
REVIEW
published: 14 September 2018
doi: 10.3389/fcimb.2018.00314

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 1 September 2018 | Volume 8 | Article 314

Edited by:

Yongqun He,

University of Michigan Health System,

United States

Reviewed by:

Mauricio J. Farfan,

Universidad de Chile, Chile

Min Dong,

Boston Children’s Hospital and

Harvard University, United States

*Correspondence:

Wenkai Ren

renwenkai19@126.com

Guoqiang Zhu

yzgqzhu@yzu.edu.cn

Specialty section:

This article was submitted to

Microbiome in Health and Disease,

a section of the journal

Frontiers in Cellular and Infection

Microbiology

Received: 07 May 2018

Accepted: 16 August 2018

Published: 14 September 2018

Citation:

Li Z, Quan G, Jiang X, Yang Y, Ding X,

Zhang D, Wang X, Hardwidge PR,

Ren W and Zhu G (2018) Effects of

Metabolites Derived From Gut

Microbiota and Hosts on Pathogens.

Front. Cell. Infect. Microbiol. 8:314.

doi: 10.3389/fcimb.2018.00314

Effects of Metabolites Derived From
Gut Microbiota and Hosts on
Pathogens

Zhendong Li 1, Guomei Quan 1, Xinyi Jiang 1, Yang Yang 1, Xueyan Ding 1, Dong Zhang 1,

Xiuqing Wang 1, Philip R. Hardwidge 2, Wenkai Ren 3* and Guoqiang Zhu 1*

1 Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu

Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou

University, Yangzhou, China, 2College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States,
3Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed,

College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China

Intestinal metabolites participate in various physiological processes, including energy

metabolism, cell-to-cell communication, and host immunity. These metabolites mainly

originate from gut microbiota and hosts. Although many host metabolites are dominant

in intestines, such as free fatty acids, amino acids and vitamins, the metabolites derived

from gut microbiota are also essential for intestinal homeostasis. In addition, some

metabolites are only generated and released by gut microbiota, such as bacteriocins,

short-chain fatty acids, and quorum-sensing autoinducers. In this review, we summarize

recent studies regarding the crosstalk between pathogens and metabolites from different

sources, including the influence on bacterial development and the activation/inhibition

of immune responses of hosts. All of these functions would affect the colonization of

and infection by pathogens. This review provides clear ideas and directions for further

exploring the regulatory mechanisms and effects of metabolites on pathogens.

Keywords: metabolites, pathogen infection, gut microbiota, dietary nutrients, regulatory effects

INTRODUCTION

A growing number of studies suggest that intestinal microbiota play an important role at the
interface of health and disease of hosts, due to a crosstalk of small molecules between the intestinal
mucosal surfaces and the microbiota. Examples include food digestion, oxidation and reduction
of molecules, and the synthesis of essential amino acids. Some of these molecules are metabolites
derived from hosts and microbiota (Donia and Fischbach, 2015). Many studies have reported that
the intestinal metabolites regulate pathogen infection in intestines, through genome-based analysis
of bacteria and high-throughput metabolomics (Browne et al., 2017; Hirata and Kunisawa, 2017).

