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ABSTRACT

Quantifying past climate variation and attributing its causes improves our understanding of the natural

variability of the climate system. Tree-ring-based proxies have provided skillful and highly resolved

reconstructions of temperature and hydroclimate of the last millennium. However, like all proxies, they

are subject to uncertainties arising from varying data quality, coverage, and reconstruction methodology.

Previous studies have suggested that biological-based memory processes could cause spectral biases in

climate reconstructions. This study determines the effects of such biases on reconstructed temperature

variability and the resultant implications for detection and attribution studies. We find that introducing

persistent memory, reflecting the spectral properties of tree-ring data, can change the variability of

pseudoproxy reconstructions compared to the surrogate climate and resolve certain model–proxy dis-

crepancies. This is especially the case for proxies based on ring-width data. Such memory inflates the

difference between the Medieval Climate Anomaly and the Little Ice Age and suppresses and extends the

cooling in response to volcanic eruptions. When accounting for memory effects, climate model data can

reproduce long-term cooling after volcanic eruptions, as seen in proxy reconstructions. Results of detection

and attribution studies show that signals in reconstructions as well as residual unforced variability are

consistent with those in climate models when the model fingerprints are adjusted to reflect autoregressive

memory as found in tree rings.

1. Introduction

Long-term climate reconstructions from natural cli-

mate archives provide the basis for quantifying the full

amount of natural climate variability and attributing

variations to external forcings or chaotic internal fluc-

tuations. While tree rings provide annually resolved

and precisely dated climate signal (Stokes and Smiley

1968) and correlate well with observed temperature

and precipitation records (Fritts 1976), they are subject

to a wide range of uncertainties (e.g., Fritts 1976; Esper

et al. 2004; Jones et al. 2009; Cook and Pederson

2010; Frank et al. 2010a). Here we focus on investigating

the impacts of spectral biases on temperature recon-

structions from tree rings, specifically impacts on low-

frequency variability and response to volcanic forcing,

and their implications for detection and attribution

studies.

It is well known that physiological processes within a

tree can affect the climate signal and induce a biological-

based memory signal (Fritts 1976; Schulman 1956;

Matalas 1962; Vaganov et al. 2010). Fritts (1976) sug-

gests that the storage of sugar and hormones as well as

the growth of leaves (needles), roots, and fruits could

affect the persistence of the climate signal from one

year to the next. Many studies have found that data

based on ring width (RW) as a proxy for past tempera-

ture and precipitation contain more autocorrelation and

long-term memory than data derived from maximum

latewood density (MXD) (Esper et al. 2015; Franke

et al. 2013; Zhang et al. 2016; Anchukaitis et al. 2012;

Krakauer and Randerson 2003; Helama et al. 2009). It
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should, however, be noted that it is not clear why MXD

data do not portray similar persistent properties as RW.

It was observed that RWunderestimates and temporally

extends the response to volcanic eruptions compared to

MXD (Frank et al. 2010a; D’Arrigo et al. 2013;

Anchukaitis et al. 2012; Esper et al. 2015). Franke et al.

(2013) found that RW temperature records are strongly

red biased compared to observations, whereas the

spectral characteristics of MXD data are in better

agreement with observations, although they still seem

biased regarding their ratio of low- to high-frequency

variability. Furthermore, they found that these biases

propagate into climate field reconstructions, which dis-

play significantly more memory than observations. Zhang

et al. (2016) conducted pseudoproxy experiments in which

they increased the memory in precipitation data from

climate models for China. They observed that increased

local-scale memory propagated into the pseudoproxy

reconstruction. This modified the climate variability,

with additional trends at certain intervals and an overall

changed frequency spectrum.

Detection and attribution studies aim to quantify the

response to external forcings in reconstructions and have

shown that particularly volcanism, but also greenhouse

gases have a detectable influence on climate reconstruc-

tions of the last millennium (Hegerl et al. 2007; Schurer

et al. 2013, 2014). However, previous studies have not

taken reconstructionmethod, data availability, or specific

proxy biases into account. Here we use pseudoproxy

methods to derive fingerprints of external forcings ac-

counting for spectral biases in the proxy reconstructions.

Pseudoproxy experiments (PPEs; Smerdon 2012)

have provided valuable insight into effects of re-

construction methods, calibration, coverage, and noise

properties on proxy reconstructions. Such experiments

involve proxy-network-like data sampling from climate

model output and applying proxy methods to derive

reconstructions that can be tested in the virtual reality

of the model climate. Many pseudoproxy studies have

addressed data coverage, location, calibration method,

and influences of different noise models (e.g., Von

Storch 2004; Bürger et al. 2006; Hegerl et al. 2007; Von

Storch et al. 2009; Lee et al. 2008; Christiansen et al.

2009; Neukom et al. 2014). It was found that the addi-

tion of noise is one of the most important factors influ-

encing the performance of the different reconstruction

methods. Von Storch et al. (2009) showed that adding

noise to pseudoproxy data can suppress low-frequency

variance of temperature anomalies in the pseudoproxy

reconstructions as a consequence of regression during

calibration.

In this article, we investigate potential biases in large-

scale temperature reconstructions that are related

to biological effects in tree-ring proxies. First, we in-

troduce our temperature datasets (section 2), followed

bymethods for pseudoproxy experiments, data analyses,

and detection and attribution in section 3. Our results

are shown in section 4, where we compare the spectral

properties of observational and proxy data to find a

suitable statistical model for pseudoproxy experi-

ments. Based on this, we focus on suitable memory

models and evaluate the performance of pseudoproxy

reconstructions. Last, we analyze their implications on

detection and attribution analyses. We discuss our re-

sults in section 5.

2. Data

a. Tree-ring data

We use tree-ring data provided by the Northern Hemi-

sphere Tree-Ring Network Development (N-TREND)

consortium as published by Wilson et al. (2016) and

Anchukaitis et al. (2017). This consortium is the result of a

collective strategy by the dendroclimatology commu-

nity to improve large-scale summer temperature re-

constructions. The dataset consists of 54 tree-ring

chronologies and local reconstructions, which are

selected from previously published reconstructions

(Table S1 in the online supplemental material).

Thus, the data include informed judgments of the

original authors for the most robust temperature

estimates for each particular location. The individual

records use different tree-ring parameters as tem-

perature proxies, including 11 records derived from

RW, 18 records MXD, and 25 mixed records (MIX).

