm at Ninitial 92.3 0.9 89.3 0.6 88.9 0.7 90.1 0.4 

% Gmm at Ndesign 96.7 0.2 96.4 0.5 96.6 0.2 96.9 0.3 

% Gmm at Nmaximum 97.5 0.2 97.4 0.4 97.7 0.2 97.8 0.3 

 

Increasing the amount of manufactured fines in the Type 72 mix resulted in 

progressively less densification in the mix, with the mix passing SuperpaveTM 

specification of less than 89 percent of Gmm at Ninitial, based on the average across the ten 
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repeat samples, when the manufactured fines content was increased to 60 percent of total 

fines (mean percent Gmm of 88.9 percent).  However, even this mix had samples which 

failed the Ninitial specification, based on the error bars, which represent two standard 

deviations.  Failure to meet the Ninitial criterion by the other three mixes indicates that 

these mixes may prove problematic during construction (i.e. a tender mix), and may be 

susceptible to collapsed air voids and therefore to permanent deformation. 

Superpave™ mix design method aims for four percent VTM at Ndesign.  The 

corresponding level of Gmm that results in four percent VTM is 96 percent.  As can be 

seen in Figure 3.10, all of the research mixes compacted to higher percent Gmm at Ndesign 

than 96 percent, therefore resulting in average VTM slightly lower than the desirable 

four percent.  
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Figure 3.10 Mean Densification of Research Mixes during Gyratory Compaction 

expressed as Percent Maximum Theoretical Specific Gravity (%Gmm) (± 2 SD)  

3.1.6 Comparison of Marshall and Gyratory Compaction Results 

Figure 3.11 shows a comparison of the average Voids in Total Mix for each of 

the research mixes and the two different compaction methods, with respect to SDHT 

mix design criteria for VTM, and SuperpaveTM recommended design level of air voids.   
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As can be seen, the average VTM for the 75-blow Marshall compacted samples 

met SDHT design criteria of 3 to 5 percent VTM for each of the research mixes (ranging 

from 3.9 to 4.2 percent), and resulted in VTM very close to the SuperpaveTM 

recommended target of 4 percent.  Although the gyratory compacted samples for each of 

the research mixes on average met the SDHT design criteria for VTM at the Ndesign level 

of compaction (ranging from 3.1 to 3.6 percent across research mixes), in general the 

samples compacted to a lower than the acceptable design level of four percent suggested 

by the SuperpaveTM mix design process.  Also, at Nmaximum the gyratory samples for each 

of the research mixes on average compacted below the SDHT acceptable level of 3 

percent (ranging from 2.2 to 2.6 percent across research mixes).  This difference in the 

level of compaction between the Marshall and gyratory methods was expected, since it 

is generally accepted that the gyratory compaction protocol results in a higher level of 

compaction.   
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Figure 3.11  Comparison of Mean Voids in Total Mix between Marshall and 

Gyratory Compacted Samples (± 2 SD) 

It should also be noted that normally the gyratory compaction protocol results in 

high repeatability.  In this case, however, the Marshall samples have a lower standard 

deviation than the gyratory samples.  This is likely due to the fact that the Marshall 
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samples were compacted by professional and certified SDHT laboratory staff, whereas 

the gyratory compaction was carried out by the author, with significantly less laboratory 

experience.  The resulting variability in the gyratory sample air voids highlights the 

critical importance of strict adherence to laboratory testing protocols to increase 

repeatability.   

3.2 Marshall Characterization of Research Mixes 

The first phase of determining the behaviour of the asphalt mixes in this research 

consisted of conducting the conventional mechanical tests included in the Marshall mix 

design method, namely Marshall stability and flow tests (ASTM D 1559, AASHTO T 

245, STP 204-10).  The Marshall mix design method is currently used by Saskatchewan 

Highways and Transportation in hot mix asphalt design and construction.  This section 

presents the test results from the Marshall stability and flow tests performed on ten 

repeat specimens for each of the four research mixes, compacted using 75 blows of 

Marshall compaction.  All charts illustrate the mean values of ten repeat samples tested, 

with the error bars representing ± two standard deviations from the mean. 

3.2.1 Marshall Stability 

SDHT specifies a minimum acceptable Marshall stability of 7,000 Newton for a 

75 blow Marshall mix.  As can be seen in Table 3.15and Figure 3.12, when considering 

the mean results, all four research mixes met the SDHT design criteria for Marshall 

stability.  However, one of the repeat samples for the Type 72 mix with 20 percent 

manufactured fines did not.  Detailed results of Marshall stability testing are presented in 

Appendix E. 

By using the Type 72 mix with 20 percent manufactured fines as a baseline, it is 

apparent that there is an increase in Marshall stability with an increase in manufactured 

fines content.  Specifically, Marshall stability increased by 22 percent at 40 percent 

manufactured fines, and by 36 percent when the manufactured fines content was 

increased to 60 percent of total fines.  Marshall stability for the Type 70 mix was 22 

percent higher than the baseline.  The stability behaviour coincides with conventional 
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belief that when all other factors are equal, mixes with higher fracture are more “stable” 

when subject to loading.  Another observation worth noting is the fact that the Type 70 

mix, which has a larger top size of aggregate and slightly higher content of coarse 

aggregate than the Type 72 aggregate skeleton, results in the same stability as the Type 

72 mix with 40 percent manufactured fines. 

Table 3.15 Mean Marshall Stability across Research Mixes 

Mix Type 
Mean Marshall Stability 

(Newton) 

Coefficient of 

Variation  

(%) 

% Difference from 

T72(20%MF) 

T72(20%MF) 8,244 10 --- 

T72(40%MF) 10,084 7 22% 

T72(60%MF) 11,181 5 36% 

T70(38%MF) 10,069 6 22% 
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Figure 3.12 Mean Marshall Stability across Research Mixes (± 2 SD) 

 

Statistical analysis confirms that the changes in Marshall stability are significant 

across the three Type 72 mixes; therefore, it was concluded that Marshall stability 
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increases significantly as the proportion of manufactured fines increases.  Type 70 mix 

results for Marshall stability are statistically the same as those for the Type 72 mix with 

40 percent manufactured fines.   

Table 3.16 Tukey's Homogeneous Groups for Marshall Stability across 

Research Mixes 

Mean Marshall Stability Tukey’s Homogeneous Groups 
Mix Type 

(Newton) A B C 

T72 (20%MF) 8,244 ****   

T70 (38%MF) 10,069  ****  

T72 (40%MF) 10,084  ****  

T72 (60%MF) 11,181   **** 

 

3.2.2 Marshall Flow 

The acceptable range of Marshall flow specified by SDHT is 1.5 to 3.5 mm.  In 

Table 3.17 and Figure 3.13, it can be seen that the mean values of the ten repeat samples 

across all four research mixes, although close to the lower acceptable limit, met the 

SDHT design criteria (ranging from 1.8 to 2.3 mm across research mixes).  However, 

there is a significant amount of variability in the test results, especially for Type 72 mix 

with 20 percent manufactured fines (CV of 18 percent), and for the Type 70 mix (CV of 

16 percent), as is indicated by the fact that the lower error bar of two standard deviations 

results in the mixes failing the minimum SDHT criterion.  It is also apparent that there is 

an increasing trend in Marshall flow with increasing amounts of manufactured fines.  

Specifically, there is an increase of 28 percent for the Type 72 mix with 60 percent 

manufactured fines.  Detailed results of Marshall flow testing are shown in Appendix E. 

Table 3.17 Mean Marshall Flow across Research Mixes 

Mix Type 
Mean Marshall Flow

(mm) 

Coefficient of 

Variation  

(%) 

% Difference from 

T72(20%MF) 

T72(20%MF) 1.8 18 --- 

T72(40%MF) 1.9 11 6% 

T72(60%MF) 2.3 14 28% 

T70(38%MF) 1.9 16 6% 
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Figure 3.13 Mean Marshall Flow across Research Mixes (± 2 SD) 

The results of Tukey’s pairwise comparison for Marshall flow across mix type 

are shown in Table 3.18.  The analysis shows that Marshall flow for the Type 72 mix 

with 60 percent manufactured fines was significantly higher than the Marshall flow for 

the remaining mix types.  Marshall flow is not sensitive to the amount of manufactured 

fines below 40 percent of total fines, but there is a statistically significant difference in 

behaviour for the mix with 60 percent manufactured fines content. 

Table 3.18 Tukey's Homogeneous Groups for Marshall Flow across Research 

Mixes 

Mean Marshall Flow Tukey’s Homogeneous Groups 
Mix Type 

(mm) A B 

T72 (20%MF) 1.8 ****  

T72 (40%MF) 1.9 ****  

T70 (38%MF) 1.9 ****  

T72 (60%MF) 2.3  **** 

 

3.3 Significance of Results 

When determining the number of repeat samples to be used in this research, the 

statistical significance of the results as well as the cost and schedule associated with the 

proposed testing protocol had to be considered.  Although manufacturing a large number 
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of samples would achieve more statistically meaningful results, creating more than ten 

repeat samples was cost-prohibitive for this research.  Therefore, ten repeat samples 

were created with the Marshall method of compaction for each of the research mixes, as 

well as ten repeat samples for each research mix were compacted in the gyratory 

compactor for the purposes of the triaxial frequency sweep analysis.  It should be noted 

that industry standard practice is to use two repeat samples (AASHTO T 245, ASTM D 

1559, STP 204-10). 

3.3.1 Sample Size Analysis 

In order to determine the sample size required for a desired level of significance 

in an experiment, a trial data set can be evaluated, and the required sample size can be 

estimated based on the variability within the trial data set (Sullivan 2004).  When the 

sample size is smaller than 30, as is the case in this research study, this method can still 

be used, but with the assumption that the variability of the variable of interest is 

normally distributed, and the standard deviation of the population, σ, can be estimated 

by the standard deviation of the trial set, s.  Assuming the above is true, the sample size 

required to achieve the desired margin of error at a specified level of significance can be 

estimated as: 

2

2

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ∗
=

E

Z
n

σα
 (3.1) 

where: 

n  = Sample size 

Zα/2 = Standard normal random variable Z corresponding to α/2 

α  = Level of significance 

σ  = Standard deviation of the population  

E  = Margin of error around the mean 
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3.3.2 Relationship of Level of Confidence to Sample Size 

The level of confidence (LOC) is the probability that represents the percentage of 

intervals that will contain the mean if a large number of repeated samples are obtained.  

The level of confidence can be expressed in terms of the level of significance (Sullivan 

2004): 

%100)1( ∗−= αLOC  (3.2) 

To illustrate the application of these relationships, consider a desired level of 

confidence of 95 percent that the mean VTM for the ten repeat Marshall samples of the 

Type 72 mix with 60 percent manufactured fines are within 0.2 percent VTM of the 

population mean VTM.  The mean VTM for the ten repeat samples for this mix type was 

4.0 percent, as shown in Figure 3.5, with a standard deviation of 0.28 percent (Appendix 

C, Table C.3).  Based on Equation 3.2, the level of significance, α, is 0.05, and the 

corresponding Z statistic is 1.96, and the number of samples required to achieve this 

level of confidence can be found by substituting the Z statistic and the standard 

deviation into Equation 3.1: 

2

2.0

28.096.1
⎟
⎠
⎞

⎜
⎝
⎛ ∗

=n = 7 

The margins of error used in this analysis are shown in Table 3.19.  Due to lack 

of documented values on acceptable margins of error, these tolerances were obtained 

from discussions with SDHT laboratory staff, and are based on expert opinion (Bray 

2006). 

Table 3.19 Acceptable Margin of Error for Conventional Mix Design Properties 

Property Measured Acceptable Margin of Error 

Voids in Total Mix, VTM (%) 0.2 

Marshall Stability (N) 500 

Marshall Flow (mm) 0.2 
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The sensitivity of the level of confidence to sample size based on the VTM 

results for Marshall samples and VTM for gyratory samples at Ndesign, for each of the 

research mixes, is illustrated in Figure 3.14 and Figure 3.15, respectively.  The 

relationships of LOC to sample size based on Marshall stability and flow results for each 

of the research mixes are shown in Figure 3.16 and Figure 3.17, respectively.   

As can be seen in Figures 3.14 through 3.17, the relationship of sample size and 

level of confidence is exponential in nature for levels of confidence higher than 90 

percent.   

The gyratory VTM results demand a much larger sample size for a given desired 

level of confidence than the VTM for the Marshall compacted samples.  This occurs due 

to the larger standard deviations within the ten repeat samples for the gyratory 

compacted samples of each of the research mixes.  SDHT currently uses two repeat 

samples for the Marshall mix design, which based on the Marshall VTM, corresponds to 

a minimum level of confidence of approximately 70 percent.  For the gyratory 

compacted samples, due to the increased variability in void properties, the minimum 

estimated level of confidence for three repeat samples is approximately 50 percent.  

Similarly, two repeat samples would achieve an estimated minimum level of confidence 

of 62 percent based on Marshall stability, and approximately 62 percent based on 

Marshall flow.   
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Figure 3.14 Relationship of Sample Size and Level of Confidence for Marshall 

Voids in Total Mix across Research Mixes at a Margin of Error of 0.2% 
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Figure 3.15 Relationship of Sample Size and Level of Confidence for Gyratory 

Voids in Total Mix at Ndesign across Research Mixes at a Margin of Error of 0.2% 
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Figure 3.16 Relationship of Sample Size and Level of Confidence for Marshall 

Stability across Research Mixes at a Margin of Error of 500 Newton 
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Figure 3.17 Relationship of Sample Size and Level of Confidence for Marshall 

Flow across Research Mixes at a Margin of Error of 0.2 mm 
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3.3.3 Level of Confidence Achieved 

In order to estimate the level of confidence in the results achieved by using a set 

number of repeat samples, the sample size relationship can also be expressed as is 

demonstrated in Equation 3.3, which allows the calculation of the Z statistic: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∗
=

σα
En

Z
2

 (3.3) 

Once the Z statistic is calculated, the Standard Normal Distribution Table (found 

in Appendix F) can be used to determine the corresponding probability,
2

αp  ,which in 

turn allows to estimate the achieved level of confidence, since:  

%100)2(
2

∗∗= αpLOC  (3.4) 

To illustrate this calculation, consider the Type 72 mix with 40 percent 

manufactured fines.  Based on Marshall compaction of ten repeat samples, the mean 

Voids in Total Mix (VTM) was 3.55 percent, as shown in Table 3.9, with a standard 

deviation of 0.44 percent (Appendix C, Table C.2).  The margin of error, E, is 0.2 

percent, as determined based on discussions with SDHT laboratory staff (represents 

approximately 5 percent of mean).  Then, using Equation 3.3:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∗
=

44.0

2.010
2αZ = 1.44 

The corresponding probability for the above calculated Z value of 1.44 is 0.4251 

(from Standard Normal Distribution Probability Table shown in Appendix F), and 

therefore p−= 5.0
2

α = 0.0749, and the LOC can be found using Equation 3.4: 

Level of Confidence = (1-(0.0749*2)*100 = 85 % 

Using the approach explained in Equations 3.2 to 3.4 to quantify the significance 

of test results, Table 3.20 shows the estimated level of confidence based on the ten 

repeat samples for the VTM of Marshall samples, the VTM of the gyratory samples at 



 

 87

Ndesign, as well as for the Marshall stability and flow measurements for each mix.  This 

data is illustrated in Figure 3.18. 

Table 3.20 Level of Confidence Achieved for Volumetric and Marshall 

Properties across Research Mixes 

Estimated Level of Confidence (%) 
Property 

Measured 

Margin 

of 

Error T72(20%MF) T72(40%MF) T72(60%MF) T70(38%MF)

VTM75 blow (%) 0.2 99.6 100.0 97.9 100.0 

VTM Ndesign (%) 0.2 100.0 85.0 99.2 96.1 

Stability (N) 500 95.6 97.4 99.7 98.9 

Flow (mm) 0.2 94.6 99.7 96.2 96.7 
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Figure 3.18 Level of Confidence Achieved for Volumetric and Marshall 

Properties across Research Mixes 

Selecting the appropriate margin of error is critical for meaningful results of the 

level of confidence analysis.  For example, although the Marshall flow results had a 

relatively high coefficient of variation within each set of repeat samples (16 to 18 

percent) when compared to the volumetric test results (3 to 7 percent), because the 

margin of error acceptable to SDHT staff is approximately 0.2 mm, or approximately ten 
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percent of the allowable range (SDHT specifies an acceptable range of 1.5 to 3.5 mm), 

the resulting level of confidence is actually very high.  Also, if the margin of error for 

VTM were to be lowered from 0.2 percent of VTM to 0.1 percent of VTM, the resulting 

levels of confidence would decrease as much as 30 percent. 

The parameter of greatest importance are the Voids in Total Mix, because the 

volumetric make-up of the asphalt mix directly impacts the mix performance in response 

to laboratory mechanical testing and to loading under field state conditions.  For the 

Marshall samples, the SDHT laboratory staff was able to achieve levels of confidence 

above 95 percent for each parameter tested, as shown in Figure 3.18, which is 

considered acceptable by most researchers.  In the gyratory samples, the author was able 

to achieve a minimum level of confidence of 85 percent based on the VTM at Ndesign, as 

shown in Figure 3.18.  The fact that the volumetric properties of the Type 72 mix with 

40 percent manufactured fines resulted in a level of confidence significantly lower than 

that of the other three mixes compacted in this research may suggests inconsistencies in 

the gyratory compaction process across repeat samples for each of the research mixes.  

For instance, the time to weigh and compact samples may have resulted in differential 

temperature at the time of gyratory compaction. 

3.3.4 Experimental and Systematic Errors 

The level of experience and attention to detail by the laboratory personnel can 

significantly affect the number of repeat samples required as well as the accuracy and 

precision of test results, as was illustrated in this research when the variation in 

volumetric properties after Marshall and gyratory compaction was compared.  

Experienced SDHT laboratory personnel carried out the Marshall compaction of the 

research samples, achieving coefficients of variation no higher than seven percent within 

the volumetric properties of the ten repeat samples of each mix (details shown in 

Appendix C).  The gyratory samples that were compacted by the author, with little 

laboratory experience, resulted in coefficients of variation for the volumetric properties 

ranging from 7 to 12 percent within each mix type (see Appendix D).  Some of the 

experimental errors that may have caused these variations include: 
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• Incorrect aggregate combination within sample. 

• Inconsistent sample mixing during the combination of aggregate with asphalt 

cement for each sample (varied sample mixing time and level of coating of 

aggregate achieved). 

• Variable length of time in oven curing of each sample to reach consistent 

temperature within the mix prior to compaction. 

• Inconsistent scooping of sample into mould resulting in aggregate 

segregation within the sample. 

• Possible cooling of mix during scooping into gyratory mould prior to 

compaction. 

Although the testing equipment and settings were inspected by the author prior to 

testing, some of the systematic errors that may have affected the sample creation and 

compaction include: 

• Inaccurate scales used to measure the mass of aggregates, asphalt cement, 

and asphalt mixes. 

• Inaccurate temperature of oven used to store and heat aggregate and asphalt 

samples to the working temperatures required. 

• Mechanical settings within the compaction equipment (weight of Marshall 

hammer and the counter of compaction blows applied, angle of gyration 

within the gyratory machine, level and uniformity of the compaction pressure 

applied). 

3.4 Chapter Summary 

This chapter presented the results of conventional asphalt mix tests completed on 

the aggregate as well as on Marshall and gyratory-compacted samples for the four 

research mixes.  Physical aggregate properties such as gradation, fracture, fine aggregate 

angularity, sand equivalent and others were presented.  The volumetric properties of 

Marshall and gyratory samples were examined, and compared to SDHT and 



 

 90

Superpave™ specifications.  Results of Marshall stability and flow testing were also 

presented and discussed. 

The particle sizes of the Type 72 mix and the Type 70 mix used in this study 

varied mainly on the coarse end of the gradation (greater than 5 mm).  Fine aggregate 

angularity for the Type 72 mix ranged from 41.9 percent to 45.1 percent, and increased 

as the amount of manufactured fine aggregate was increased in the Type 72 mix.  Type 

70 mix had a fine aggregate angularity of 42.2 percent.  The amount of coarse fracture in 

the Type 72 mixes ranged from 95.2 to 97.8 percent, increasing as the amount of 

manufactured fine aggregate was increased.  The coarse fracture of the Type 70 mix was 

90.7 percent.   

The average VTM for the 75-blow Marshall compacted samples met SDHT 

design criteria of three to five percent VTM for each of the research mixes (ranging from 

3.9 to 4.3 percent), and resulted in mean VTM close to the SuperpaveTM recommended 

target of four percent.  In terms of differences in void properties between the four 

research mixes, the Type 72 mix with 20 percent manufactured fines had the highest 

VTM with a mean of 4.2 percent, while the Type 70 mix had the lowest VTM, with a 

mean of 3.9 percent. 

Although the gyratory compacted samples on average met the SDHT design 

criteria for VTM between three and five percent at the Ndesign level of compaction (with 

mean VTM ranging from 3.1 to 3.6 percent), on average the gyratory samples for each 

of the research mixes compacted to below the targeted design level of four percent VTM 

suggested by the SuperpaveTM mix design process.  In terms of differences in gyratory 

VTM at Ndesign between the four research mixes, the only significant difference noted is 

between the Type 70 mix (mean VTM of 3.1 percent) and the Type 72 mix with 40 

percent manufactured fines (mean VTM of 3.6 percent). 

Increasing the amount of manufactured fines in the Type 72 mix resulted in 

progressively less densification in the mix.  The Ninitial specification was not met by the 

Type 72 mix with 20 and 40 percent manufactured fines, with mean percent Gmm at 

Ninitial of 92.3 percent and 89.3 percent, respectively.  The Type 72 mix passed the 
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SuperpaveTM specification of less than 89 percent Gmm at Ninitial when the manufactured 

fines content was increased to 60 percent of total fines, based on the average of ten 

repeat samples, with a mean percent Gmm of 88.9 percent.  However, even this mix had 

samples which failed the Ninitial specification, based on the error bars, which represent 

two standard deviations (mean – 2 std dev = 88 percent).  The Type 70 mix had a mean 

percent Gmm of 90.1 percent, and did not meet the Ninitial densification criterion. 

All of the research mixes compacted to higher percent Gmm at Ndesign than 96 

percent, therefore resulting in average VTM slightly lower than the desirable four 

percent that is targeted by Superpave™ (mean VTM ranging from 3.1 to 3.6 percent 

across mix type).  Also, at Nmaximum the gyratory samples compacted below the SDHT 

acceptable VTM level of three percent (mean percent Gmm ranging from 97.4 to 97.8 

percent).  This difference in the level of compaction between the Marshall and gyratory 

methods was expected, since it is generally accepted that the gyratory compaction 

protocol results in a higher level of compaction.   

Marshall stability increased significantly as the proportion of manufactured fines 

was increased from 20 to 40 (increase of 22 percent), and to 60 percent (increase of 36 

percent) in the Type 72 mix, with mean Marshall stabilities of 8,244 N, 10,069 N, 

10,084 N, respectively.  Further, Marshall stability results for mix Type 70, which has 

38 percent of manufactured fines, were statistically the same as those for the Type 72 

mix with 40 percent manufactured fines (10,069 N and 10,084 N, respectively), 

highlighting the dominating effects of manufactured fine aggregate shape, angularity and 

texture in the dense-graded mix structure. 

The mean values of Marshall flow for the four research mixes, although close to 

the lower acceptable limit of 1.5 mm, met the SDHT design criteria, with mean Marshall 

flow results for each of the research mixes ranging from 1.8 mm to 2.3 mm.  However, 

there is a significant amount of variability in the test results, especially for the Type 72 

mix with 20 percent manufactured fines (CV of 18 percent), and the Type 70 mix (CV of 

16 percent), as is indicated by the fact that the lower error bar of two standard deviations 

results in the mixes failing the minimum SDHT criterion (with mean - 2 std dev = 1.1 

mm, and 1.3 mm, respectively).  It is also apparent that there is an increasing trend in 
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flow with increasing amounts of manufactured fines.  Marshall flow for the Type 72 mix 

with 60 percent manufactured fines was 28 percent higher than for the Type 72 mix with 

20 percent manufactured fines, with a mean of 2.3 mm.   

Based on VTM in the Marshall samples, a minimum level of confidence of 98 

percent was achieved with ten repeat samples.  In the gyratory samples, the author was 

able to achieve a minimum level of confidence of 85 percent (based on the VTM at 

Ndesign).  The fact that the volumetric properties of the Type 72 mix with 40 percent 

manufactured fines resulted in a level of confidence significantly lower than that of the 

other three mixes compacted by the author suggests inconsistencies in the gyratory 

compaction process by the author across the research mixes. 
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CHAPTER 4 MECHANISTIC CHARACTERIZATION OF RESEARCH 

MIXES 

The second phase of determining the influence of manufactured fines on 

Saskatchewan dense graded mixes involved characterizing their behaviour under 

dynamic loading in various stress state conditions.  This was accomplished with the use 

of the triaxial frequency sweep testing apparatus available at the University of 

Saskatchewan.  This apparatus was first used in 1996, during the design and construction 

of Saskatchewan’s SHRP Specific Pavement Studies – 9A (SPS-9A) asphalt concrete 

pavement test sections on Highway 16, near Radisson (Berthelot 1999, Czarnecki et al. 

1999, Anthony and Berthelot 2003).  Although this type of testing is not yet widely 

implemented as part of conventional testing of bituminous materials, its benefits of 

quantifying fundamental mechanical properties of materials in response to dynamic 

loading are gaining understanding in the pavement engineering community (NCHRP 

2004, NCHRP 2005). 

This chapter contains a presentation and discussion of the results of triaxial 

frequency testing carried out on ten repeat samples for each of the four research mixes.  

The samples were created using gyratory compaction equipment, and their volumetric 

properties have been presented and discussed in Chapter Three.  All charts illustrate the 

mean values of ten repeat samples tested, with the error bars representing ± two standard 

deviations from the mean. 

4.1 Triaxial Frequency Sweep Testing Protocol 

The triaxial frequency sweep testing was carried out using the Rapid Triaxial 

Tester (RaTT cell).  The RaTT cell has been proven to provide reliable information on 

mechanistic material properties related to response to dynamic loading (Berthelot et al. 

1999, Berthelot 1999, Crockford et al. 2002, Berthelot et al. 2003).  This apparatus has  
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Figure 4.1 University of Saskatchewan Triaxial Frequency Sweep Equipment 

been successfully implemented for various research projects related to asphalt concrete 

mixes (Berthelot 1999, Carlberg 2002, Baumgartner 2005).  Further, the RaTT cell is not 

only limited to testing asphalt mixes - it is capable of testing various road materials, and 

has been successfully used for this purpose (Berthelot and Gerbrandt 2002, Berthelot et 

al. 2005, Berthelot et al. 2007).  Figure 4.1 is a photograph of the machine, which is 

available at the University of Saskatchewan.  The machine is capable of testing 

specimens compacted by the SHRP gyratory compactor, which are of 150 mm in 

diameter, with a height of 150 ± 5 mm.  The large sample size is an advantage over other 

similar tests, because it helps to eliminate the significance of the disparities present in 

asphalt mix samples.  The disparities within asphalt mixes are inherent because HMAC 

is a particulate composite of varying aggregate sizes, air voids, and asphalt cement.  

(Weissman et al. 1999).   

Using the gyratory compacted samples ensures timely testing, and eliminates the 

need for coring to obtain four inch specimens, as is necessary for testing in other triaxial 

apparatus.  In addition to requiring more preparation time, coring may introduce 

irregularities and damage in the form of micro-fracture in the sample.   



 

 95

The RaTT cell features independent closed-loop feedback control of the vertical 

and confining stresses exerted on the gyratory compacted samples of 150 mm height.  

The sample is inserted into a rubber membrane, which is used to create radial 

confinement pneumatically.  Sinusoidal axial loading is applied at a specified frequency, 

and the resulting strains on the sample are measured by two axial and four radially 

located linear variable differential transducers (LVDT) (Berthelot 1999). 

The testing protocols employed in this research study have been developed over 

the recent years by applying the RaTT cell for various research purposes (Berthelot 

1999, Carlberg 2002, Baumgartner 2005).  The testing framework was selected in order 

to investigate the influence of manufactured fines in Saskatchewan mixes subjected to 

varying load parameters on the following mechanistic properties, which are explained in 

more detail in Chapter Two, Section 2.7.2: 

• Dynamic Modulus, Ed 

• Poisson’s Ratio, ν 

• Recoverable Axial Microstrain, ε11 

• Recoverable Radial Microstrain ε22 = ε33 

• Phase Angle, δ 

The RaTT cell is capable of testing materials by varying the following 

parameters, whose influence on the response of the research mixes was also 

investigated: 

• Magnitude of axial load application (simulates varying vehicle loadings). 

• Frequency of axial load application (simulates varying traffic speeds). 

• Magnitude of radial confinement (simulates various locations within a 

pavement structure). 

• Testing temperature (simulates varying atmospheric conditions). 

In order to subject the samples to uniform loading conditions, and to be able to 

best quantify the influence of the changes in the various condition states simulated 

during testing, all samples were subjected to the same testing sequence, beginning with 
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the least damage-causing, and progressively applying increasingly damaging condition 

states, as shown in Table 4.1.  As can be seen, the peak axial traction was maintained at 

a constant of 600 kPa, and the peak radial traction was varied, in order to simulate 

various deviatoric stress levels.  The samples were conditioned to 20°C and tested as 

outlined in Table 4.1.   

Table 4.1 Triaxial Frequency Sweep Testing Sequence 

Testing 

Sequence 

Peak Axial 

Traction 

 kPa 

Peak Radial 

Traction  

kPa 

Deviatoric Stress 

σD  

kPa 

Axial Load 

Frequency  

Hz 

1 600 230 370 10 

2 600 230 370 5 

3 600 230 370 1 

4 600 230 370 0.5 

5 600 175 425 10 

6 600 175 425 5 

7 600 175 425 1 

8 600 175 425 0.5 

9 600 100 500 10 

10 600 100 500 5 

11 600 100 500 1 

12 600 100 500 0.5 

 

The following sections contain a discussion of the test results with respect to the 

influence of manufactured fines on the mechanistic properties of the research mixes by 

analysing the results for the Type 72 mix with varying levels of manufactured fines 

content, as well as the influence of the aggregate skeleton, which is accomplished by 

comparing the results for the Type 72 mixes with those for the Type 70 mix with 38 

percent manufactured fines. 