Metabolites can affect the invasion of pathogens through different pathways. Some metabolites,
such as nisin, and several lantibiotics directly kill pathogens by disrupting bacterial cell structures.
Nisin inhibits peptidoglycan synthesis by targeting lipid II, which is a key intermediate in the
peptidoglycan biosynthesis machinery within the bacterial cell envelope. Lantibiotics dock with
lipid II to promote the formation of pores in the cell membrane, resulting in a loss of membrane
and subsequent cell death. In addition, bacteriocins can kill bacterial cells by interfering with
bacterial DNA, RNA, and protein metabolism (Cotter et al., 2013). Resource competition between
commensal bacteria and pathogens caused by metabolites is also an indirect pathway. Competition
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in the use of monosaccharides can limit the colonization
of Citrobacter rodentium in wild-type mice (Kamada et al.,
2012). Another example is iron that is crucial in host–
pathogen interaction, in which both opponents compete
for iron. Pathogens have specific iron requirements due to
the metal’s function in metabolism and proliferation (Nairz
et al., 2010). Several metabolites also affect cell adhesion
and biofilm formation. For example, D-amino acids produced
by Bacillus subtilis prevent biofilm formation and reduce
existing biofilms (Mühlen and Dersch, 2016). Quorum-sensing
autoinducers also affect the adhesion of flagellum, biofilm
formation, and production of toxins (Yang et al., 2013). Recent
studies have uncovered a major role of metabolites in the
regulation of the immune system (especially the microbial
metabolites). Intestinal metabolites activate innate immunity
through numerous microbial sensors called pattern recognition
receptors (PRRs) in intestinal epithelial cells after infection
by pathogens. In addition, several microbial metabolites are
involved in the regulation of adaptive immune cell development,
in particular T lymphocytes (Levy et al., 2017). Furthermore,
some of these identified metabolites, including short-chain fatty
acids (SCFAs) and vitamins, have been shown to have a protective
effect, whereas others, such as quorum-sensing autoinducers,
have been shown to directly promote the infection by pathogens.

This review summarizes the findings from past studies on
the effects and brief regulatory mechanisms of metabolites
from different sources on pathogens in intestines. The growing
understanding of the role of intestinal metabolites in bacterial
virulence provides new opportunities to interfere with important
pathogens or pathogenesis.

THE EFFECTS OF METABOLITES FROM
GUT MICROBIOTA ON PATHOGENS

Gut microbiota is mainly metabolized via absorbing energy and
sources from the host and the diet to support their growth
and releasing metabolites produced through fermentation. These
metabolites in turn influence the host metabolome and the
formation of gut microbiota (Flint et al., 2015). Here, we
describe the sources of several intestinal microbial metabolites
(Table 1), explain in detail how these microbial metabolites
regulate pathogens and their effects, and provide a future research
direction. (Table 2).

Bacteriocins
Bacteriocins were first identified in Escherichia coli. Fredericq
discovered that bacteriocins are proteins and can be active
against a limited range of bacteria, but have a specific immunity
mechanism for their producers (Fredericq, 1946). Bacteriocins
have been found in all major lineages of bacteria and some
members of the archaeal community (Riley andWertz, 2002; Nes
et al., 2007; Blum, 2008). In particular, 90% of environmental
and clinical isolates of Pseudomonas aeruginosa can produce
bacteriocins. The bacteriocins of gram-positive bacteria are
plentiful and even more diverse than those generated in
gram-negative bacteria. The most typical bacteriocin-producing

TABLE 1 | The evidence of metabolites from gut microbiota.

Metabolites Gut Microbiota References

Bacteriocin All major lineages of

Bacteria, Archaea.

Gillor et al., 2008

Nisin A L. lactis Hurst, 1981

MccB17 Enterobacteria (mostly

E. coli)

Li et al., 1996

MccJ25 Enterobacteria (mostly

E. coli)

Bayro et al., 2003

Colicin E. coli Cascales et al., 2007

SCFA Acetate

Propionate

Bacteroidetes Macfarlane and

Macfarlane, 2003

Butyrate Firmicutes Macfarlane and

Macfarlane, 2003

Microbial amino

acids

Lysine Gut microbiota Metges et al., 2003

D-aas Gut microbiota Sasabe et al., 2016

Microbial

Vitamins

Vitamin K2,

B vitamins

LAB, Bifidobacteria Hill, 1997

AI AI-2 E. coli and other bacteria Pereira et al., 2013

AHL P. aeruginosa, Clostridium

perfringens

Yang et al., 2014

PQS P. aeruginosa Diggle et al., 2006

gram-positive bacteria are lactic acid bacteria (LAB) (Gillor et al.,
2008).