The mixed records consist of combinations of local,

regional, and gridpoint reconstructions derived from

RW, MXD, and blue intensity (BI) data. BI is a rel-

atively new method to dendroclimatology and pro-

vides similar proxy climate information to MXD [see

Campbell et al. (2007), Björklund et al. (2014), and

Rydval et al. (2014) for more information].

The records cover the midlatitudinal band between

408 and 758N, following the recommendation of Wilson

et al. (2016), as trees farther south are more sensitive

to multiple climate influences (Fritts 1976; St. George

2014; St. George and Ault 2014; Osborn and Briffa

2000; Franke et al. 2013). The target area is divided into

three continental-scale regions (North America,

western Eurasia, and eastern Eurasia). Each region

has available data covering more than 1000 years, with

23 records extending back to at least AD 978 All

records cover the period from 1710 to 1988. However,

the number of available records decreases markedly

toward the beginning of the last millennium, and
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North America relies on only three records before AD

1100. The individual proxy locations are shown in

Fig. 1a.

To understand the effects of different proxy types,

we slightly modify the original N-TREND dataset. We

distinguish three datasets, consisting of the full net-

work (referred to as N-TREND FULL), RW data only

(N-TREND RW), and MXD records only (N-TREND

MXD). Given the small number of BI data in the mixed

records, we exclude BI-specific biases from our analysis

by removing BI data from six mixed records for which

the individual records were available. From those mixed

records we additionally recover the original RW and

MXD chronologies and include them into N-TREND

RW and N-TREND MXD to increase the size of the

datasets. Table S2 lists the affected sites and which

data type was extracted for the different proxy data-

sets. Hence, the N-TREND MXD dataset consists of

22 tree-ring records in total, while N-TREND RW

consists of 17 records.

b. Instrumental data

The Climatic Research Unit Temperature (CRUTEM4)

dataset (Osborn 2013) provides instrumental data over

the period from 1850 to 2013. CRUTEM4 is a gridded

dataset of global historical near-surface air temperature

anomalies over land with a resolution of 58. The cover-

age of the reconstruction target area varies and is highly

depended on the location (Fig. 1b). Prior to 1880, cov-

erage is largely restricted to western Europe and lower

latitudes of eastern North America. In addition to poor

coverage, warm biases might arise from poorly shielded

instruments for early instrumental data prior to the

widespread use of the Stevenson screen (Parker 1994;

Böhm et al. 2010; Frank et al. 2007). Given the greater

uncertainty (Brohan et al. 2006) and poor data

FIG. 1. (a) N-TREND2015 dataset, showing the locations of records derived from ring-width (RW), latewood density (MXD), and

combinations of different tree-ring parameters (MIX); 3 denotes records longer than 1000 years. (b) Percentage of instrumental data

coverage between 1880 and 2014 within the reconstruction target area. (c) FULL, RW, andMXD reconstruction ensembles. The median

is shown as a solid line, with the 5th–95th percentiles indicated by a thin dotted line. Shading indicates the 5th–95th percentiles. In-

strumental data prior to 1880 are excluded from the analysis due to high uncertainty (dashed). All time series were smoothed using a 20-yr

smoothing spline for visualization purposes. Triangles indicate years of volcanic activity and are scaled according to eruption magnitude

(Toohey and Sigl 2017). (d) Difference of average temperature ofMedieval Climate Anomaly (MCA; 950–1250) and Little Ice Age (LIA;

1450–1850) and (e) twentieth century (20C; 1900–80) and LIA. Boxes range from the upper to the lower quartiles, whiskers indicate the

5th–95th percentiles, and the solid line is the median.
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coverage, data prior to 1880 were excluded from the

analysis. Even at later times, the hemispheric re-

construction is clearly biased toward Europe, where we

find many of the grid points covering the full calibration

period. North America is well covered at lower lati-

tudes in this period but lacks data at higher latitudes.

Coverage is worst for Asia, where most grid points do

not start before 1950. This makes the early instrumental

record for Asia particularly prone to biases and shifts

the hemispheric record heavily to Europe and North

America.

c. Climate model data

We used the Community Earth System Model Last

Millennium Ensemble Project (CESM-LME; Otto-

Bliesner et al. 2016) for all model–proxy comparisons

and pseudoproxy experiments. The CESM-LME uses

a version of CESM-CAM5_CN (1.93 2.5_gx1v6), with a

resolution of ;28 in atmosphere and land components

and ;18 resolution in ocean and sea ice components.

External forcings include volcanic, solar, orbital,

changes in land use/land cover, and greenhouse gas

forcing. Forcing reconstructions follow the recommen-

dations by the Paleoclimate Intercomparison Project

Phase III (PMIP3; Braconnot et al. 2012; Schmidt et al.

2011, 2012) and are the same as used in the last millen-

nium simulation of the Community Climate System

Model version 4 (CCSM4; Landrum et al. 2013). The

CESM-LME provides a large range of different ex-

periments, including all transient forcings as well as

ensembles of individual forcings and control runs,

covering the period from 850 to 2006. For our analyses,

we use an ensemble of 13 climate simulations in-

cluding all forcings, 5 simulations including volcanic

forcing only, and 2 control simulations. To improve

like-for-like comparison of model and proxy data, we

use only May–August (MJJA) surface temperature

data over land and within the N-TREND target area

of 408–758N.

3. Methods

a. Reconstruction method

Our reconstruction method mostly follows the

method introduced along with the original tree-ring

dataset (Wilson et al. 2016, 2007; D’Arrigo et al. 2006),

targeting Northern Hemispheric (NH) midlatitudinal

summer (MJJA) land surface temperature. We first

standardize all data to z scores (mean m 5 0, variance

s2
5 1) over the period 1750–1950, then apply a nesting

approach to ensure that the variance is independent

of the number of available records (Cook et al. 2002;

Meko 1997). We classify the data into forward and

backward nests of common data availability. We define

the most replicated nest (NEST1), which includes all

records and covers the period 1710–1988. We then find

the other nests by going backward/forward in time and

iteratively remove shorter records. A detailed list of the

forward and backward nests is given in the supplemental

material.

For each nest, we calculate regionally averaged time

series. To ensure even contribution from all regions we

restandardize the regional time series over the period

1750–1950. The regions are defined as longitudinal slices

of the hemispheric band as shown in Fig. 1, providing

a time series for North America (1708–108W), western

Eurasia (108W–808E), and eastern Eurasia (808E–

1708W). This approach slightly differs from the original

method, in which North America had been addition-

ally divided along the meridian at 1008W. By doing so,

we ensure that more data are available for each region.