All relationships are examined by presenting the results at various stress states, at 

a testing temperature of 20°C and two loading frequencies.  The highest loading 

frequency of 10 Hz was selected because it is intended to simulate highway traffic 

speeds, and the lowest testing frequency of 0.5 Hz was selected because it simulates 

loading in slow moving traffic conditions.  The Type 72 mix with 20 percent 
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manufactured fines was used as a baseline for quantifying the magnitude of changes in 

the test results between the four research mixes.  Statistical significance of the results 

was investigated by performing analysis of variance on the influence of mix type and 

stress state on each dependent variable, and by applying Tukey’s pairwise comparison 

for a more detailed analysis.  

4.2 Dynamic Modulus Characterization of Research Mixes 

As explained in Chapter Two, the dynamic modulus, Ed, is a measure of stiffness 

represented in the RaTT cell by the absolute value of peak stress to peak strain during 

material testing under specified test conditions.  Dynamic modulus is used to quantify 

the stress-strain relationships in a pavement structure under an applied load.  A higher 

stiffness modulus indicates that a given applied stress results in lower strain in the 

mixture.  The influence of the manufactured fines content and the change in aggregate 

skeleton on the dynamic modulus measured at a temperature of 20°C and loading 

frequencies of 10 Hz and 0.5 Hz are discussed below. 

Table 4.2 and Figure 4.2 show the dynamic modulus of the research mixes at a 

frequency of 10 Hz, across the three levels of applied deviatoric stress.  Table 4.3 and 

Figure 4.3 show the dynamic modulus of the research mixes at a frequency of 0.5 Hz.  

The lower loading frequency results in significantly lower magnitudes of the dynamic 

modulus obtained from the applied loading, as has also been shown in previous triaxial 

frequency sweep testing (Carlberg 2003, Baumgartner 2005).  In fact, the modulus 

decreases by approximately half the magnitude when frequency is reduced from 10 to 

0.5 Hz.  Also, as deviatoric stress increases, dynamic modulus decreases. 

Using the Type 72 mix with 20 percent of manufactured fines as a baseline, it can 

be seen that at 10 Hz there is minimal change in the dynamic modulus between 20 and 

40 percent of manufactured fines content (one percent increase); however, there is a 

significant increase once the aggregate skeleton contains 60 percent manufactured fines.  

In fact, the dynamic modulus increases by approximately 50 percent when the aggregate 

skeleton is modified from 20 to 60 percent manufactured fines, at each stress state, as is 

shown in Table 4.2.  Similarly, at the frequency of 0.5 Hz there is minimal change in the  
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Table 4.2 Mean Dynamic Modulus across Stress State at 10 Hz and 20°C 

Deviatoric 

Stress, σD (kPa) 
Mix Type 

Mean Dynamic 

Modulus, Ed 

(MPa) 

Coefficient of 

Variation  

(%) 

% Difference 

from 

T72(20%MF) 

370 T72(20%MF) 2167 3 --- 

 T72(40%MF) 2193 4 1% 

 T72(60%MF) 3292 15 52% 

 T70(38%MF) 2317 13 7% 

425 T72(20%MF) 1963 2 --- 

 T72(40%MF) 1987 5 1% 

 T72(60%MF) 2967 16 51% 

 T70(38%MF) 2085 11 6% 

500 T72(20%MF) 1832 3 --- 

 T72(40%MF) 1831 3 0% 

 T72(60%MF) 2784 18 52% 

 T70(38%MF) 1950 10 6% 

 

 

Table 4.3 Mean Dynamic Modulus across Stress State at 0.5 Hz and 20°C 

Deviatoric 

Stress 

σD  

(kPa) 

Mix Type 

Mean Dynamic 

Modulus, Ed 

(MPa) 

Coefficient of 

Variation  

(%) 

% Difference 

from 

T72(20%MF) 

370 T72(20%MF) 1193 3 --- 

 T72(40%MF) 1173 3 -2% 

 T72(60%MF) 1489 15 25% 

 T70(38%MF) 1200 8 1% 

425 T72(20%MF) 1017 3 --- 

 T72(40%MF) 1020 7 0.3% 

 T72(60%MF) 1265 15 24% 

 T70(38%MF) 1030 7 1% 

500 T72(20%MF) 914 3 --- 

 T72(40%MF) 907 3 -1% 

 T72(60%MF) 1159 16 27% 

 T70(38%MF) 958 6 5% 
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Figure 4.2 Mean Dynamic Modulus across Stress State at 10 Hz and 20°C (± 2 SD) 
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Figure 4.3 Mean Dynamic Modulus across Stress State at 0.5 Hz and 20°C (± 2 SD) 
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dynamic modulus between 20 and 40 percent of manufactured fines content; however, 

there is a significant increase for the Type 72 mix with 60 percent manufactured fines 

evident at each stress state.  Although the increase is not as large as with the higher 

testing frequency (50 percent at 10 Hz vs. 25 percent at 0.5 Hz), the dynamic modulus 

increases by approximately 25 percent when the aggregate skeleton is modified from 20 

to 60 percent manufactured fines, as is illustrated in Table 4.3.  

It is also evident that there is minimal difference between the mean dynamic 

modulus of the Type 70 mix, which SDHT considers a structural mix, and the Type 72 

mixes with 20 and 40 percent manufactured fines content, across deviatoric stress and at 

both loading frequencies tested.  In fact, the mean Ed of the Type 70 mix is only 

approximately 6 percent higher than that for the Type 72 mix with 20 percent 

manufactured fines at the frequency of 10 Hz, and at the frequency of 0.5 Hz, the mean 

dynamic modulus of the Type 70 mix is only approximately one percent higher than that 

for the Type 72 mix with 20 percent manufactured fines.  This further confirms the 

observations made based on Marshall stability testing, which are discussed in the 

previous Chapter. 

Keeping in mind that the error bars in Figure 4.2 and Figure 4.3 represent ± two 

standard deviations, and inspecting the coefficients of variation listed in Table 4.2 and 

Table 4.3, it is clear that there is a high variability within the ten repeat samples for the 

Type 72 mix with 60 percent manufactured fines (CV ranging from 15 to 18 percent).  

This may be attributed to the fact that increasing the manufactured fines content, and 

therefore the total content of manufactured materials, results in more variability in the 

particle arrangement during compaction, therefore increasing the variability in the 

response to axial loading. 

Analysis of variance of the results at each loading frequency illustrates the fact 

that the type of mix is significant in the dynamic modulus results (Table 4.4 and Table 

4.5).  Tukey’s Pairwise Comparison shown in Table 4.6 and Table 4.7 was performed to 

further investigate the relationship between the mixes at various stress states applied.  

Tukey’s analysis compares the mean of each population against the mean of each of the 

other populations, creating separate groups for results that are statistically different.  
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Table 4.4 Analysis of Variance for Dynamic Modulus at 10 Hz and 20°C 

Effect 
Sum of 

Squares 

Degrees 

of 

Freedom 

Mean 

Squares 

F-Test 

Statistic 
P-value 

Mix Type 21829940 3 7276647 93.78 0.00 

Deviatoric Stress 3140620 2 1570310 20.24 0.00 

Mix Type*Deviatoric Stress 98941 6 16490 0.21 0.97 

Error 8379932 108 77592   

 

 

Table 4.5 Analysis of Variance for Dynamic Modulus at 0.5 Hz and 20°C 

Effect 
Sum of 

Squares 

Degrees 

of 

Freedom 

Mean 

Squares 

F-Test 

Statistic 
P-value 

Mix Type 1516876 3 505625 41.16 0.00 

Deviatoric Stress 1605018 2 802509 65.33 0.00 

Mix Type * Deviatoric Stress 25465 6 4244 0.35 0.91 

Error 1326606 108 12283   

 

As can be seen in Table 4.6, the Type 72 mix with 60 percent manufactured fines 

results in significantly higher dynamic modulus across the three stress states than any of 

the other three mixes at 10 Hz.  Also, the dynamic modulus for the Type 70 mix does 

not perform different from the Type 72 mixes with 20 and 40 percent manufactured 

fines.  Tukey’s Pairwise Comparison shown in Table 4.7 shows that the Type 72 mix 

with 60 percent manufactured fines results in significantly higher dynamic modulus 

across the three stress states than any of the other three mixes at 0.5 Hz.  Also, the 

dynamic modulus for the Type 70 mix does not perform different from the Type 72 

mixes with 20 and 40 percent manufactured fines.  In addition, stress state also 

significantly impacts the results at both frequencies.  Namely, as deviatoric stress 

increases, dynamic modulus decreases.  
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Table 4.6 Tukey's Homogeneous Groups for Dynamic Modulus at 10 Hz and 

20°C 

Tukey’s Homogeneous Groups Deviatoric 

Stress 

σD  

(kPa) 

Mix Type 

Mean Dynamic 

Modulus 

Ed 

(MPa) 
A B C D 

370 T72 (20%MF) 2167 **** ****   

 T72 (40%MF) 2193 **** ****   

 T70 (38%MF) 2317  ****   

 T72 (60%MF) 3292    **** 

425 T72 (20%MF) 1963 **** ****   

 T72 (40%MF) 1987 **** ****   

 T70 (38%MF) 2085 **** ****   

 T72 (60%MF) 2967   **** **** 

500 T72 (20%MF) 1832 ****    

 T72 (40%MF) 1831 ****    

 T70 (38%MF) 1950 **** ****   

 T72 (60%MF) 2784   ****  

 

 

Table 4.7 Tukey's Homogeneous Groups for Dynamic Modulus at 0.5 Hz and 

20°C 

Tukey’s Homogeneous Groups Deviatoric 

Stress 

σD (kPa) 

Mix Type 

Mean Dynamic 

Modulus 

Ed 

(MPa 
A B C D E 

370 T72(40%MF) 1173  **** **** ****  

 T72(20%MF) 1193   **** ****  

 T70(38%MF) 1200    ****  

 T72(60%MF) 1489     **** 

425 T72(20%MF) 1017 **** ****    

 T72(40%MF) 1020 **** ****    

 T70(38%MF) 1030 **** **** ****   

 T72(60%MF) 1265    ****  

500 T72(60%MF) 1159  **** **** ****  

 T72(40%MF) 907 ****     

 T72(20%MF) 914 ****     

 T70(38%MF) 958 ****     

 



 

 103

4.3 Recoverable Axial Microstrain Characterization of Research Mixes 

The amount of recoverable axial microstrain (RAMS) is a measure of the 

recoverable portion of the strain resulting from the dynamic loading in the RaTT cell 

along the same vertical axis on which the loading is applied.   

Table 4.8 and Figure 4.4 illustrate the average amount of RAMS of ten repeat 

samples across mix type, for each level of deviatoric stress applied, at a loading 

frequency of 10 Hz.  Table 4.9 and Figure 4.5 show the average RAMS across mix type 

and deviatoric stress at a loading frequency of 0.5 Hz.  As can be seen when comparing 

the two sets of data at different frequencies, there is a significant change in the overall 

magnitude of the microstrains between 10 Hz and 0.5 Hz.  As can be expected, the 

slower loading frequency of 0.5 Hz results in almost twice the amount of strain than the 

frequency of 10 Hz.  Also, an increase in deviatoric stress results in an increase in 

recoverable axial microstrains. 

Using the Type 72 mix with 20 percent of manufactured fines as a baseline, it can 

be seen in Table 4.8 that at 10 Hz there is minimal change in the mean RAMS between 

20 and 40 percent of manufactured fines content, however, there is a decrease in the 

order of 30 percent in the mean RAMS, at each stress state, once the aggregate skeleton 

contains 60 percent manufactured fines.  Similarly, at the frequency of 0.5 Hz there is 

minimal change in the average RAMS between 20 and 40 percent of manufactured fines 

content, however, there is a significant increase for the Type 72 mix with 60 percent 

manufactured fines.  Although the increase is not as large as with the higher testing 

frequency (30 percent vs. 18 percent), as is illustrated in Table 4.9.  There appears to be 

a slight decrease in RAMS for the Type 70 mix at 10 Hz, in the order of 5 percent. 

There is high variability within the RAMS for the Type 72 mix with 60 percent 

manufactured fines (CV ranging from 13 to 18 percent).  It is suspected that this 

variability exists for similar reasons named for the dynamic modulus.  Namely, it may 

be attributed to the fact that increasing the manufactured fines content results in more 

variability in the particle arrangement due to aggregate shape, therefore increasing the 

variability in the response to axial loading. 
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Table 4.8 Mean Recoverable Axial Microstrain across Stress State at 10 Hz and 

20°C 

Deviatoric 

Stress, σD (kPa) 
Mix Type 

Mean 

Recoverable 

Axial 

Microstrain 

(10
-6

) 

Coefficient of 

Variation  

(%) 

% Difference 

from 

T72(20%MF) 

370 T72(20%MF) 269 3 --- 

 T72(40%MF) 267 4 -1% 

 T72(60%MF) 180 15 -33% 

 T70(38%MF) 255 10 -5% 

425 T72(20%MF) 296 2 --- 

 T72(40%MF) 293 5 -1% 

 T72(60%MF) 200 16 -32% 

 T70(38%MF) 281 9 -5% 

500 T72(20%MF) 317 3 --- 

 T72(40%MF) 317 3 0% 

 T72(60%MF) 214 18 -32% 

 T70(38%MF) 300 9 -5% 

 

 

Table 4.9 Mean Recoverable Axial Microstrain across Stress State at 0.5 Hz 

and 20°C 

Deviatoric 

Stress 

σD  

(kPa) 

Mix Type 

Mean 

Recoverable 

Axial 

Microstrain 

(10
-6

) 

Coefficient of 

Variation  

(%) 

% Difference 

from 

T72(20%MF) 

370 T72(20%MF) 502 3 --- 

 T72(40%MF) 511 3 2% 

 T72(60%MF) 409 12 -19% 

 T70(38%MF) 501 7 0% 

425 T72(20%MF) 587 3 --- 

 T72(40%MF) 588 6 0.1% 

 T72(60%MF) 480 13 -18% 

 T70(38%MF) 581 6 -1% 

500 T72(20%MF) 653 3 --- 

 T72(40%MF) 658 3 1% 

 T72(60%MF) 524 13 -20% 

 T70(38%MF) 625 6 -4% 
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Figure 4.4 Mean Recoverable Axial Microstrain across Stress State at 10 Hz and 

20°C (± 2 SD) 
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Figure 4.5 Mean Recoverable Axial Microstrain across Stress State at 0.5 Hz and 

20°C (± 2 SD) 
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Analysis of variance of the results at each loading frequency illustrates that the 

type of mix as well as stress state are significant in the RAMS results (Table 4.4 and 

Table 4.5).  Further statistical analysis using Tukey’s homogeneous groups clearly 

identifies the Type 72 mix with 60 percent manufactured fines as resulting in the lowest 

recoverable axial microstrains when compared to the other three mixes at each stress 

state and frequency tested (as shown in Table 4.12 and Table 4.13).  It is evident at both 

frequencies and all stress states that Type 70 RAMS are statistically not significantly 

different than the Type 72 mixes with 20 and 40 percent manufactured fines, 

respectively.  Also, an increase in deviatoric stress results in increased recoverable axial 

microstrains, as would be expected. 

Table 4.10 Analysis of Variance for Recoverable Axial Microstrain at 10 Hz and 

20°C 

Effect 
Sum of 

Squares 

Degrees 

of 

Freedom 

Mean 

Squares 

F-Test 

Statistic 
P-value 

Mix Type 186614 3 62205 129.70 0.00 

Deviatoric Stress 39219 2 19609 40.89 0.00 

Mix Type * Deviatoric Stress 821 6 137 0.29 0.94 

Error 51798 108 480   

 

 

Table 4.11 Analysis of Variance for Recoverable Axial Microstrain at 0.5 Hz and 

20°C 

Effect 
Sum of 

Squares 

Degrees 

of 

Freedom 

Mean 

Squares 

F-Test 

Statistic 
P-value 

Mix Type 264716 3 88239 57.49 0.00 

Deviatoric Stress 365152 2 182576 118.94 0.00 

Mix Type * Deviatoric Stress 5414 6 902 0.59 0.74 

Error 165776 108 1535   
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Table 4.12 Tukey's Homogeneous Groups for Recoverable Axial Microstrain at 

10 Hz and 20°C 

Tukey’s Homogeneous Groups Deviatoric 

Stress 

σD  

(kPa) 

Mix Type 

Mean 

Recoverable 

Axial 

Microstrain 

(10
-6

) 

A B C D E F 

370 T72(60%MF) 180 ****      

 T70(38%MF) 255   ****    

 T72(20%MF) 269   **** **** ****  

 T72(40%MF) 267   **** ****   

425 T72(60%MF) 200 **** ****     

 T70(38%MF) 281   **** **** ****  

 T72(40%MF) 293    **** **** **** 

 T72(20%MF) 296    **** **** **** 

500 T72(60%MF) 214  ****     

 T70(38%MF) 300     **** **** 

 T72(20%MF) 317      **** 

 T72(40%MF) 317      **** 

 

 

Table 4.13 Tukey's Homogeneous Groups for Recoverable Axial Microstrain at 

0.5 Hz and 20°C 

Tukey’s Homogeneous Groups Deviatoric 

Stress 

σD  

(kPa) 

Mix Type 

Mean 

Recoverable 

Axial 

Microstrain 

(10
-6

) 

A B C D E 

370 T72(60%MF) 409 ****     

 T70(38%MF) 501  ****    

 T72(20%MF) 502  ****    

 T72(40%MF) 511  ****    

425 T72(60%MF) 480  ****    

 T70(38%MF) 581   **** ****  

 T72(20%MF) 587    ****  

 T72(40%MF) 588    ****  

500 T72(60%MF) 524  **** ****   

 T70(38%MF) 625    **** **** 

 T72(20%MF) 653     **** 

 T72(40%MF) 658     **** 
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4.4 Recoverable Radial Microstrain Characterization of Research Mixes 

The amount of recoverable radial microstrain (RRMS) is a measure of the 

recoverable portion of the strain resulting from the dynamic loading in the RaTT cell 

along a horizontal axis at mid-height of the sample, which is perpendicular to the 

direction of the dynamic loading applied.  RRMS is an indicator of shear strength of the 

material. 

Table 4.14 and Figure 4.6 illustrates the average amount of RRMS of ten repeat 

samples across mix type, for each level of deviatoric stress applied, at a loading 

frequency of 10 Hz.  Table 4.15 and Figure 4.7 show the average RRMS across mix type 

and deviatoric stress at a loading frequency of 0.5 Hz.  The RRMS more than double in 

magnitude when the frequency of loading is reduced from 10 Hz to 0.5 Hz, indicating a 

significant increase in shear forces with the lowered loading frequency.  Also, the 

RRMS increase as deviatoric stress is increased. 

Using the Type 72 mix with 20 percent of manufactured fines as a baseline, it can 

be seen in Table 4.14 that at 10 Hz there is minimal change in the RRMS between 20 

and 40 percent of manufactured fines content, however, there is a decrease in the order 

of 18 to 22 percent in the mean RRMS, depending on stress state, once the aggregate 

skeleton contains 60 percent manufactured fines.  Similarly, at the frequency of 0.5 Hz 

there is minimal change in the RAMS between 20 and 40 percent of manufactured fines 

content, however, the mean RRMS for the Type 72 mix with 60 percent manufactured 

fines decreases by a minimum of 7 percent, depending on the stress state.  The Type 70 

mix results in slightly lower mean RRMS than the baseline mix at 10 Hz (by 

approximately 7 percent), however, at 0.5 Hz there appears to be minimal difference.   

There is increased variability in RRMS within each mix type for the Type 72 mix 

with 60 percent manufactured fines (CV ranging from 17 to 20 percent).  It is suspected 

that this variability exists for similar reasons listed when discussing the variability 

present in the dynamic modulus and RAMS for the Type 72 mix with 60 percent 

manufactured fines.  The Type 70 mix is also showing increased variability in RRMS 

(CV ranging from 9 to 17 percent). 
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Table 4.14 Mean Recoverable Radial Microstrain across Stress State at 10 Hz 

and 20°C 

Deviatoric 

Stress, σD (kPa) 
Mix Type 

Mean 

Recoverable 

Radial 

Microstrain 

(10
-6

) 

Coefficient of 

Variation  

(%) 

% Difference 

from 

T72(20%MF) 

370 T72(20%MF) 88 7 --- 

 T72(40%MF) 87 5 -1% 

 T72(60%MF) 68 17 -22% 

 T70(38%MF) 82 14 -7% 

425 T72(20%MF) 93 8 --- 

 T72(40%MF) 90 8 -3% 

 T72(60%MF) 75 17 -20% 

 T70(38%MF) 87 16 -6% 

500 T72(20%MF) 93 9 --- 

 T72(40%MF) 94 11 2% 

 T72(60%MF) 76 20 -18% 

 T70(38%MF) 86 17 -8% 

 

 

Table 4.15 Mean Recoverable Radial Microstrain across Stress State at 0.5 Hz 

and 20°C 

Deviatoric 

Stress 

σD  

(kPa) 

Mix Type 

Mean 

Recoverable 

Radial 

Microstrain 

(10
-6

) 

Coefficient of 

Variation 

(%) 

% Difference 

from 

T72(20%MF) 

370 T72(20%MF) 216 4 --- 

 T72(40%MF) 222 6 3% 

 T72(60%MF) 200 18 -7% 

 T70(38%MF) 218 9 1% 

425 T72(20%MF) 260 5 --- 

 T72(40%MF) 263 7 1.2% 

 T72(60%MF) 232 20 -11% 

 T70(38%MF) 262 11 1% 

500 T72(20%MF) 292 6 --- 

 T72(40%MF) 293 5 0% 

 T72(60%MF) 250 19 -14% 

 T70(38%MF) 279 11 -5% 
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Figure 4.6  Mean Recoverable Radial Microstrain across Stress State at 10 Hz and 

20°C (± 2 SD) 
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Figure 4.7 Mean Recoverable Radial Microstrain across Stress State at 0.5 Hz and 

20°C (± 2 SD) 
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Table 4.16 Analysis of Variance for Recoverable Radial Microstrain at 10 Hz 

and 20°C 

Effect 
Sum of 

Squares 

Degrees 

of 

Freedom 

Mean 

Squares 

F-Test 

Statistic 
P-value 

Mix Type 6388 3 2129 17.92 0.00 

Deviatoric Stress 888 2 444 3.73 0.027 

Mix Type * Deviatoric Stress 95.3 6 16 0.13 0.99 

Error 12828 108 119   

 

 

Table 4.17 Analysis of Variance for Recoverable Radial Microstrain at 0.5 Hz 

and 20°C 

Effect 
Sum of 

Squares 

Degrees 

of 

Freedom 

Mean 

Squares 

F-Test 

Statistic 
P-value 

Mix Type 19431 3 6477 8.53 3.9E-05 

Deviatoric Stress 84684 2 42342 55.73 0.00 

Mix Type * Deviatoric Stress 2348 6 391 0.52 0.80 

Error 82045 108 760   

 

By examining the ANOVA results show in Table 4.16 and Table 4.17, it is 

apparent by the increased F-test statistic that at the frequency of 0.5 Hz the effects of 

stress state are magnified, reducing the significance of the influence from mix type.   

Table 4.18 shows the results of the pairwise comparison using Tukey’s method of 

homogeneous groups for the RRMS results across mix types at the three deviatoric stress 

states, at a frequency of 10 Hz.  Table 4.19 shows the Tukey’s homogeneous groups at 

0.5 Hz.  At 10 Hz the RRMS for the Type 72 mix with 60 percent manufactured fines 

are significantly lower from the other two Type 72 mixes at each deviatoric stress level.   
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Table 4.18 Tukey's Homogeneous Groups for Recoverable Radial Microstrain at 

10 Hz and 20°C 

Tukey’s Homogeneous Groups Deviatoric 

Stress 

σD  

(kPa) 

Mix Type 

Mean 

Recoverable 

Radial 

Microstrain  

(10
-6

) 
A B C 

370 T72(60%MF) 68 ****   

 T70(38%MF) 82 **** **** **** 

 T72(40%MF) 87  **** **** 

 T72(20%MF) 88  **** **** 

425 T72(60%MF) 75 **** ****  

 T70(38%MF) 87  **** **** 

 T72(40%MF) 90  **** **** 

 T72(20%MF) 93   **** 

500 T72(60%MF) 76 **** ****  

 T70(38%MF) 86  **** **** 

 T72(20%MF) 93   **** 

 T72(40%MF) 94   **** 

 

 

Table 4.19 Tukey's Homogeneous Groups for Recoverable Radial Microstrain at 

0.5 Hz and 20°C 

Tukey’s Homogeneous Groups Deviatoric 

Stress 

σD  

(kPa) 

Mix Type 

Mean 

Recoverable 

Radial 

Microstrain  

(10
-6

) 

A B C D E 

370 T72(60%MF) 200 ****     

 T72(20%MF) 216 **** ****    

 T70(38%MF) 218 **** ****    

 T72(40%MF) 222 **** **** ****   

425 T72(60%MF) 232 **** **** ****   

 T72(20%MF) 260   **** **** **** 

 T70(38%MF) 262   **** **** **** 

 T72(40%MF) 263   **** **** **** 

500 T72(60%MF) 250  **** **** ****  

 T70(38%MF) 279    **** **** 

 T72(20%MF) 292     **** 

 T72(40%MF) 293     **** 
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At 0.5 Hz the effects of the reduced frequency and the deviatoric stress levels are 

dominant, and there is a lot more interaction between the RRMS results of the research 

mixes.  The benefits of increased manufactured fines are only significant when the 

deviatoric stress is 500 kPa, where the Type 72 mix with 60 percent manufactured fines 

results in reduced RRMS (250E-6) when compared to the Type 72 mix with 20 and 40 

percent manufactured fines (292E-6 and 293E-6, respectively).  The RRMS for the Type 

70 mix are statistically the same as the RRMS for the Type 72 mix with 20 and 40 

percent manufactured fines, respectively, at each stress state and frequency. 

4.5 Poisson’s Ratio Characterization of Research Mixes 

As previously defined in Chapter Two, Poisson’s ratio, ν, is the relationship of 

the lateral strain to the axial strain, and can be obtained from the RaTT cell results by 

dividing the recoverable radial microstrains by the recoverable axial microstrains. 

Table 4.20 and Figure 4.8 show the results of Poisson’s ratio across stress states 

at 10 Hz.  Table 4.21 and Figure 4.9 show the Poisson’s ratio for the research mixes at 

0.5 Hz.  There is a substantial difference in magnitude between Poisson’s ratio at 10 Hz 

and at 0.5 Hz.  Traditionally, Poisson’s ratio for asphalt mixes is assumed to be in the 

order of 0.35 for the purposes of structural parameters calculations and modeling.  It 

appears that while this estimate is reasonable at high frequencies, such as 10 Hz, at 0.5 

Hz the average Poisson’s ratios for all the mixes tested in this research are 0.43 or 

higher. 

As can be seen by setting the Type 72 mix with 20 percent as a baseline, there is 

a significant increase in Poisson’s ratio at 10 Hz when the manufactured fines are 

increased to 60 percent for the Type 72 mix, ranging from 17 to 23 percent higher than 

the baseline, depending on stress state.  Although this same observation can be made at 

0.5 Hz, the magnitude of the difference is substantially reduced, to 6 to 13 percent 

higher than the baseline (see Table 4.21).  There is minimal difference between the Type 

70 mix and the baseline, in the order of zero to two percent, at each stress state and 

frequency. 
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Table 4.20 Mean Poisson’s Ratio across Stress State at 10 Hz and 20°C 

Deviatoric 

Stress, σD (kPa) 
Mix Type 

Mean Poisson’s 

Ratio 

ν 

Coefficient of 

Variation  

(%) 

% Difference 

from 

T72(20%MF) 

370 T72(20%MF) 0.32 6 --- 

 T72(40%MF) 0.33 3 0% 

 T72(60%MF) 0.38 13 17% 

 T70(38%MF) 0.32 14 -1% 

425 T72(20%MF) 0.31 6 --- 

 T72(40%MF) 0.31 6 -1% 

 T72(60%MF) 0.38 14 20% 

 T70(38%MF) 0.31 15 -1% 

500 T72(20%MF) 0.29 7 --- 

 T72(40%MF) 0.30 11 2% 

 T72(60%MF) 0.36 18 23% 

 T70(38%MF) 0.29 16 -2% 

 

 

Table 4.21 Mean Poisson’s Ratio across Stress State at 0.5 Hz and 20°C 

Deviatoric 

Stress 

σD  

(kPa) 

Mix Type 

Mean Poisson’s 

Ratio 

ν 

Coefficient of 

Variation  

(%) 

% Difference 

from 

T72(20%MF) 

370 T72(20%MF) 0.43 3 --- 

 T72(40%MF) 0.43 4 1% 

 T72(60%MF) 0.49 11 13% 

 T70(38%MF) 0.43 9 1% 

425 T72(20%MF) 0.44 3 --- 

 T72(40%MF) 0.45 3 1% 

 T72(60%MF) 0.48 11 8% 

 T70(38%MF) 0.45 9 2% 

500 T72(20%MF) 0.45 3 --- 

 T72(40%MF) 0.45 4 0% 

 T72(60%MF) 0.47 10 6% 

 T70(38%MF) 0.45 8 0% 
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Figure 4.8 Mean Poisson's Ratio across Stress State at 10 Hz and 20°C (± 2 SD) 
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Figure 4.9 Mean Poisson's Ratio across Stress State at 0.5 Hz and 20°C (± 2 SD) 
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Comparable to the behaviour noted in RAMS, the Type 72 mix with 60 percent 

manufactured fines and the Type 70 mix both show high variability in the Poisson’s 

ratio results, as is indicated by the large error bars in the illustration charts at each 

frequency, and the coefficients of variation in Table 4.20 and Table 4.21 (CV ranging 

from 10 to 18 percent, and from 8 to 16 percent, respectively).  This variability can 

likely be attributed to the aggregate structures being more variable for the mixes 

containing more fractured aggregate, similar to the variability of the previous variables 

reviewed. 

The ANOVA table for Poisson’s ratio at a frequency of 10 Hz indicates that at 

the high frequency, it is the mix type that has a dominant influence on Poisson’s ratio 

results, with the deviatoric stress also being significant (see Table 4.22).  At 0.5 Hz the 

only significant independent variable is mix type, as can be seen in Table 4.23. 