The interactions of bacteriocins with target bacteria have
been studied in many respects (Figure 1). Since the cell wall
is highly conserved among pathogens and does not exist in
mammalian cells, it is considered to be a perfect target for
inhibiting pathogen infection. A suitable antibacterial substance
can inhibit the formation of the cell wall or destroy its integrity
(Mazzotta and Montville, 2010; Nayar et al., 2015). For example,
nisin A, produced by Lactococcus lactis, is a typical poreforming
bacteriocin which binds peptidoglycan precursor lipid II to
prevent it from combining with penicillin. This combination
induces pore formation by nisin molecules arranged as pore-
forming “units” and then rapidly kills cells Lages et al., 2013).
The synergistic effects of the Lactobacillus acidophilus surface
layer and nisin A inhibit the growth of pathogenic gram-
negative Salmonella enterica and potential pathogenic gram-
positive bacteria, Staphylococcus aureus and Bacillus cereus. The
effect suggests that the synergistic action between bacteriocins
and beneficial bacteria can inhibit harmful bacteria. If this
mechanism is ubiquitous in other intestinal commensal bacteria,
exogenous bacteriocins can enhance the antibacterial capacity
of commensal bacteria, and quickly clear the pathogens (Prado-
Acosta et al., 2010). In addition, the genetic materials within
pathogen cells are targets of bacteriocins. For example, the
MccB17 and MccJ25 microcins are toxic peptides secreted by
enterobacteria (mostly E. coli), with molecular masses below
10 kDa. Microcins are produced and secreted under conditions
of limited essential nutrients and are activated against related
species. MccB17 andMccJ25 microcins internalize into the target
bacterial cell respectively across the outer-membrane protein
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TABLE 2 | The pathogens are regulated by gut microbiota-derived metabolites and their mechanisms and effects.

Metabolites Pathogens Mechanisms and effects

Bacteriocin Nisin A S. enterica, S. aureus, B. cereus. Bind with peptidoglycan precursor lipid II to prevent the synthesis of peptidoglycan. Induces

pore formation. ↓

S. enterica, S. aureus, B. cereus Synergistic effects between the L. acidophilus surface layer and Nisin A. ↓

MccB17,

MccJ25

Escherichia, Klebsiella, Shigella,

Salmonella, and Pseudomonas

Inhibit the bacterial RNA polymerase and DNA gyrase. ↓

Colicin E. coli Split the 16S rRNA at the 3′end of the coding sequence and inhibit protein synthesis. ↓

SCFA C. jejuni Induce Caco-2 cell differentiation. ↓

Active AMPK and mucin secretion. ↓

S. aureus Govern the expression of antimicrobial peptide mRNA and enhance the integrity of BMEC. ↓

All pathogens High concentrations of SCFAs release anions and then affect osmotic balance of bacteria. ↓

EHEC strain Low concentrations of butyrate obviously promote the expression of vital virulence. ↑

C. jejuni Different concentrations of SCFAs can be used as spatial clues to permit colonization and gene

expression of pathogens. ↑

Microbial

amino acids

D-aas E. coli Replace the D-Ala in short peptide of peptidoglycan and result in the accumulation of two

major new muropeptides, which affect cell walls. ↓

S. aureus Affect biofilm formation and degradation. ↓

V. cholera, P. aeruginosa, S.

aureus, EHEC

DAO deaminates neutral D-aas to release antimicrobial product H2O2. ↓

D-Ser EHEC Activate the SOS response and inhibit the expression of the type III secretion system. ↓

Vitamins Vitamin K2 S. aureus Participate in a redox cycle with heme on membrane, and then keep development of

pathogens. ↑

S. aureus Enhance biofilm formation. ↑

menadione Gram-positive organisms Inhibit bacterial growth and exotoxin. ↓

Vitamin B2 Many pathogens Stimulate proliferation of neutrophils, monocytes, and macrophages. ↓

Vitamin B9 L. monocytogenes Activate Nox2 and keep defense against pathogens. ↓

Vitamin B6 S. typhimurium Regulate lymphocyte proliferation, natural killer cell activity, and Treg cells, Favor the

development of cellular and humoral immunity. ↓

Autoinducers AI-2 E. coli Lack of AI-2 reduces the adhesion of flagellum, expression of Stx2e toxin, and production of

bacterial surface outer membrane proteins. ↓

AHL
S. aureus

F18 E. coli

P. aeruginosa

AI-2 negatively regulates biofilm formation and higher polysaccharide

intercellular adhesion (PIA) production. ↓

Enhance the expression of flagella, a virulence factor. ↑

Activate target genes including those coding for rhamnolipid, elastase, the PA-IL lectin, and

pyocyanin and influence biofilm formation. ↑

↓, Inhibit pathogens; ↑, Promote pathogens.