This is important when constructing time series for

RW or MXD only, which further reduces the number

of available proxy records.

We derive a hemispheric mean series zi(t) for each

nest i by averaging over the regional time series and

calibrate the result for NEST1 z1(t) to the instru-

mental data Tobs(t). The calibration covers the period

1880–1988. We choose the start date to exclude poor

instrumental coverage and the end date to ensure full

coverage by the tree-ring network. Calibration includes

matching of variance and mean (Esper et al. 2005) of

instrumental and proxy data:

T
1
(t)5 z

1
(t)3s2

obs 1m
obs

(1)

The hemispheric time series from all other nests are

scaled to T1(t), the temperature time series obtained

from NEST1, in the same way but each over the full

period of NEST1. Ultimately, a homogeneous temper-

ature reconstruction is derived by extracting the tem-

perature for each year from the densest nest available.

Comparing the different proxy datasets (Fig. 1c) we find

that long- and short-term variability varies across the

datasets, with FULL and RW displaying more low-

frequency variability throughout the last millennium.

This is highlighted in the average temperature differ-

ence between the Medieval Climate Anomaly (MCA,

950–1250; Masson-Delmotte et al. 2013) and Little

Ice Age (LIA, 1450–1850; Masson-Delmotte et al.

2013). MXD shows a smaller difference than RW and

FULL. This can also be observed when comparing dif-

ferences between twentieth-century warming and LIA,

which is consistently higher in RW than in MXD data.

As discussed by Wilson et al. (2016), the N-TREND
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reconstruction shows little divergence (Wilson et al.

2007; D’Arrigo et al. 2008) from the instrumental data

during the late twentieth century. However, to exclude

potential influences of the remaining divergence we

use the period 1900–80 as representative for twentieth-

century warming. All proxy reconstructions show a

similar temperature difference between the LIA and

this period.

b. Reconstruction uncertainty

Quantifying and including all forms of uncertainty in

tree-ring (and other proxy) climate reconstructions is

a significant challenge and beyond the scope of this ar-

ticle. However, we can model uncertainties caused

specifically by coverage and calibration relatively easily

using an ensemble approach (Frank et al. 2010b;

Neukom et al. 2019). To be able to replicate the same

reconstruction method when conducting our pseudo-

proxy experiments, it was important to reduce compu-

tational time and thus keep the ensemble size relatively

small. To address the coverage uncertainty, we apply a

bootstrapping approach to the proxy dataset, in which

one proxy record is removed in turn before creating the

reconstruction. Although this would ideally include the

removal of each proxy record in the dataset in turn, we

restrict the analysis to bootstrapping nine randomly se-

lected long records in turn, extending back to at least

AD 1150. Thus, we estimate the coverage uncertainty

specifically in the poorly covered periods. The chronol-

ogies that were in turn removed from N-TREND

FULL were AG12, AG4, FORF, AG2, ALT, AG5,

AG1, AG11, and FIRT. For MXD they were ALT,

POLx, JAEM, ALPS, FORF, TYR, FIRT, ICE, and

SFIN. For RW they were TAT, KOL, QUEw, OZN,

GOA, ICE, YAM, IDA, and TAY. (For descriptions of

all the chronologies, see the online supplemental ma-

terial.) Including the set consisting of all available rec-

ords, we gain a total ensemble of 10 sets of data for each

N-TREND dataset, consisting of 1 3 54 1 9 3 53 rec-

ords for N-TREND FULL, 1 3 22 1 9 3 21 for MXD,

and 1 3 17 1 9 3 16 for RW.

To address the calibration uncertainty, we slice the

calibration period into windows of lengths 60, 70, and

80 years similar to Frank et al. (2010b). For each window

length, we perform the calibration for an early, a middle,

and a late period (1880–1940, 1904–64, 1928–88, 1880–

1950, 1899–1969, 1918–88, 1880–1960, 1894–1974, and

1908–88). Including the full period, we thus consider 10

different implementations of calibration periods, gain-

ing a total reconstruction ensemble of 100 reconstruc-

tions for each N-TREND dataset (FULL, RW, and

MXD). This allows us to estimate the spread of our re-

sults depending on calibration and coverage uncertainty.

c. Pseudoproxy experiments

For our PPEs, we generate sets of pseudoproxy data

from climate model output and treat them in the same

way as real proxy data. We sample from the CESM-

LME ensemble at the grid cells closest to the proxy re-

cord to match spatial and temporal availability of the

N-TREND dataset as in Neukom et al. (2018). For

proxy records that represent an area larger than a sin-

gle grid point, the average over all grid cells within

the target area was calculated. The same was repeated

for CRUTEM4 to generate a pseudoinstrumental data-

set. The pseudoproxy data were then processed in the

same way as the real proxy reconstruction, including

standardizing (m5 0, s5 1), nesting, regional averaging,

calibrating to the pseudoinstrumental dataset and splicing

of the nested data to obtain a hemispheric pseudor-

econstruction. To account for calibration and coverage

uncertainty, the calibration period was varied, and longer

records were bootstrapped in the same way as in the case

of the real proxies. The same periods and chronologies as

detailed in section 3bwere used to create a total ensemble

of 1300 PPEs from the 13 CESM LME simulations and

500 PPEs from the 5 volcanic-forcing-only simulations.

Thus, the pseudoproxy reconstruction represents the

spatiotemporal availability of the proxy network and

reconstruction methods; however, it does not account

for any proxy specific biases or nonclimatic influences.

This PPE serves as the baseline to represent charac-

teristics of local climate model data without simulat-

ing tree-ring memory. It is referred to as PPE NoM.

To simulate biological-based memory we manipulate

the pseudoproxy records at the local scale. Two different

memory models were distinguished: a short-range autor-

egressive model of order p (PPE AR) and a long-term

memory (LTM) model (PPE LTM). To concentrate on

the effects of memory, we have not added additional

nonclimatic white noise to the pseudoproxies. An

overview of the different experiments, their ensemble

sizes and fitting parameters is given in Table 1.

