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Abstract - Effect of mass transfer in the magnetohydrodynamic flow of a Casson fluid over a porous 
stretching sheet is addressed in the presence of a chemical reaction. A series solution for the resulting 
nonlinear flow is computed. The skin friction coefficient and local Sherwood number are analyzed through 
numerical values for various parameters of interest. The velocity and concentration fields are illustrated for 
several pertinent flow parameters. We observed that the Casson parameter and Hartman number have similar 
effects on the velocity in a qualitative sense. We further analyzed that the concentration profile decreases 
rapidly in comparison to the fluid velocity when we increased the values of the suction parameter. 
Keywords: Casson fluid; Mass transfer; Chemical reaction. 

 
 
 

INTRODUCTION 
 

The analysis of boundary layer flow of viscous and 
non-Newtonian fluids has been the focus of extensive 
research by various scientists due to its importance in 
continuous casting, glass blowing, paper production, 
polymer extrusion, aerodynamic extrusion of plastic 
sheet and several others. Numerous studies have been 
presented on various aspects of stretching flows since 
the seminal work by Crane (1970). One may refer to 
recent investigations by Hayat and Qasim (2010), 
Fang et al. (2010), Khan and Pop (2010), Ahmad and 
Asghar (2011), Kandasamy et al. (2011), Rashidi et al. 
(2011), Hayat et al. (2011), Yao et al. (2011) and 
Makinde and Aziz (2011) in this direction. On the other 
hand, mass transfer is important due to its appearance 
in many scientific disciplines that involve convective 
transfer of atoms and molecules. Examples of this 
phenomenon are evaporation of water, separation of 
chemicals in distillation processes, natural or artificial 

sources etc. In addition, mass transfer with chemical 
reaction has special significance in chemical and 
hydrometallurgical industries. The formation of smog 
represents a first order homogeneous chemical reaction. 
For instance, one can take into account the emission of 
NO2 from automobiles and other smoke-stacks. Thus, 
NO2 reacts chemically in the atmosphere with unburned 
hydrocarbons (aided by sunlight) and produces 
peroxyacetylnitrate, which forms a layer of photo-
chemical smog. Chemical reactions can be treated as 
either homogeneous or heterogeneous processes. It 
depends on whether they occur at an interface or as a 
single-phase volume reaction (Kandasamy et al., 2008). 
A few representative studies dealing with mass transfer 
in the presence of chemical reaction may be men-
tioned (Kandasamy et al., 2005; Hayat et al., 2010; 
Ziabaksh et al., 2010; Makinde, 2010; Ibrahim and 
Makinde, 2010; Bhattacharyya and Layek, 2011; 
Hayat et al., 2011; Makinde, 2011). 

Previous studies on the topic show that little work 
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is presented regarding the effect of mass transfer on 
the MHD flows of non-Newtonian fluids in the 
presence of chemical reaction. Constitutive equations 
of the Casson fluid model (Nakamura and Sawada, 
1988; Eldabe and Silwa, 1995; Dash et al., 1996; 
Boyd et al., 2007) are employed in the mathematical 
modeling. The rest of the paper is organized as 
follows. The next section completes the problem 
formulation. Then, the next section develops the 
homotopic solutions. Convergence of the derived 
series solutions and the discussion of velocity and 
concentration fields are presented in the sequence. 
The last section summarizes main points. 
 
 

GOVERNING PROBLEMS 
 

Consider a magnetohydrodynamic (MHD) and 
incompressible flow of a Casson fluid over a porous 
stretching surface at y 0= , as shown in Figure 1. We 
select the Cartesian coordinate system such that the 
x −  axis be taken parallel to the surface and y  is 
perpendicular to the surface. The fluid occupies a 
half space y 0> . The mass transfer phenomenon with 
chemical reaction is also retained. The flow is 
subjected to a constant applied magnetic field 0B  in 
the y  direction. The flow is taken to be steady and 
the magnetic Reynolds number is considered to be 
very small so that the induced magnetic field is 
negligible in comparison to the applied magnetic 
field. The fluid properties are constant. 
 