 

Table 4.23 and Table 4.24 shows the pairwise comparison of Poisson’s ratio 

across stress state, at the loading frequency of 10 Hz.  There is a lot of interaction 

between the results for the different mix types, especially at the lower deviatoric stress 

state.  However, when the deviatoric stress is as high as 425 kPa and 500 kPa, the Type 

72 mix with 60 percent manufactured fines has a significantly higher Poisson’s ratio 

than the other three mixes, at 0.38 and 0.36, respectively for each stress state.  At the 

loading frequency of 0.5 Hz, the Type 72 mix has a higher Poisson’s ratio (0.49) only at 

the lowest deviatoric stress level of 370 kPa.  As the deviatoric stress increases, with the 

combined effects of the slower loading, the influence of mix type is no longer 

significant, as can be seen in Table 4.25.  The Type 70 mix resulted in Poisson’s ratio 

statistically the same as the Type 72 mixes with 20 and 40 percent manufactured fines at 

each stress state and frequency. 
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Table 4.22 Analysis of Variance for Poisson’s Ratio at 10 Hz and 20°C 

Effect 
Sum of 

Squares 

Degrees 

of 

Freedom 

Mean 

Squares 

F-Test 

Statistic 
P-value 

Mix Type 0.088 3 0.029 18.97 0.00 

Deviatoric Stress 0.02 2 0.009 5.54 0.005 

Mix Type * Deviatoric Stress 0.00112 6 0.00019 0.12 0.99 

Error 0.17 108 0.00154   

 

 

Table 4.23 Analysis of Variance for Poisson’s Ratio at 0.5 Hz and 20°C 

Effect 
Sum of 

Squares 

Degrees 

of 

Freedom 

Mean 

Squares 

F-Test 

Statistic 
P-value 

Mix Type 0.0341 3 0.011 9.83 9.0E-06 

Deviatoric Stress 0.0015 2 0.0008 0.66 0.52 

Mix Type * Deviatoric Stress 0.0032 6 0.0005 0.46 0.84 

Error 0.1250 108 0.0012   

 

 

Table 4.24 Tukey's Homogeneous Groups for Poisson’s Ratio at 10 Hz and 20°C 

Tukey’s Homogeneous 

Groups 
Deviatoric Stress 

σD  

(kPa) 

Mix Type 

Mean Poisson’s 

Ratio 

ν A B C 

370 T70(38%MF) 0.32 **** **** **** 

 T72(20%MF) 0.32 **** **** **** 

 T72(40%MF) 0.33 **** **** **** 

 T72(60%MF) 0.38   **** 

425 T72(40%MF) 0.31 **** ****  

 T70(38%MF) 0.31 **** ****  

 T72(20%MF) 0.31 **** ****  

 T72(60%MF) 0.38   **** 

500 T72(20%MF) 0.29 ****   

 T72(40%MF) 0.30 ****   

 T70(38%MF) 0.29 ****   

 T72(60%MF) 0.36  **** **** 
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Table 4.25 Tukey's Homogeneous Groups for Poisson’s Ratio at 0.5 Hz and 20°C 

Tukey’s Homogeneous 

Groups 
Deviatoric Stress 

σD  

(kPa) 

Mix Type 

Mean Poisson’s 

Ratio 

ν A B 

370 T72(20%MF) 0.43 ****  

 T72(40%MF) 0.43 ****  

 T70(38%MF) 0.43 ****  

 T72(60%MF) 0.49  **** 

425 T72(20%MF) 0.44 **** **** 

 T72(40%MF) 0.45 **** **** 

 T70(38%MF) 0.45 **** **** 

 T72(60%MF) 0.48 **** **** 

500 T72(40%MF) 0.45 **** **** 

 T70(38%MF) 0.45 **** **** 

 T72(20%MF) 0.45 **** **** 

 T72(60%MF) 0.47 **** **** 

 

4.6 Phase Angle Characterization of Research Mixes 

Phase angle, δ, is the shift between the applied stress and the resultant strain, and 

is an indication of the visco-elastic properties of the material tested. 

Table 4.26 and Figure 4.10 show the average phase angle at 10 Hz across the 

three deviatoric stress states for each of the research mixes.  Table 4.27 and Figure 4.11 

show the average phase angle results at 0.5 Hz across stress state and mix type.  The 

phase angle magnitude decreases as frequency is reduced from 10 to 0.5 Hz. 

Using the Type 72 mix with 20 percent manufactured fines as a baseline, it can 

be seen that at 10 Hz an increase of manufactured fines up to 60 percent of total fines in 

the Type 72 mix results in a significant increase of phase angle, ranging from 26 to 28 

percent, depending on stress state.  A similar increase is observed at 0.5 Hz: the phase 

angle is from 19 to 24 percent higher for the mix with 60 percent manufactured fines 

than the baseline mix at 0.5 Hz, across deviatoric stress state. 
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Table 4.26 Mean Phase Angle across Stress State at 10 Hz and 20°C 

Deviatoric 

Stress, σD (kPa) 
Mix Type 

Mean Phase 

Angle 

δ 

(°) 

Coefficient of 

Variation  

(%) 

% Difference 

from 

T72(20%MF) 

370 T72(20%MF) 20.5 3 --- 

 T72(40%MF) 20.2 3 -1% 

 T72(60%MF) 26.0 14 27% 

 T70(38%MF) 21.3 8 4% 

425 T72(20%MF) 21.4 3 --- 

 T72(40%MF) 21.2 3 -1% 

 T72(60%MF) 27.4 14 28% 

 T70(38%MF) 22.0 9 3% 

500 T72(20%MF) 21.2 3 --- 

 T72(40%MF) 21.1 3 -1% 

 T72(60%MF) 26.7 14 26% 

 T70(38%MF) 21.3 9 0% 

 

 

Table 4.27 Mean Phase Angle across Stress State at 0.5 Hz and 20°C 

Deviatoric 

Stress 

σD  

(kPa) 

Mix Type 

Mean Phase 

Angle 

δ 

(°) 

Coefficient of 

Variation  

(%) 

% Difference 

from 

T72(20%MF) 

370 T72(20%MF) 17.9 2 --- 

 T72(40%MF) 18.4 3 3% 

 T72(60%MF) 22.1 7 24% 

 T70(38%MF) 19.0 5 6% 

425 T72(20%MF) 19.9 1 --- 

 T72(40%MF) 20.1 3 1% 

 T72(60%MF) 24.0 6 21% 

 T70(38%MF) 20.7 5 4% 

500 T72(20%MF) 19.9 1 --- 

 T72(40%MF) 20.2 2 2% 

 T72(60%MF) 23.6 6 19% 

 T70(38%MF) 20.2 4 1% 
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Figure 4.10 Mean Phase Angle across Stress State at 10 Hz and 20°C (± 2 SD) 
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Figure 4.11 Mean Phase Angle across Stress State at 0.5 Hz and 20°C (± 2 SD) 
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Similar to the previous variables presented, the coefficient of variation for the 

Type 72 mix with 60 percent manufactured fines is 14 percent at the loading frequency 

of 10 Hz, which is higher than the CV for the other three mixes (see Table 4.26).  At 0.5 

Hz the variability in the phase angle across the ten repeat samples is similar for each of 

the mixes, with CV ranging between one and seven percent, as shown in Table 4.27. 

The analysis of variance for phase angle at 10 Hz is shown in Table 4.28.  Based 

on the ANOVA results, mix type significantly affects the phase angle at this frequency.  

Table 4.29 shows the ANOVA results of phase angle across mix type and deviatoric 

stress state at 0.5 Hz, indicating that both of these variables influence the phase angle at 

this frequency. 

Table 4.28 Analysis of Variance for Phase Angle at 10 Hz and 20°C 

Effect 
Sum of 

Squares 

Degrees 

of 

Freedom 

Mean 

Squares 

F-Test 

Statistic 
P-value 

Mix Type 703.63 3 234.54 52.06 0.00 

Deviatoric Stress 21.33 2 10.66 2.37 0.099 

Mix Type * Deviatoric Stress 3.54 6 0.59 0.13 0.99 

Error 486.54 108 4.50   

 

 

Table 4.29 Analysis of Variance for Phase Angle at 0.5 Hz and 20°C 

Effect 
Sum of 

Squares 

Degrees 

of 

Freedom 

Mean 

Squares 

F-Test 

Statistic 
P-value 

Mix Type 306.70 3 102 117.44 0.00 

Deviatoric Stress 78.56 2 39 45.12 0.00 

Mix Type * Deviatoric Stress 2.68 6 0.45 0.51 0.80 

Error 94.01 108 0.87   

 

The results of Tukey’s pairwise comparison for phase angle at 10 Hz are shown 

in Table 4.30.  Table 4.31 shows the pairwise comparison results for phase angle at 0.5 

Hz.  At both frequencies, and at each stress state, the Type 72 mix with 60 percent 

manufactured fines has significantly higher phase angle than the other three mixes, 
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Table 4.30 Tukey's Homogeneous Groups for Phase Angle at 10 Hz and 20°C 

Tukey’s Homogeneous Groups 
Deviatoric Stress 

σD  

(kPa) 

Mix Type 

Mean Phase 

Angle 

δ 

(°) 

A B 

370 T72(40%MF) 20.2 ****  

 T72(20%MF) 20.4 ****  

 T70(38%MF) 21.3 ****  

 T72(60%MF) 26.0  **** 

425 T72(40%MF) 21.2 ****  

 T72(20%MF) 21.4 ****  

 T70(38%MF) 22.0 ****  

 T72(60%MF) 27.4  **** 

500 T72(40%MF) 21.1 ****  

 T72(20%MF) 21.2 ****  

 T70(38%MF) 21.3 ****  

 T72(60%MF) 26.7  **** 

 

 

Table 4.31 Tukey's Homogeneous Groups for Phase Angle at 0.5 Hz and 20°C 

Tukey’s Homogeneous Groups Deviatoric 

Stress 

σD  

(kPa) 

Mix Type 

Mean Phase 

Angle 

δ 

(°) 
A B C D E 

370 T72(20%MF) 17.9 ****     

 T72(40%MF) 18.4 ****     

 T70(38%MF) 19.0 **** ****    

 T72(60%MF) 22.1    ****  

425 T72(20%MF) 19.9  **** ****   

 T72(40%MF) 20.1  **** ****   

 T70(38%MF) 20.7   **** ****  

 T72(60%MF) 24.0     **** 

500 T72(20%MF) 19.9  **** ****   

 T70(38%MF) 20.2  **** ****   

 T72(40%MF) 20.2  **** ****   

 T72(60%MF) 23.6     **** 

 

 

 



 

 123

ranging from 26.0 to 27.4 degrees across stress state at 10 Hz, and from 22.1 to 24.0 

degrees across stress state at 0.5 Hz.  There are no significant differences in phase angle 

between the Type 70 mix and the Type 72 mixes with 20 and 40 percent manufactured 

fines, respectively. 

4.7 Significance of Results 

This section presents an analysis of the parameters measured during the 

frequency sweep testing with respect to the reliability achieved with the number of 

repeat samples tested, by applying concepts of sample size analysis previously discussed 

in Section 3.3.  In the absence of precedence, the acceptable margins of error have been 

set at approximately ten percent of the mean values of the mechanistic parameters 

evaluated.  The assumed acceptable margins of error are listed in Table 4.32. 

Table 4.32 Acceptable Margin of Error for Triaxial Frequency Sweep Properties 

Property Measured Acceptable Margin of Error 

Dynamic Modulus, Ed (MPa) 200 

Recoverable Axial Microstrain, RAMS, (10
-6

) 20 

Recoverable Radial Microstrain, RMMS, (10
-6

) 10 

Poisson’s Ratio, ν 0.03 

Phase Angle, δ (°) 2.0 

 

4.7.1 Relationship of Level of Confidence to Sample Size 

The results obtained from the frequency sweep testing can be used to estimate the 

relationship of sample size and level of confidence based on each variable measured, 

using the same formulations as were used for the volumetric and Marshall stability and 

flow testing in Section 3.3.2.  The results of this estimation for dynamic modulus, 

recoverable axial microstrain, recoverable radial microstrain, Poisson’s ratio, and phase 

angle, at 10 Hz and deviatoric stress of 500 kPa, at their respective acceptable margins 

of error, are shown in Figures 4.12 to 4.16, respectively.  Tables showing the detailed 

results of the level of confidence analysis can be found in Appendix I. 
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Figure 4.12 Relationship of Sample Size and Level of Confidence for Dynamic 

Modulus at 10 Hz and Deviatoric Stress of 500 kPa across Research Mixes at a 

Margin of Error of 200 MPa 
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Figure 4.13 Relationship of Sample Size and Level of Confidence for Recoverable 

Axial Microstrain at 10 Hz and Deviatoric Stress of 500 kPa across Research Mixes 

at a Margin of Error of 20x10
-6 
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Figure 4.14  Relationship of Sample Size and Level of Confidence for 

Recoverable Radial Microstrain at 10 Hz and Deviatoric Stress of 500 kPa across 

Research Mixes at a Margin of Error of 10x10
-6 
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Figure 4.15 Relationship of Sample Size and Level of Confidence for Poisson’s 

Ratio at 10 Hz and Deviatoric Stress of 500 kPa across Research Mixes at a Margin 

of Error of 0.03 
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Figure 4.16 Relationship of Sample Size and Level of Confidence for Phase Angle 

at 10 Hz and Deviatoric Stress of 500 kPa across Research Mixes at a Margin of 

Error of 2 Degrees 

Due to the variability in the triaxial frequency sweep results for Mix Type 72 

with 60 percent manufactured fines, out of the four mix types, this mix requires the 

largest number of samples to achieve the desired level of confidence, while mix Type 72 

with 20 percent manufactured fines requires the lowest number of repeat samples.  

Based on the curves shown in the above figures, assuming two repeat samples were to 

be tested, similar to standard SDHT laboratory practice for conventional mix 

characterization, the resulting level of confidence based on each the dynamic modulus, 

RAMS, Poisson’s ratio, and phase angle for the four mixes would be a minimum of 

approximately 50 percent, respectively.  Based on the RRMS, two repeat samples would 

yield an approximate level of confidence of 60 percent. 

4.7.2 Level of Confidence Achieved 

Based on the ten repeat samples tested in the RaTT cell for each mix type, a level 

of confidence achieved can be estimated based on the results of each mechanistic 

parameter, as previously discussed Section in 3.3.3.   
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Table 4.33 and Figure 4.17 illustrate the results of the level of confidence 

determination for each testing parameter, at the respective margin of error, at a 

frequency of 10 Hz, and a deviatoric stress of 500 kPa.  As can be seen for the triaxial 

frequency sweep results, the lowest levels of confidence were achieved for mix type 72 

with 60 percent manufactured fines, ranging from 80 to 96 percent, depending on the 

mechanistic parameter considered. 

Table 4.33 Level of Confidence Achieved for Triaxial Frequency Sweep 

Properties across Research Mixes 

Estimated Level of Confidence (%) 
Property 

Measured 

Margin 

of 

Error T72(20%MF) T72(40%MF) T72(60%MF) T70(38%MF)

Dynamic 

Modulus (MPa) 200 100.0 100.0 80.3 100.0 

RAMS (10
-6

) 20 100.0 100.0 90.5 98.6 

RRMS (10
-6

) 10 100.0 99.8 96.0 96.8 

Poisson's Ratio 0.03 100.0 99.7 86.4 95.6 

Phase Angle (°) 2.0 100.0 100.0 91.3 100.0 
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Figure 4.17 Level of Confidence Achieved for Triaxial Frequency Sweep 

Properties across Research Mixes 
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4.7.3 Experimental and Systematic Errors 

As previously discussed, the level of experience and attention to detail by the 

laboratory personnel can significantly affect the number of repeat samples required as 

well as the accuracy and precision of test results.  One of the benefits of the RaTT cell is 

the fact that it is fully computer-controlled, and once the sample is placed in the testing 

apparatus, human interaction is eliminated.  Although the testing equipment and settings 

were inspected by the author prior to testing, some of the systematic errors that may 

have affected the sample response to loading and frequency include: 

• Variability in the confining pressure applied to the sample. 

• Improper placement of LVDTs. 

• Calibration and/or feedback control variability in the RaTT cell. 

4.8 Chapter Summary 

This chapter presented the results of triaxial frequency sweep analysis conducted 

using the RaTT cell.  The testing was performed at 20°C, at loading frequencies ranging 

from 10 Hz to 0.5 Hz, and at deviatoric stress states of 370 kPa, 425 kPa, and 500 kPa.  

Dynamic modulus, recoverable axial microstrains, recoverable radial microstrains, 

Poisson’s ratio, and phase angle were determined during testing, and several interesting 

trends were observed. 

Increasing the manufactured fines content from 20 to 40 percent of total fines in 

the Type 72 mix did not have significant effects on dynamic modulus.  Increasing the 

manufactured fines content of the Type 72 mix from 20 to 60 percent of total fines 

resulted in a significant increase in the dynamic modulus, across the three stress states, 

at both frequencies of axial loading (51 to 52 percent increase at 10 Hz, and 24 to 27 

percent at 0.5 Hz).  The dynamic modulus for the Type 70 mix did not differ from the 

Type 72 mixes with 20 and 40 percent manufactured fines regardless of stress state 

and/or frequency.  Dynamic modulus reduced in magnitude by approximately 50 percent 

when the testing frequency was reduced from 10 Hz to 0.5 Hz.  In addition, as deviatoric 

stress increased, dynamic modulus decreased. 
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Increasing the manufactured fines content from 20 to 40 percent of total fines in 

the Type 72 mix did not have significant effects on recoverable axial microstrains.  

Increasing manufactured fines content of the Type 72 mix from 20 to 60 percent of total 

fines resulted in significantly lower recoverable axial microstrains, across the three 

stress states, at both frequencies of axial loading (32 to 33 percent reduction at 10 Hz, 

and 18 to 20 percent at 0.5 Hz).  It is evident at both frequencies and all stress states that 

mix type 70 did not have statistically different RAMS than the Type 72 mixes with 20 

and 40 percent manufactured fines, respectively.  As frequency was lowered to 0.5 Hz, 

RAMS increased in magnitude by approximately 50 percent.  Also, an increase in 

deviatoric stress resulted in increased recoverable axial microstrains. 

Increasing the manufactured fines content from 20 to 40 percent of total fines in 

the Type 72 mix did not have significant effects on recoverable radial microstrains.  

Increasing manufactured fines content of the Type 72 mix from 20 to 60 percent of total 

fines resulted in significantly lower recoverable radial microstrains, across the three 

stress states, at the loading frequency of 10 Hz (18 to 22 percent reduction).  At the axial 

loading frequency of 0.5 Hz, the benefits of increased manufactured fines are only 

significant when the deviatoric stress is 500 kPa, where the Type 72 mix with 60 percent 

manufactured fines results in reduced RRMS (reduction of 14 percent) when compared 

to the Type 72 mix with 20 and 40 percent manufactured fines, respectively.  The RRMS 

for the Type 70 mix are statistically the same as the RRMS for the Type 72 mix with 20 

and 40 percent manufactured fines, respectively, at each stress state and frequency.  As 

frequency was lowered to 0.5 Hz, radial microstrains increased in magnitude by 

approximately 100 percent.  Also, as deviatoric stress increased, RRMS increased. 

Increasing the manufactured fines content from 20 to 40 percent of total fines in 

the Type 72 mix did not have significant effects on Poisson’s ratio.  Increasing 

manufactured fines content of the Type 72 mix from 20 to 60 percent of total fines 

resulted in significantly higher Poisson’s ratio at 10 Hz (20 to 23 percent increase), at 

deviatoric stress states of 425 and 500 kPa, respectively.  The increase in manufactured 

fines content in the Type 72 mix from 20 to 60 percent of total fines resulted in 

increased Poisson’s ratio (13 percent increase) at the axial loading frequency of 0.5 Hz, 
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and deviatoric stress state of 370 kPa.  As the deviatoric stress was increased to 425 and 

500 kPa, with the combined effects of the slower loading, the influence of mix type was 

no longer significant.  As frequency was lowered to 0.5 Hz, Poisson’s ratio increased in 

magnitude by approximately 25 percent, with mean values from 0.43 to 0.49, depending 

on mix type and deviatoric stress state. 

Increasing the manufactured fines content from 20 to 40 percent of total fines in 

the Type 72 mix did not have significant effects on phase angle.  Increasing 

manufactured fines content of the Type 72 mix from 20 to 60 percent of total fines 

resulted in significantly higher phase angle across the three stress states, at both 

frequencies of axial loading (26 to 28 percent increase at 10 Hz, and 19 to 24 percent at 

0.5 Hz).  It is evident at both frequencies and all stress states that mix type 70 did not 

have statistically different phase angle than the Type 72 mixes with 20 and 40 percent 

manufactured fines, respectively.  Also, phase angle increased as deviatoric stress was 

increased, particularly at the axial loading frequency of 0.5 Hz. 

The variability within the Type 72 mix with 60 percent manufactured fines was 

significantly higher than within the other three mixes tested for most of the parameters 

measured, as was indicated by high coefficients of variation within the ten repeat 

samples (15 to 18 percent for dynamic modulus, 12 to 18 percent for RAMS, 11 to 20 

percent for RRMS, 10 to 18 percent for Poisson’s ratio, and 6 to 14 percent for phase 

angle).  This is further evident by the lower levels of confidence achieved in frequency 

sweep results for the Type 72 mix with 60 percent manufactured fines (from 80 to 91 

percent), when compared to the other mixes.  This behaviour could be caused by the 

increased amount of fractured aggregate, which increases the importance of particle 

arrangement within the sample, therefore increasing the variability between the samples.
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CHAPTER 5 ECONOMIC IMPLICATIONS OF 12.5 MM TOP SIZE MIXES 

WITH INCREASED MANUFACTURED FINES CONTENT 

Along with quantifying the engineering improvements of selecting smaller top 

size and higher manufactured fine aggregate content in Saskatchewan HMAC mixes, 

there is a need to explicitly quantify the economic benefits of implementing such 

changes.  This chapter contains a brief examination of the potential costs and benefits of 

selecting well-performing, 12.5 mm top size mixes on the life cycle costs of SDHT 

paved roads.  The impacts on provincial aggregate management and on the provincial 

economy are also discussed. 

5.1 Preservation of Road Assets 

As previously explained in Chapter Two, the SDHT annual provincial paving 

budget consists of approximately $44 million spent on placing approximately 600,000 

tonnes of asphalt concrete.  Improving the performance of pavements and therefore 

reducing their life cycle costs can result in significant savings in funding required to 

maintain an acceptable level of service.  It is assumed that implementing finer mixes, 

such as the Type 72 mix, with increased manufactured fines, results in improved rut-

resistance of SDHT asphalt concrete pavements.  Life cycle cost analysis was performed 

to quantify the potential savings in preservation costs for a 25 year pavement life based 

on these assumptions.   

The impacts on preservation costs were assessed based on three pavement 

performance scenarios.  These scenarios are: failed pavement, typical SDHT pavement, 

and well-performing pavement.  An assumption was made that the initial construction 

costs and the annual routine maintenance costs remain the same regardless of 

performance.  In all three cases the road has one travel lane per direction.  It was 

assumed that in all three scenarios the structural design of the pavement was adequate 

for the existing field state conditions.  Treatments were selected based on current asset  
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management practice, and treatment costs were set in consultation with SDHT asset 

management and construction staff.  Details of the analysis are shown in Appendix J.  

Figures 5.1 to 5.3 illustrate the preservation cash flow that would be required for each 

performance scenario. 

Figure 5.1 shows the preservation costs for a failed pavement.  The pavement is 

assumed to have failed in rutting in the first five years of service life.  This scenario is 

based on previous SDHT pavement mixes that resulted in plastic flow rutting.  For the 

purposes of this analysis, it is estimated that five percent of SDHT pavement network 

will experience problems with premature rutting under current practices of design, 

construction and preservation. 

Figure 5.2 shows the preservation costs for a typical SDHT pavement.  This 

pavement is assumed to result in poor rutting after fifteen years of service, which is 

based on the current target service life used by SDHT for structural design.  The 

majority of Saskatchewan pavements would follow this trend if no work is done to 

mitigate the rutting conditions at an earlier stage.  For the purposes of this analysis, it is 

estimated that 85 percent of SDHT pavement network performs in this manner if current 

practices are maintained. 

Figure 5.3 shows the life cycle cost scenario for a well-performing pavement.  

This pavement is engineered well enough to remain in good rutting condition over the 

25 year life cycle.  This scenario assumes that the asphalt mix has been engineered to be 

rut-resistant, for example by selecting a dense graded asphalt mix with 12.5 mm top size 

and a large amount of manufactured materials.  For the purposes of this analysis, it is 

estimated that ten percent of SDHT pavement network performs in this manner under 

status quo conditions. 
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Figure 5.1 Preservation Costs for a Failed Pavement - Plastic Flow Rutting in the 

First 5 Years of Service Life 
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Figure 5.2 Preservation Costs for a Typical SDHT Pavement – Poor Rutting in 

Year 15 of Service Life 
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Figure 5.3 Preservation Costs for a Well-Performing Pavement – Rutting Remains 

Good over 25 Years of Service Life 
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The treatment costs shown in the cash flow diagrams can be determined in 

present value dollars, by applying the following present value calculation to each future 

treatment cost: 

ti

C
PV

)1( +
=                      (5.1) 

where: 

PV = Present Value (dollars) 

C  = Future Amount (dollars) 

t  = Number of Terms (years) 

i  = Interest Rate (percent) 

 

The annual treatment costs for each pavement performance scenario can be 

discounted to today’s dollars using the above equation, and added together to determine 

the total preservation costs.  Table 5.1 illustrates a summary of the life cycle costs 

associated with routine maintenance and capital preservation, not including the initial 

construction cost and the rehabilitation cost at the end of the 25-year life cycle, for each 

of the pavement performance scenarios.  Based on direction from SDHT asset 

management staff, an interest rate of 3 percent was applied, and inflation was not 

considered.  An asphalt concrete pavement with premature rutting failure in the first five 

years of service life results in an increase in life cycle costs of approximately $75,000 

per kilometre when compared to a well-performing pavement, as can be seen in Table 

5.1.  Improving asphalt concrete rutting performance of typical SDHT pavements could 

result in an approximate reduction of $26,000 (or 96 percent), in life cycle costs per 

kilometre of road. 

The potential cost savings of improving pavement performance can be quantified 

by examining the possible changes to the resulting pavement quality from annual 

network rehabilitation.  SDHT plans to rehabilitate 490 km of the provincial pavement 

network during the 2007-08 construction season (Kwon 2007).  Assuming that SDHT 

constructs 500 km of asphalt concrete paved roads annually, two levels of performance 



 

 135

of these annually constructed HMAC pavements are evaluated: the status quo level, and 

the improved level.  Table 5.2 shows a summary of the life cycle preservation costs for 

the two levels of pavement performance. 

Table 5.1 Summary of Preservation Costs over Pavement Life Cycle in Present 

Value Dollars Per Kilometre of Road 

 

Routine 

Maintenance 

Costs 

Capital 

Preservation 

Costs 

Total 

Preservation 

Costs 

Difference 

from Well-

Performing 

Pavement 

% Increase 

from Well-

Performing 

Pavement 

Failed 

Pavement 
$6,068 $96,117 $102,184 $74,757 +273% 

Typical 

Pavement 
$6,068 $47,573 $53,641 $26,214 +96% 

Well-

Performing 

Pavement 

$6,068 $21,359 $27,427 --- --- 

 

 

Table 5.2 25 Year Pavement Life Cycle Preservation Costs at Different 

Performance Levels for 500 km of HMAC Roads Paved Annually by SDHT 

 Status Quo Performance Improved Performance 

  

Life Cycle 

Preservation 

Costs      

($/road km) 

Road Length 

in Pavement 

Category 

(km) 

Life Cycle 

Costs        

(PV $) 

Road Length 

in Pavement 

Category 

(km) 

Life Cycle 

Costs       

(PV $) 

Failed 

Pavement 
$102,184  25  $2,554,600 0 $0 

Typical 

Pavement 
$53,641  425  $22,797,425 212 $11,371,892 

Well-

Performing 

Pavement 

$27,427  50  $1,371,350 288 $7,898,976 

Total --- 500 $26,723,375 500 $19,270,868 

PV – Present Value 

 

The status quo level of performance would result in five percent of failed 

pavements (life cycle costs as shown in Figure 5.1), 85 percent of typical performing 

pavements (Figure 5.2), and ten percent of well-performing pavements (Figure 5.3).  
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Under the improved level of performance, the analysis assumes that with rut-resistant 

HMAC mixes, SDHT can eliminate the premature pavement rutting failures and shift 

this portion of SDHT roads into the well-performing category, and that 50 percent of the 

typical SDHT pavements, which result in poor rutting after 15 years, can also be 

improved to the level of well-performing pavements.  This would result in 42.5 percent 

of typical SDHT performing pavements, and 57.5 percent of roads in the well-

performing life cycle cost scenario. 

By improving the rutting performance of 500 km of roads annually from the 

status quo to the improved performance level, SDHT can reduce the long term pavement 

life cycle preservation costs of these roads by approximately $7.5 million on an annual 

basis.  A rate of 500 km of re-paved asphalt concrete roads per year results in an 18 year 

rehabilitation cycle for the 8,975 km of the provincial pavement network.  Assuming 

SDHT continues to place approximately 500 km of new HMAC surface for the next 18 

years, this amount translates to an astounding $102.5 million in present value dollars, as 

shown in Table 5.3. 

In order to evaluate the savings in preservation spending that can be realized by 

engineering rut-resistant mixes, the routine maintenance costs for all three pavement 

performance scenarios were assumed to remain the same, regardless of changes in 

performance and varying application of capital preservation treatments.  However, this 

assumption is conservative, because it follows that if the asphalt concrete mix is 

engineered well, then routine maintenance will be reduced.  It is not unreasonable to 

expect that the routine maintenance costs would decrease by ten percent for the well-

performing pavements.  Also, the above analysis does not address reduced user costs due 

to improved road conditions, such as minimized time delays due to road repairs, and 

decrease in vehicle maintenance costs.  As can be seen, even based on these 

conservative assumptions, improving HMAC mix performance has the potential to result 

in substantial preservation cost savings to the Province. 
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Table 5.3 Potential Savings in Pavement Life Cycle Preservation Cost through 

Improving the Rutting Performance of HMAC Roads Paved Annually by SDHT 

 

Potential Cost Savings 

in Present Value Dollars 

Annual Savings $7,452,507 

Savings After 18 years $102,498,152 

 

5.2 Impacts on Aggregate Resource Management 

As previously discussed in Chapter Two, all of Saskatchewan’s HMAC 

aggregates are manufactured from surficial glacial gravel sources.  Existing quality 

gravel pits suitable for HMAC aggregate production are being exhausted, and it is 

becoming increasingly difficult to locate new aggregate sources.  In fact, an SDHT 

aggregate management strategy review estimated that $193.3 million cubic metres of 

quality aggregate will be required to meet the provincial needs up to the year 2049, 

while it is estimated that the Province currently has access to 150 million cubic metres in 

available gravel sources of varying quality (SDHT 2001-A). Therefore, there is a 

potential shortage of aggregate supply of approximately 43.3 million cubic metres (73.6 

million metric tonnes) to meet the needs of the next 42 years.   