1) PPE AR

This memory model is based on a linear decomposi-

tion of the tree-ring signal z into a climate term and an

autoregressive memory term of order p. The tree-ring

signal zt of a given year t is impacted by the locally

modeled climate signal xt. This signal is subjected to a

memory term, which integrates over the previous p

year’s signals zt21, zt22, . . . zt2p. The signal at time t can

thus be written as

z
t
5 x

t
1 �

p

k51

a
k
z
t2k

1 «
t

(2)
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5 �
q

k51

g
k
x
t2k

1 �
p

k51

a
k
z
t2k

1 «
t
, (3)

where «t accounts for additional white noise. The set

of parameters a determines the influence of the k pre-

vious years’ climate on the proxy signal and represents

the memory term. The first term represents the climate

forcing, which accounts for the autoregressive struc-

ture of the climate signal xt itself. The autoregressive

character of the climate is parameterized by the co-

efficients g and its order q. If xt represents a zero-mean

white noise process, Eq. (3) represents an autoregressive

moving-average process [ARMA(p,q)]. This is an au-

toregressive process of order p forced by a moving-

average process of order q (Box 2016; Von Storch and

Zwiers 2002). Assuming the climate signals of the model

simulations perfectly match the real world, the climate

signal xt is given by the model data, averaged over the

proxy target area. With the starting points of the time

series fixed up to xp, zi.p, can be iteratively calculated

if the memory parameters aj are known. Instead of fit-

ting an ARMA(p, q) process with p 1 q 1 2 degrees of

freedom on the proxy data, we apply an empirical ap-

proach for fitting the memory. We use the knowledge

of the model climate signal x and the proxy signal z to

find an estimate for ak, which produces pseudoproxies

with a similar memory as seen in the proxy records.

To identify the autoregressive structure in proxy

records z and model x, the partial autocorrelation

function (PACF) was calculated. The PACF fk of a

time series y at lag k determines the correlation

between yt and yt2k, which is not accounted for by

y(t 2 1), . . . , y(t 2 k 1 1). Given that the partial auto-

correlation of an AR(p) process decays to zero beyond

lag p we can use it to identify the order p. The co-

efficients fi can be calculated from the Yule–Walker

equations (Box 2016). An initial estimate for the mem-

ory coefficients a was obtained by using

a
k
5f

k
(z)2f

k
(x) , (4)

with the PACF fk(z) and fk(x) at lag k for the proxy

record z and the targeted model data x. This was found

to be a good estimate for all lags higher than lag 1. For

lag 1, a was systematically overestimated by Eq. (4),

therefore an optimization algorithm was implemented

to fit the PPE to the proxy target value.

A set of fitting parameters was derived for each

proxy record z in the target dataset, and the associated

pseudoproxy record ~z was fitted using Eq. (2). We set

« 5 0, concentrating on the effects of pure memory ad-

dition. To determine whether the results are spatially

robust, we randomly redistributed the parameters a

over the pseudoproxy locations. We found that the

spread of results is minimal compared to the spread

caused by the variation of the calibration period and

bootstrapping. To keep the ensemble number at a rea-

sonable size we therefore did not include this uncer-

tainty into the final ensemble of PPEs.

2) PPE LTM

This method involves a manipulation of the time

series in its Fourier space, which is based on a previ-

ously published study by Zhang et al. (2015). For a time

series possessing LTM, its power spectral density will

decay with

S( f ); f2b . (5)

The parameter b is a measure of the long-termmemory.

For white noise processes b ’ 0, whereas for red noise

b 5 2. A robust estimate for b can be obtained from a

detrended fluctuation analysis of the second order

(DFA-2) (Peng et al. 1994; Bryce and Sprague 2012).

For a time series x(t) with zero mean hxi the cumulative

sum Xt 5�
t

i51(xi 2 hxi) is divided into N segments with

window length n. The local trend Yt for each segment

is derived from a least squares quadratic fit of Xt. The

TABLE 1. Ensemble sizes for N-TREND and PPEs, each applied to the FULL, RW, and MXD target dataset.

Name Fitting parameter Calibration Coverage Simulations Total

N-TREND — 1 1 9 1 1 9 — 100

PPE NoM — 1 1 9 1 1 9 13 1300

PPE AR3 a1, a2, a3 1 1 9 1 1 9 13 1300

PPE LTM b 1 1 9 1 1 9 13 1300

PPE NoM- VOLC — 1 1 9 1 1 9 5 500

PPE AR3- VOLC a1, a2, a3 1 1 9 1 1 9 13 500

PPE LTM- VOLC b 1 1 9 1 1 9 13 500

PPE NoM- CTRL — 1 1 9 1 1 9 2 200

PPE AR3- CTRL a1, a2, a3 1 1 9 1 1 9 2 200

PPE LTM- CTRL b 1 1 9 1 1 9 2 200
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root-mean-square deviation of Xt from the local trend

for any window-length n gives the fluctuation function

F(n)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N
�
N

t51

(X
t
2Y

t
)2

s

. (6)

If F(n) follows a power-law scaling F(n) ; na, the

spectral density will satisfy Eq. (5) and

b5 2a2 1: (7)

A double logarithmic plot of the fluctuation function can

provide information about the amount of LTM in a time

series and a robust estimate for a can be calculated

from a linear fit.

It was shown in previous studies that surface tem-

perature follows a slight LTM process on both

hemispheric and regional scales (e.g., Rypdal and

Rypdal 2014), with b ’ 0.2 at regional scale and b ’

0.4 over land (Fredriksen and Rypdal 2016). Assum-

ing that biological tree-ring memory y(t) can be rep-

resented by an LTM process that is superposed on the

climate signal x(t), its spectral energy can be ap-

proximated as

S
z
( f )5 S

0
( f )f bz ’ S

x
( f )f by 5 S

0
( f )f bx1by . (8)

The factor S0( f) accounts for the remaining signal and

represents a white noise process. Equation (8) is linear

in b, which can be used to estimate the additional

memory by and fit the pseudoproxy records

~S( f )5 S( f )b
y
, b

y
5b

z
2b

x
. (9)

This way a pseudoproxy record with energy spectral

density S( f ) is fitted such that its LTM is increased to

proxy level. The inverse Fourier transform of the

manipulated record ~S( f ) gives the pseudoproxy re-

cord ~z(t).

d. Superposed epoch analysis

A superposed epoch analysis is used to reveal the

response to volcanic forcing evident in last millennium

temperature reconstructions (e.g., Lough and Fritts

1987; Mass and Portman 1989; Hegerl et al. 2003;

D’Arrigo et al. 2013; Masson-Delmotte et al. 2013;

Esper et al. 2015; Wilson et al. 2016; Neukom et al.