B0

C∞ y-axix

x-axix
uww (x) = cx,uww (x) = cx, Cw

B0

C∞ y-axix

x-axix
uww (x) = cx,uww (x) = cx, Cw

 
 

Figure 1: Physical sketch of the problem 
 

The rheological equation of state for an isotropic 
flow of a Casson fluid can be expressed as (Eldabe 
and Silwa, 1995): 
 

y

y

p
B ij c2

ij p
B ij c2

2( )e , ,

2( )e ,

π

π

⎧ μ + π > π⎪τ = ⎨
⎪ μ + π < π⎩

         (1) 

In the above equation ij ije eπ =   and ije   denotes the  
th(i, j)  component of the deformation rate, π  the 

product of the component of deformation rate with 
itself, cπ  a critical value of this product based on the 
non-Newtonian model, Bμ  the plastic dynamic 
viscosity of the non-Newtonian fluid and yp  the 
yield stress of the fluid. The equations governing the 
steady boundary layer flow of the Casson fluid are 
(Mustafa et al., 2012) 
 

u v 0,
x y
∂ ∂
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2 2
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along with the following boundary conditions: 
 

w 0 wu u (x) cx,   v v ,  C C at  y 0,= = = − = =      (5) 
 
u 0,   C C   as y∞→ → →∞           (6) 
 
in which u  and v  represent the velocity components 
in the x −  and y − directions, B c y2 / pβ = μ π  the 

non-Newtonian Casson parameter, B( / )ν = μ ρ  the 
kinematic viscosity, D  the mass diffusion, C  the 
concentration field and 1k  the reaction rate. 

Equations (2)-(6) can be made dimensionless by 
introducing the following change of variables 
 

w

u cxf ( ),  v c f ( ),  

c C Cy ,  .
C C

∞

∞

′= η = − ν η

−
η = φ =

ν −

         (7) 

 
The dimensionless problem satisfies: 

 
2(1 1 / )f ff f Mf 0,′′′′ ′′ ′+ β + − − =         (8) 

 
Scf Sc 0,′′ ′φ + φ − γφ =             (9) 

 
f S,   f 1,   1   at 0,′= = φ = η =        (10) 
 
f 0,   0   as ,′ = φ = η→∞          (11) 
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where Eq. (2) is satisfied identically, 2
0M B / c= σ ρ  

the Hartman number, Sc / D= ν  the Schmidt 
number, 1k / cγ =  the chemical reaction parameter 
and 0S v / c= ν  the suction parameter. 

The skin friction coefficient and the local 
Sherwood number can be written as: 
 

w w
f 2

ww

xjC ,  Sh ,
D(C C )u (x) ∞

τ
= =

−ρ
      (12) 

 
in which wτ  is the skin friction (or shear stress along 
the stretching surface) and wj  the mass flux from the 
surface, defined by the following relations: 
 

y
w B w

c y 0 y 0

p u C,  j D .
y y2 = =

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂
τ = μ + = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂π ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (13) 

 
Now Eqs. (12) and (13) give: 

 
1/2
x f

1/2
x

Re C (1 1/ )f (0),  

Sh / Re (0).

′′= + β

′= −φ
        (14) 

 
 

HOMOTOPY ANALYSIS SOLUTIONS 
 

The initial guesses and auxiliary linear operators 
for this problem are selected as follows: 
 

0 0f ( ) S 1 exp( ),   ( ) exp( ),η = + − −η φ η = −η    (15) 
 

f f f ,    f f ,φ′′′ ′ ′′= − = −L L         (16) 
 
such that: 
 

f 1 2 3
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φ
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L

L
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where iC (i 1 5)= −  represent the arbitrary constants. 
Denoting the nonzero auxiliary parameters f  and 

,φ  the resulting zeroth order problems are developed 
as follows: 
 
( ) f 0

f f
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ˆ ˆ ˆf (0;p) S,  f (0;p) 1,  f ( ;p) 0,  

ˆ ˆ(0,p) 1,  ( ,p) 0,

′ ′= = ∞ =

φ = φ ∞ =
     (20) 

 
where p  is an embedding parameter; fN  and φN  are 
nonlinear operators which can be defined as: 
 

3 2

f 3 2

2
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2

2
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φ φ η η =

∂ φ η ∂φ η
+ η − γφ η

∂η∂η

N
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By setting p 0=  and p 1=  we have: 

 

0 0
ˆ ˆf ( ;0) f ( ),  ( ,0) ( ) 

and 

ˆ ˆf ( ;1) f ( ),  ( ,1) ( ).

η = η φ η = φ η

η = η φ η = φ η

       (23) 

 
We observed that, when p  changes from 0  to 1 , 

then f ( ,p)η  and ( ,p)φ η  vary from 0 0f ( ), ( )η φ η  to 
f ( )η  and ( ).φ η  In view of the Taylor series we can 
write: 
 

m
0 m
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The convergence of the series is strongly 
dependent upon f  and φ .We select f  and φ  in 
such a way that the series converge at p 1=  and hence: 
 

0 m
m 1

f ( ) f ( ) f ( ),
∞

=
η = η + ∑ η          (27) 

 

0 m
m 1

( ) ( ) ( ).
∞

=
φ η = φ η + ∑ φ η         (28) 

 

The thm -order deformation equations are obtained 
by differentiating the Equations (18)-(20) m  times 
with respect to p  and then putting p 0=  to obtain: 
 

m
f m m m 1 f f[f ( ) f ( )] ( ),−η − χ η = ηL R      (29) 

 
m

m m m 1[ ( ) ( )] ( ),φ − φ φφ η − χ φ η = ηL R      (30) 
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m
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−
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m
0,   m 1,
1,   m 1.