In addition to potential savings due to improved pavement performance and 

extended performance life cycle, manufacturing mixes with smaller top size should 

result in better source utilization, and increased amount of manufactured material 

available for HMAC production. 

5.2.1 Gravel Source Utilization 

A typical aggregate manufacturing process involves screening off natural 

material smaller than 9 mm prior to the crushing stage.  It is also common practice to 

remove “pea gravel” (ranging in size from 9 mm up to the top size of the mix being 

produced), since it is too small to be fractured in the crushing process.  The remaining 

larger rocks are crushed, and the resulting manufactured material is typically split on the 

5 mm sieve, into a manufactured fines and a manufactured coarse pile.  If the pea-sized 



 

 138

aggregates are not removed, the manufactured coarse material is not likely to meet the 

high coarse fracture requirements specified by SDHT (as high as 95 percent, depending 

on aggregate type and mix design type).  The rejected pea-sized rocks are stockpiled in 

the gravel pit as waste. 

Theoretical crushing analysis of four randomly selected SDHT gravel pits was 

completed to examine the changes in aggregate quantities resulting from manufacturing 

the two different hot mix aggregate structures examined in this research project 

(Halldorson 2007).  This type of analysis is routinely used by SDHT to assess the gravel 

sources for suitability towards manufacturing various types of aggregate required for 

highway maintenance and rehabilitation.  Table 5.4 provides a summary of the resulting 

amounts of manufactured fine and coarse aggregate, as well as the amount of pea sized 

aggregate that would typically have to be rejected to meet minimum requirements of 

coarse fracture for the production of the Type 70 mix and for the Type 72 mix. 

Table 5.4 Theoretical Aggregate Crushing Analysis for Selected SDHT Gravel 

Sources 

 Percent Volume of Parent Pit Run Aggregate 

Gravel Source 62K-097 73C-132 72P-178 72O-051 
Type 70 Aggregate     

Manufactured Coarse Aggregate 9% 18% 14% 17% 

Manufactured Fine Aggregate 7% 14% 11% 13% 

Pea gravel retained on 9 mm sieve 9% 12% 20% 14% 

Total Manufactured Material 16% 33% 26% 30% 

Type 72 Aggregate     

Manufactured Coarse Aggregate 8% 18% 15% 16% 

Manufactured Fine Aggregate 11% 22% 19% 20% 

Pea gravel retained on 9 mm sieve 5% 5% 12% 7% 

Total Manufactured Material 19% 40% 34% 37% 

 

Based on the parent gradations of the gravel sources examined, theoretical 

analysis showed that the amount of rejected pea-sized material can be reduced by as 

much as 58 percent when manufacturing the 12.5 mm top size Type 72 aggregate instead 

of the 18 mm top size Type 70 aggregate (Figure 5.4).  Further, since the salvaged pea 

gravel is processed, manufacturing Type 72 aggregate results in a three to eight percent 
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increase in total manufactured aggregate produced in each gravel source, as is illustrated 

in Figure 5.5. 

Considering that SDHT used approximately 600,000 metric tonnes of asphalt 

concrete during the 2005-06 paving season, an increase of three percent of useful 

material obtained from the crushing process translates into an annual savings of 18,000 

metric tonnes, and an increase of eight percent saves 48,000 metric tonnes, annually.  If 

the period from 2007 to 2049 is considered, which coincides with the time period used 

in the SDHT aggregate needs study previously mentioned (SDHT 2001-A), these 

savings amount to 2,016,000 metric tonnes of aggregate, as shown in Table 5.5. 

The increase in the amount of manufactured aggregate resulting from crushing to 

a smaller top size can be translated into monetary savings.  Assuming an aggregate 

manufacturing cost of $15 per metric tonne, this additional aggregate is worth $270,000 

and $720,000, respectively, on an annual basis.  The potential value of the aggregate 

saved over the next 42 years is $1.7 million in present value dollars. 
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Figure 5.4 Percent Reduction in Pea Gravel Waste in Selecting Type 72 Aggregate 

compared to Type 70 Aggregate 
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Figure 5.5 Percent Gravel Source Utilization for Type 70 and Type 72 Aggregate 

This estimate is conservative, because it assumes the sources are owned by the 

Province, and does not take into account the cost of purchasing the aggregate from 

private owners.  Although most sources currently used by SDHT are owned or leased by 

the Province, there is a possibility that aggregate may need to be purchased from private 

sources.  Also, the value of this additional aggregate in the context of pit depletion is not 

included.  There are also potential monetary savings associated in maximizing aggregate 

utilization in terms of its future availability for other projects. 

It is difficult to determine the difference in costs for crushing Type 70 aggregate 

when compared to Type 72 aggregate based on historic crushing costs, because the bid 

items vary between contracts, and some costs include haul and/or mobilization.  The 

possibility of increased crushing costs to manufacture smaller top size aggregate with 

higher fracture was discussed with Saskatchewan contractors and SDHT construction 

staff.  Based on those discussions, it is reasonable to assume that the additional crushing 

costs, if any, would be in the order of $1 per metric tonne of aggregate.  Based on the 

600,000 metric tonnes of aggregate used by SHDT in the 2005-06 construction season, 

this increase would amount to $600,000 annually.  However, this additional cost would 

likely be offset by the direct savings realized from maximizing pit utilization, which as 

previously discussed and shown in Table 5.5, could range from $270,000 to $720,000. 
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Table 5.5 Potential Savings in Gravel Source Utilization from Selecting Type 72 

Aggregate Instead of Type 70 Aggregate 

% Increase in Useful 

Aggregate from Source 

Annual Savings of Aggregate 

(Metric Tonnes) 

Savings over a 42 Year 

Period from 2007 to 2049 

(Metric Tonnes) 

Minimum 3% 18,000 756,000 

Maximum 8% 48,000 2,016,000 

 

Further examination of the theoretical crushing analysis and discussions with 

SDHT laboratory staff suggest that crushing for a smaller top size results in a larger ratio 

of manufactured fine to manufactured coarse aggregate (Bray 2006).  For example, 

typical crushing operations for Type 70 aggregate result in approximately 0.6:1 ratio of 

fine to coarse manufactured aggregate (manufacturing 100 tonnes of coarse aggregate 

results in 60 tonnes of manufactured fine aggregate).  Manufacturing Type 72 aggregate 

can result in as high a ratio as 1:1 of manufactured fines to manufactured coarse 

aggregate. 

Field performance has shown the value of manufactured materials in hot mix 

asphalt.  As a result, the mix design process attempts to fully utilize the manufactured 

aggregate available, and to maintain the same ratio of manufactured fine to 

manufactured coarse aggregate in the mix design as was achieved during the crushing 

process.  This approach minimizes aggregate waste, and ensures that the mechanically 

fractured materials will be used up as best as possible during HMAC manufacturing.  

The fact that crushing to 12.5 mm top size results in a higher ratio of manufactured fine 

to coarse aggregate would therefore result in increased amounts of total manufactured 

aggregate and reduced amounts of natural sands in the Type 72 mix design gradation. 

5.2.2 Reduced Aggregate Needs for Pavement Preservation 

Important aggregate savings can be realized if the life cycle performance of 

SDHT asphalt concrete pavements can be improved.  Roads that are performing well are 

less susceptible to damage, and therefore require fewer preservation treatments in their 

25 year life cycle.  This in turn results in a reduction of aggregate needs for preservation 
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treatments.  Approximately 1,000 metric tonnes of aggregate per kilometre of road can 

be saved by eliminating the need for the removal and replacement of an asphalt layer 

that is failing in plastic flow rutting.  Also, based on the three pavement life cycle 

scenarios considered (Figure 5.1to Figure 5.3), improving typical pavement performance 

to the well-performing pavement category level eliminates the need for strip seals, which 

requires approximately 114 metric tonnes of aggregate per kilometre of road.   

The financial implications of reduced aggregate requirements for preservation 

treatments can be assessed by once again examining the 500 km of roads that SDHT 

surfaces with hot mix asphalt concrete on an annual basis.  Table 5.6 shows the volume 

of aggregate required to maintain the annually paved 500 km of road over the 25 year 

life cycle, based on the current status quo level of performance, and based on the 

improved level, previously introduced in Section 5.1.  The resulting 25 year life cycle 

aggregate requirements for the 500 km of newly paved road decrease by 29 percent 

when pavement performance is improved (decrease from 183,390 metric tonnes, to 

129,618 metric tonnes).  Therefore, every year that SDHT can create 500 km of well-

performing pavements; an aggregate saving of approximately 53,772 metric tonnes is 

realized. 

Table 5.6 25 Year Life Cycle Aggregate Requirements at Different 

Performance Levels for 500 km of HMAC Roads Paved Annually by SDHT 

 Status Quo HMAC Performance  Improved HMAC Performance  

 

Portion of 

Annually Paved 

Roads  

(Km) 

Aggregate 

Required over 

Life Cycle 

(Metric Tonnes) 

Portion of 

Annually Paved 

Roads 

(Km) 

Aggregate 

Required over 

Life Cycle 

(Metric Tonnes) 

Failed 

Pavement 
25  34,763 0 0 

Typical 

Pavement 
425  138,083 212 68,879 

Well-

Performing 

Pavement 

50  10,545 288 60,739 

Total 500 183,390 500 129,618 
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Table 5.7 further examines the potential aggregate savings resulting from the 

reduced needs for preservation treatments, along with their monetary value.  The annual 

reduction in aggregate needs for maintenance treatments translates to a potential saving 

of 2.26 million metric tonnes of aggregate over the period between 2007 and 2049, the 

monetary value of which is estimated at $19.1 million present day dollars.   

Table 5.7 Potential Aggregate Savings from Reducing the Need for 

Preservation Treatments During the Life Cycle of HMAC Roads Paved 

Annually by SDHT 

Potential Aggregate Savings 

Time Frame Volume of Aggregate Saved 

(Metric Tonnes) 

Value of Aggregate 

(PV $) 

Annual 53,772 $806,580 

After 18 years 967,896 $11,093,309 

Between 2007 and 2049 2,258,424 $19,117,042 

PV – Present Value   

 

5.3 Other Impacts on the Provincial Economy 

Along with the direct cost savings that can potentially be realized by SDHT 

through implementing well-performing, rut resistant, asphalt concrete mixes by selecting 

smaller top size and higher manufactured fines content aggregates, multiple other 

benefits that are of importance need to be acknowledged. 

Saskatchewan economy is highly dependent on road transportation.  The 

Province exported and imported approximately $50 billion of goods and services in 

2004, the majority of which was moved by road.  Ensuring the efficient and safe 

movement of goods is an important issue for Saskatchewan.  Further, the average 

Saskatchewan resident relies primarily on road transportation for daily activities, and 

would therefore also benefit from improved road performance (Roadbuilders 

Saskatchewan 2005).   

The implications of improved performance of asphalt concrete surfaced 

pavements are far-reaching.  Better roads translate into decreased vehicle maintenance 
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costs for the road users, and time savings due to the reduced amount of road preservation 

work necessary to maintain an acceptable level of service.  Improved road surface 

conditions result in lower fuel consumption, and therefore in a reduction of the impacts 

of transportation of goods and people on the environment. 

5.4 Chapter Summary 

This chapter briefly discussed the potential economic implications of 

implementing mixes with smaller top size and increased amounts of manufactured 

material.  Specifically, the potential for reduced life cycle costs due to improved 

performance of the newly placed asphalt concrete mixes was examined, based on the 

assumption that SDHT surfaces approximately 500 km of road annually with asphalt 

concrete.  Also, the implications of crushing to a smaller top size were evaluated by 

analysing the impacts of crushing for Type 70 aggregate and for Type 72 aggregate on 

four randomly selected SDHT gravel sources.  The decline in demand for aggregate due 

to reduced need for preservation treatments was also quantified by examining the effects 

of improved performance on the 500 km of road annually paved by SDHT.  Finally, the 

implications of engineering well-performing asphalt concrete mixes on the provincial 

economy were briefly discussed. 

It was found that improving the rutting performance of asphalt concrete mixes in 

Saskatchewan could result in approximately 96 percent reduction in annual preservation 

costs for the majority of Saskatchewan asphalt concrete surfaced roads.  It was also 

determined that asphalt concrete mixes which result in plastic flow rutting, and therefore 

premature failure, cost approximately 273 percent more to maintain over a 25 year life 

cycle than well-performing pavements. 

By examining the aggregate manufacturing process and comparing the 

implications of using Type 72 aggregate versus Type 70 aggregate, it was determined 

that significant aggregate savings can result from crushing to the 12.5 mm top size of 

aggregate for the Type 72 mix, instead of to the 18 mm top size for Type 70 HMAC 

aggregate.  Specifically, there is a potential of reducing the amount of rejected pea 

gravel by 38 to 58 percent, depending on the gravel source.  Also, since the salvaged pea 
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gravel is put through the crushing process, crushing to the 12.5 mm top size results in an 

increase of total manufactured material produced, in the order of three to eight percent of 

the volume of parent pit run aggregate.  There is a potential to save over 2 million metric 

tonnes of aggregate over a period of the next 42 years by selecting the smaller top size 

aggregate.  Further, the ratio of manufactured fine aggregate to manufactured coarse 

aggregate increases when aggregate is crushed to the 12.5 mm top size, resulting in 

better opportunity to maximize the benefits of the manufactured material in the asphalt 

concrete aggregate skeleton. 

The improved life cycle performance of rut-resistant asphalt concrete mixes also 

results in a reduction of aggregate required for preservation treatments during the 

pavement life cycle.  Close to 11 million metric tonnes of HMAC aggregate can be 

saved during a period of 18 years by reducing demands for preservation treatments, 

assuming the pavement performance level shifts from status quo to the improved level. 

A summary of the potential cost savings resulting from implementing rut 

resistant, well-performing mixes with 12.5 mm top aggregate size is presented in Table 

5.8.  Potential cost savings after 18 years of paving 500 km per year with rut-resistant, 

well-performing HMAC mixes amount to $112.4 million in present value dollars.  There 

is a potential to save approximately $193.7 million in the next 42 years. 

Table 5.8 Summary of Potential Cost Savings Resulting From Implementing 

Well-Performing Mixes with 12.5 mm Top Size Aggregate 

 
Annual Savings 

($) 

Savings over  

18 Years 

(PV $) 

Savings from 

2007 to 2049 

(PV $) 

Reduced Life Cycle Costs $7,452,507 $102,498,152 $176,634,545 

Improved Gravel Source Use $720,000 $9,902,529 $17,064,979 

 $8,172,507 $112,400,681 $193,699,524 

PV – Present Value    

 

Table 5.9 shows the potential savings in aggregate quantity that can result from 

implementing well-performing 12.5 mm top size mixes.  As can be seen, there is an 

opportunity to save approximately 4.3 million metric tonnes of aggregate in the next 42 
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years.  Based on estimates that the currently available aggregate sources will fall 

approximately 73.6 million metric tonnes short of the volume of aggregate required to 

meet the provincial needs up to the year 2049, the total potential savings of 4.3 million 

metric tonnes could compensate for approximately six percent of the short fall in 

provincial aggregate needs for the period between 2007 and the year 2049. 

Table 5.9 Summary of Potential Savings in Aggregate Volume if Well-

Performing Type 72 HMAC Mixes are implemented by SDHT 

Source of Savings 
Annual Aggregate Savings 

(Metric Tonnes) 

Aggregate Savings 

From 2007 to 2049 

(Metric Tonnes) 

Crushing to 12.5 mm Top Size 48,000 2,016,000 

Reduced Need for 

Preservation Treatments 
53,772 2,258,424 

 101,772 4,274,424 
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CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 

Saskatchewan Highways and Transportation relies on dense-graded hot mix 

asphalt concrete mixes for construction and rehabilitation of asphalt pavement surfaced 

highways.  As a result of increased commercial truck traffic on the provincial road 

network, over the last two decades, some of Saskatchewan’s recently placed dense 

graded HMAC pavements have been observed to show a susceptibility to premature 

permanent deformation in the asphalt mix.  One of the aggregate properties thought to 

have significant influence on mix performance under traffic loading is the shape of the 

aggregate.  Specifically, the physical properties of the fine aggregate (smaller than 5 mm 

in diameter) are of particular importance in dense graded mixes.  Although empirical 

evidence suggests that there are performance benefits associated with using angular fine 

aggregate, the relationship of this parameter on mechanistic mix performance and 

resistance to permanent deformation has not yet been clearly defined. 

The primary objective of this research has been to conduct laboratory analysis to 

determine the physical, empirical, and mechanistic behaviour sensitivity to the 

proportion of manufactured and natural fine aggregate in SDHT Type 72 hot mix asphalt 

concrete.  The second objective of this research has been to compare the mechanistic 

behaviour of the Type 72 mixes considered in this research to conventional SDHT Type 

70 structural hot mix asphalt concrete. 

6.1 Summary of Results 

With respect to the first objective of effects of manufactured fines content on the 

behaviour of Type 72 mix, the following observations can be made: 

• Increasing the level of manufactured fine aggregate in the Type 72 mix 

resulted in improved densification properties in the gyratory compactor, with 

the mix passing the Superpave™ specifications at Ninitial of less than 89
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percent of Gmm when the manufactured fines content was increased to 60 

percent (mean percent Gmm of 88.9 percent). 

• Marshall stability increased significantly as the proportion of manufactured 

fines was increased from 20 to 40 (increase of 22 percent), and to 60 percent 

(increase of 36 percent). 

• Marshall flow for the Type 72 mix with 60 percent manufactured fines was 

28 percent higher than for the Type 72 mix with 20 percent manufactured 

fines. 

• Dynamic modulus increased across frequency and deviatoric stress state 

when the amount of manufactured fines was increased from 20 to 60 percent 

(increase of 51 to 52 percent increase at 10 Hz, and of 24 to 27 percent at 0.5 

Hz, across stress state).  There was no significant difference in dynamic 

modulus between 20 and 40 percent manufactured fines content. 

• The recoverable axial microstrains were reduced across frequency and 

deviatoric stress state when the manufactured fines content was increased to 

60 percent (reduction of 32 to 33 percent at 10 Hz, and of 18 to 20 percent at 

0.5 Hz, across stress state).  There was no significant difference between the 

RAMS at 20 and 40 percent manufactured fines. 

• The recoverable radial microstrains were reduced when the manufactured 

fines content was increased from 20 to 60 percent at the high loading 

frequency (reduction of 18 to 22 percent at 10 Hz across stress state).  There 

was no significant difference between the RRMS at 20 and 40 percent 

manufactured fines content. 

• Poisson’s ratio increased at the high loading frequency of 10 Hz and at the 

deviatoric stress states of 425 kPa (20 percent increase) and 500 kPa (23 

percent increase) when the manufactured fines content was increased from 20 

to 60 percent.  There was no significant difference between Poisson’s ratio at 

20 and 40 percent manufactured fines content. 

• The phase angle increased across frequency and deviatoric stress state when 
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the manufactured fines content was raised to 60 percent (increase of 26 to 28 

percent at 10 Hz, and 19 to 24 percent at 0.5 Hz, across stress state).  There 

was no significant change in phase angle between 20 and 40 percent 

manufactured fines. 

With respect to the second objective, of comparing the mechanistic behaviour of 

Type 72 mixes at various levels of manufactured fines to SDHT Type 70 structural mix, 

the following observations can be made: 

• Type 70 mix failed the Superpave™ Ninitial densification criterion (with mean 

percent of Gmm of 90.1 percent), along with the Type 72 mix at 20 and at 40 

percent manufactured fines content.  Failure to meet the Ninitial criterion 

indicates that the mixes may prove problematic during construction (i.e. 

tender mixes) and may be susceptible to permanent deformation. 

• Marshall stability results for mix Type 70 (which had 38 percent of 

manufactured fines) were 22 percent higher than the Marshall stability for the 

Type 72 mix with 20 percent manufactured fines.  The Type 70 Marshall 

stability results were statistically the same as those for the Type 72 mix with 

40 percent manufactured fines, with a mean of 10,069 N, compared to a 

mean of 10,084N, respectively.  Type 70 mix had lower Marshall stability 

than Type 72 mix with 60 percent manufactured fines, whose mean Marshall 

stability was 11.181 N. 

• There was no difference in Marshall flow between the Type 70 mix and the 

Type 72 mixes with 20 and with 40 percent manufactured fines, respectively.  

Type 70 mix (with a mean of 1.9 mm) had lower Marshall flow than Type 72 

mix with 60 percent manufactured fines (with a mean of 2.3 mm). 

• Dynamic modulus for Mix Type 70 (with means of 1950 to 2317 MPa at 10 

Hz, and 958 to 1200 MPa at 0.5 Hz) was the same as that for Mix Type 72 at 

20 and at 40 percent manufactured fines, respectively, and was lower than the 

dynamic modulus for Type 72 mix with 60 percent manufactured fines (with 

means of 2784 to 3292 MPa at 10 Hz, and 1159 to 1489 MPa at 0.5 Hz). 
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• Recoverable axial microstrains for Type 70 mix (means ranging across 

deviatoric stress state from 255 to 300 x 10-6 at 10 Hz, and 501 to 625 x 10-6 

at 0.5 Hz) were statistically the same across deviatoric stress state and 

frequency as the RAMS for Type 72 mix with 20 and 40 percent 

manufactured fines, respectively.  Type 70 mix resulted in RAMS higher 

than the Type 72 mix with 60 percent manufactured fines.  At the highest 

deviatoric stress state of 500 kPa the Type 70 mix resulted in RAMS lower 

than the Type 72 mix at 20 and at 40 percent manufactured fines content, 

respectively. 

• The recoverable radial microstrains for the Type 70 mix (with means ranging 

from 82 to 86 x 10-6 at 10 Hz, and from 218 to 279 x 10-6 at 0.5 Hz) are 

statistically the same as the RRMS for the Type 72 mix with 20, 40, and 60 

percent manufactured fines, respectively, at each stress state and frequency.   

• There was no significant change in Poisson’s ratio between the Type 70 mix 

(with means ranging from 0.29 to 0.32 at 10 Hz, and 0.43 to 0.45 at 0.5 Hz) 

and the Type 72 mixes at 20 and at 40 percent manufactured fines content, 

respectively.  Type 70 mix resulted in a lower Poisson’s ratio than the Type 

72 mix with 60 percent manufactured fines (means ranging from 0.36 to 0.38 

at 10 Hz, and 0.47 to 0.49 at 0.5 Hz).   

• Type 70 mix phase angle (with means ranging from 21.3 to 22.0 degrees at 

10 Hz, and 19 to 20.7 degrees at 0.5 Hz) resulted in a phase angle lower than 

Type 72 mix with 60 percent manufactured fines content (with means 

ranging from 26 to 27.4 degrees at 10 Hz, and from 22.1 to 24.0 degrees at 

0.5 Hz).  There was no significant change in phase angle between the Type 

70 mix and the Type 72 mixes at 20 and at 40 percent manufactured fines 

content, respectively. 

With respect to the economic implications of implementing finer mixes, the 

following observations can be made: 

• Assuming SDHT continues to re-surface approximately 500 km of asphalt 
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pavement roads annually, engineering rut resistant mixes has the potential to 

result in $102.5 million savings in asphalt concrete pavement life cycle costs 

over the next 18 years, at which point the entire pavement network will have 

been rehabilitated with the improved asphalt mixes. 

• Manufacturing 12.5 mm top size mixes results in an estimated decrease of 38 

to 58 percent in the amount of rejected pea gravel, therefore optimizing 

gravel source utilization.   

• Manufacturing 12.5 mm top size mixes results in an approximate increase of 

three to eight percent in the volume of manufactured material that can be 

produced from a gravel source, resulting in 18,000 to 48,000 metric tonnes of 

aggregate savings annually.  Over the next 42 years, the potential savings 

amount to 2,016,000 tonnes.  The monetary value of the aggregate saved over 

the next 42 years is in the order of $1.7 million in present day dollars. 

• Improving the level of pavement performance results in reduced needs for 

preservation treatments, therefore decreasing the need for aggregate during 

the life cycle of an asphalt concrete pavement road.  Approximately 53,772 

metric tonnes of aggregate can be saved on an annual basis, and there is a 

potential to save 2,258,424 metric tonnes between 2007 and 2049.  The 

monetary value of these aggregate savings is in the order of $19.1 million. 

• The total potential cost savings after 18 years of paving 500 km per year with 

rut-resistant, well-performing HMAC mixes amount to $112.4 million in 

present value dollars and to $193.7 million over the next 42 years. 

• The total potential aggregate savings that can be realized by implementing 

well-performing Type 72 HMAC mixes amount to 4.3 million metric tonnes 

of aggregate.  These savings could compensate for approximately six percent 

of the short fall in provincial aggregate needs up to the year 2049. 
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Additional observations that can be made after completing this research project 

include: 

• Superpave™ compaction protocols result in higher densification of the 

SDHT mixes than the standard Marshall compaction.  The 75 blow Marshall 

compaction resulted in mean VTM ranging from 3.9 to 4.2 percent for the 

research mixes, compared to 3.1 to 3.6 percent VTM after Ndesign level of 

compaction in the gyratory compactor.  Also, at Nmaximum the gyratory 

samples for each of the research mixes compacted below the SDHT 

acceptable VTM level of three percent (mean percent Gmm ranging from 97.4 

to 97.8 percent).   

• Strict adherence to laboratory procedures has an impact on the level of 

confidence that can be obtained in test results.  The increased coefficient of 

variation in the VTM of the gyratory samples for Type 72 mix with 40 

percent manufactured fines (CV of 12 percent) may have been caused by 

variations in laboratory procedure.  For instance, it is possible that there was 

variability in the time period between sample preparation and compaction, 

which could have affected the amount of cooling in the HMAC prior to 

compaction. 

• There was a significant amount of variability for Marshall flow results within 

the ten repeat samples for each mix type, with coefficients of variation 

ranging from 11 to 18 percent, depending on the mix type. 

• Based on the ten repeat Marshall samples compacted by SDHT laboratory for 

use in this research project, the level of confidence of two repeat samples 

ranged from 65 to 75 percent for Marshall VTM, stability, and flow, 

depending on mix type.  If these measurements are used to apply penalties 

and make decisions to accept or reject field HMAC, a higher number of 

repeat samples is recommended, to increase the level of confidence in the 

results.  For example, using five repeat Marshall samples would increase the 

level of confidence to 90 percent based on VTM. 
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• Loading frequency highly influences the magnitude of the mechanistic 

properties measured, for each of the research mixes.  Specifically, the 

magnitude of dynamic modulus reduced by 50 percent when axial loading 

frequency was lowered from 10 to 0.5 Hz.  Similarly, RAMS increased by 

approximately 50 percent, RRMS increased by approximately 100 percent, 

and Poisson’s ratio increased by approximately 25 percent when the axial 

loading frequency was lowered to 0.5 Hz. 

• The increase in phase angle for the Type 72 mix with 60 percent 

manufactured fines indicates that the stiffness of the asphalt binder is being 

mobilized in mix response to loading.  This is likely related to the fact that 

the mix now contains more fractured surfaces, which tend to bond better with 

asphalt cement, resulting in a delayed response to loading.  

• Because it is a ratio of two parameters, Poisson’s ratio can be insensitive to 

mix response to changes in stress state and loading frequency; therefore axial 

and radial microstrains should be characterized individually to better quantify 

mix strain and deformation behaviour. 

6.2 Conclusions 

The research hypothesis stated that increasing amount of manufactured fines 

improves mechanistic properties of the Type 72 mix under typical field state conditions, 

and Type 72 mix with increased manufactured fines can exhibit mechanistic properties 

equivalent to or exceeding those of a typical type 70 mix.   

Based on the improved densification properties, increased Marshall stability, 

increased dynamic modulus, and reduced radial and axial strains, it is apparent that 

increasing manufactured fines content in the Type 72 mix does improve the mechanistic 

properties of this dense-graded asphalt mix.  It should be noted that there appears to be a 

minimum level of manufactured fines content that is required to affect mix response to 

loading, and that this threshold lies somewhere between 40 and 60 percent manufactured 

fines content as a portion of total fine aggregate for the Type 72 mix tested as part of this 

research. 
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Further, the Type 72 mix exhibited comparable or improved mechanistic 

properties relative to the Type 70 mix, which SDHT considers a structural mix.  This is 

illustrated by the Type 72 mix with 60 percent manufactured fines resulting in higher 

Marshall stability and dynamic modulus, and lower axial microstrains than the Type 70 

mix evaluated in this study. 

Economic analysis indicates that substantial savings in life cycle costs of SHDT 

asphalt concrete surfaced roadways can be realized by engineering well-performing, rut-

resistant mixes.  Further, enhanced crushing of smaller aggregate top size decreases the 

amount of rejected material, and increases manufactured fines to coarse aggregate ratio, 

resulting not only in better engineering properties, but also in the optimized use of the 

province’s diminishing gravel resources.  Pressures on aggregate are also reduced by 

improving life cycle performance of Saskatchewan asphalt concrete pavements.  The 

total potential aggregate savings that can be realized by implementing well-performing 

Type 72 HMAC mixes amount to 4.3 million metric tonnes of aggregate in the next 42 

years.  These aggregate savings can help decrease the predicted shortage of aggregate 

between 2007 and 2049 by approximately 6 percent.  The total potential cost savings 

based on reduction in pavement life cycle costs after 18 years of paving 500 km per year 

with rut-resistant, well-performing HMAC mixes, amount to $112.4 million in present 

value dollars.  The 42 year savings amount to $193.7 million in present day dollars. 

6.3 Future Research 

This research resulted in important findings that, if implemented, may 

significantly reduce the life cycle costs of SDHT asphalt concrete surfaced roads.  The 

economic evaluation included as part of this study should be expanded upon, and should 

address not only the financial implications for Saskatchewan Highways and 

Transportation budgets, but also the many benefits to the road users and to the provincial 

economy as a whole. 

The findings of this research are based on laboratory characterization, and are 

limited to the testing protocol used and to the asphalt mix types tested, as well as their 

physical properties.  It is recommended that when possible, other Type 72 and Type 70 
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mixes are evaluated using similar testing protocols.  In addition, field test sections 

should be used to further verify the research hypothesis investigated here.  Specifically, 

the following future research would be useful to further quantify SDHT mixes and their 

sensitivity to manufactured aggregate content: 

• Compare the influence of manufactured fines content on the Type 72 mix 

used in this research to a coarser Type 70 mix than was available for this 

research project. 