2018). We average over the temperature response to a

set of volcanic eruptions, using a window of maximally

30 years, considering temperature anomalies with re-

spect to 10 years preceding a volcanic eruption. Any

subsequent years within the recovery time of an event

that are affected by major eruptions are excluded from

the epoch analysis.

We assume that the latest reconstruction of atmo-

spheric sulfate injection (eVolv2k) as published by

Toohey and Sigl (2017) minimizes the dating error for

the proxy reconstructions. The volcanic forcing data-

set implemented in the CESM-LME is based on the

IVI2 reconstruction by Gao et al. (2008). Both datasets

are based on ice core data and provide a measure of

aerosol optical depth (AOD) and stratospheric sulfate

injection. However, dating and magnitude of volcanic

eruptions in IVI2 differ in many cases from eVolv2k.

To perform a like-for-like comparison, we therefore

use eruption dates as given in eVolv2k for the proxy

data, while using IVI2 dates for the model/PPE data.

To increase the number of events while minimizing the

error induced by dating uncertainty, we consider only

events that appear within 3 years of difference in both

datasets. The 16 events included in the epoch analysis

have been marked. Note that the eruptions in 1761–62

and 1783 (Laki) were excluded from the analysis despite

matching dating. As noted in Stevenson et al. (2017) in

the CESM-LME Laki is wrongly dated at 1761 instead

of 1783, which makes both dates unsuitable for our

comparison. A table showing all eruptions is given in

the online supplement. It should also be noted that the

dating of volcanic eruptions in the climate model/PPEs

follows exactly IVI2 and thus has no dating un-

certainty. However, due to the uncertainty in the ice-

core-based reconstructions of volcanic forcing, some

degree of dating uncertainty remains in the analysis

of the tree-ring data. Nevertheless, we assume that

with our approach we have kept the dating uncertainty

minimal.

e. Detection and attribution studies

To quantify the influence of forced variability in the

proxy reconstructions, we perform detection and attri-

bution using a total least squares (TLS) regression fol-

lowing (Stott et al. 2001; Allen and Tett 1999). The

proxy reconstruction Y(t) is regressed onto the finger-

print of volcanic forcing X1(t) and all other forcings

X2(t), following

Y(t)5b
1
3 [X

1
(t)2 n

1
(t)]1b

2
3 [X

2
(t)2 n

2
(t)]1 n

0
(t) .

(10)

The fingerprints of external forcing are given by the

simulations of the CESM-LME. A TLS regression al-

lows regressorX(t) and regressand Y(t) to be influenced

by a similar amount of noise, which is given by their

respective implementation of internal variability n(t).

The amount of internal variability in the fingerprints

X(t) can be reduced by averaging over multiple en-

semble members. The scaling factors bi indicate the

15 DECEMBER 2019 LÜCKE ET AL . 8719

Unauthenticated | Downloaded 08/27/22 02:55 PM UTC



magnitude of the fingerprints in the reconstruction. The

response to a forcing is considered detectable (p, 0.05)

when the scaling factor is significantly positive. A scaling

factor of 1 indicates perfect agreement between models

and proxy reconstruction (Hegerl and Zwiers 2011). The

residual gives an estimate of internal variability in the

proxies. To account for the uncertainty due to internal

variability and to get a distribution for the scaling fac-

tors, we follow the method introduced by Schurer et al.

(2013, 2014). We repeated our calculations 100 times

with different samples of internal variability super-

imposed on the noise-reduced observations and model

fingerprints ~Z5 [Y(t)2 n0(t), Xi(t)2 ni(t)]. To investi-

gate the effects of autocorrelation in proxy data on de-

tection and attribution results, we further repeated our

analyses using pseudoproxy fingerprints.

4. Results

a. Spectral properties of observations and model

simulations compared to tree-ring data

We compare the spectral characteristics of the proxy

datasets to a set of local instrumental and model records

over the period 1880–1988. This period provides the

maximum availability for the proxy data and is well

covered by the instrumental dataset.

For the PACF at local scale (Fig. 2a), the biggest

differences can be noted at lag 1, where RW displays a

higher correlation than all other datasets. At all lags,

correlation is highest for RW, followed by MXD,

replicating the findings of Esper et al. (2015). Model

and instrumental data agree well, with observational

data showing a slightly higher correlation at all lags.

The medians of the PACF at lag 1 differ by Da ’ 0.4

for RW and MXD, which remains relatively con-

stant during the period of common data availability

(Fig. 2b). N-TREND MXD is slightly higher than

the CESM-LME ensemble but is consistent within its

5th–95th-percentile range. MXD also agrees well with

the observations within the short period in which in-

strumental data are available. We compute the de-

trended fluctuation function for each record (Fig. 2c)

to obtain an estimate for the long-term memory at

local scale using Eq. (7). Results for all datasets are

relatively widely spread but overlap at the 5th–95th-

percentile range. The median of MXD, observations

FIG. 2. (a) Partial autocorrelation (PACF) a(k) during the calibration period (1880–1988) for local standardized records (z scores). Box:

upper to lower quartiles; whiskers: 5th–95th percentiles; line: median. (b) Median of PACF at lag 1 and percentile range (shaded) of the z

scores, calculated over a centered 100-yr sliding window during the last millennium (1000–2000). (c) Detrended fluctuation analysis of the

z scores during the calibration period. Dotted (dashed) lines indicate the gradient expected for white (pink) noise. (d)–(f) As (a)–(c), but

for the mean of hemispheric temperature reconstructions. Bars in (d) indicate the 5th–95th percentiles of the ensembles. Note that the

CESM includes 13 simulations and has a much higher spread accordingly.
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and CESM-LME agree with b ’ 0.5, while RW

proxies have slightly more memory (b ’ 0.8).

Results at hemispheric scale are similar and show

that the features observed on the local scale propa-

gate into the reconstructions. The PACF (Fig. 2d) is

still highest for RW at lag 1 while MXD is more

persistent at lags 2 and 3. Modeled and observed

temperatures have less PACF at these lags. Note that

at lag 4 the PACF is just above the significance level

for observational data and some model simulations.

It is not clear whether this is a real climatic feature or

sampling noise. The magnitude of the lag 1 PACF of

the MXD reconstruction agrees well with the model

mean (Fig. 2e) but RW correlation is still significantly

higher during most of the period of common data

availability. The magnitude of fluctuation (Fig. 2f) is

similar for RW and MXD; however, RW has more

memory with b ’ 0.9 compared to b ’ 0.7 for MXD.