OmpF and the outer-membrane receptor FhuA-dependent TonB
pathway. The inner-membrane protein SbmA then transports
both of the microcins across the inner membrane to the
cytoplasmic face. Finally, inside the cell, MccJ25 inhibits the
bacterial RNA polymerase and MccB17 acts as a DNA gyrase
inhibitor (Mathavan and Beis, 2012). MccB17 exhibits potent
bactericidal activity against a wide range of bacteria including
Escherichia, Klebsiella, Shigella, Salmonella, and Pseudomonas
(Baquero and Moreno, 1984). Besides, bacteriocins can inhibit
the synthesis of key proteins in pathogens. The colicin family
proteins by E. coli exhibits 16S rRNase activity. They bind the
BtuB/Tol translocation machinery for the purpose of crossing
the outer membrane and split the 16S rRNA at the 3-end of the
coding sequence, inhibiting RNA translation (Toba et al., 1988;
Lancaster et al., 2010; Ng et al., 2010).

Importantly, in animal models, bacteria have been found to
produce bacteriocins and inhibit the growth of pathogens. For
example, E. coli strain H22 inhibited many Enterobacteriaceae

members in vitro, whereas in vivo, 6 days after simultaneous oral
inoculation in germ-free mice, E. coli H22 decreased the fecal
population of Shigella flexneri 4 to undetectable levels. Further
studies have revealed that E. coli H22 produces a variety of
bacteriocins to prevent pathogens, includingmicrocin C7, colicin
E1, and colicin Ib (Cursino et al., 2010).

Currently, most studies focus on the discovery of novel
bacteriocins produced by bacteria and their functions
in vitro. Isolating bacteriocins from the intestine and
mimicking the intestinal environment to explore the types
of bacteriocin production and the regulatory mechanisms
for pathogens could be a useful research direction to
better understand the interactions between gut microbiota,
bacteriocins, and pathogens. More importantly, to address
the problem of antibiotic resistance, using the synergy
of bacteriocins and antibiotics is a new approach in the
treatment of infectious diseases (Sass and Brötz-Oesterhelt,
2013).
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FIGURE 1 | The gut microbiota release bacteriocins. First, they bind Lipid 2 of the cell wall of the pathogen, inhibiting the synthesis of peptidoglycan. Some

bacteriocins enter the cytoplasm of pathogens and bind 16s rRNA to inhibit protein synthesis. Bacteria also inhibit RNA polymerase and DNA gyrase. Ultimately, cell

growth is blocked or cells die.

Microbiota-Derived Short-Chain Fatty
Acids
Short-chain fatty acids (SCFAs), the metabolites of microbial
fermentation, consist of acetic acid, butyric acid, and propionic
acid. Acetic acid and propionic acid are mainly produced
by Bacteroidetes fermentation, whereas butyric acid is the
main metabolite of Firmicutes (Macfarlane and Macfarlane,
2003). SCFAs are mainly observed in the cecum and the
ascending colon, but less in the small intestine (Cummings
et al., 1987). When nondigestible carbohydrates such as fiber
reach the colon, they are hydrolyzed into oligosaccharides
by anaerobic bacteria. Oligosaccharides are then converted to
phosphoenolpyruvate (PEP) via two major bacterial metabolic
pathways, the Embden–Meyerhof–Parnas pathway and the
pentose phosphate pathway. Finally, PEP is transformed into
an organic acid or alcohol (Fischbach and Sonnenburg,
2011).