• Compare the laboratory mechanistic characterization of manufactured fines 

content in SDHT asphalt mixes to their field performance through 

constructing test sections of the various research mixes evaluated as part of 

this research. 

• Compare the laboratory mechanistic characterization of manufactured fines 

content in SDHT asphalt mixes to field mechanistic structural measures. 

• Evaluate the influence of manufactured fines content on different Type 72 

mixes, and compare to the Type 72 mix used in this research. 

• Evaluate the influence of manufactured fines content on Type 70 and Type 

71 mixes. 
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RESEARCH MIXES 
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QUALITY CONTROL SYSTEM

MARSHALL DESIGN
Contract # Pit File or Land Loc. Date

Stockpile# 1 Mix Design 1-20 Agg.Type 72      Control Sec. Type 72 (20%MF)

Limits of Job

District 80 Contractor Sublet

Refinery Pen of Asphalt in Reclaim

Engineering Type of Asphalt added 150-200a

Type of Asphalt in Mix 150-200a

AGGREGATE GRADATION
Stockpile Average % Passing

          Crushed Filler Reclaimed Design Spec.

Commodity Nat Fine Coarse Fine Blender Mix Lime Mix Limits

Proportion 0.550 0.310 0.140 1.000

CDN Metric

Sieve Series (AGG)

18mm 100.0 100.0 100.0 100.0 100.0

16mm 100.0 100.0 100.0 100.0 100.0

12.5mm 100.0 96.2 100.0 100.0 98.8

9mm 100.0 49.6 100.0 99.6 84.4

5mm 95.1 2.2 87.8 98.4 65.3 +,- 5.0

2mm 72.4 0.9 52.2 95.6 47.4 +,- 4.0

900um 48.2 0.8 35.5 73.0 31.7 +,- 3.0

400um 25.1 0.7 23.6 17.2 17.3 +,- 3.0

160um 10.6 0.6 14.0 2.7 8.0 +,- 2.0

71um 3.8 0.5 8.8 0.3 3.5 +,- 1.5

Sand Equiv. 57.6 77.0 60.7

% Fracture 95.2

MARSHALL PROPERTIES
       Test results Desireable Max. Theoretical Specific Gravity

Property 50 Blow 75 Blow Results % Asphalt T.S.G.

Density 2372 5.1 2.494

Air voids 4.2 3.0% - 5.0% 5.2 2.491

V.M.A. 14.9 Minimum 14.5% 5.3 2.488

% Voids Filled 71.6 Maximum 78% 5.5 2.481

Stability 8244.5 Minimum 7000n 5.6 2.478

Flow 1.8 Minimum 2 5.7 2.475

% Stab. retained Minimum 70% 5.8 2.472

Film Thickness 9.04 Minimum 7.5≅m 5.9 2.468

% Asphalt Absorbed 0.54 6 2.465

Dust Proportion 0.80 6.1 2.462

Flat & Elongated Agg. 3.99 % Manuf'd Fines 19.9

Fine Angularity 41.86 Plasticity Index NP

Lightweight Pieces 0.2

Bulk Spec. Grav. Aggregate 2.652        Rice Correction 0.030

DESIGN ASPHALT CONTENT 5.4 TSG 2.484

Asphalt Content of Reclaim       New Asphalt Added to Mix 5.40

Anti-stripping Agent Content    Product

Anti-stripping Agent Content    Product

Anti-stripping Agent Content    Product

Mixing Temperature 143 C    Compaction Temperature 133 C

COMMENTS

HUSKY LLOYD

 

Figure A.1 SDHT Marshall Mix Design Summary for Type 72(20%MF) 
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QUALITY CONTROL SYSTEM

MARSHALL DESIGN
Contract # na-40%mfinPit File or Land Loc. Date

Stockpile# 1 Mix Design 1-40 Agg.Type 72      Control Sec. Type 72 (40%MF)

Limits of Job

District 80 Contractor Sublet

Refinery Pen of Asphalt in Reclaim

Engineering Type of Asphalt added 150-200a

Type of Asphalt in Mix 150-200a

AGGREGATE GRADATION
Stockpile Average % Passing

          Crushed Filler Reclaimed Design Spec.

Commodity Nat Fine Coarse Fine Blender Mix Lime Mix Limits

Proportion 0.400 0.310 0.290 1.000

CDN Metric

Sieve Series (AGG)

18mm 100.0 100.0 100.0 100.0 100.0

16mm 100.0 100.0 100.0 100.0 100.0

12.5mm 100.0 96.2 100.0 100.0 98.8

9mm 100.0 49.6 100.0 99.6 84.4

5mm 95.1 2.2 87.8 98.4 64.2 +,- 5.0

2mm 72.4 0.9 52.2 95.6 44.4 +,- 4.0

900um 48.2 0.8 35.5 73.0 29.8 +,- 3.0

400um 25.1 0.7 23.6 17.2 17.1 +,- 3.0

160um 10.6 0.6 14.0 2.7 8.5 +,- 2.0

71um 3.8 0.5 8.8 0.3 4.2 +,- 1.5

Sand Equiv. 57.6 77.0 64.7

% Fracture 97.0

MARSHALL PROPERTIES
       Test results Desireable Max. Theoretical Specific Gravity

Property 50 Blow 75 Blow Results % Asphalt T.S.G.

Density 2385.9 5.1 2.504

Air voids 4.1 3.0% - 5.0% 5.2 2.501

V.M.A. 14.6 Minimum 14.5% 5.3 2.498

% Voids Filled 72.2 Maximum 75% 5.4 2.494

Stability 10083.9 Minimum 7000n 5.6 2.488

Flow 1.9 Minimum 2 5.7 2.485

% Stab. retained Minimum 70% 5.8 2.482

Film Thickness 8.53 Minimum 7.5≅m 5.9 2.478

% Asphalt Absorbed 0.62 6 2.475

Dust Proportion 0.97 6.1 2.472

Flat & Elongated Agg. 4.43 % Manuf'd Fines 40.7

Fine Angularity 42.89 Plasticity Index NP

Lightweight Pieces 0.3

Bulk Spec. Grav. Aggregate 2.659        Rice Correction 0.035

DESIGN ASPHALT CONTENT 5.4 TSG 2.494

Asphalt Content of Reclaim       New Asphalt Added to Mix 5.40

Anti-stripping Agent Content    Product

Anti-stripping Agent Content    Product

Anti-stripping Agent Content    Product

Mixing Temperature 143 C    Compaction Temperature 133 C

COMMENTS

HUSKY LLOYD

 

Figure A.2 SDHT Marshall Mix Design Summary for Type 72(40%MF) 
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QUALITY CONTROL SYSTEM

MARSHALL DESIGN
Contract # Pit File or Land Loc. Date

Stockpile# 1 Mix Design 1 Agg.Type 72      Control Sec. Type 72 (60%MF)

Limits of Job

District 80 Contractor Sublet

Refinery Pen of Asphalt in Reclaim

Engineering Type of Asphalt added 150-200a

Type of Asphalt in Mix 150-200a

AGGREGATE GRADATION
Stockpile Average % Passing

          Crushed Filler Reclaimed Design Spec.

Commodity Nat Fine Coarse Fine Blender Mix Lime Mix Limits

Proportion 0.265 0.310 0.425 1.000

CDN Metric

Sieve Series (AGG)

18mm 100.0 100.0 100.0 100.0 100.0

16mm 100.0 100.0 100.0 100.0 100.0

12.5mm 100.0 96.2 100.0 100.0 98.8

9mm 100.0 49.6 100.0 99.6 84.4

5mm 95.1 2.2 87.8 98.4 63.2 +,- 5.0

2mm 72.4 0.9 52.2 95.6 41.7 +,- 4.0

900um 48.2 0.8 35.5 73.0 28.1 +,- 3.0

400um 25.1 0.7 23.6 17.2 16.9 +,- 3.0

160um 10.6 0.6 14.0 2.7 8.9 +,- 2.0

71um 3.8 0.5 8.8 0.3 4.9 +,- 1.5

Sand Equiv. 57.6 77.0 68.4

% Fracture 97.8

MARSHALL PROPERTIES
       Test results Desireable Max. Theoretical Specific Gravity

Property 50 Blow 75 Blow Results % Asphalt T.S.G.

Density 2395.6 5.1 2.512

Air voids 4.0 3.0% - 5.0% 5.2 2.508

V.M.A. 14.4 Minimum 14.5% 5.3 2.505

% Voids Filled 72.2 Maximum 78% 5.4 2.502

Stability 11180.9 Minimum 7000n 5.6 2.495

Flow 2.3 Minimum 2 5.7 2.492

% Stab. retained Minimum 70% 5.8 2.489

Film Thickness 8.15 Minimum 7.5ℵm 5.9 2.486

% Asphalt Absorbed 0.66 6 2.483

Dust Proportion 1.13 6.1 2.479

Flat & Elongated Agg. 5.20 % Manuf'd Fines 60.1

Fine Angularity 45.05 Plasticity Index NP

Lightweight Pieces 0.2

Bulk Spec. Grav. Aggregate 2.664        Rice Correction 0.038

DESIGN ASPHALT CONTENT 5.4 TSG 2.502

Asphalt Content of Reclaim       New Asphalt Added to Mix 5.40

Anti-stripping Agent Content    Product

Anti-stripping Agent Content    Product

Anti-stripping Agent Content    Product

Mixing Temperature 143 C    Compaction Temperature 133 C

COMMENTS

HUSKY LLOYD

 

Figure A.3 SDHT Marshall Mix Design Summary for Type 72(60%MF) 
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QUALITY CONTROL SYSTEM

MARSHALL DESIGN
Contract # TY-70 Pit File or Land Loc. Date

Stockpile# 1 Mix Design 1 Agg.Type 70      Control Sec. Type 70 (38%MF)

Limits of Job

District 80 Contractor Sublet

Refinery Pen of Asphalt in Reclaim

Engineering Type of Asphalt added 150-200a

Type of Asphalt in Mix 150-200a

AGGREGATE GRADATION
Stockpile Average % Passing

          Crushed Filler Reclaimed Design Spec.

Commodity Nat Fine Coarse Fine Blender Mix Lime Mix Limits

Proportion 0.410 0.340 0.250 1.000

CDN Metric

Sieve Series (AGG)

18mm 100.0 100.0 100.0 100.0 100.0

16mm 100.0 87.7 100.0 100.0 95.8

12.5mm 100.0 61.5 100.0 100.0 86.9

9mm 100.0 28.6 100.0 99.6 75.7

5mm 95.1 3.8 87.8 98.4 62.2 +,- 5.0

2mm 72.4 1.0 52.2 95.6 43.1 +,- 4.0

900um 48.2 0.9 35.5 73.0 28.9 +,- 3.0

400um 25.1 0.8 23.6 17.2 16.5 +,- 3.0

160um 10.6 0.7 14.0 2.7 8.1 +,- 2.0

71um 3.8 0.6 8.8 0.3 4.0 +,- 1.5

Sand Equiv. 57.6 77.0 63.2

% Fracture 90.7

MARSHALL PROPERTIES
       Test results Desireable Max. Theoretical Specific Gravity

Property 50 Blow 75 Blow Results % Asphalt T.S.G.

Density 5.1 2.511

Air voids 3.0% - 5.0% 5.2 2.508

V.M.A. Minimum 14.% 5.3 2.505

% Voids Filled Maximum 75% 5.5 2.498

Stability Minimum 7000n 5.6 2.495

Flow Minimum 2 5.7 2.492

% Stab. retained Minimum 70% 5.8 2.489

Film Thickness 8.71 Minimum 7.5⎠m 5.9 2.486

% Asphalt Absorbed 0.72 6 2.482

Dust Proportion 0.93 6.1 2.479

Flat & Elongated Agg. 2.09 % Manuf'd Fines 37.3

Fine Angularity 42.42 Plasticity Index NP

Lightweight Pieces 0.2

Bulk Spec. Grav. Aggregate 2.660        Rice Correction 0.041

DESIGN ASPHALT CONTENT 5.4 TSG 2.502

Asphalt Content of Reclaim       New Asphalt Added to Mix 5.40

Anti-stripping Agent Content 0.7%    Product

Anti-stripping Agent Content    Product

Anti-stripping Agent Content    Product

Mixing Temperature 143 C    Compaction Temperature 133 C

COMMENTS

HUSKY LLOYD

Retained Tens Strgth

 

Figure A.4 SDHT Marshall Mix Design Summary for Type 70(38%MF) 



 

 172

APPENDIX B. PHYSICAL PROPERTIES OF AGGREGATES IN 

RESEARCH MIXES 
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Table B.1 Sand Equivalent Determination for Mix Type 72(20%MF) 

  Sample 1 Sample 2 Sample 3 

Sand Height 51 61 46 

Clay Height 74 83 71 

Sand Equivalent 69 73 65 

Mean Sand Equivalent 69 

 

Table B.2 Sand Equivalent Determination for Mix Type 72(40%MF) 

  Sample 1 Sample 2 Sample 3 

Sand Height 38 57 41 

Clay Height 52 73 59 

Sand Equivalent 73 78 69 

Mean Sand Equivalent    74  

 

Table B.3 Sand Equivalent Determination for Mix Type 72(60%MF) 

  Sample 1 Sample 2 Sample 3 

Sand Height 43 54 42 

Clay Height 59 71 60 

Sand Equivalent 73 76 70 

Mean Sand Equivalent    73  

 

Table B.4 Sand Equivalent Determination for Mix Type 70(38%MF) 

  Sample 1 Sample 2 Sample 3 

Sand Height 51 61 46 

Clay Height 74 83 71 

Sand Equivalent 69 73 65 

Mean Sand Equivalent    69  
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Table B.5 Uncompacted Voids Determination for Mix Type 72(20%MF) 

  Sample 1 Sample 2 

Weight Agg. And Measure 306 305.9 

Weight Measure 152.6 152.6 

Weight Aggregate 153.4 153.3 

Volume of Measure 99.45 99.45 

BSG of Fine Aggregate 2.653 2.653 

Percent Uncompacted Voids 41.8 41.9 

Mean Uncompacted Voids  41.9 

 

Table B.6 Uncompacted Voids Determination for Mix Type 72(40%MF) 

  Sample 1 Sample 2 Sample 3 

Weight Agg. And Measure 303.5 303.7 303.9 

Weight Measure 152.6 152.6 152.6 

Weight Aggregate 150.9 151.1 151.3 

Volume of Measure 99.45 99.45 99.5 

BSG of Fine Aggregate 2.659 2.659 2.7 

Percent Uncompacted Voids 42.9 42.9 42.8 

Mean Uncompacted Voids  42.9 

 

Table B.7 Uncompacted Voids Determination for Mix Type 72(60%MF) 

  Sample 1 Sample 2 

Weight Agg. And Measure 298 298.4 

Weight Measure 152.6 152.6 

Weight Aggregate 145.4 145.8 

Volume of Measure 99.45 99.45 

BSG of Fine Aggregate 2.665 2.665 

Percent Uncompacted Voids 45.1 45.0 

Mean Uncompacted Voids  45.1 
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Table B.8 Uncompacted Voids Determination for Mix Type 70(38%MF) 

  Sample 1 Sample 2 

Weight Agg. And Measure 304.9 305 

Weight Measure 152.6 152.6 

Weight Aggregate 152.3 152.4 

Volume of Measure 99.45 99.45 

BSG of Fine Aggregate 2.660 2.660 

Percent Uncompacted Voids 42.4 42.4 

Mean Uncompacted Voids  42.4 

 

Table B.9 Percent Fracture Determination for Mix Type 72(20%MF) 

  Sample 1 Sample 2 

Weight of Fractured Aggregate 406.8 411.9 

Total Weight of Sample 425.6 434 

Percent Fracture 95.6 94.9 

Mean Percent Fracture  95.2 

 

Table B.10  Percent Fracture Determination for Mix Type 72(40%MF) 

  Sample 1 Sample 2 Sample 3 

Weight of Fractured Aggregate 413.5 428.6 433.4 

Total Weight of Sample 425.8 442.5 448.6 

Percent Fracture 97.1 96.9 96.6 

Mean Percent Fracture  96.9 

 

Table B.11  Percent Fracture Determination for Mix Type 72(60%MF) 

  Sample 1 Sample 2 

Weight of Fractured Aggregate 428.3 450.1 

Total Weight of Sample 438.8 459.3 

Percent Fracture 97.6 98.0 

Mean Percent Fracture  97.8 
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Table B.12  Percent Fracture Determination for Mix Type 70(38%MF) 

  Sample 1 Sample 2 

Weight of Fractured Aggregate 403.1 427.1 

Total Weight of Sample 451.6 463.7 

Percent Fracture 89.3 92.1 

Mean Percent Fracture 90.7 

 

Table B.13  Percent Flat and Elongated Pieces for Mix Type 72(20%MF) 

  Sample 1 

Total Weight of Sample 434 

Weight of Flat Pieces 14.7 

Percent of Flat Pieces 3.4 

Weight of Elongated Pieces 2.6 

Percent of Elongated Pieces 0.6 

Percent  Flat & Elongated Pieces 4.0 

 

Table B.14  Percent Flat and Elongated Pieces for Mix Type 72(40%MF) 

  Sample 1 Sample 2 Sample 3 

Total Weight of Sample 442.5 436.1 442.5 

Weight of Flat Pieces 17.2 14.1 16.0 

Percent of Flat Pieces 3.9 3.2 3.6 

Weight of Elongated Pieces 2.4 4.6 3.9 

Percent of Elongated Pieces 0.5 1.1 0.9 

Percent  Flat & Elongated Pieces 4.4 4.3 4.5 

Mean Percent  Flat & Elongated Pieces  4.4 

 

Table B.15  Percent Flat and Elongated Pieces for Mix Type 72(60%MF) 

  Sample 1 

Total Weight of Sample 457.3 

Weight of Flat Pieces 20.7 

Percent of Flat Pieces 4.5 

Weight of Elongated Pieces 3.1 

Percent of Elongated Pieces 0.7 

Percent Flat & Elongated Pieces 5.2 
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Table B.16  Percent Flat and Elongated Pieces for Mix Type 70(38%MF) 

  Sample 1 

Total Weight of Sample 463.2 

Weight of Flat Pieces 2.5 

Percent of Flat Pieces 0.5 

Weight of Elongated Pieces 7.2 

Percent of Elongated Pieces 1.6 

Percent  Flat & Elongated Pieces 2.1 

 

Table B.17  Percent Lightweight Pieces for Mix Type 72(20%MF) 

  Sample 1 Sample 2 Sample 3 

Weight of Lightweight Pieces 1.2 0.3 0.9 

Total Weight of Sample 425.6 434 419.5 

Percent Lightweight Pieces 0.3 0.1 0.2 

Mean Percent Lightweight Pieces  0.2 

 

Table B.18  Percent Lightweight Pieces for Mix Type 72(40%MF) 

  Sample 1 Sample 2 Sample 3 

Weight of Lightweight Pieces 1.3 0.9 1.1 

Total Weight of Sample 425.8 442.5 431.2 

Percent Lightweight Pieces 0.3 0.2 0.3 

Mean Percent Lightweight Pieces  0.3 

 

Table B.19  Percent Lightweight Pieces for Mix Type 72(60%MF) 

  Sample 1 Sample 2 Sample 3 

Weight of Lightweight Pieces 1.2 0.3 0.9 

Total Weight of Sample 425.6 434 419.5 

Percent Lightweight Pieces 0.3 0.1 0.2 

Mean Percent Lightweight Pieces  0.2 
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Table B.20  Percent Lightweight Pieces for Mix Type 70(38%MF) 

  Sample 1 Sample 2 

Weight of Lightweight Pieces 0.9 1.3 

Total Weight of Sample 451.6 463.7 

Percent Lightweight Pieces 0.2 0.3 

Mean Percent Lightweight Pieces  0.2 
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APPENDIX C. VOLUMETRIC PROPERTIES OF MARSHALL 

SAMPLES 
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Table C.1 Volumetric Properties of Marshall Samples for Mix Type 

72(20%MF) 

31% manufactured coarse, 55% natural fines, 14% manufactured fines

2.652

5.4

Sample 

Name

Weight in 

Air   (g)

Saturated 

Surface-Dry 

Weight      

(g)

Weight in 

water    

(g)

Volume 

(cm
3
)

BSG 

mix

Density 

(kg/m
3
)

VTM  

%

VMA  

%

VFA  

%

20MF-01 1254.4 1255.0 728.0 527.0 2.380 2373.1 4.2 14.8 71.8

20MF-02 1255.8 1256.4 728.5 527.9 2.379 2371.7 4.2 14.9 71.5

20MF-03 1255.2 1255.9 729.3 526.6 2.384 2376.4 4.1 14.7 72.5

20MF-04 1254.8 1255.3 727.5 527.8 2.377 2370.3 4.3 15.0 71.2

20MF-05 1255.5 1255.9 729.7 526.2 2.386 2378.8 4.0 14.6 72.9

20MF-06 1256.7 1257.2 730.6 526.6 2.386 2379.3 3.9 14.6 73.0

20MF-07 1257.4 1258.2 729.8 528.4 2.380 2372.5 4.2 14.9 71.6

20MF-08 1247.4 1248.4 723.4 525.0 2.376 2368.9 4.4 15.0 70.9

20MF-09 1251.0 1251.5 723.2 528.3 2.368 2360.9 4.7 15.3 69.3

20MF-10 1257.6 1258.0 728.6 529.4 2.376 2368.4 4.4 15.0 70.8

Mean 1254.6 1255.2 727.9 527.3 2.379 2372.0 4.2 14.9 71.6

Std Dev 3.1 3.0 2.6 1.3 0.005 5.5 0.2 0.2 1.1

2 x Std Dev 6.3 6.1 5.1 2.6 0.011 11.0 0.4 0.4 2.2

Variance 9.9 9.2 6.6 1.6 0.000 30.1 0.0 0.0 1.2

CV (%) 0.3 0.2 0.4 0.2 0.2 0.2 5.2 1.3 1.5

Composition:

BSG Aggregate = 

% Asphalt = 
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Table C.2 Volumetric Properties of Marshall Samples for Mix Type 72(40%MF) 

31% manufactured coarse, 40% natural fines, 29% manufactured fines

2.659

5.4

Sample 

Name

Weight in 

Air   (g)

Saturated 

Surface-Dry 

Weight      

(g)

Weight in 

water    

(g)

Volume 

(cm
3
)

BSG 

mix

Density 

(kg/m
3
)

VTM  

%

VMA  

%

VFA  

%

40MF-01 1250.3 1250.8 728.7 522.1 2.395 2387.6 4.0 14.5 72.5

40MF-02 1254.9 1255.2 731.6 523.6 2.397 2389.5 3.9 14.5 72.9

40MF-03 1248.4 1248.7 726.9 521.8 2.392 2385.3 4.1 14.6 72.0

40MF-04 1258.3 1258.8 733.9 524.9 2.397 2390.0 3.9 14.5 73.0

40MF-05 1257.6 1257.9 733.1 524.8 2.396 2389.2 3.9 14.5 72.8

40MF-06 1254.7 1255.3 730.6 524.7 2.391 2384.1 4.1 14.7 71.8

40MF-07 1253.7 1254.4 728.9 525.5 2.386 2378.6 4.4 14.9 70.7

40MF-08 1255.3 1256.0 732.2 523.8 2.397 2389.3 3.9 14.5 72.9

40MF-09 1254.3 1255.0 730.1 524.9 2.390 2382.4 4.2 14.7 71.4

40MF-10 1248.9 1249.4 726.8 522.6 2.390 2382.6 4.2 14.7 71.5

Mean 1253.6 1254.2 730.3 523.9 2.393 2385.9 4.1 14.6 72.2

Std Dev 3.4 3.4 2.5 1.3 0.004 3.9 0.2 0.1 0.8

2 x Std Dev 6.8 6.9 4.9 2.6 0.008 7.8 0.3 0.3 1.6

Variance 11.6 11.8 6.1 1.7 0.000 15.0 0.0 0.0 0.6

CV (%) 0.3 0.3 0.3 0.3 0.2 0.2 3.8 1.0 1.1

BSG Aggregate = 

% Asphalt = 

Composition:
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Table C.3 Volumetric Properties of Marshall Samples for Mix Type 

72(60%MF) 

31% manufactured coarse, 26.5% natural fines,42.5% manufactured fines

2.664

5.4

Sample 

Name

Weight in 

Air   (g)

Saturated 

Surface-Dry 

Weight      

(g)

Weight in 

water    

(g)

Volume 

(cm
3
)

BSG 

mix

Density 

(kg/m
3
)

VTM  

%

VMA  

%

VFA  

%

60MF-01 1256.0 1256.4 735.6 520.8 2.412 2404.4 3.6 14.1 74.5

60MF-02 1251.4 1251.8 729.4 522.4 2.395 2388.3 4.2 14.7 71.1

60MF-03 1258.2 1258.8 734.6 524.2 2.400 2393.0 4.1 14.5 72.1

60MF-04 1254.6 1255.3 731.7 523.6 2.396 2388.9 4.2 14.7 71.2

60MF-05 1253.6 1254.0 734.3 519.7 2.412 2404.9 3.6 14.1 74.6

60MF-06 1249.0 1249.4 728.7 520.7 2.399 2391.5 4.1 14.6 71.7

60MF-07 1256.6 1256.8 733.7 523.1 2.402 2395.0 4.0 14.5 72.5

60MF-08 1253.9 1254.2 732.4 521.8 2.403 2395.8 3.9 14.4 72.6

60MF-09 1256.5 1256.9 734.5 522.4 2.405 2398.0 3.9 14.4 73.1

60MF-10 1251.1 1251.3 730.7 520.6 2.403 2396.0 4.4 14.1 68.5

Mean 1254.1 1254.5 732.6 521.9 2.403 2395.6 4.0 14.4 72.2

Std Dev 2.9 2.9 2.4 1.5 0.006 5.7 0.3 0.2 1.8

2 x Std Dev 5.8 5.9 4.7 2.9 0.011 11.4 0.6 0.5 3.5

Variance 8.4 8.6 5.6 2.1 0.000 32.6 0.1 0.1 3.1

CV (%) 0.2 0.2 0.3 0.3 0.2 0.2 6.9 1.6 2.5

Composition:

BSG Aggregate = 

% Asphalt = 

 

 

 

 

 

 

 

 

 

Table C.4 Volumetric Properties of Marshall Samples for Mix Type 
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70(38%MF) 

34% manufactured coarse, 41% natural fines, 25% manufactured fines

2.660

5.4

Sample 

Name

Weight in 

Air   (g)

Saturated 

Surface-Dry 

Weight      

(g)

Weight in 

water    

(g)

Volume 

(cm
3
)

BSG 

mix

Density 

(kg/m
3
)

VTM  

%

VMA  

%

VFA  

%

T70-01 1255.0 1255.7 734.3 521.4 2.407 2399.8 3.8 14.2 73.3

T70-02 1255.6 1256.0 733.8 522.2 2.404 2397.2 3.9 14.3 72.8

T70-03 1253.8 1254.1 733.4 520.7 2.408 2400.7 3.7 14.1 73.5

T70-04 1253.7 1254.1 731.9 522.2 2.401 2393.6 4.0 14.4 72.0

T70-05 1251.5 1251.8 730.5 521.3 2.401 2393.5 4.0 14.4 72.0

T70-06 1249.3 1249.6 730.5 519.1 2.407 2399.4 3.8 14.2 73.2

T70-07 1256.1 1256.4 732.6 523.8 2.398 2390.9 4.1 14.5 71.4

T70-08 1252.6 1252.9 731.7 521.2 2.403 2396.1 3.9 14.3 72.5

T70-09 1252.7 1253.0 732.2 520.8 2.405 2398.1 3.8 14.2 72.9

T70-10 1252.9 1253.3 731.6 521.7 2.402 2394.4 4.0 14.4 72.2

Mean 1253.3 1253.7 732.3 521.4 2.404 2396.4 3.9 14.3 72.6

Std Dev 2.0 2.1 1.3 1.2 0.003 3.2 0.1 0.1 0.7

2 x Std Dev 4.0 4.1 2.6 2.4 0.006 6.5 0.3 0.2 1.4

Variance 4.1 4.3 1.7 1.5 0.000 10.4 0.0 0.0 0.5

CV (%) 0.2 0.2 0.2 0.2 0.1 0.1 3.3 0.8 0.9

Composition:

BSG Aggregate = 

% Asphalt = 
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APPENDIX D. VOLUMETRIC PROPERTIES OF GYRATORY 

SAMPLES 
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Table D.1 Correction Factors for Volumetric Properties from Gyratory 

Compactor for Mix Type 72(20%MF) 

Sample No. 
Gmb 

(measured @Nmax) 

Gmb 

(estimated @Nmax) 
Correction Factor 

20S01 2.421 2.415 1.003 

20S02 2.426 2.413 1.005 

20S33 2.426 2.424 1.001 

20S04 2.421 2.417 1.001 

20S05 2.423 2.413 1.004 

20S06 2.428 2.414 1.006 

20S07 2.425 2.414 1.004 

20S08 2.423 2.404 1.008 

20S09 2.415 2.404 1.004 

20S10 2.423 2.420 1.001 

Mean 2.423 2.414 1.004 

Std Dev 0.004 0.006 0.002 

2 x Std Dev 0.007 0.012 0.004 

Variance 1.32E-05 3.75E-05 4.96E-06 

CV (%) 0.002 0.003 0.002 
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Table D.2 Gyratory Compaction Properties at Ninitial for Mix Type 72(20%MF) 

31% manufactured coarse, 55% natural fines, 14% manufactured fines

2.652

5.4

Sample 

Name

Gmb 

corrected
% Gmm

VTM  

(%)

VTM 

corrected 

(%)

VMA 

(%)

VMA 

corrected 

(%)

VFA  

(%)

VFA 

corrected 

(%)

20MFG01 2.238 0.90 10.14 9.91 20.38 20.18 50.23 50.87

20MFG02 2.242 0.92 10.20 9.74 20.43 20.02 50.07 51.36

20MFG33 2.251 0.93 9.46 9.38 19.77 19.70 52.17 52.40

20MFG04 2.239 0.92 10.01 9.88 20.26 20.14 50.60 50.97

20MFG05 2.248 0.93 9.87 9.51 20.14 19.82 50.98 52.03

20MFG06 2.249 0.93 9.97 9.46 20.23 19.77 50.71 52.16

20MFG07 2.240 0.93 10.22 9.82 20.45 20.10 50.02 51.12

20MFG08 2.247 0.93 10.25 9.55 20.47 19.86 49.95 51.90

20MFG09 2.231 0.92 10.60 10.20 20.78 20.43 49.01 50.08

20MFG10 2.243 0.92 9.81 9.71 20.09 20.00 51.16 51.45

Mean 2.24 0.92 10.05 9.72 20.30 20.00 50.49 51.43

Std Dev 0.01 0.01 0.31 0.25 0.27 0.22 0.85 0.71

2 x Std Dev 0.01 0.02 0.61 0.50 0.54 0.44 1.70 1.42

Variance 0.00 0.00 0.09 0.06 0.07 0.05 0.72 0.50

CV (%) 0.28 0.90 3.05 2.57 1.34 1.11 1.68 1.38

Composition:

BSGAggregate = 

% Asphalt = 
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Table D.3 Gyratory Compaction Properties at Ndesign for Mix Type 72(20%MF) 

31% manufactured coarse, 55% natural fines, 14% manufactured fines

2.652

5.4

Sample 

Name

Gmb 

corrected
% Gmm

VTM  

(%)

VTM 

corrected 

(%)

VMA 

(%)

VMA 

corrected 

(%)

VFA  

(%)

VFA 

corrected 

(%)

20MFG01 2.399 0.97 3.68 3.44 14.65 14.44 74.88 76.20

20MFG02 2.404 0.97 3.72 3.22 14.69 14.24 74.69 77.41

20MFG33 2.405 0.97 3.27 3.19 14.29 14.22 77.10 77.57

20MFG04 2.399 0.97 3.57 3.43 14.56 14.43 75.46 76.23

20MFG05 2.402 0.97 3.70 3.30 14.67 14.32 74.80 76.93

20MFG06 2.407 0.97 3.65 3.11 14.63 14.14 75.04 78.05

20MFG07 2.403 0.97 3.68 3.25 14.65 14.27 74.90 77.22

20MFG08 2.401 0.97 4.08 3.33 15.01 14.35 72.82 76.76

20MFG09 2.393 0.96 4.10 3.67 15.02 14.65 72.72 74.93

20MFG10 2.401 0.97 3.46 3.35 14.45 14.36 76.09 76.69

Mean 2.40 0.97 3.69 3.33 14.66 14.34 74.85 76.80

Std Dev 0.00 0.00 0.25 0.16 0.22 0.14 1.32 0.88

2 x Std Dev 0.01 0.00 0.50 0.32 0.44 0.28 2.64 1.76

Variance 0.00 0.00 0.06 0.03 0.05 0.02 1.74 0.77

CV (%) 0.17 0.17 6.77 4.79 1.51 0.99 1.76 1.14

Composition:

BSGAggregate = 

% Asphalt = 

 



 

 188

Table D.4 Gyratory Compaction Properties at Nmaximum for Mix Type 

72(20%MF) 

31% manufactured coarse, 55% natural fines, 14% manufactured fines

2.652

5.4

Sample 

Name

Gmb 

corrected
% Gmm

VTM  

(%)

VTM 

corrected 

(%)

VMA 

(%)

VMA 

corrected 

(%)

VFA  

(%)

VFA 

corrected 

(%)

20MFG01 2.421 0.97 2.78 2.54 13.86 13.64 79.92 81.41

20MFG02 2.426 0.98 2.84 2.33 13.91 13.46 79.59 82.65

20MFG33 2.426 0.98 2.42 2.33 13.54 13.46 82.12 82.65

20MFG04 2.421 0.97 2.68 2.54 13.77 13.64 80.54 81.41

20MFG05 2.423 0.98 2.85 2.46 13.92 13.57 79.51 81.90

20MFG06 2.428 0.98 2.81 2.25 13.88 13.39 79.79 83.16

20MFG07 2.425 0.98 2.81 2.38 13.88 13.50 79.79 82.40

20MFG08 2.423 0.98 3.21 2.46 14.23 13.57 77.47 81.90

20MFG09 2.415 0.97 3.21 2.78 14.23 13.85 77.47 79.95

20MFG10 2.423 0.98 2.57 2.46 13.67 13.57 81.22 81.90

Mean 2.42 0.98 2.82 2.45 13.89 13.57 79.74 81.93

Std Dev 0.00 0.00 0.25 0.15 0.22 0.13 1.45 0.90

2 x Std Dev 0.01 0.00 0.49 0.29 0.44 0.26 2.90 1.80

Variance 0.00 0.00 0.06 0.02 0.05 0.02 2.10 0.81

CV (%) 0.15 0.15 8.75 5.97 1.57 0.96 1.82 1.10

Composition:

BSGAggregate = 

% Asphalt = 
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Table D.5 Volumetric Properties By Weight in Water at Nmaximum for Mix Type 

72(20%MF) 

Composition: 31% manufactured coarse, 55% natural fines, 14% manufactured fines

BSGAggregate = 2.652

% Asphalt = 5.4

Sample Name

Weight 

in Air    

(g)

SSD 

Weight 

(g)

Weight 

in water 

(g)

Volume 

(cm
3
)

BSG 

mix

Density 

(kg/m
3
)

VTM  

(%)

VMA  

(%)

VFA  

(%)

20MFG01 6230.9 6232.6 3658.9 2573.7 2.421 2414 2.6 13.4 80.9

20MFG02 6270.4 6271.8 3686.8 2585 2.426 2418 2.4 13.2 82.1

20MFG33 6268.6 6269.5 3685.1 2584.4 2.426 2418 2.4 13.2 82.1

20MFG04 6269.7 6272.2 3682.7 2589.5 2.421 2414 2.5 13.4 81.0

20MFG05 6270.4 6272.7 3684.9 2587.8 2.423 2416 2.5 13.3 81.5

20MFG06 6271 6272.5 3689.8 2582.7 2.428 2421 2.3 13.1 82.7

20MFG07 6269.6 6271.4 3686 2585.4 2.425 2418 2.4 13.2 82.0

20MFG08 6270.3 6271.8 3684.3 2587.5 2.423 2416 2.5 13.3 81.5

20MFG09 6270.8 6272.5 3675.7 2596.8 2.415 2408 2.8 13.6 79.4

20MFG10 6267.5 6269.3 3682.6 2586.7 2.423 2416 2.5 13.3 81.4

Mean 6266 6268 3682 2586.0 2.42 2415.80 2.47 13.32 81.47

Std Dev 12.35 12.37 8.80 5.78 0.00 3.61 0.15 0.13 0.91

2 x Std Dev 24.70 24.73 17.59 11.57 0.01 7.21 0.29 0.26 1.81

Variance 152.54 152.93 77.37 33.44 0.00 13.01 0.02 0.02 0.82

CV (%) 0.20 0.20 0.24 0.22 0.15 0.15 5.90 0.97 1.11

SSD - Saturated Surface-Dry  
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Table D.6 Correction Factors for Volumetric Measurements in Gyratory 

Compactor for Mix Type 72(40%MF) 

Sample No. 
Gmb 

(measured @Nmax) 

Gmb 

(estimated @Nmax) 
Correction Factor 

40S01 2.428 2.421 1.003 

40S15 2.440 2.427 1.005 

40S03 2.437 2.406 1.013 

40S04 2.431 2.417 1.005 

40S05 2.408 2.395 1.006 

40S06 2.431 2.417 1.006 

40S07 2.424 2.423 1.000 

40S08 2.444 2.441 1.001 

40S09 2.428 2.399 1.012 

40S10 2.431 2.418 1.005 

Mean 2.430 2.417 1.006 

Std Dev 0.010 0.014 0.004 

2 x Std Dev 0.020 0.027 0.008 

Variance 9.73E-05 1.88E-04 1.67E-05 

CV (%) 0.004 0.006 0.004 
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Table D.7 Gyratory Compaction Properties at Ninitial for Mix Type 72(40%MF) 

31% manufactured coarse, 40% natural fines, 29% manufactured fines

2.659

5.4

Sample 

Name

Gmb 

corrected
% Gmm

VTM  

(%)

VTM 

corrected 

(%)

VMA 

(%)

VMA 

corrected 

(%)

VFA  

(%)

VFA 

corrected 

(%)

40MFG01 2.224 0.89 11.05 10.81 21.08 20.86 47.57 48.18

40MFG15 2.236 0.90 10.80 10.33 20.85 20.43 48.21 49.46

40MFG03 2.238 0.90 11.37 10.25 21.36 20.36 46.76 49.67

40MFG04 2.225 0.89 11.31 10.80 21.30 20.86 46.92 48.20

40MFG05 2.196 0.88 12.45 11.96 22.32 21.88 44.21 45.34

40MFG06 2.228 0.89 11.19 10.68 21.20 20.75 47.21 48.52

40MFG07 2.220 0.89 11.01 10.99 21.04 21.02 47.68 47.73

40MFG08 2.245 0.90 10.06 9.97 20.20 20.11 50.18 50.45

40MFG09 2.224 0.89 11.89 10.82 21.82 20.87 45.52 48.16

40MFG10 2.231 0.89 11.01 10.53 21.04 20.61 47.66 48.93

Mean 2.227 0.89 11.21 10.71 21.22 20.78 47.19 48.46

Std Dev 0.013 0.01 0.634 0.54 0.56 0.48 1.58 1.38

2 x Std Dev 0.03 0.01 1.27 1.08 1.13 0.96 3.16 1.81

Variance 0.0002 0.00 0.40 0.29 0.32 0.23 2.50 1.90

CV (%) 0.60 0.60 5.66 5.04 2.65 2.30 3.35 2.85

Composition:

BSGAggregate = 

% Asphalt = 
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Table D.8 Gyratory Compaction Properties at Ndesign for Mix Type 72(40%MF) 

31% manufactured coarse, 40% natural fines, 29% manufactured fines

2.659

5.4

Sample 

Name

Gmb 

corrected
% Gmm

VTM  

(%)

VTM 

corrected 

(%)

VMA 

(%)

VMA 

corrected 

(%)

VFA  

(%)

VFA 

corrected 

(%)

40MFG01 2.403 0.96 3.90 3.64 14.73 14.50 73.51 74.88

40MFG15 2.416 0.97 3.63 3.12 14.50 14.04 74.93 77.76

40MFG03 2.412 0.97 4.50 3.29 15.27 14.19 70.50 76.80

40MFG04 2.406 0.96 4.05 3.51 14.87 14.38 72.74 75.61

40MFG05 2.380 0.95 5.09 4.56 15.79 15.32 67.75 70.23

40MFG06 2.406 0.96 4.06 3.51 14.87 14.38 72.71 75.61

40MFG07 2.399 0.96 3.83 3.81 14.67 14.65 73.89 74.00

40MFG08 2.421 0.97 3.04 2.94 13.97 13.88 78.23 78.84

40MFG09 2.404 0.96 4.78 3.63 15.51 14.49 69.19 74.97

40MFG10 2.407 0.96 4.03 3.50 14.84 14.38 72.88 75.64

Mean 2.405 0.96 4.09 3.55 14.90 14.42 72.63 75.43

Std Dev 0.011 0.00 0.584 0.44 0.52 0.39 2.97 2.32

2 x Std Dev 0.02 0.01 1.17 0.88 1.04 0.78 5.94 1.81

Variance 0.00 0.00 0.34 0.19 0.27 0.15 8.81 5.40

CV (%) 0.45 0.45 14.27 12.36 3.48 2.70 4.09 3.08

% Asphalt = 

BSGAggregate = 

Composition:
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Table D.9 Gyratory Compaction Properties at Nmaximum for Mix Type 

72(40%MF) 

31% manufactured coarse, 40% natural fines, 29% manufactured fines

2.659

5.4

Sample 

Name

Gmb 

corrected
% Gmm

VTM  

(%)

VTM 

corrected 

(%)

VMA 

(%)

VMA 

corrected 

(%)

VFA  

(%)

VFA 

corrected 

(%)

40MFG01 2.428 0.97 2.91 2.65 13.85 13.62 79.00 80.57

40MFG15 2.440 0.98 2.68 2.17 13.65 13.19 80.35 83.59

40MFG03 2.437 0.98 3.51 2.29 14.38 13.30 75.60 82.81

40MFG04 2.431 0.97 3.07 2.53 14.00 13.51 78.04 81.30

40MFG05 2.408 0.97 3.99 3.45 14.81 14.33 73.08 75.94

40MFG06 2.431 0.97 3.08 2.53 14.00 13.51 78.00 81.30

40MFG07 2.424 0.97 2.83 2.81 13.78 13.76 79.47 79.60

40MFG08 2.444 0.98 2.11 2.00 13.14 13.05 83.94 84.64

40MFG09 2.428 0.97 3.81 2.65 14.65 13.62 73.99 80.57

40MFG10 2.431 0.97 3.05 2.53 13.98 13.51 78.15 81.30

Mean 2.430 0.97 3.10 2.56 14.03 13.54 77.96 81.16

Std Dev 0.010 0.00 0.550 0.40 0.49 0.35 3.16 2.38

2 x Std Dev 0.02 0.01 1.10 0.79 0.98 0.70 6.33 1.81

Variance 0.00 0.00 0.30 0.16 0.24 0.12 10.00 5.69

CV (%) 0.41 0.41 17.72 15.46 3.48 2.59 4.06 2.94

Composition:

BSGAggregate = 

% Asphalt = 
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Table D.10  Volumetric Properties By Weight in Water at Nmaximum for Mix 

Type 72(40%MF) 

Composition: 31% manufactured coarse, 40% natural fines, 29% manufactured fines

BSGAggregate = 2.659

% Asphalt = 5.4

Sample Name

Weight 

in Air   

(g)

SSD 

Weight 

(g)

Weight 

in water 

(g)

Volume 

(cm
3
)

BSG 

mix

Density 

(kg/m
3
)

VTM  

(%)

VMA  

(%)

VFA  

(%)

40MFG01 6252.7 6254.3 3678.7 2575.6 2.428 2420 2.7 13.4 77.4

40MFG15 6253.6 6255 3691.8 2563.2 2.440 2432 2.2 12.9 80.4

40MFG03 6252.6 6254.5 3688.9 2565.6 2.437 2430 2.3 13.0 79.7

40MFG04 6253.5 6254.9 3682.4 2572.5 2.431 2424 2.5 13.2 78.2

40MFG05 6244.3 6247.7 3654.6 2593.1 2.408 2401 3.5 14.1 73.0

40MFG06 6253.4 6254.7 3682.4 2572.3 2.431 2424 2.5 13.2 78.2

40MFG07 6253.3 6255.2 3675.5 2579.7 2.424 2417 2.8 13.5 76.6

40MFG08 6248.5 6249.6 3693.1 2556.5 2.444 2437 2.0 12.8 81.5

40MFG09 6253.6 6254 3678.2 2575.8 2.428 2421 2.7 13.4 77.5

40MFG10 6253.9 6255.6 3682.9 2572.7 2.431 2424 2.6 13.2 78.2

Mean 6252 6254 3681 2572.7 2.430 2422.9 2.58 13.28 81.47

Std Dev 3.11 2.66 10.92 9.92 0.010 9.84 0.40 0.35 0.91

2 x Std Dev 6.22 5.32 21.84 19.85 0.020 19.68 0.79 0.70 1.81

Variance 9.66 7.07 119.23 98.50 0.000 96.79 0.16 0.12 0.82

CV (%) 0.05 0.04 0.30 0.39 0.406 0.41 15.34 2.65 1.11

SSD - Saturated Surface-Dry  
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Table D.11  Correction Factors for Volumetric Measurements in Gyratory 

Compactor for Mix Type 72(60%MF) 

Sample No. 
Gmb 

(measured @Nmax) 

Gmb 

(estimated @Nmax) 
Correction Factor 

60S01 2.438 2.426 1.005 

60S02 2.440 2.422 1.007 

60S03 2.440 2.412 1.012 

60S04 2.452 2.433 1.008 

60S05 2.449 2.438 1.005 

60S06 2.449 2.436 1.005 

60S07 2.435 2.424 1.005 

60S08 2.443 2.436 1.003 

60S09 2.445 2.432 1.005 

60S10 2.442 2.427 1.006 

Mean 2.443 2.429 1.006 

Std Dev 0.005 0.008 0.002 

2 x Std Dev 0.011 0.016 0.005 

Variance 2.93E-05 6.44E-05 5.85E-06 

CV (%) 0.002 0.003 0.002 
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Table D.12  Gyratory Compaction Properties at Ninitial for Mix Type 

72(60%MF) 

31% manufactured coarse, 26.5% natural fines,42.5% manufactured fines

2.664

% Asphalt = 5.4

Sample 

Name

Gmb 

corrected
% Gmm

VTM  

(%)

VTM 

corrected 

(%)

VMA 

(%)

VMA 

corrected 

(%)

VFA  

(%)

VFA 

corrected 

(%)

60MFG01 2.210 0.88 12.11 11.68 21.91 21.53 44.74 45.75

60MFG02 2.212 0.88 12.23 11.58 22.02 21.44 44.45 45.98

60MFG03 2.214 0.89 12.52 11.49 22.28 21.36 43.80 46.20

60MFG04 2.228 0.89 11.62 10.94 21.48 20.88 45.89 47.58

60MFG05 2.262 0.90 10.00 9.58 20.04 19.67 50.10 51.27

60MFG06 2.231 0.89 11.32 10.85 21.21 20.79 46.64 47.81

60MFG07 2.215 0.89 11.85 11.45 21.68 21.33 45.34 46.30

60MFG08 2.223 0.89 11.41 11.14 21.29 21.05 46.40 47.08

60MFG09 2.222 0.89 11.69 11.21 21.54 21.11 45.72 46.90

60MFG10 2.218 0.89 11.90 11.34 21.73 21.23 45.22 46.58

Mean 2.224 0.89 11.67 11.13 21.52 21.04 45.83 47.15

Std Dev 0.015 0.01 0.692 0.61 0.61 0.54 1.73 1.60

2 x Std Dev 0.03 0.01 1.38 1.21 1.23 1.08 3.47 1.81

Variance 0.00 0.00 0.48 0.37 0.38 0.29 3.01 2.55

CV (%) 0.68 0.68 5.93 5.45 2.86 2.56 3.78 3.39

Composition:

BSGAggregate = 
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Table D.13  Gyratory Compaction Properties at Ndesign for Mix Type 

72(60%MF) 

31% manufactured coarse, 26.5% natural fines,42.5% manufactured fines

2.664

% Asphalt = 5.4

Sample 

Name

Gmb 

corrected
% Gmm

VTM  

(%)

VTM 

corrected 

(%)

VMA 

(%)

VMA 

corrected 

(%)

VFA  

(%)

VFA 

corrected 

(%)

60MFG01 2.411 0.96 4.12 3.65 14.81 14.40 72.20 74.63

60MFG02 2.412 0.96 4.29 3.58 14.96 14.33 71.35 75.04

60MFG03 2.413 0.96 4.69 3.57 15.32 14.32 69.41 75.10

60MFG04 2.427 0.97 3.74 3.00 14.48 13.82 74.16 78.29

60MFG05 2.423 0.97 3.60 3.15 14.35 13.95 74.94 77.42

60MFG06 2.421 0.97 3.73 3.23 14.47 14.02 74.20 76.97

60MFG07 2.408 0.96 4.20 3.77 14.89 14.50 71.77 74.01

60MFG08 2.416 0.97 3.71 3.42 14.45 14.19 74.30 75.90

60MFG09 2.419 0.97 3.85 3.33 14.57 14.11 73.58 76.43

60MFG10 2.416 0.97 4.05 3.44 14.75 14.21 72.53 75.78

Mean 2.42 0.97 4.00 3.41 14.70 14.19 72.84 75.96

Std Dev 0.01 0.00 0.34 0.24 0.30 0.21 1.71 1.33

2 x Std Dev 0.01 0.00 0.67 0.48 0.60 0.43 3.42 1.81

Variance 0.00 0.00 0.11 0.06 0.09 0.05 2.92 1.78

CV (%) 0.25 0.25 8.40 7.03 2.03 1.50 2.35 1.76

Composition:

BSGAggregate = 
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Table D.14  Gyratory Compaction Properties at Nmaximum for Mix Type 

72(60%MF) 

31% manufactured coarse, 26.5% natural fines,42.5% manufactured fines

2.664

% Asphalt = 5.4

Sample 

Name

Gmb 

corrected
% Gmm

VTM  

(%)

VTM 

corrected 

(%)

VMA 

(%)

VMA 

corrected 

(%)

VFA  

(%)

VFA 

corrected 

(%)

60MFG01 2.438 0.97 3.03 2.56 13.84 13.43 78.12 80.95

60MFG02 2.440 0.98 3.19 2.48 13.99 13.35 77.17 81.44

60MFG03 2.440 0.98 3.61 2.48 14.36 13.35 74.86 81.44

60MFG04 2.452 0.98 2.75 2.00 13.59 12.93 79.79 84.54

60MFG05 2.449 0.98 2.57 2.12 13.44 13.03 80.88 83.75

60MFG06 2.449 0.98 2.63 2.12 13.49 13.03 80.51 83.75

60MFG07 2.435 0.97 3.12 2.68 13.92 13.53 77.62 80.21

60MFG08 2.443 0.98 2.66 2.36 13.51 13.25 80.34 82.20

60MFG09 2.445 0.98 2.81 2.28 13.65 13.18 79.42 82.71

60MFG10 2.442 0.98 3.02 2.40 13.83 13.28 78.20 81.95

Mean 2.44 0.98 2.94 2.35 13.76 13.24 78.69 82.29

Std Dev 0.01 0.00 0.32 0.22 0.29 0.19 1.86 1.38

2 x Std Dev 0.01 0.00 0.64 0.43 0.57 0.38 3.73 1.81

Variance 0.00 0.00 0.10 0.05 0.08 0.04 3.47 1.91

CV (%) 0.22 0.22 10.92 9.23 2.07 1.45 2.37 1.68

BSGAggregate = 

Composition:
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Table D.15  Volumetric Properties By Weight in Water at Nmaximum for Mix 

Type 72(60%MF) 

Composition: 31% manufactured coarse, 26.5% natural fines,42.5% manufactured fines

BSGAggregate = 2.664

% Asphalt = 5.4

Sample Name

Weight 

in Air   

(g)

SSD 

Weight 

(g)

Weight 

in water 

(g)

Volume 

(cm
3
)

BSG 

mix

Density 

(kg/m
3
)

VTM  

(%)

VMA  

(%)

VFA  

(%)

60MFG01 6270.7 6272.1 3700.1 2572 2.438 2431 2.5 13.2 80.7

60MFG02 6270.7 6273.1 3703 2570.1 2.440 2433 2.5 13.1 81.1

60MFG03 6271.2 6273.6 3703.8 2569.8 2.440 2433 2.5 13.1 81.3

60MFG04 6254 6256.1 3705.3 2550.8 2.452 2444 2.0 12.7 84.3

60MFG05 6269.1 6270.8 3711.1 2559.7 2.449 2442 2.1 12.8 83.5

60MFG06 6267.5 6269.3 3709.7 2559.6 2.449 2441 2.1 12.8 83.4

60MFG07 6268.8 6270.8 3696.8 2574 2.435 2428 2.7 13.3 80.0

60MFG08 6265.4 6267 3702.7 2564.3 2.443 2436 2.3 13.0 82.0

60MFG09 6265.9 6267.5 3705 2562.5 2.445 2438 2.3 12.9 82.5

60MFG10 6271 6272.1 3704.3 2567.8 2.442 2435 2.4 13.0 81.7

Mean 6267 6269 3704 2565.1 2.443 2436.07 2.33 12.99 81.47

Std Dev 5.16 5.12 4.15 7.09 0.01 5.25 0.21 0.19 0.91

2 x Std Dev 10.32 10.24 8.30 14.18 0.01 10.49 0.42 0.37 1.81

Variance 26.65 26.20 17.24 50.28 0.00 27.53 0.04 0.04 0.82

CV (%) 0.08 0.08 0.11 0.28 0.22 0.22 9.01 1.44 1.11

SSD - Saturated Surface-Dry  
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Table D.16  Correction Factors for Volumetric Measurements in Gyratory 

Compactor for Mix Type 70(38%MF) 

Sample No. 
Gmb 

(measured @Nmax) 

Gmb 

(estimated @Nmax) 
Correction Factor 

70S01 2.442 2.434 1.003 

70S02 2.442 2.430 1.005 

70S03 2.452 2.444 1.003 

70S04 2.449 2.437 1.005 

70S05 2.464 2.446 1.008 

70S06 2.451 2.442 1.004 

70S07 2.450 2.446 1.002 

70S08 2.445 2.435 1.004 

70S09 2.440 2.432 1.003 

70S10 2.447 2.448 0.999 

Mean 2.448 2.439 1.004 

Std Dev 0.007 0.007 0.002 

2 x Std Dev 0.014 0.013 0.004 

Variance 4.80E-05 4.34E-05 4.55E-06 

CV (%) 0.003 0.003 0.002 
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Table D.17  Gyratory Compaction Properties at Ninitial for Mix Type 

70(38%MF) 

34% manufactured coarse, 41% natural fines, 25% manufactured fines

2.660

5.4

Sample 

Name

Gmb 

corrected
% Gmm

VTM  

(%)

VTM 

corrected 

(%)

VMA 

(%)

VMA 

corrected 

(%)

VFA  

(%)

VFA 

corrected 

(%)

T70G01 2.241 0.90 10.72 10.44 20.56 20.31 47.84 48.58

T70G02 2.243 0.90 10.79 10.35 20.62 20.23 47.67 48.84

T70G03 2.262 0.90 9.90 9.61 19.83 19.57 50.07 50.89

T70G04 2.258 0.90 10.20 9.76 20.10 19.71 49.23 50.45

T70G05 2.270 0.91 9.94 9.26 19.86 19.26 49.97 51.92

T70G06 2.260 0.90 10.01 9.68 19.93 19.63 49.76 50.71

T70G07 2.262 0.90 9.75 9.60 18.39 19.56 50.49 50.93

T70G08 2.247 0.90 10.54 10.18 20.40 20.08 48.33 49.30

T70G09 2.244 0.90 10.61 10.31 20.46 20.19 48.14 48.95

T70G10 2.253 0.90 9.90 9.96 19.83 19.88 50.07 49.91

Mean 2.25 0.90 10.24 9.91 20.00 19.84 49.16 50.05

Std Dev 0.01 0.00 0.39 0.39 0.65 0.35 1.06 1.10

2 x Std Dev 0.02 0.01 0.78 0.79 1.29 0.70 2.12 1.81

Variance 0.00 0.00 0.15 0.15 0.42 0.12 1.13 1.22

CV (%) 0.44 0.44 3.83 3.97 3.23 1.77 2.16 2.21

Composition:

BSGAggregate = 

% Asphalt = 
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Table D.18  Gyratory Compaction Properties at Ndesign for Mix Type 

70(38%MF) 

34% manufactured coarse, 41% natural fines, 25% manufactured fines

2.660

5.4

Sample 

Name

Gmb 

corrected
% Gmm

VTM  

(%)

VTM 

corrected 

(%)

VMA 

(%)

VMA 

corrected 

(%)

VFA  

(%)

VFA 

corrected 

(%)

T70G01 2.418 0.97 3.67 3.37 14.29 14.02 74.28 75.94

T70G02 2.418 0.97 3.84 3.36 14.44 14.01 73.37 75.99

T70G03 2.428 0.97 3.26 2.95 13.92 13.64 76.58 78.39

T70G04 2.428 0.97 3.45 2.97 14.08 13.66 75.54 78.25

T70G05 2.442 0.98 3.14 2.41 13.81 13.16 77.30 81.71

T70G06 2.429 0.97 3.26 2.90 13.92 13.60 76.58 78.67

T70G07 2.428 0.97 3.13 2.97 12.41 13.66 77.32 78.27

T70G08 2.420 0.97 3.65 3.26 14.27 13.92 74.42 76.57

T70G09 2.416 0.97 3.76 3.43 14.36 14.07 73.83 75.62

T70G10 2.424 0.97 3.07 3.13 13.75 13.80 77.68 77.34

Mean 2.43 0.97 3.42 3.08 13.93 13.76 75.69 77.67

Std Dev 0.01 0.00 0.29 0.31 0.58 0.27 1.61 1.82

2 x Std Dev 0.02 0.01 0.58 0.62 1.17 0.55 3.21 1.81

Variance 0.00 0.00 0.08 0.09 0.34 0.07 2.58 3.32

CV (%) 0.32 0.32 8.45 10.00 4.20 1.99 2.12 2.35

BSGAggregate = 

% Asphalt = 

Composition:
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Table D.19  Gyratory Compaction Properties at Nmaximum for Mix Type 

70(38%MF) 

34% manufactured coarse, 41% natural fines, 25% manufactured fines

2.660

5.4

Sample 

Name

Gmb 

corrected
% Gmm

VTM  

(%)

VTM 

corrected 

(%)

VMA 

(%)

VMA 

corrected 

(%)

VFA  

(%)

VFA 

corrected 

(%)

T70G01 2.442 0.98 2.70 2.40 13.42 13.15 79.87 81.77

T70G02 2.442 0.98 2.88 2.40 13.58 13.15 78.78 81.77

T70G03 2.452 0.98 2.31 2.00 13.08 12.80 82.31 84.38

T70G04 2.449 0.98 2.60 2.12 13.33 12.90 80.52 83.58

T70G05 2.464 0.98 2.25 1.52 13.02 12.37 82.70 87.72

T70G06 2.451 0.98 2.40 2.04 13.16 12.83 81.75 84.12

T70G07 2.450 0.98 2.24 2.08 11.60 12.87 82.77 83.85

T70G08 2.445 0.98 2.67 2.28 13.39 13.05 80.07 82.54

T70G09 2.440 0.98 2.81 2.48 13.52 13.22 79.22 81.26

T70G10 2.447 0.98 2.14 2.20 12.92 12.98 83.45 83.06

Mean 2.45 0.98 2.50 2.15 13.10 12.93 81.14 83.40

Std Dev 0.01 0.00 0.26 0.28 0.57 0.25 1.65 1.86

2 x Std Dev 0.01 0.01 0.53 0.55 1.14 0.49 3.31 1.81

Variance 0.00 0.00 0.07 0.08 0.33 0.06 2.73 3.46

CV (%) 0.28 0.28 10.53 12.87 4.36 1.90 2.04 2.23

% Asphalt = 

Composition:

BSGAggregate = 
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Table D.20  Volumetric Properties By Weight in Water at Nmaximum for Mix 

Type 70(38%MF) 

Composition: 34% manufactured coarse, 41% natural fines, 25% manufactured fines

BSGAggregate = 2.660

% Asphalt = 5.4

Sample Name

Weight 

in Air   

(g)

SSD 

Weight 

(g)