≤⎧
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           (34) 

 
Our general solutions can be expressed in the form: 
 

m m 1 2 3f ( ) f ( ) C C e C e ,∗ η −ηη = η + + +      (35) 
 

m m 4 5( ) ( ) C e C e ,∗ η −ηφ η = φ η + +            (36) 
 
in which mf ∗  and m

∗φ  represent the special solutions. 
 
 

CONVERGENCE ANALYSIS 
 

The developed series solutions Eqs. (24) and (25) 
contain f  and φ .The convergence and rate of 
approximation for the constructed series solutions 
depend upon these auxiliary parameters. Therefore 
the −  curves have been plotted for the th20 -order of 

approximation in order to find the range of admissi-
ble values of f and φ . Fig. 2 shows that the range of 
admissible values of f  and φ  are f0.7 0.1− ≤ ≤ −  
and 0.8 0.3φ− ≤ ≤ − . The series solutions converge 
in the whole region of η  when f 0.5.φ= = −  Table 
1 shows the convergence of our series solutions for 
different orders of approximation. It is very clear 
from this table that th10 order deformations are enough 
for the velocity whereas th15 order deformations are 
required for the concentration. 
 

 
Figure 2: −  curves for the functions β  and θ  

 
Table 1: Convergence of the homotopy solution 
for different orders of approximation when 
β = 0.6, M = 0.5, S = 0.5, Sc = 0.6,  γ = 0.3,  and 

f θ= = -0.5.  
 

Order of approximation ′′-f (0)  ′(0)−φ  
1 0.77083 0.92000 

10 0.78479 0.82953 
15 0.78479 0.83043 
20 0.78479 0.83063 
35 0.78479 0.83063 
40 0.78479 0.83063 
45 0.78479 0.83063 
50 0.78479 0.83063 

 
 

RESULTS AND DISCUSSION 
 

The velocity ( f )′  and concentration ( )φ  fields are 
shown graphically in Figs. 3-10. Figs. 3-5 show the 
effects of the Casson parameter ,β  Hartman number 
M  and the suction parameter S , respectively, on the 
velocity profile f ( ).′ η  From Fig. 3, we observed that 
the velocity field decreases when β  increases. An in-
crease in β  leads to an increase in plastic dynamic 
viscosity that creates resistance in the flow of fluid 
and a decrease in fluid velocity is observed. The 
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effects of Hartman number M  and the suction 
parameter S  on f ( )′ η  are seen in Figs. 4 and 5. 
These figs. show that both M  and S  decrease the 
velocity f ( ).′ η  This is due to the fact that the applied 
magnetic field normal to the flow direction induces 
the drag in terms of a Lorentz force which provides 
resistance to flow; suction is an agent which causes 
resistance to the fluid flow and the fluid velocity also 
decreased. Figs. 6-10 show the plots of the effects of 
the Casson parameter ,β  Hartman number M,  suction 
parameter S,  Schmidt number Sc  and chemical 
reaction parameter γ  on the concentration field ( ).φ η  
The concentration field and associated boundary 
layer thickness increase when β  increases (Fig. 6). It 
is also noticed from Figs. 3 and 6 that the Casson 
parameter β  has quite opposite effects on the velocity 
and concentration profiles. Fig. 7 depicts that, by 
increasing the Hartman number, both the concentra-
tion profiles and boundary layer thickness increase. 
Thus, Hartman number here decreases the resistive 
force when M  increases. The influence of the 
suction parameter on the concentration profile is 
seen in Fig. 8. The concentration profile is a 
decreasing function of S .This is in accordance with 
the fact that the fluid experiences a resistance upon 
increasing the friction between its layers. As a 
consequence, there is a decrease in concentration. 
Effects of the Schmidt number on ( )φ η  are displayed 
in Fig. 9. Here both the concentration profile and the 
boundary layer thickness decrease when the Schmidt 
number Sc  increases. From a physical point of view, 
the Schmidt number is dependent on mass diffusion 
D  and an increase in Schmidt number corresponds 
to a decrease in mass diffusion and the concentration 

profile reduced. When 0,γ =  there is no chemical 
reaction. An increase in the chemical reaction 
parameter corresponds to an increase in the reaction 
rate parameter and an increase in the reaction rate 
parameter caused a reduction in concentrarion. From 
Fig. 10, one can see that an increase in the value of 
the chemical reaction parameter γ  decreased the 
concentration field ( )φ η . Figs. 11 and 12 are sketched 
to visualise the influence of key parameters that are 
used in the present problems for 1/2