SCFAs indirectly affect pathogen infection by maintaining
the integrity of the gut barrier and activating intestinal
immunity (Figure 2). For example, high concentrations of
butyrate protect Caco-2 cells from Campylobacter jejuni invasion
and translocation by inducing cell differentiation (Van Deun
et al., 2008). Butyrate also increases the intestinal barrier by
activating AMP-activated protein kinase (AMPK) in Caco-2 cell
monolayers (Peng et al., 2009). AMPK plays a critical role in
cellular energy homeostasis and performs cytoprotection under

stress (Hardie et al., 2000). SCFAs (propionic acids) decrease
the internalization of S. aureus into bovine mammary epithelial
cells (bMEC), more importantly, governing the expression of
antimicrobial peptide mRNA. However, the explicit relationship
between membrane protein activation and cell differentiation is
not clear (Alva-Murillo et al., 2012).

Direct antibacterial mechanisms of SCFAs show toxic effects

on enteric bacteria and present more conspicuously at high

concentrations (Van Immerseel et al., 2004). The nonionized
forms of SCFAs with a circumneutral pH enter and dissociate

in the bacterial cytoplasm, causing the release of SCFA anions
(Lambert and Stratford, 1999). These SCFA anions affect

the osmotic balance in a high concentration (Roe et al.,
1998). However, low concentrations of butyrate promote the

expression of the virulence determinants of enterohemorrhagic
E. coli (EHEC) strain Sakai. The butyrate is combined with
the transcriptional regulator Lrp’s ligand-binding domain in
response to the expression of the virulence gene (Nakanishi
et al., 2009). Different spatial gradients of SCFAs act as a cue,
permitting C. jejuni to locate the lower intestine and regulate the
expression of virulence and commensalism genes (Luethy et al.,
2017).

Consequently, SCFAs enhance the integrity of intestinal
epithelial cells and destruct the cellular structure by influencing
the osmotic pressure to affect pathogen infection. Appropriate
levels of SCFAs contribute to the integrity of epithelial cells and
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FIGURE 2 | SCFAs promote the differentiation of intestinal epithelial cells by activating AMPK to adapt to environmental changes caused by pathogens. They also

induce intestinal cells to synthesize antimicrobial peptides. High concentrations of SCFAs affect the osmotic pressure of pathogens and cause cell lysis. However, low

concentration of SCFAs induce the expression of pathogen virulence genes.

activate the immune system, while high concentrations are toxic
(Argenzio and Meuten, 1991). Therefore, the effects of SCFAs
on pathogens is concentration-dependent. In the physiological
range, whether SCFAs have a specific regulatory effect on
epithelial homeostasis, such as affecting epithelial turnover,
differentiation, or the barrier function, has not been convincingly
demonstrated in humans and animals. Future studies should
determine the normal physiological range of the SCFAs in the
intestine and the optimal level in animal models (Gill et al., 2018).

Microbial Amino Acids
Most of the amino acids in intestines originate from the
metabolism of dietary proteins and tissue proteins of host or
the conversion of other nitrogenous substances, while a small
proportion of amino acids are synthesized de novo by the gut
microbiota (Metges, 2000). For example, a study revealed that
approximately 2–20% of circulating lysine in the body’s plasma,
urine, and body proteins originates from the gut microbiota, by
using isotope tracers in humans, pigs, and rats (Metges et al.,
2003). A few bacteria can make all 20 of the standard amino
acids, which contribute to host amino acid homeostasis (Peng
and Harper, 1970; Lin et al., 2017).

Bacteria synthesize a largely different set of D-amino acids (D-
aa) that are released as free D-aa. A recent work has demonstrated
that intestinal microbiota in mice can produce abundant free
D-aas in vivo. Scientists quantified the D- and L-forms of all
proteinogenic amino acids by two-dimensional HPLC8 in cecal
contents of specific pathogen-free (SPF) mice and germ-free