MXD agrees well with model and instrumental data

(b ’ 0.7).

Our results suggest that an autoregressive process

around order 3 can be fitted to the proxy data. Given

that observational and model data seem to follow

mainly an order-1 process, we conclude that the third-

order process is caused by nonclimatic noise such as

biological memory processes.

b. Spectral properties of pseudoproxy data compared

to real proxy data

We generated pseudoproxy data for different memory

models, concentrating on an autoregressive process of

order 3 (PPE AR3) and a long-term memory fit (PPE

LTM). We compare the partial autocorrelation of dif-

ferent pseudoproxy experiments with real proxy data

FIG. 3. (a)–(c) PACF between AD 1000 and 1900 for real proxy z scores (N-TREND) and pseudoproxy experiments (PPEs) on a local

scale for the full proxy dataset and RW and MXD records only. PPE NoM refers to pseudoproxies from raw model runs, AR3 to

pseudoproxies fitted by a third-order autoregressive model, and LTM to the long-term memory fit. (d)–(f) PACF of hemispheric tem-

perature reconstruction for the same period. (g)–(i) The 100-yr running mean of the PACF at lag 1.
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targeting the full network, MXD only, and RWonly. On

the local scale (Figs. 3a–c), correlations of PPENoM are

significantly below the range of the correlation for all

targets. All pseudoproxy records including memory

match the real proxy range at lag 1. At higher lags, PPE

LTM decays quickly below the proxy range while PPE

AR3 matches the proxy records even at higher lags. At

the hemispheric scale (Figs. 3d–f), differences between

PPE AR3 and PPE LTM are smaller but PPE AR3 still

performs better. Throughout the last millennium, the

lag-1 partial correlation for the pseudoproxies is shifted

up to proxy level (Figs. 3g–i) but otherwise barely de-

viates from PPE NoM.

All the targeted proxy reconstructions havemore power

at low frequencies than at high frequencies (Figs. 4a–c).

The power spectral density follows approximately a

power-law decay for multidecadal frequencies, observed

as a linear decrease in the double logarithmic plot. How-

ever, the gradient flattens toward decadal frequencies,

indicating a deviation from the power law. This is partic-

ularly prominent in case of RW but can also be observed

in the other datasets. The multidecadal gradient is

matched by the pseudoproxy reconstructions when ac-

counting formemory, while PPENoMhas amuch smaller

gradient. PPE AR3 performs well for all targets. It over-

laps well with the proxy ensemble within the 5th–95th-

percentile range and its median shows the distinctive

flattening of the gradient toward its high-frequency end.

While PPE LTM also overlaps well with the proxy en-

semblewithin the uncertainty range, themedian decreases

monotonically. Note that the spectral density of MXD is

particularly noisy at low frequencies (Fig. S5). Since this is

specific to the MXD dataset, it could be caused by local

influences but could also originate from data processing.

TheDFA (Figs. 4d–f) confirms that PPENoMhas less

long-termmemory than the proxies, holding particularly

for RW (b ’ 0.3 vs b ’ 0.9) and FULL (b ’ 0.4 vs

b ’ 0.8), while the difference is smaller in case of

MXD (b ’ 0.3 vs b ’ 0.6). PPE AR3 and PPE LTM

both replicate the gradient of the proxy targets. While

for RW and FULL the average of PPE AR3 and the

proxy target overlap roughly for most time steps, the

FIG. 4. (a)–(c) Median and percentile range of the power spectral density S(T) of proxy reconstructions compared to the PPEs, with

ensemble range for PPENoMand PPEAR3. The spectrum has been smoothed using a 7-yr runningmean filter to increase the visibility of

the trend. (d)–(f) Detrended fluctuation analysis F(n) for proxy and pseudoproxy reconstructions. Dotted and dashed lines indicate the

gradient displayed by white (b 5 0) and pink noise (b 5 1), respectively.
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magnitude of the fluctuation of the proxies is consis-

tently lower than the PPEs.

We conclude that PPE AR3 and PPE LTM both re-

produce spectral features characteristic to proxy data,

such as increased autocorrelation at lag 1, inflation

(suppression) of low-frequency (high-frequency) vari-

ability, and more long-term memory. PPE AR3 per-

forms best for all target datasets as it matches the partial

autocorrelation at higher lags and reproduces the de-

viation of the spectral density from the power-law decay

at high frequencies.

c. Effects of memory on temperature variability of

pseudoproxy reconstructions

The ensemble mean and range of the millennial-

length time series for the proxy and pseudoproxy

reconstructions are shown in Figs. 5a–c. Long-term de-

viations from the mean are inflated for memory PPEs

compared to PPENoM. As a result, theMCA is warmer

for PPE AR3 and PPE LTM, while the LIA is slightly

colder. This trend can be observed in all three target

datasets but is particularly strong for FULL and RW.

To quantify the effects of this inflation, we calculate

the average temperatures of MCA and LIA. The tem-

perature difference between those periods ranges

around DT5 0.2 for FULL and RW but is less than half

for MXD (Fig. 5e). However, the uncertainty on the

exact value is relatively high due to the small number of

available records at early times. Schneider et al. (2015)

found that the MCA is less pronounced in MXD data,

suggesting varying seasonal or spatial coverage as a

reason. However, PPE NoM shows a clear warming

in the MCA for the MXD locations. For all target da-

tasets, the median of DT is increased when implement-

ing memory in the pseudoproxies. For PPE AR3 the

median shifts toward the proxy value in case of FULL

and RW targets. The temperature difference increases

further for higher memory, with PPE LTM consis-

tently being highest. The increase of DT with memory

order is a robust feature, which can also be seen when

FIG. 5. (a)–(c)Reconstructions of temperature anomalies during the lastmillenniumdisplayed by real proxies and PPEs. Shading is as in

previous figures. (d)–(f) Difference between average temperature of Medieval Climate Anomaly (MCA; 950–1250) and Little Ice Age

(LIA; 1450–1850). (g)–(i) Difference between the average temperature of the LIA and twentieth century (20C; 1900–80). Blue horizontal

lines and shading indicate the median and the percentiles of the proxy reconstruction, respectively. Boxplots are as in previous figures.
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comparing average temperatures of the LIA and the

twentieth century between 1900 and 1980 (Figs. 5g–i).