Weight 

in water 

(g)

Volume 

(cm
3
)

BSG 

mix

Density 

(kg/m
3
)

VTM  

(%)

VMA  

(%)

VFA  

(%)

T70G01 6269.5 6270.6 3703 2567.6 2.442 2434 2.4 12.9 81.5

T70G02 6267.8 6271.6 3705.2 2566.4 2.442 2435 2.4 12.9 81.6

T70G03 6266.3 6267.8 3712.7 2555.1 2.452 2445 2.0 12.5 84.3

T70G04 6270.1 6271.9 3711.6 2560.3 2.449 2442 2.1 12.7 83.4

T70G05 6266.2 6268 3724.9 2543.1 2.464 2457 1.5 12.1 87.6

T70G06 6265.8 6268.1 3711.5 2556.6 2.451 2443 2.0 12.6 83.9

T70G07 6163.7 6165.5 3649.6 2515.9 2.450 2443 2.1 12.6 83.6

T70G08 6268.7 6270.2 3706 2564.2 2.445 2437 2.3 12.8 82.3

T70G09 6268.9 6271.1 3702 2569.1 2.440 2433 2.5 13.0 81.1

T70G10 6267.9 6269.3 3707.4 2561.9 2.447 2439 2.2 12.7 82.8

Mean 6257 6259 3703 2556.0 2.448 2440.82 2.14 12.69 81.47

Std Dev 32.99 33.03 20.01 16.02 0.01 6.93 0.28 0.25 0.91

2 x Std Dev 65.97 66.06 40.02 32.04 0.01 13.87 0.56 0.50 1.81

Variance 1088.10 1091.05 400.46 256.72 0.00 48.06 0.08 0.06 0.82

CV (%) 0.53 0.53 0.54 0.63 0.28 0.28 13.02 1.95 1.11

SSD - Saturated Surface-Dry  
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APPENDIX E. MARSHALL STABILITY AND FLOW  
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Table E.1 Marshall Properties of Mix Type 72 with 20 Percent Manufactured 

Fines 

Sample Name 
Marshall Stability 

(Newton) 

Marshall Flow  

(mm) 

20MF-01 8861 1.6 

20MF-02 8515 2.3 

20MF-03 8918 1.7 

20MF-04 8794 1.8 

20MF-05 8582 1.3 

20MF-06 8371 1.7 

20MF-07 8755 1.8 

20MF-08 6710 2.4 

20MF-09 7027 1.7 

20MF-10 7910 1.8 

Mean 8244 1.8 

Std Dev 785 0.3 

2 x Std Dev 1570 0.7 

Variance 616301 0.1 

CV (%) 9.5 18.2 

 

Table E.2 Marshall Properties of Mix Type 72 with 40 Percent Manufactured 

Fines 

Sample Name 
Marshall Stability 

(Newton) 

Marshall Flow  

(mm) 

40MF-01 10980 2.0 

40MF-02 9859 1.9 

40MF-03 9860 1.8 

40MF-04 10368 2.0 

40MF-05 9792 1.7 

40MF-06 10118 2.4 

40MF-07 9274 2.0 

40MF-08 9794 1.7 

40MF-09 9274 1.7 

40MF-10 11520 1.7 

Mean 10084 1.9 

Std Dev 709 0.2 

2 x Std Dev 1419 0.4 

Variance 503374 0.0 

CV (%) 7.0 11.4 
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Table E.3 Marshall Properties of Mix Type 72 with 60 Percent Manufactured 

Fines 

Sample Name 
Marshall Stability 

(Newton) 

Marshall Flow  

(mm) 

60MF-01 10820 2.0 

60MF-02 11020 2.1 

60MF-03 10675 2.3 

60MF-04 10406 2.6 

60MF-05 10750 2.6 

60MF-06 12150 1.9 

60MF-07 11347 2.2 

60MF-08 11650 2.1 

60MF-09 11580 2.8 

60MF-10 11410 2.2 

Mean 11181 2.3 

Std Dev 537 0.3 

2 x Std Dev 1074 0.6 

Variance 288448 0.1 

CV (%) 4.8 13.5 

 

Table E.4 Marshall Properties of Mix Type 70 with 38 Percent Manufactured 

Fines 

Sample Name 
Marshall Stability 

(Newton) 

Marshall Flow  

(mm) 

T70-01 9840 2.1 

T70-02 10240 1.9 

T70-03 11300 2.0 

T70-04 9840 1.7 

T70-05 10780 1.8 

T70-06 10000 1.8 

T70-07 9706 1.6 

T70-08 9000 2.6 

T70-09 9820 1.7 

T70-10 10160 1.6 

Mean 10069 1.9 

Std Dev 624 0.3 

2 x Std Dev 1248 0.6 

Variance 389430 0.1 

CV (%) 6.2 15.9 
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APPENDIX F. STANDARD NORMAL DISTRIBUTION PROBABILITY 

TABLE 
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Table F.1 Standard Normal Distribution Probability Table 

  0.00  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753

0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517

0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549

0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852

0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015

1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545

1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633

1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706

1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767

2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857

2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890

2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916

2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936

2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964

2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974

2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981

2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986

3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990
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APPENDIX G. SAMPLE SIZE ANALYSIS BASED ON CONVENTIONAL 

CHARACTERIZATION OF THE RESEARCH MIXES 
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Table G.1 Relationship of Sample Size and Level of Confidence for Marshall 

Voids in Total Mix across Research Mixes at a Margin of Error of 0.2% 

Margin of Error = 0.2 %

Level of Confidence Z T72(20%MF) T72(40%MF) T72(60%MF) T70(38%MF)

99% 2.58 8 4 13 3

95% 1.96 5 2 7 2

90% 1.65 3 2 5 1

75% 1.15 2 1 3 1

50% 0.68 1 0 1 0

Sample Size (n)

 

 

Table G.2 Relationship of Sample Size and Level of Confidence for Marshall 

Stability across Research Mixes at a Margin of Error of 500 Newton 

Margin of Error = 500 Newton

Level of Confidence Z T72(20%MF) T72(40%MF) T72(60%MF) T70(38%MF)

99% 2.58 16 13 8 10

95% 1.96 9 8 4 6

90% 1.65 7 5 3 4

75% 1.15 3 3 2 2

50% 0.68 1 1 1 1

Sample Size (n)

 

 

Table G.3 Relationship of Sample Size and Level of Confidence for Marshall 

Flow across Research Mixes at a Margin of Error of 0.2 mm 

Margin of Error = 0.2 mm

Level of Confidence Z T72(20%MF) T72(40%MF) T72(60%MF) T70(38%MF)

99% 2.58 18 8 15 15

95% 1.96 10 4 9 8

90% 1.65 7 3 6 6

75% 1.15 4 2 3 3

50% 0.68 1 1 1 1

Sample Size (n)
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Table G.4 Relationship of Sample Size and Level of Confidence for Gyratory 

Voids in Total Mix at Ndesign across Research Mixes at a Margin of Error of 

0.2% 

Margin of Error = 0.2 %

Level of Confidence Z T72(20%MF) T72(40%MF) T72(60%MF) T70(38%MF)

99% 2.58 4 32 10 16

95% 1.96 2 18 6 9

90% 1.65 2 13 4 6

75% 1.15 1 6 2 3

50% 0.68 0 2 1 1

Sample Size (n)
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APPENDIX H. TRIAXIAL FREQUENCY SWEEP TEST RESULTS AT 

20°C 
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Table H.1 Triaxial Frequency Sweep Test results at 20°C and Deviatoric Stress 

of 370 kPa for Mix Type 72 with 20 Percent Manufactured Fines 

Sample 

Name

Vertical 

Traction 

σ1 (kPa)

Radial 

Traction 

σ3 (kPa)

Deviatoric 

Stress     

σD (kPa)

Frequency 

(Hz)

Dynamic 

Modulus 

Ed (MPa)

Phase 

Angle 

δ (°) RAMS RRMS

Poisson's 

Ratio, ν
20MFG01 600 230 370 10 2294 19.36 253.8 75.2 0.2963

20MFG01 600 230 370 5 1988 19.17 295.5 97.1 0.3286

20MFG01 600 230 370 1 1430 19.08 418.4 169.1 0.4042

20MFG01 600 230 370 0.5 1266 18.25 472.7 199.4 0.4218

20MFG02 600 230 370 10 2113 21.38 276 89 0.3225

20MFG02 600 230 370 5 1818 20.57 322.9 110.5 0.3422

20MFG02 600 230 370 1 1293 19.43 462 184.6 0.3996

20MFG02 600 230 370 0.5 1153 17.86 519.8 221.3 0.4257

20MFG04 600 230 370 10 2165 21.09 269.2 88.9 0.3302

20MFG04 600 230 370 5 1867 20.53 314.9 108.4 0.3442

20MFG04 600 230 370 1 1341 19.51 446.3 187.9 0.4210

20MFG04 600 230 370 0.5 1202 18.35 498.2 220 0.4416

20MFG05 600 230 370 10 2217 19.93 263.9 92.4 0.3501

20MFG05 600 230 370 5 1838 19.77 319.7 110.9 0.3469

20MFG05 600 230 370 1 1326 19.28 450.5 184.1 0.4087

20MFG05 600 230 370 0.5 1172 17.46 510.4 213.9 0.4191

20MFG06 600 230 370 10 2127 20.7 273.8 85.7 0.3130

20MFG06 600 230 370 5 1847 19.93 317.6 112.3 0.3536

20MFG06 600 230 370 1 1331 19.18 449.4 186 0.4139

20MFG06 600 230 370 0.5 1171 18.03 510.9 219 0.4287

20MFG07 600 230 370 10 2208 19.81 265.2 83.4 0.3145

20MFG07 600 230 370 5 1922 19.43 305.7 104.8 0.3428

20MFG07 600 230 370 1 1353 19.43 442.3 180.8 0.4088

20MFG07 600 230 370 0.5 1197 18.25 499.8 206.4 0.4130

20MFG08 600 230 370 10 2088 20.62 279.2 98.3 0.3521

20MFG08 600 230 370 5 1835 20.59 320.4 129.7 0.4048

20MFG08 600 230 370 1 1311 19.32 456.1 200.1 0.4387

20MFG08 600 230 370 0.5 1172 18 510.7 231.8 0.4539

20MFG09 600 230 370 10 2155 20.73 270.4 87.7 0.3243

20MFG09 600 230 370 5 1883 20.54 312.1 113 0.3621

20MFG09 600 230 370 1 1341 19.46 445.7 185.3 0.4158

20MFG09 600 230 370 0.5 1189 17.92 503.9 217.8 0.4322

20MFG10 600 230 370 10 2124 21.05 274.6 92.6 0.3372

20MFG10 600 230 370 5 1816 20.52 323.9 115.8 0.3575

20MFG10 600 230 370 1 1326 19.07 450.6 194.6 0.4319

20MFG10 600 230 370 0.5 1181 17.55 506.7 223.2 0.4405

20MFG33 600 230 370 10 2180 19.91 267.6 82.6 0.3087

20MFG33 600 230 370 5 1918 20.08 306.4 105.8 0.3453

20MFG33 600 230 370 1 1388 19.27 430.9 176.9 0.4105

20MFG33 600 230 370 0.5 1230 17.48 486.2 207.4 0.4266  
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Table H.2 Triaxial Frequency Sweep Test results at 20°C and Deviatoric Stress 

of 370 kPa for Mix Type 72 with 40 Percent Manufactured Fines 

Sample 

Name

Vertical 

Traction 

σ1 (kPa)

Radial 

Traction 

σ3 (kPa)

Deviatoric 

Stress     

σD (kPa)

Frequency 

(Hz)

Dynamic 

Modulus 

Ed (MPa)

Phase 

Angle 

δ (°) RAMS RRMS

Poisson's 

Ratio, ν
40MFG01 600 230 370 10 2316 19.16 251.2 81.8 0.3256

40MFG01 600 230 370 5 1999 19.64 294 101.7 0.3459

40MFG01 600 230 370 1 1423 19.35 420.7 174.4 0.4145

40MFG01 600 230 370 0.5 1249 18.38 479.2 207.7 0.4334

40MFG03 600 230 370 10 2095 20.78 278.2 87.8 0.3156

40MFG03 600 230 370 5 1852 20.44 317.4 112.2 0.3535

40MFG03 600 230 370 1 1309 19.88 456.8 189.4 0.4146

40MFG03 600 230 370 0.5 1149 18.18 520.8 220.4 0.4232

40MFG04 600 230 370 10 2173 20.22 268.1 87.2 0.3253

40MFG04 600 230 370 5 1908 20.71 307.9 114.6 0.3722

40MFG04 600 230 370 1 1329 20.36 450.4 204.2 0.4534

40MFG04 600 230 370 0.5 1154 19.34 518.3 237.5 0.4582

40MFG05 600 230 370 10 2114 20.87 276.2 92.2 0.3338

40MFG05 600 230 370 5 1819 20.19 323 112.1 0.3471

40MFG05 600 230 370 1 1304 19.56 457.9 195.5 0.4269

40MFG05 600 230 370 0.5 1143 18.18 523.8 227.2 0.4338

40MFG06 600 230 370 10 2269 19.91 257.2 84.2 0.3274

40MFG06 600 230 370 5 1953 20.09 300.7 106.2 0.3532

40MFG06 600 230 370 1 1369 20 437.1 185.7 0.4248

40MFG06 600 230 370 0.5 1201 18.69 498.3 221.3 0.4441

40MFG07 600 230 370 10 2137 20.03 274.4 87.4 0.3185

40MFG07 600 230 370 5 1848 20.69 317.7 101.7 0.3201

40MFG07 600 230 370 1 1326 19.79 450.7 194.9 0.4324

40MFG07 600 230 370 0.5 1153 18.63 518.4 224.8 0.4336

40MFG08 600 230 370 10 2203 20.56 264.6 91.9 0.3473

40MFG08 600 230 370 5 1845 21.07 318.6 121.4 0.3810

40MFG08 600 230 370 1 1288 20.04 463.7 204.3 0.4406

40MFG08 600 230 370 0.5 1130 18.81 530.2 248.8 0.4693

40MFG09 600 230 370 10 2098 20.23 277.9 87.8 0.3159

40MFG09 600 230 370 5 1822 19.81 322.6 110.4 0.3422

40MFG09 600 230 370 1 1291 19.28 463.7 185.2 0.3994

40MFG09 600 230 370 0.5 1144 18.05 522.6 219 0.4191

40MFG10 600 230 370 10 2233 20.21 261.6 88 0.3364

40MFG10 600 230 370 5 1913 19.59 307 111.6 0.3635

40MFG10 600 230 370 1 1362 18.41 439 175.8 0.4005

40MFG10 600 230 370 0.5 1190 17.38 503.1 205.9 0.4093

40MFG15 600 230 370 10 2287 19.72 255.6 79.6 0.3114

40MFG15 600 230 370 5 1983 20.53 296.6 94.9 0.3200

40MFG15 600 230 370 1 1398 19.86 427.6 168.6 0.3943

40MFG15 600 230 370 0.5 1219 18.35 491.7 208.4 0.4238  
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Table H.3 Triaxial Frequency Sweep Test results at 20°C and Deviatoric Stress 

of 370 kPa for Mix Type 72 with 60 Percent Manufactured Fines 

Sample 

Name

Vertical 

Traction 

σ1 (kPa)

Radial 

Traction 

σ3 (kPa)

Deviatoric 

Stress     

σD (kPa)

Frequency 

(Hz)

Dynamic 

Modulus 

Ed (MPa)

Phase 

Angle 

δ (°) RAMS RRMS

Poisson's 

Ratio, ν
60MFG01 600 230 370 10 3440 27.07 169.4 67.3 0.3973

60MFG01 600 230 370 5 2899 26.66 202.2 87.6 0.4332

60MFG01 600 230 370 1 1811 24.27 330.8 171 0.5169

60MFG01 600 230 370 0.5 1528 22.62 391.9 207.4 0.5292

60MFG02 600 230 370 10 2895 27.58 201.3 80 0.3974

60MFG02 600 230 370 5 2393 27.13 245.3 106.1 0.4325

60MFG02 600 230 370 1 1550 23.7 385.6 193.8 0.5026

60MFG02 600 230 370 0.5 1329 21.67 450.3 229 0.5085

60MFG03 600 230 370 10 3155 28.24 185 73 0.3946

60MFG03 600 230 370 5 2541 27.32 231.2 96.2 0.4161

60MFG03 600 230 370 1 1616 24.67 369.8 170.9 0.4621

60MFG03 600 230 370 0.5 1363 22.2 438.7 209.2 0.4769

60MFG04 600 230 370 10 3232 28.37 180 80 0.4444

60MFG04 600 230 370 5 2652 28.29 221.2 114 0.5154

60MFG04 600 230 370 1 1606 25.15 372.6 197.3 0.5295

60MFG04 600 230 370 0.5 1345 23.1 444.5 239.2 0.5381

60MFG05 600 230 370 10 3949 23.95 147.2 53.7 0.3648

60MFG05 600 230 370 5 3329 23.83 176.2 65.6 0.3723

60MFG05 600 230 370 1 2190 23.87 273.4 126 0.4609

60MFG05 600 230 370 0.5 1826 23.02 327.7 152.2 0.4644

60MFG06 600 230 370 10 4226 23.69 137.6 44.5 0.3234

60MFG06 600 230 370 5 3573 22.95 164.3 59.8 0.3640

60MFG06 600 230 370 1 2334 23.7 256.9 114.9 0.4473

60MFG06 600 230 370 0.5 1941 22.92 308.3 140.8 0.4567

60MFG07 600 230 370 10 2524 16.97 231.1 61.4 0.2657

60MFG07 600 230 370 5 2203 16.76 266.7 76.8 0.2880

60MFG07 600 230 370 1 1615 18.57 370.3 130 0.3511

60MFG07 600 230 370 0.5 1409 18.05 424.7 156.8 0.3692

60MFG08 600 230 370 10 3189 28.02 182.4 72 0.3947

60MFG08 600 230 370 5 2571 27.03 228.2 97.6 0.4277

60MFG08 600 230 370 1 1600 24.78 373.5 174.7 0.4677

60MFG08 600 230 370 0.5 1358 22.56 440.6 211.7 0.4805

60MFG09 600 230 370 10 3293 27.8 176.6 71.6 0.4054

60MFG09 600 230 370 5 2671 27.11 219.7 90.2 0.4106

60MFG09 600 230 370 1 1685 24.97 355.4 168.6 0.4744

60MFG09 600 230 370 0.5 1439 22.79 415.6 213.7 0.5142

60MFG10 600 230 370 10 3016 28.37 192.8 77.5 0.4020

60MFG10 600 230 370 5 2464 27.13 238.1 102.2 0.4292

60MFG10 600 230 370 1 1577 24.28 378.7 189.4 0.5001

60MFG10 600 230 370 0.5 1347 22.44 443.5 240.6 0.5425  
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Table H.4 Triaxial Frequency Sweep Test results at 20°C and Deviatoric Stress 

of 370 kPa for Mix Type 70 with 38 Percent Manufactured Fines 

Sample 

Name

Vertical 

Traction 

σ1 (kPa)

Radial 

Traction 

σ3 (kPa)

Deviatoric 

Stress     

σD (kPa)

Frequency 

(Hz)

Dynamic 

Modulus 

Ed (MPa)

Phase 

Angle 

δ (°) RAMS RRMS

Poisson's 

Ratio, ν
T70G01 600 230 370 10 2446 19.11 238.4 62.9 0.2638

T70G01 600 230 370 5 2142 19.46 274.1 75.1 0.2740

T70G01 600 230 370 1 1533 19.62 390.3 151.7 0.3887

T70G01 600 230 370 0.5 1323 18.87 453 173.8 0.3837

T70G02 600 230 370 10 2201 20.31 265.2 86.2 0.3250

T70G02 600 230 370 5 1841 20.17 319.1 111.2 0.3485

T70G02 600 230 370 1 1300 19.2 459.4 196 0.4266

T70G02 600 230 370 0.5 1154 18.19 518.1 226.4 0.4370

T70G03 600 230 370 10 2165 20.7 269.2 84.6 0.3143

T70G03 600 230 370 5 1861 20.27 315.8 108.8 0.3445

T70G03 600 230 370 1 1318 20.42 453.1 189.8 0.4189

T70G03 600 230 370 0.5 1157 18.3 517.3 216.4 0.4183

T70G04 600 230 370 10 2195 21.85 264.9 80.9 0.3054

T70G04 600 230 370 5 1894 21.46 310.3 114.4 0.3687

T70G04 600 230 370 1 1290 21.09 463.1 205.7 0.4442

T70G04 600 230 370 0.5 1111 20.05 539 237.9 0.4414

T70G05 600 230 370 10 2267 21.04 257.5 74.7 0.2901

T70G05 600 230 370 5 1964 21 299.7 89.7 0.2993

T70G05 600 230 370 1 1337 20.95 448.4 183 0.4081

T70G05 600 230 370 0.5 1149 20.49 519.7 211.3 0.4066

T70G06 600 230 370 10 2236 20.9 260.6 72 0.2763

T70G06 600 230 370 5 1950 21.26 301.5 97.6 0.3237

T70G06 600 230 370 1 1340 20.48 445.5 175.1 0.3930

T70G06 600 230 370 0.5 1159 19.41 516.3 213.3 0.4131

T70G07 600 230 370 10 3148 25.77 184.9 75.5 0.4083

T70G07 600 230 370 5 2592 25.3 226.5 100 0.4415

T70G07 600 230 370 1 1695 22.47 352.8 182.9 0.5184

T70G07 600 230 370 0.5 1432 20.65 417.8 218.7 0.5235

T70G08 600 230 370 10 2197 21.03 266.2 83.2 0.3125

T70G08 600 230 370 5 1895 20.58 310.4 102.8 0.3312

T70G08 600 230 370 1 1354 19.55 441.1 178.3 0.4042

T70G08 600 230 370 0.5 1198 18.25 499.9 207.2 0.4145

T70G09 600 230 370 10 2156 21.16 270.8 93.6 0.3456

T70G09 600 230 370 5 1877 20.27 312.7 115.8 0.3703

T70G09 600 230 370 1 1327 19.12 450.3 190.9 0.4239

T70G09 600 230 370 0.5 1181 17.88 506.7 229.5 0.4529

T70G10 600 230 370 10 2156 21.3 270.2 102.6 0.3797

T70G10 600 230 370 5 1834 20.51 319.3 120.5 0.3774

T70G10 600 230 370 1 1287 19.53 464.2 197 0.4244

T70G10 600 230 370 0.5 1139 18.23 524.9 240.6 0.4584  
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Table H.5 Triaxial Frequency Sweep Test results at 20°C and Deviatoric Stress 

of 425 kPa for Mix Type 72 with 20 Percent Manufactured Fines 

Sample 

Name

Vertical 

Traction 

σ1 (kPa)

Radial 

Traction 

σ3 (kPa)

Deviatoric 

Stress     

σD (kPa)

Frequency 

(Hz)

Dynamic 

Modulus 

Ed (MPa)

Phase 

Angle 

δ (°) RAMS RRMS

Poisson's 

Ratio, ν
20MFG01 600 175 425 10 2055 20.51 282.3 78.1 0.2767

20MFG01 600 175 425 5 1805 20.43 324.2 103.6 0.3196

20MFG01 600 175 425 1 1261 20.78 471.7 186 0.3943

20MFG01 600 175 425 0.5 1092 19.85 545.1 230.1 0.4221

20MFG02 600 175 425 10 1915 22.36 302.7 95.8 0.3165

20MFG02 600 175 425 5 1640 22.14 356.9 116.8 0.3273

20MFG02 600 175 425 1 1133 21.44 525.6 216.1 0.4111

20MFG02 600 175 425 0.5 983 20.09 607.7 267.7 0.4405

20MFG04 600 175 425 10 1950 21.81 297.8 95.7 0.3214

20MFG04 600 175 425 5 1683 22.16 347 122.6 0.3533

20MFG04 600 175 425 1 1174 21.16 506.5 223 0.4403

20MFG04 600 175 425 0.5 1015 19.89 588 269.9 0.4590

20MFG05 600 175 425 10 2000 21.36 290.7 93.9 0.3230

20MFG05 600 175 425 5 1694 21.23 345.2 119.2 0.3453

20MFG05 600 175 425 1 1170 20.88 509.3 212.5 0.4172

20MFG05 600 175 425 0.5 1010 19.81 591.1 262 0.4432

20MFG06 600 175 425 10 1938 21.04 299.6 91.2 0.3044

20MFG06 600 175 425 5 1661 21.21 352 123.4 0.3506

20MFG06 600 175 425 1 1154 20.65 515.8 216.4 0.4195

20MFG06 600 175 425 0.5 1004 19.72 594 266.2 0.4481

20MFG07 600 175 425 10 1995 21.1 290.9 85.8 0.2949

20MFG07 600 175 425 5 1703 20.88 344 110.5 0.3212

20MFG07 600 175 425 1 1183 21.2 504 201.6 0.4000

20MFG07 600 175 425 0.5 1017 20.02 585.7 247.4 0.4224

20MFG08 600 175 425 10 1922 22.08 302.2 105.5 0.3491

20MFG08 600 175 425 5 1647 22.97 354.9 127.9 0.3604

20MFG08 600 175 425 1 1149 21.02 519.1 232.4 0.4477

20MFG08 600 175 425 0.5 1000 19.77 596.8 278.2 0.4662

20MFG09 600 175 425 10 1965 21.12 295.7 93.8 0.3172

20MFG09 600 175 425 5 1693 21.45 345.2 118.9 0.3444

20MFG09 600 175 425 1 1174 20.87 507.5 215.5 0.4246

20MFG09 600 175 425 0.5 1012 20.1 589.4 262.5 0.4454

20MFG10 600 175 425 10 1915 21.77 303.1 97.1 0.3204

20MFG10 600 175 425 5 1638 21.28 357.2 124.5 0.3485

20MFG10 600 175 425 1 1146 20.81 519.7 218.9 0.4212

20MFG10 600 175 425 0.5 995 19.71 599.8 265.8 0.4431

20MFG33 600 175 425 10 1974 21.2 294.5 91.2 0.3097

20MFG33 600 175 425 5 1730 21.16 338.3 116.9 0.3456

20MFG33 600 175 425 1 1206 20.4 494.2 205 0.4148

20MFG33 600 175 425 0.5 1043 19.77 572.1 249.9 0.4368  
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Table H.6 Triaxial Frequency Sweep Test results at 20°C and Deviatoric Stress 

of 425 kPa for Mix Type 72 with 40 Percent Manufactured Fines 

Sample 

Name

Vertical 

Traction 

σ1 (kPa)

Radial 

Traction 

σ3 (kPa)

Deviatoric 

Stress     

σD (kPa)

Frequency 

(Hz)

Dynamic 

Modulus 

Ed (MPa)

Phase 

Angle 

δ (°) RAMS RRMS

Poisson's 

Ratio, ν
40MFG01 600 175 425 10 2066 20.39 280.3 80.9 0.2886

40MFG01 600 175 425 5 1813 20.76 322.7 108 0.3347

40MFG01 600 175 425 1 1247 21.2 476.6 194.6 0.4083

40MFG01 600 175 425 0.5 1069 20.18 558.6 238.2 0.4264

40MFG03 600 175 425 10 1936 21.62 300.1 89.2 0.2972

40MFG03 600 175 425 5 1684 21.48 347.4 121.2 0.3489

40MFG03 600 175 425 1 1157 21.15 515.1 218 0.4232

40MFG03 600 175 425 0.5 1000 20.22 595.8 267.1 0.4483

40MFG04 600 175 425 10 2226 19.9 261.6 81.2 0.3104

40MFG04 600 175 425 5 1954 20.14 300.7 112.1 0.3728

40MFG04 600 175 425 1 1376 19.52 435.2 190.2 0.4370

40MFG04 600 175 425 0.5 1190 18.63 503.3 231.9 0.4608

40MFG05 600 175 425 10 1880 21.23 308.3 93 0.3017

40MFG05 600 175 425 5 1650 21.79 354.8 121 0.3410

40MFG05 600 175 425 1 1133 21.27 525 220.1 0.4192

40MFG05 600 175 425 0.5 980 19.93 607.9 271.2 0.4461

40MFG06 600 175 425 10 2026 20.84 286.1 88.9 0.3107

40MFG06 600 175 425 5 1754 20.96 333.7 120.9 0.3623

40MFG06 600 175 425 1 1194 21.38 498.9 212.3 0.4255

40MFG06 600 175 425 0.5 1030 20.56 579.9 266.3 0.4592

40MFG07 600 175 425 10 1912 21.52 304.2 93.1 0.3060

40MFG07 600 175 425 5 1677 21.17 349.5 130 0.3720

40MFG07 600 175 425 1 1141 21.28 522.7 225.8 0.4320

40MFG07 600 175 425 0.5 989 20.23 603.2 275.7 0.4571

40MFG08 600 175 425 10 1961 21.83 296.4 101.2 0.3414

40MFG08 600 175 425 5 1678 22.03 348.9 129.8 0.3720

40MFG08 600 175 425 1 1133 21.96 526.4 238.8 0.4536

40MFG08 600 175 425 0.5 969 21.11 615.5 293.1 0.4762

40MFG09 600 175 425 10 1916 21.74 302.5 91.1 0.3012

40MFG09 600 175 425 5 1672 21.67 350 120.4 0.3440

40MFG09 600 175 425 1 1145 21.01 520.2 213.4 0.4102

40MFG09 600 175 425 0.5 991 19.89 602 259.7 0.4314

40MFG10 600 175 425 10 1906 22.06 305.3 102.5 0.3357

40MFG10 600 175 425 5 1591 22.34 368.4 127.6 0.3464

40MFG10 600 175 425 1 1100 21.35 542.7 228.4 0.4209

40MFG10 600 175 425 0.5 949 20.06 629.6 276.6 0.4393

40MFG15 600 175 425 10 2041 21.21 284 83.7 0.2947

40MFG15 600 175 425 5 1742 21.9 336.2 109.1 0.3245

40MFG15 600 175 425 1 1204 21.54 495.3 202.4 0.4086

40MFG15 600 175 425 0.5 1031 20.52 579.4 251.8 0.4346  
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Table H.7 Triaxial Frequency Sweep Test results at 20°C and Deviatoric Stress 

of 425 kPa for Mix Type 72 with 60 Percent Manufactured Fines 

Sample 

Name

Vertical 

Traction 

σ1 (kPa)

Radial 

Traction 

σ3 (kPa)

Deviatoric 

Stress     

σD (kPa)

Frequency 

(Hz)

Dynamic 

Modulus 

Ed (MPa)