(GF) mice. SPF mice contained D-Ala, D-Asp, D-Glu, and D-
Pro (∼200–500 nmol/g) while low levels of D-Asp were only
detected in GF mice. This result suggests that gut microbiota
plays a vital role in producing D-aas (Sasabe et al., 2016).
D-aas are involved in the composition of bacterial cell walls,
and D-Ala and D-Glu are the basic constituents of bacterial
peptidoglycans (Caparrós et al., 1992). However, excess D-aas
(such as D-Met, D-Trp, or D-Phe) replace the D-Ala within the
short peptide of peptidoglycan and cause the accumulation of
two major new muropeptides, which affect the metabolism and
hinder cross-linking of peptidoglycan (Caparrós et al., 1992).
This means that exogenous D-aas can modulate pathogens by
affecting the structure of peptidoglycan and the formation of
cell walls. Moreover, D-aas also affect biofilm formation and
degradation. D-Tyr (3µM), D-Met (2mM), D-Trp (5mM), and
D-Leu (8.5mM) were effective in inhibiting biofilm formation
of B. subtilis, and the synergies of all four D-amino acids were
particularly potent (∼10 nM). Other D-aas were inert in this
experiment (Kolodkin-Gal et al., 2010). Another study observed
that only D-Tyr, D-Pro, and D-Phe can inhibit the formation
of S. aureus biofilms (Hochbaum et al., 2011). Although their
action mechanism is partially associated with the replacement
of D-Ala in the peptide side chain, we do not know why
only a part of D-aas has the ability to regulate biofilms and
why inhibiting different pathogens’ biofilms require different
D-aas.

In addition, D-aas are employed against gut pathogens
through another pathway. D-amino acid oxidase (DAO) exists
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in the intestinal epithelium of mice and in human goblet
cells and is secreted into the intestine lumen. The amount of
DAO in SPF mice is higher than that in GE mice, indicating
that gut microbiota induce the production of intestinal DAO.
DAO can deaminate neutral D-aas to release the antimicrobial
product H2O2. Treating some enteric pathogens (Vibrio cholera,
P. aeruginosa, S. aureus, and enterohemorrhagic E. coli) withDAO
and D-aas can inhibit their growth (Ridler, 2016). Besides, D-
Ser activates the SOS response and inhibits the expression of the
type III secretion system that is essential for EHEC adhering to
host cells (Connolly et al., 2016). Finding commensal bacteria
that produce a large amount of D-aas in gut microbiota and
then examining their ability and mechanisms against pathogens
in vivo are probably good directions (Aliashkevich et al., 2018).

Intestinal Microbial Vitamins
Vitamins are essential micronutrients that maintain the normal
development and health of the body. They are abundant in
the human body and can be obtained through food intake
or transformation and synthesis of other substances. They can
also be supplied by intestinal bacteria. For example, the human
intestinal bacteria LAB and Bifidobacteria can synthesize most
of the water-soluble B vitamins and vitamin K2 from scratch
(Hill, 1997). Vitamins produced by microorganisms are mainly
absorbed in the colon, whereas vitamins derived from diets and
hosts are taken up in the proximal small intestine (Ichihashi et al.,
1992; Said and Mohammed, 2011).

E. coli, LAB, and Bacteroides species are major producers
of VK2 (menaquinone) in the human body. The potential
pathogenic bacteria S. aureus and Salmonella also produce
VK2 (Conly and Stein, 1992; Conly et al., 1994). VK2 play
an indispensable role in the virulence and survival of some
pathogens. For example, S. aureus acquires iron through the
high-affinity heme uptake system during invasion into hosts,
but excessive heme is highly toxic. Membrane-based quinone
molecules and heme form a redox cycle that continuously
releases semiquinones and reduces heme (Wakeman et al.,
2012). In addition, VK2 have been reported to affect the
phenotype expression of pathogens. Different concentrations of
VK2 enhance the biofilm formation of S. aureus, and the response
to exogenous VK2 signals appears to be under the regulation
of sarA in S. aureus (Kirby et al., 2014). In these processes,
VK2 play a vital role in maintaining the survival strategies of
pathogens. However, the analogs of VK2, such as menadione,
1, 4-naphthoquinone, and coenzymes Q1 to Q3, broadly inhibit
the growth of pathogens and reduce the amount of exotoxin
generated by gram-positive organisms. Moreover, VK2 not only
is a part of the electron transport chain in S. aureus, but also a
precursor of menaquinone (Schlievert et al., 2013).