Note that twentieth-century warming is slightly under-

estimated in the CESM-LME, likely due to strong in-

direct aerosol forcing (Otto-Bliesner et al. 2016). This

could be a reason for a small temperature difference

compared to the proxy value and could suppress stron-

ger increase for memory PPEs.

To analyze the effects of biological memory on the

magnitude and time scales of cooling in response to

volcanic eruptions (Fig. 6), we perform a superposed

epoch analysis (Figs. 7a–c) including 16 well-dated vol-

canic eruptions. Schneider et al. (2015) compared the

volcanic response in a density only reconstruction to

ring width dominated reconstructions for the eruptions

in 1257, 1452, and 1815. They found that the former

shows a greater response amplitude, while the latter

show a temporally extended cooling and thus a longer

recovery period. The same observations hold for our

epoch analysis. Here, MXD responds strongly and re-

covers fast, with a slightly prolonged cooling around

years 3–5. RW has a smaller amplitude along with a

prolonged cooling up to posteruption year 10. While

the magnitude of the PPE NoM amplitude varies

slightly across the target datasets, it recovers much

quicker than the proxies. Both magnitude and recovery

time are affected by autoregressive memory, most

prominently for RW, while long-term memory mainly

dampens the amplitude. PPE AR3 shows a prolonged

cooling, which is mostly consistent with the time scale

of the proxy data. The median of the peak response of

the PPE AR3 ensemble is much dampened compared

to PPE NoM, and even slightly lower than N-TREND.

However, it is consistent with N-TREND within the

5th–95th-percentile range.

Comparing the residuals of proxy and PPE epoch

analysis (Figs. S2a–c), we note that the residuals in-

crease particularly between year 3 and year 5 after the

eruption. This observation holds for all PPE’s and for

all target datasets. To increase our understanding, we

compare an ensemble member of the CESM showing a

particularly prolonged recovery and persistent cooling

in year 4 after the eruption (Figs. 7d–f) and one with a

particularly quick and steadily decreasing recovery

(Figs. 7g–i). In the former case, PPE AR3 reproduces

the recovery time, the peak cooling and overlaps with

N-TREND for all datasets within its uncertainty

range. The residuals are negligibly small 5 years af-

ter the eruption (Figs. S2d–f). In the latter case, even

though the cooling is more prolonged for PPE AR3

compared to PPE NoM neither its recovery time nor

its amplitude match the proxy amplitude. The resid-

uals are near constant up to year 15 (Figs. S2g–i). We

conclude that model and proxy output can be consis-

tent when taking memory effects into account. Memory

can explain the long recovery time observed in proxy

reconstructions but requires persistent cooling on a

time scale between 3 and 5 years. This short-term per-

sistence could be caused by internal variability, but

also by missing short-term feedback mechanisms in

the model, for example, changes in the North Atlantic

Oscillation (Zanchettin et al. 2013; Driscoll et al. 2012;

Timmreck 2012).

d. Effects of memory in pseudoproxies on detection

and attribution

We perform detection and attribution studies for

the period of 1300–1710 in order to evaluate if the pre-

viously observed low amplitude of fingerprints in prox-

ies might be due to memory effects. We chose the upper

end of this period to exclude an overlap with the fit-

ting period (1710–1988) and the lower end to ensure

reasonable data quality and coverage. Additional sen-

sitivity tests were performed for the slightly longer pe-

riod of 1300–1850. The proxy reconstructions served

as the regression targets, while the fingerprints of ex-

ternal forcing were PPE versions of the all forcings

and volcanic forcing only simulations (Fig. 8). Neither

the proxy reconstruction nor fingerprints were smoothed

prior to the regression. The fingerprints are most af-

fected for the RW version of volcanic forcing only,

where the temperature anomalies deviate strongly from

the PPE NoM reference at certain periods.

All target datasets show increased volcanic scaling

factors for PPEAR3 and PPE LTM compared to PPE

NoM (Figs. 9a–c). The addition of memory to the fin-

gerprints makes the model consistent with the proxy

FIG. 6. Overview over atmospheric sulfate injection in IVI2 (Gao

et al. 2008) and eVolv2k (Toohey and Sigl 2017). Events chosen for

the proxy (PPE) epoch analysis are highlighted and marked by a

blue (orange) dot.
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data in case of the longer period. The highest difference

between the memory PPEs and PPE NoM can be ob-

served in the RW reconstruction. For this dataset the

scaling factors for volcanic forcing are increased up to

the median value b 5 1.5. The scaling factors also in-

crease with memory for FULL and MXD; however, the

difference to the reference PPE NoM is smaller. These

observations are consistent with the results of the epoch

analysis, which showed that anomalies in response to

volcanic forcing are reduced. Two main observations

can be made from plotting the scaled fingerprints rela-

tive to their proxy targets (Figs. 9d–f), which are clearly

present in FULL and RW, but only weakly present in

MXD. The big drop of NH temperature following

eruptions in the mid-fifteenth century is matched much

better by the memory PPEs in both magnitude and

length. The same applies to the eruptions in 1600 and

1640. Low-frequency variability increases for thememory

fingerprints, resulting in a better fit for RW and FULL

reconstructions, which show a substantial low-frequency

variability between 1450 and 1600. When targeting the

period 1300–1850 (Fig. 10) the scaling factors are slightly

reduced and in all cases are consistent with one. This

could be explained by overfitting the peak warmth in

the sixteenth century in the shorter analysis (cf. Figs. 9

and 10). Note that the longer period is also influenced

by the wrong dating of Laki (1761 instead of 1783) in the

CESM-LME, which could influence the results and

dampen the scaling factors.

The residual variability in reconstructions not

explained by the fingerprints (Figs. 11a–c) shows a slight

decrease when accounting for memory, which is par-

ticularly prominent in the RW case. Even though the

proxy uncertainty is relatively high, the ensemble

FIG. 7. Superposed epoch analysis for 16 well-dated volcanic eruptions between 1000 and 1900. Year 0 refers to the year of eruption.

(a)–(c) Full ensemble range. Shading is as in previous figures. (d)–(f) Best matching ensemble member including reconstruction un-

certainty (shaded). (g)–(i) Poorly matching ensemble member.
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median shows a clear decrease when accounting for

memory. Simultaneously, the variance of the PPE con-

trol runs decreases and approaches the proxy value.

Thus, the residual variability becomes consistent with

the control variability for PPE AR3 and higher memory

in case of FULL and RW, while for MXD it is consistent

for all memory PPEs.