x fRe C . The 
influence of M  against β  is described in Fig. 11. It 

is obvious that 1/2
x fRe C  is an increasing function of 

M.  Similar effects can be seen in Fig. 12, which 
shows the influence of β  against M.  Figs. 13 and 14 
are shown to present the influence of sundry parame-
ters on 1/2

xSh / Re .  Fig. 13 describes the influence of 
β  vs γ  on 1/2

xSh / Re . This figure confirms that the 
Sherwood number is a decreasing function of β  and the 
effects on the Sherwood number of γ  are the opposite 
(see Fig. 14). Table 2 shows the skin friction coefficient 
for the different values of ,β M,  and S.  By increasing 
the values of ,β  the value of the skin friction coefficient 
decreases, but it increases upon increasing M and S 
Table 3 shows the numerical values of the local 
Sherwood numbers for the parameters β, M, S, Sc, 
and γ. This table concludes that the values of the local 
Nusselt number decrease upon increasing β and M, but 
increase upon increasing S, Sc and γ. Table 4 shows 
the comparison with the previous limited studies in the 
literature. From this table one can see that our series 
solutions are in excellent agreement with the previous 
studies, validating the present series solutions. 

 
 

  
Figure 3: Influence of β  on f ( )′ η  Figure 4: Influence of M  on f ( )′ η  
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Figure 5: Influence of S  on f ( )′ η  Figure 6: Influence of β  on ( )φ η  

  
Figure 7: Influence of M  on ( )φ η  Figure 8: Influence of S  on ( )φ η  

  
Figure 9: Influence of Sc  on ( )φ η  Figure 10: Influence of γ  on ( )φ η  

  
Figure 11: Influence of M on 1/2

x fRe C  vs  β  Figure 12: Influence of β  on 1/2
x fRe C  vs M . 
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Figure 13: Influence of β  on 1/2

xSh / Re  vs γ . Figure 14: Influence of γ  on 1/2
xSh / Re  vs β  

 
Table 2: Numerical values of the skin-friction coefficient ′′(1 + 1 / β)f (0)  for different values of ,β  M and S.  

 
β M S ′′-(1 +1 / )f (0)β  

0.5 0.5 0.5 2.20256 
0.8   1.94558 
1.3   1.75799 
2.0   1.64195 
0.8 0.0  1.77069 

 0.6  2.01706 
 1.2  2.60638 
 1.5  2.96570 
  0.0 1.67705 
  0.7 2.06318 
  1.4 2.51728 
  2.0 2.95256 

 
Table 3: Numerical values of the local Sherwood number ′- (0)φ  for different values of β, M, S, Sc and γ.  
 

β M S Sc γ ′- (0)φ  
0.5 0.5 0.5 0.6 0.3 0.836083 
0.9     0.819149 
1.4     0.808194 
2.0     0.800845 
0.7 0.0    0.834056 

 0.7    0.819545 
 1.2    0.799472 
 1.6    0.782899 
  0.0   0.635925 
  0.4   0.785992 
  1.0   1.04054 
  2.0   1.52177 
   0.4  0.627639 
   0.8  1.00620 
   1.3  1.41079 
   2.0  1.91726 
    0.0 0.672845 
    0.4 0.869844 
    0.7 0.987078 
    1.0 1.08953 

 
Table 4: Comparison of values of ′- (0)φ  for different values of γ  when β → ∞  and M = S = 0.0.  

 
γ Sc Saleem ans El – Aziz 

(2008) 
Andersson et al. 

(1994) 
Present results 

0.01 1.0 -0.592 -0.59157 0.59136 
0.1 1.0 -0.669 -0.66902 0.66898 
1.0 1.0 -1.177 -1.17649 1.17650 
10 1.0 -3.232 -3.23122 -3.23175 
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CONCLUSIONS 
 

Effects of mass transfer on the MHD boundary 
layer flow of a Casson fluid model with chemical 
reaction are addressed. The present analysis leads to 
the following observations. 

 The Casson parameter β  and Hartman number 
M  have similar effects on the velocity profile f ( ).′ η  

 β  has opposite effects on the velocity and 
concentration profiles. 

 The concentration field ( )φ η  as well as the 
boundary layer thickness increase upon increasing 
the Hartman number M.  

 An increase in the Schmidt number Sc  causes 
a decrease in the concentration profile and the 
boundary layer thickness. 

 When 0,γ =  there is no chemical reaction. An 
increase in γ  decreases ( )φ η . 
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