Phase 

Angle 

δ (°) RAMS RRMS

Poisson's 

Ratio, ν
60MFG01 600 175 425 10 3073 28.33 188.4 72.2 0.3832

60MFG01 600 175 425 5 2530 28.08 231.1 97.8 0.4232

60MFG01 600 175 425 1 1562 26.07 381.7 184.9 0.4844

60MFG01 600 175 425 0.5 1291 24.4 462.2 232.2 0.5024

60MFG02 600 175 425 10 2597 28.97 223.4 85.2 0.3814

60MFG02 600 175 425 5 2130 27.71 274.1 117.8 0.4298

60MFG02 600 175 425 1 1332 25.21 446.6 212.7 0.4763

60MFG02 600 175 425 0.5 1119 23.44 532.2 261.4 0.4912

60MFG03 600 175 425 10 2830 30.02 204.5 82.4 0.4029

60MFG03 600 175 425 5 2251 28.91 259.6 110.4 0.4253

60MFG03 600 175 425 1 1388 26.03 429.5 201.9 0.4701

60MFG03 600 175 425 0.5 1153 24.13 518.1 249.6 0.4818

60MFG04 600 175 425 10 2911 29.55 199.4 88 0.4413

60MFG04 600 175 425 5 2331 29.69 250.6 111.3 0.4441

60MFG04 600 175 425 1 1389 27.25 428.7 227.9 0.5316

60MFG04 600 175 425 0.5 1142 25.27 521.9 289.4 0.5545

60MFG05 600 175 425 10 3617 24.98 160 55.9 0.3494

60MFG05 600 175 425 5 3027 25.2 192.7 73.7 0.3825

60MFG05 600 175 425 1 1912 25.52 311.8 142.3 0.4564

60MFG05 600 175 425 0.5 1571 24.88 379.8 175.2 0.4613

60MFG06 600 175 425 10 3879 25.08 149.4 51.6 0.3454

60MFG06 600 175 425 5 3222 25.66 181.3 63.6 0.3508

60MFG06 600 175 425 1 2053 25.33 290.2 119.1 0.4104

60MFG06 600 175 425 0.5 1665 24.61 358.4 145.8 0.4068

60MFG07 600 175 425 10 2153 18.01 269.2 66.5 0.2470

60MFG07 600 175 425 5 1917 18.87 305.4 82.3 0.2695

60MFG07 600 175 425 1 1386 20.19 430 152.1 0.3537

60MFG07 600 175 425 0.5 1188 19.87 502 185.4 0.3693

60MFG08 600 175 425 10 2873 29.89 202 80.2 0.3970

60MFG08 600 175 425 5 2309 28.98 253.1 109.2 0.4315

60MFG08 600 175 425 1 1394 26.55 427.2 199.8 0.4677

60MFG08 600 175 425 0.5 1168 24.56 511 255.9 0.5008

60MFG09 600 175 425 10 2983 28.94 194.5 77 0.3959

60MFG09 600 175 425 5 2420 29.31 241.4 109.1 0.4519

60MFG09 600 175 425 1 1473 26.42 404.2 203.1 0.5025

60MFG09 600 175 425 0.5 1217 24.7 490.1 256.3 0.5230

60MFG10 600 175 425 10 2750 29.83 210.9 87.9 0.4168

60MFG10 600 175 425 5 2259 29.7 259 126.2 0.4873

60MFG10 600 175 425 1 1373 25.99 433.7 214.6 0.4948

60MFG10 600 175 425 0.5 1139 24.11 522.4 267.1 0.5113  
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Table H.8 Triaxial Frequency Sweep Test results at 20°C and Deviatoric Stress 

of 425 kPa for Mix Type 70 with 38 Percent Manufactured Fines 

Sample 

Name

Vertical 

Traction 

σ1 (kPa)

Radial 

Traction 

σ3 (kPa)

Deviatoric 

Stress     

σD (kPa)

Frequency 

(Hz)

Dynamic 

Modulus 

Ed (MPa)

Phase 

Angle 

δ (°) RAMS RRMS

Poisson's 

Ratio, ν
T70G01 600 175 425 10 2191 19.44 265 61.4 0.2317

T70G01 600 175 425 5 1945 19.73 300.8 87.9 0.2922

T70G01 600 175 425 1 1349 20.91 442.3 161.9 0.3660

T70G01 600 175 425 0.5 1160 20.05 513.8 198.9 0.3871

T70G02 600 175 425 10 1972 21.26 294.8 85.9 0.2914

T70G02 600 175 425 5 1671 21.37 349.9 114.1 0.3261

T70G02 600 175 425 1 1144 20.91 520.7 216.4 0.4156

T70G02 600 175 425 0.5 993 20.15 599.5 269.2 0.4490

T70G03 600 175 425 10 1979 21.66 293.4 79.9 0.2723

T70G03 600 175 425 5 1713 21.32 341.5 112.33 0.3289

T70G03 600 175 425 1 1168 21.31 510.5 206.9 0.4053

T70G03 600 175 425 0.5 996 20.09 598.9 248.2 0.4144

T70G04 600 175 425 10 1974 21.36 294 94.7 0.3221

T70G04 600 175 425 5 1704 21.48 343.1 129.7 0.3780

T70G04 600 175 425 1 1140 22.32 522.8 238.3 0.4558

T70G04 600 175 425 0.5 966 21.29 617.1 291.3 0.4720

T70G05 600 175 425 10 2052 21.33 282.6 81.2 0.2873

T70G05 600 175 425 5 1760 21.94 332.9 106.4 0.3196

T70G05 600 175 425 1 1189 22.28 502.2 205.8 0.4098

T70G05 600 175 425 0.5 1002 21.01 595.7 254.4 0.4271

T70G06 600 175 425 10 2047 21.76 283.1 78.5 0.2773

T70G06 600 175 425 5 1767 22.37 330.8 105.1 0.3177

T70G06 600 175 425 1 1190 21.98 501 202.8 0.4048

T70G06 600 175 425 0.5 1016 20.93 587.2 251.9 0.4290

T70G07 600 175 425 10 2693 27.3 215.2 81 0.3764

T70G07 600 175 425 5 2183 26.93 267.6 108.4 0.4051

T70G07 600 175 425 1 1390 24.86 428.6 215.7 0.5033

T70G07 600 175 425 0.5 1160 23.09 514.2 268.9 0.5229

T70G08 600 175 425 10 2026 21.92 287.3 93.6 0.3258

T70G08 600 175 425 5 1738 21.66 336.5 119.2 0.3542

T70G08 600 175 425 1 1185 21.22 503 208.9 0.4153

T70G08 600 175 425 0.5 1030 20.18 578.5 256.5 0.4434

T70G09 600 175 425 10 1948 21.7 297.2 101.5 0.3415

T70G09 600 175 425 5 1696 22.14 344.5 126.9 0.3684

T70G09 600 175 425 1 1150 21.04 517.6 228.5 0.4415

T70G09 600 175 425 0.5 1001 19.98 596.2 279.2 0.4683

T70G10 600 175 425 10 1972 22.56 294 112 0.3810

T70G10 600 175 425 5 1662 22.35 351.6 137.5 0.3911

T70G10 600 175 425 1 1124 21.56 529.8 242.3 0.4573

T70G10 600 175 425 0.5 976 20.67 611.4 305.6 0.4998  
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Table H.9 Triaxial Frequency Sweep Test results at 20°C and Deviatoric Stress 

of 500 kPa for Mix Type 72 with 20 Percent Manufactured Fines 

Sample 

Name

Vertical 

Traction 

σ1 (kPa)

Radial 

Traction 

σ3 (kPa)

Deviatoric 

Stress     

σD (kPa)

Frequency 

(Hz)

Dynamic 

Modulus 

Ed (MPa)

Phase 

Angle 

δ (°) RAMS RRMS

Poisson's 

Ratio, ν
20MFG01 600 100 500 10 1928 20.02 300.4 80.5 0.2680

20MFG01 600 100 500 5 1687 20.26 346.4 108.8 0.3141

20MFG01 600 100 500 1 1167 20.67 510.4 201.9 0.3956

20MFG01 600 100 500 0.5 992 19.94 600.6 255.2 0.4249

20MFG02 600 100 500 10 1798 21.97 322.4 91.2 0.2829

20MFG02 600 100 500 5 1543 22.3 378.4 124.5 0.3290

20MFG02 600 100 500 1 1039 21.38 572.6 234.3 0.4092

20MFG02 600 100 500 0.5 886 20.11 672.9 298.4 0.4435

20MFG04 600 100 500 10 1846 21.74 314.3 92.4 0.2940

20MFG04 600 100 500 5 1586 21.99 368.6 130.2 0.3532

20MFG04 600 100 500 1 1064 21.23 559.5 239.4 0.4279

20MFG04 600 100 500 0.5 910 19.97 655.6 305.6 0.4661

20MFG05 600 100 500 10 1826 21.13 318.2 97.9 0.3077

20MFG05 600 100 500 5 1565 21.34 373.6 118.5 0.3172

20MFG05 600 100 500 1 1064 20.91 560.8 236.9 0.4224

20MFG05 600 100 500 0.5 907 19.66 657.8 291.1 0.4425

20MFG06 600 100 500 10 1839 21.24 315.6 91.8 0.2909

20MFG06 600 100 500 5 1596 21.27 366 120.9 0.3303

20MFG06 600 100 500 1 1075 21.14 554.7 234.4 0.4226

20MFG06 600 100 500 0.5 920 19.89 648.5 292.7 0.4513

20MFG07 600 100 500 10 1849 20.38 313.4 90.8 0.2897

20MFG07 600 100 500 5 1590 21.26 367.6 112.8 0.3069

20MFG07 600 100 500 1 1082 21.71 551.8 220.1 0.3989

20MFG07 600 100 500 0.5 915 20.51 652.2 278.9 0.4276

20MFG08 600 100 500 10 1750 21.59 331.9 111.7 0.3365

20MFG08 600 100 500 5 1511 21.68 386.4 146.3 0.3786

20MFG08 600 100 500 1 1036 20.52 576.1 257.1 0.4463

20MFG08 600 100 500 0.5 885 19.52 674.8 315.3 0.4672

20MFG09 600 100 500 10 1822 21.51 318.1 96 0.3018

20MFG09 600 100 500 5 1575 21.36 370.7 132.1 0.3564

20MFG09 600 100 500 1 1061 21.19 562.5 239.6 0.4260

20MFG09 600 100 500 0.5 904 19.95 659.4 297.9 0.4518

20MFG10 600 100 500 10 1798 21.82 322.2 91.2 0.2831

20MFG10 600 100 500 5 1543 21.95 378.4 126.3 0.3338

20MFG10 600 100 500 1 1040 20.96 572.3 236 0.4124

20MFG10 600 100 500 0.5 891 19.63 670.2 300.8 0.4488

20MFG33 600 100 500 10 1863 21.09 311.5 85.1 0.2732

20MFG33 600 100 500 5 1608 20.99 363.6 116.4 0.3201

20MFG33 600 100 500 1 1094 20.76 545.4 221.8 0.4067

20MFG33 600 100 500 0.5 934 19.76 639.2 282.9 0.4426  
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Table H.10  Triaxial Frequency Sweep Test results at 20°C and Deviatoric 

Stress of 500 kPa for Mix Type 72 with 40 Percent Manufactured Fines 

Sample 

Name

Vertical 

Traction 

σ1 (kPa)

Radial 

Traction 

σ3 (kPa)

Deviatoric 

Stress     

σD (kPa)

Frequency 

(Hz)

Dynamic 

Modulus 

Ed (MPa)

Phase 

Angle 

δ (°) RAMS RRMS

Poisson's 

Ratio, ν
40MFG01 600 100 500 10 1920 19.95 301.5 91.2 0.3025

40MFG01 600 100 500 5 1682 20.75 347.1 115.1 0.3316

40MFG01 600 100 500 1 1145 21.37 520.3 215.7 0.4146

40MFG01 600 100 500 0.5 970 20.37 615.5 268.8 0.4367

40MFG03 600 100 500 10 1859 21.24 311.7 89.1 0.2859

40MFG03 600 100 500 5 1623 21.09 360.4 126.6 0.3513

40MFG03 600 100 500 1 1079 21.92 552.4 237.8 0.4305

40MFG03 600 100 500 0.5 912 20.88 654.1 302.5 0.4625

40MFG04 600 100 500 10 1859 21.24 311.7 89.1 0.2859

40MFG04 600 100 500 5 1623 21.09 360.4 126.6 0.3513

40MFG04 600 100 500 1 1079 21.92 552.4 237.8 0.4305

40MFG04 600 100 500 0.5 912 20.88 654.1 302.5 0.4625

40MFG05 600 100 500 10 1783 21.36 325 97.4 0.2997

40MFG05 600 100 500 5 1544 21.8 378.6 128.3 0.3389

40MFG05 600 100 500 1 1041 21.2 573.7 240.9 0.4199

40MFG05 600 100 500 0.5 892 19.9 668.9 303.8 0.4542

40MFG06 600 100 500 10 1886 20.68 308 95 0.3084

40MFG06 600 100 500 5 1639 21.32 356.8 125.4 0.3515

40MFG06 600 100 500 1 1096 21.36 544.5 223.8 0.4110

40MFG06 600 100 500 0.5 931 20.29 640.9 283.8 0.4428

40MFG07 600 100 500 10 1809 21.2 321.3 102.1 0.3178

40MFG07 600 100 500 5 1550 21.95 377.4 127.2 0.3370

40MFG07 600 100 500 1 1044 21.25 572.2 250.8 0.4383

40MFG07 600 100 500 0.5 884 19.93 674.3 308.4 0.4574

40MFG08 600 100 500 10 1848 21.09 314.2 108.5 0.3453

40MFG08 600 100 500 5 1572 21.75 371.4 141.4 0.3807

40MFG08 600 100 500 1 1055 21.34 565.9 250.6 0.4428

40MFG08 600 100 500 0.5 894 20.26 665.4 309.3 0.4648

40MFG09 600 100 500 10 1760 21.6 329 96.2 0.2924

40MFG09 600 100 500 5 1520 21.76 384.4 124 0.3226

40MFG09 600 100 500 1 1030 21.07 578.7 234 0.4044

40MFG09 600 100 500 0.5 881 19.95 677.3 290.6 0.4291

40MFG10 600 100 500 10 1771 21.93 327.8 103.5 0.3157

40MFG10 600 100 500 5 1492 22.22 391.3 133.9 0.3422

40MFG10 600 100 500 1 1010 21.09 590.9 241.3 0.4084

40MFG10 600 100 500 0.5 863 19.87 690.7 294.6 0.4265

40MFG15 600 100 500 10 1811 20.75 319.9 71 0.2219

40MFG15 600 100 500 5 1595 21.65 365.8 99.5 0.2720

40MFG15 600 100 500 1 1083 21.39 550.8 207.3 0.3764

40MFG15 600 100 500 0.5 932 19.94 640.5 265.3 0.4142  
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Table H.11  Triaxial Frequency Sweep Test results at 20°C and Deviatoric 

Stress of 500 kPa for Mix Type 72 with 60 Percent Manufactured Fines 

Sample 

Name

Vertical 

Traction 

σ1 (kPa)

Radial 

Traction 

σ3 (kPa)

Deviatoric 

Stress     

σD (kPa)

Frequency 

(Hz)

Dynamic 

Modulus 

Ed (MPa)

Phase 

Angle 

δ (°) RAMS RRMS

Poisson's 

Ratio, ν
60MFG01 600 100 500 10 2880 27.98 200.9 75.5 0.3758

60MFG01 600 100 500 5 2370 27.7 246.5 102.3 0.4150

60MFG01 600 100 500 1 1435 25.89 415.9 200.9 0.4830

60MFG01 600 100 500 0.5 1172 24.14 508.7 258.8 0.5087

60MFG02 600 100 500 10 2429 28.43 238.2 92.2 0.3871

60MFG02 600 100 500 5 1975 27.1 295.7 122.7 0.4149

60MFG02 600 100 500 1 1217 24.68 490.6 229.2 0.4672

60MFG02 600 100 500 0.5 1016 22.91 586.8 287.6 0.4901

60MFG03 600 100 500 10 2608 29.05 222.5 88.9 0.3996

60MFG03 600 100 500 5 2106 29.07 277 115.5 0.4170

60MFG03 600 100 500 1 1272 25.56 470.1 220.8 0.4697

60MFG03 600 100 500 0.5 1045 23.75 570.1 268.3 0.4706

60MFG04 600 100 500 10 2702 28.88 214.9 85.3 0.3969

60MFG04 600 100 500 5 2167 29.14 269.4 112.5 0.4176

60MFG04 600 100 500 1 1296 26.38 460.3 222.4 0.4832

60MFG04 600 100 500 0.5 1061 24.24 562.4 301.7 0.5365

60MFG05 600 100 500 10 3361 24.79 172.5 58.2 0.3374

60MFG05 600 100 500 5 2828 25.12 206.2 80.5 0.3904

60MFG05 600 100 500 1 1761 25.23 338.5 152 0.4490

60MFG05 600 100 500 0.5 1440 24.5 414.2 197 0.4756

60MFG06 600 100 500 10 3755 24.46 154.3 49.1 0.3182

60MFG06 600 100 500 5 3113 25.15 187.6 64.7 0.3449

60MFG06 600 100 500 1 1922 25.79 310.7 124.2 0.3997

60MFG06 600 100 500 0.5 1544 24.96 386.2 158.4 0.4102

60MFG07 600 100 500 10 1961 17.43 296.1 58.2 0.1966

60MFG07 600 100 500 5 1740 18.18 335.5 78.1 0.2328

60MFG07 600 100 500 1 1256 19.9 474.4 160.2 0.3377

60MFG07 600 100 500 0.5 1073 19.62 555.7 205.7 0.3702

60MFG08 600 100 500 10 2744 29.05 211.4 84 0.3974

60MFG08 600 100 500 5 2173 28.25 268.1 113.1 0.4219

60MFG08 600 100 500 1 1290 25.74 462.9 215.8 0.4662

60MFG08 600 100 500 0.5 1064 23.71 560.6 273 0.4870

60MFG09 600 100 500 10 2783 28.56 208.6 79.2 0.3797

60MFG09 600 100 500 5 2255 27.92 258.9 106.9 0.4129

60MFG09 600 100 500 1 1366 26.01 436.3 202.4 0.4639

60MFG09 600 100 500 0.5 1130 24.16 527 261.3 0.4958

60MFG10 600 100 500 10 2618 28.79 221.4 89.7 0.4051

60MFG10 600 100 500 5 2089 28.25 279.4 118.5 0.4241

60MFG10 600 100 500 1 1266 25.45 470.1 226.7 0.4822

60MFG10 600 100 500 0.5 1047 23.82 569.4 284.7 0.5000  
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Table H.12  Triaxial Frequency Sweep Test results at 20°C and Deviatoric 

Stress of 500 kPa for Mix Type 70 with 38 Percent Manufactured Fines 

Sample 

Name

Vertical 

Traction 

σ1 (kPa)

Radial 

Traction 

σ3 (kPa)

Deviatoric 

Stress     

σD (kPa)

Frequency 

(Hz)

Dynamic 

Modulus 

Ed (MPa)

Phase 

Angle 

δ (°) RAMS RRMS

Poisson's 

Ratio, ν
T70G01 600 100 500 10 2066 19.22 281 60.5 0.2153

T70G01 600 100 500 5 1846 19.2 316.1 92.5 0.2926

T70G01 600 100 500 1 1267 20.75 471 177.7 0.3773

T70G01 600 100 500 0.5 1071 20.02 556.4 212.2 0.3814

T70G02 600 100 500 10 1815 20.33 320 86.9 0.2716

T70G02 600 100 500 5 1555 21.03 375.7 112.2 0.2986

T70G02 600 100 500 1 1067 20.44 559.3 227.8 0.4073

T70G02 600 100 500 0.5 916 19.44 651.2 287.6 0.4416

T70G03 600 100 500 10 1851 20.82 313.4 82.5 0.2632

T70G03 600 100 500 5 1592 21.1 366.9 114.5 0.3121

T70G03 600 100 500 1 1085 20.7 549.8 221.4 0.4027

T70G03 600 100 500 0.5 931 19.71 641.5 287.6 0.4483

T70G04 600 100 500 10 1877 20.57 309.4 90.1 0.2912

T70G04 600 100 500 5 1609 22.11 363.1 120.3 0.3313

T70G04 600 100 500 1 1089 21.43 548.3 232.8 0.4246

T70G04 600 100 500 0.5 931 20.14 641.2 305.8 0.4769

T70G05 600 100 500 10 1921 20.78 302.1 74.3 0.2459

T70G05 600 100 500 5 1667 20.85 350 99.9 0.2854

T70G05 600 100 500 1 1121 21.52 533 208.4 0.3910

T70G05 600 100 500 0.5 950 20.34 627.3 263.4 0.4199

T70G06 600 100 500 10 1931 20.92 299.8 71.9 0.2398

T70G06 600 100 500 5 1669 21.64 349.6 96.8 0.2769

T70G06 600 100 500 1 1123 21.41 532 194.8 0.3662

T70G06 600 100 500 0.5 952 20.4 626.5 254.6 0.4064

T70G07 600 100 500 10 2478 26.51 233.9 82.7 0.3536

T70G07 600 100 500 5 2069 26.31 282.2 116.1 0.4114

T70G07 600 100 500 1 1293 23.87 462 217.4 0.4706

T70G07 600 100 500 0.5 1072 22.2 555.2 274.8 0.4950

T70G08 600 100 500 10 1875 20.88 310 96.4 0.3110

T70G08 600 100 500 5 1628 21.13 359.1 129.2 0.3598

T70G08 600 100 500 1 1093 20.68 546.5 226.7 0.4148

T70G08 600 100 500 0.5 935 19.65 638.4 285.1 0.4466

T70G09 600 100 500 10 1831 21.55 316.4 109.8 0.3470

T70G09 600 100 500 5 1563 22.2 373.8 137.5 0.3678

T70G09 600 100 500 1 1052 21.17 567.2 254.9 0.4494

T70G09 600 100 500 0.5 905 19.83 659.5 312.8 0.4743

T70G10 600 100 500 10 1858 21.25 312.4 101.8 0.3259

T70G10 600 100 500 5 1587 21.58 368.5 133.7 0.3628

T70G10 600 100 500 1 1066 20.78 560.7 246.6 0.4398

T70G10 600 100 500 0.5 912 19.9 653.8 303 0.4634  
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APPENDIX I. SAMPLE SIZE ANALYSIS BASED ON MECHANISTIC 

CHARACTERIZATION OF THE RESEARCH MIXES 
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Table I.1 Relationship of Sample Size and Level of Confidence for Dynamic 

Modulus at 10 Hz and Deviatoric Stress of 500 kPa across Research Mixes at a 

Margin of Error of 200 MPa 

Margin of Error = 200 MPa

Level of Confidence Z T72(20%MF) T72(40%MF) T72(60%MF) T70(38%MF)

99% 2.58 1 1 40 7

95% 1.96 1 1 23 4

90% 1.65 1 1 16 3

75% 1.15 1 1 8 1

50% 0.68 1 1 3 1

Sample Size (n)

 

 

Table I.2 Relationship of Sample Size and Level of Confidence for Recoverable 

Axial Microstrain at 10 Hz and Deviatoric Stress of 500 kPa across Research 

Mixes at a Margin of Error of 20x10
-6

 

Margin of Error = 20 (10
-6

)

Level of Confidence Z T72(20%MF) T72(40%MF) T72(60%MF) T70(38%MF)

99% 2.58 1 1 24 11

95% 1.96 1 1 14 6

90% 1.65 1 1 10 4

75% 1.15 1 1 5 2

50% 0.68 1 1 2 1

Sample Size (n)

 

 

Table I.3  Relationship of Sample Size and Level of Confidence for 

Recoverable Radial Microstrain at 10 Hz and Deviatoric Stress of 500 kPa 

across Research Mixes at a Margin of Error of 10x10
-6

 

Margin of Error = 10 (10
-6

)

Level of Confidence Z T72(20%MF) T72(40%MF) T72(60%MF) T70(38%MF)

99% 2.58 5 7 16 14

95% 1.96 3 4 9 8

90% 1.65 2 3 6 6

75% 1.15 1 1 3 3

50% 0.68 1 1 1 1

Sample Size (n)
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Table I.4 Relationship of Sample Size and Level of Confidence for Poisson’s 

Ratio at 10 Hz and Deviatoric Stress of 500 kPa across Research Mixes at a 

Margin of Error of 0.03 

Margin of Error = 0.03

Level of Confidence Z T72(20%MF) T72(40%MF) T72(60%MF) T70(38%MF)

99% 2.58 3 8 30 16

95% 1.96 2 4 17 9

90% 1.65 1 3 12 7

75% 1.15 1 1 6 3

50% 0.68 1 1 2 1

Sample Size (n)

 

 

Table I.5 Relationship of Sample Size and Level of Confidence for Phase Angle 

at 10 Hz and Deviatoric Stress of 500 kPa across Research Mixes at a Margin of 

Error of 2.0 Degrees 

Margin of Error = 2.0 degrees

Level of Confidence Z T72(20%MF) T72(40%MF) T72(60%MF) T70(38%MF)

99% 2.58 1 1 23 6

95% 1.96 1 1 13 4

90% 1.65 1 1 9 3

75% 1.15 1 1 5 1

50% 0.68 1 1 2 1

Sample Size (n)
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APPENDIX J. LIFE CYCLE COST ANALYSIS FOR SASKATCHEWAN 

HMAC PAVEMENTS 
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Life Cycle Cost Analysis for Saskatchewan HMAC Pavements 

Assumptions: 

• Typical SDHT pavement life cycle is 25 years. 

• Initial capital construction costs and routine maintenance costs over 

life cycle are the same for all pavement performance scenarios. 

• 500 km of the SDHT pavement network is resurfaced with asphalt 

concrete on an annual basis. 

• Pavement performance was assessed assuming that structural design 

of pavement is adequate to handle field state conditions over the 25 

year pavement service life. 

• Following standard SDHT practice, an interest rate of 3 percent was 

applied in present value calculations. 

• HMAC aggregate is valued at $15 per metric tonne in today’s dollars. 

The preservation treatment details and their respective costs that were assumed 

for the purposes of the economic analysis are shown in Table J. 1. 

Table J. 1 Preservation Treatment Costs and Aggregate Needs 

 
Treatment Cost  

(PV $ Per Kilometre) 

Aggregate Required 

 (metric tonnes per kilometre) 

Mill and Replace 60 mm 

both driving lanes 
50,000 1,066 

Strip Seal in Wheel 

Paths 
12,000 114 

Microsurfacing in both 

Driving Lanes 
37,000 211 

Full Seal in both 

Driving Lanes 
22,000 211 
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Table J. 2 Life Cycle Treatment Costs for a Failed Pavement - Plastic Flow 

Rutting in the First 5 Years of Service Life 

Year Routine Light Medium Heavy Total Present Value

0

1 $450 $450 $437

2 $464 $464 $437

3 $477 $477 $437

4 $492 $492 $437

5 $506 $56,275 $56,782 $48,981

6 $348 $348 $291

7 $358 $358 $291

8 $369 $369 $291

9 $380 $380 $291

10 $391 $391 $291

11 $269 $269 $194

12 $277 $277 $194

13 $285 $285 $194

14 $294 $294 $194

15 $303 $18,151 $18,454 $11,845

16 $234 $234 $146

17 $241 $241 $146

18 $248 $248 $146

19 $255 $255 $146

20 $263 $64,880 $65,143 $36,068

21 $271 $271 $146

22 $279 $279 $146

23 $287 $287 $146

24 $296 $296 $146

25 $305 $305 $146

Present Value $6,068 $11,650 $35,922 $48,544

Total Present Value over 25 Year Life Cycle $102,184

Treatment Description

Light Strip seals in wheel paths (1m width each), at $3/m
2
 ($12,000/km)

Medium Microsurfacing both lanes, $5/m
2
 ($37,000/km)

Heavy Mill and replace 60 mm of rutted layer, both lanes ($50,000/km)

Annual Interest Rate = 3%

Annual Treatment Cost per Km of Two Lane Highway
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Table J. 3 Life Cycle Treatment Costs for a Typical SDHT Pavement - Poor 

Rutting in Year 15 of Service Life 

Year Routine Light Medium Total Present Value

0

1 $450 $450 $437

2 $464 $464 $437

3 $477 $477 $437

4 $492 $492 $437

5 $506 $506 $437

6 $348 $348 $291

7 $358 $358 $291

8 $369 $369 $291

9 $380 $380 $291

10 $391 $15,657 $16,049 $11,942

11 $269 $269 $194

12 $277 $277 $194

13 $285 $285 $194

14 $294 $294 $194

15 $303 $55,966 $56,268 $36,117

16 $234 $234 $146

17 $241 $241 $146

18 $248 $248 $146

19 $255 $255 $146

20 $263 $263 $146

21 $271 $271 $146

22 $279 $279 $146

23 $287 $287 $146

24 $296 $296 $146

25 $305 $305 $146

Present Value $6,068 $11,650 $35,922

Total Present Value over 25 Year Life Cycle $53,641

Treatment Description

Light Strip seals in wheel paths, $3/m
2
 ($12,000/km)

Medium Microsurfacing both lanes, $5/m
2
 ($37,000/km)

Annual Interest Rate = 3%

Annual Treatment Cost per Km of Two Lane Highway

 

 



 

 233

Table J. 4 Life Cycle Treatment Costs for a Well-Performing Pavement - 

Rutting Remains Good over 25 Years of Service Life 

Year Routine Light Medium Total Present Value

0

1 $450 $450 $437

2 $464 $464 $437

3 $477 $477 $437

4 $492 $492 $437

5 $506 $506 $437

6 $348 $348 $291

7 $358 $358 $291

8 $369 $369 $291

9 $380 $380 $291

10 $391 $391 $291

11 $269 $269 $194

12 $277 $277 $194

13 $285 $285 $194

14 $294 $294 $194

15 $303 $33,277 $33,579 $21,553

16 $234 $234 $146

17 $241 $241 $146

18 $248 $248 $146

19 $255 $255 $146

20 $263 $263 $146

21 $271 $271 $146

22 $279 $279 $146

23 $287 $287 $146

24 $296 $296 $146

25 $305 $305 $146

Present Value $6,068 $21,359

Total Present Value over 25 Year Life Cycle $27,427

Treatment Description

Light Full seal, 9 mm top size, both lanes $3/m
2
 ($22,000/km)

Annual Interest Rate = 3%

Annual Treatment Cost per Km of Two Lane Highway

 

 

 