We conclude that models and proxy reconstructions

are consistent when accounting for memory effects in

RW data. This indicates better correspondence between

signal amplitudes in fingerprints and reconstructions.

5. Discussion and conclusions

The implementation of memory improved the agree-

ment between proxy and pseudoproxy reconstruc-

tions. Ring-width-only reconstructions have particularly

benefited, but results for the full network reconstruction

including both width and density proxies were also im-

proved. Although it has long been well known that ring

width data can be successfully fitted by an autoregressive

memory model (Cook et al. 2002; Meko 1997), we find,

for the first time, that implementing autoregressive

memory in climate model data can introduce almost

identical spectral behavior in model data and resolve

proxy–model discrepancies such as the low signal am-

plitude of the volcanic signal in detection and attribution

studies. An autoregressive process of third order per-

forms best out of all our memory models considered.

The remarkable agreement between the spectral den-

sity of RW only proxy reconstruction and PPE AR3

suggests that even though RW has a clear spectral

bias, it is sensitive to the full range of the climate signal.

A similarly good agreement was found for the full net-

work, in particular for multidecadal time scales, when

the ensemble mean agrees well with PPE AR3. As a

consequence of memory biases low-frequency vari-

ability is inflated while high-frequency variability is

suppressed. This could lead to an overestimation of

the magnitude of long-term anomalies, especially for

RW data. This phenomenon is robust for all three da-

tasets, where it leads to a warmer MCA, a cooler LIA,

and increased warming during the twentieth century in

the PPEs when including memory. The effect on the

FIG. 8. Pseudoproxy fingerprints of external forcings for the PPE ensembles targeting the (a),(d) full, (b),(e)MXD, and (c),(f) RW-only

network. Red and black shading indicates the percentiles of the PPE AR3 and PPE NoM ensembles, respectively. Fingerprints are

smoothed using a 20-yr low-pass filter for visualization purposes.
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amplitude of the MCA is particularly high, which could

be caused by poor data coverage further exacerbating

the bias. Without considering memory, MXD recon-

structions are most consistent with model simulations.

MXD data show little autocorrelation and long-term

memory compared to RW and improvements when

fitting memory to the PPEs are small. However, re-

constructions using density only still show more auto-

correlation and long-term memory than observations

and model simulations. It remains unclear from our re-

sults if the deviations between MXD and observations/

simulations arise from biases in the signal of density

proxies or in the simulation of persistence of climate

signal in the CESM.

The year-to-year memory causes a dampened ampli-

tude in response to volcanic forcing along with a slower

recovery, particularly affecting ring width reconstruc-

tions. This confirms earlier studies (Esper et al. 2015;

Franke et al. 2013; Schneider et al. 2015; Stoffel et al.

2015). Our results from the epoch analysis tie in with

Neukom et al. (2018), who found that the addition of

first-order autoregressive [AR(1)] noise in pseudoproxy

reconstructions would slightly dampen the amplitude,

but not cause a prolonged cooling. We have, for the

first time, provided a memory model that can explain

the dampening and the prolonged cooling in proxy

reconstructions and resolve the divergence between

proxy and climate model response. We have shown

that autoregressive memory processes cause a signif-

icant reduction of posteruption temperatures for several

years. A particular mismatch between PPEs and proxy

targets is present in all datasets after around 5 years.

This could be explained by internal variability or po-

tentially a lack of short-term feedbacks in the climate

model and can be resolved by PPE AR3 for specific

ensemble members.

Our results from detection and attribution studies

indicate that model simulations and proxy reconstruc-

tions agree better when accounting for biological-based

memory. While the scaling factors are increased, the

residuals are reduced to an extent that is consistent

with the model implementation of internal variability.

Residuals are smallest for the full network, which is

likely a result of higher data coverage, including more

FIG. 9. Results for detection and attribution analysis for the period 1300–1710. (a)–(c) Scaling factors indicating the magnitude of the

fingerprints in reconstructions. Box: lower and upper quartiles; line: median; whiskers: 5th–95th percentiles. (d)–(f) Scaled PPE finger-

prints against targeted proxy reconstruction (blue) during the regression period smoothed with a 15-yr low-pass filter.
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than twice the amount of proxy records as MXD-/RW-

only reconstructions. Our results indicate that for both

periods the influence of internal variability is low com-

pared to forced variability. When the fingerprints ac-

count for memory effects, more forced variability can

be detected in the proxy reconstructions, this con-

cerns particularly the variability related to volcanic

forcing. The magnitude of the resulting scaling factors

varies across the target datasets, with smallest values

in case of MXD and highest values in case of RW. This

observation holds for both analyzed periods. For the

period 1300–1710 the scaling factor for volcanic forcing

obtained from the RW target dataset is significantly

higher than one, and the low-frequency variability

trend during the sixteenth century is extremely well fit-

ted by the scaled PPE AR3 fingerprints. This indicates

a potential overfit and does not occur when extending

the analysis to 1850. However, the longer period in-

cludes wrongly dated volcanos in the model and thus

results are not fully reliable. The persistence of the

climate signal due to biological memory processes in-

troduces a degree of smoothing to the proxy recon-

structions. This could explain previous observations

that using smoothed fingerprints for detection and

attribution studies results in higher scaling factors

than using unsmoothed fingerprints (Schurer et al.

2013, 2014).

We conclude that it would be beneficial to include

ring width into proxy reconstructions, as they agree

well with the climate model signal. However, spectral

biases have to be considered when comparing model

and proxy data. While we have been focusing on tree-

ring data in this analysis, it is likely that memory biases

of this kind will similarly affect other biological proxy

archives, and thus propagate into multiproxy studies.

It is beyond the scope of this article to analyze the exact

implications on calibration of proxy data. However,

our results suggest that it is beneficial for the quality

of RW data to invert autoregressive models to ex-

tract the real underlying climate signal. Given the

sensitivity of low-frequency variability to statistical

processing, we conclude that the MCA–LIA difference

is not a robust measure for model performance. When

comparing model and proxies, spectral biases should

be taken into account. Particularly for TLS-like cal-

culations, where model and proxy reconstructions are

FIG. 10. As Fig. 9, but for the period 1300–1850.
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assumed to have a similar noise structure, it would be

beneficial to take into account that certain types of

proxy data might not capture high-frequency variability

and are subject to inflated low-frequency variability.
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