The B vitamins [VB2(riboflavin), VB6(pyridoxine) and
VB9(folacin)] are all synthesized by bacteria in the gut
(LeBlanc et al., 2013). VB2 is a precursor of the coenzyme
flavomononucleotide (FMN) and flavin adenine dinucleotides
(FAD), and it participates in cell metabolism. LAB, E. coli,
and B. subtilis combine guanosine triphosphate (GTP) and D-
ribulose 5-phosphate to synthesize riboflavin (Bacher et al., 2000;
Sonenshein et al., 2002). In vivo, an intramuscular injection

of VB2 (6.25 mg/kg−100 mg/kg) can enhance the nonspecific
resistance of mice to various pathogens. The effect was induced
by the stimulation of the proliferation of neutrophils, monocytes,
and activated macrophages. This provides evidence that VB2
indirectly regulates immune responses to affect pathogens (Araki
et al., 2008). Deficient mice have impaired VB2-dependent
NADPH oxidase 2(Nox2) activation and ultimately reduced
defense against L. monocytogenes (Schramm et al., 2014).
However, VB2 has different effects on pathogens in vitro. It has
been reported that VB2 is toxic and can enhance the degree
of pathogen infection at high concentrations (Flieger et al.,
2016). The reasons for the diverse effects of VB2 on pathogens
are still unclear, but concentration seems to be an important
factor because VB2 concentration and application conditions
were different in these experiments. In addition, a recent study
revealed that if worms’ diets contain live bacteria, they develop
normally until adults. If only killed bacteria were fed, the
worms stop eating and growing. Supplementing extra VB2 leads
to a return to normal consumption, suggesting that intestinal
microbiota plays an important role in supplying micronutrients
such as VB2 (Qi et al., 2017).

Most of the members of the vitamin B family mainly induce
the immune system to prevent pathogen infection. For example,
VB9 is mainly produced by the fermentation of probiotics
such as bifidobacteria and lactobacilli in the human body. VB9
deficiency reduces lymphocyte proliferation and natural killer
cell activity, and it plays a pivotal role in the survival of regulatory
T (Treg) cells (Courtemanche et al., 2004; Troen et al., 2006;
Kunisawa et al., 2012). Bacillus, E. coli, P. aeruginosa, and
Serratia marcescens can produce VB6 (Dempsey, 1967). The
deficiency of VB6 impairs both cellular and humoral immunity
in humans and animals. Supplementation with Bacteroides and
VB6 can enhance the clearance of pathogens during Salmonella
typhimurium infection. We noticed that VB6 can clear pathogens
by promoting the growth of Bacteroides, regulating the host
immune system, or interfering with the growth or the virulence
expression of S. typhimurium. (Talbott et al., 1987; Rall and
Meydani, 1993; Sperandio, 2017).

In summary, vitamins produced by gut microbiota play an
important role in activating intestinal immune response and
defending against the infection by external pathogens. However,
the mechanism of direct interaction between microbial vitamins
and pathogens remains unclear.

Quorum-Sensing Autoinducers (AI)
With the gradual increase and accumulation of bacterial density
in a certain space, the bacteria show some physiological or
biochemical changes, facilitating quorum sensing (QS) (Waters
and Bassler, 2005). Since the concept was proposed by Fuqua a
large number of studies have found and revealed the primary
mechanism and fractional functions of QS. In a QS system, one or
more signaling molecules produced by bacteria are released into
the cytoplasm to sense the bacterial concentration. The signaling
molecules bind to QS receptors on the surface of bacteria or
other regulated bacteria when the bacterial concentrations reach
a certain threshold. Then, the receptors bind the corresponding
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binding domain of genes to change the bacterial behavior
(Papenfort and Bassler, 2016).

In the gut, E. coli is regulated by at least three QS
signaling molecules (Walters and Sperandio, 2006). One of
them is E. coli-generated autoinducer-2 (AI-2), which is
composed of 4,5-dihydroxy-2,3-pentanedione, a metabolite of
S-adenosylmethionine (Pereira et al., 2013). AI-2 is encoded
by the luxS gene and has diverse effects on different bacteria.
For example, the luxS deletion mutant of E. coli reduced the
adhesion of flagellum, expression of Stx2e toxin, and production
of bacterial surface outer membrane proteins (Yang et al., 2014).
However, a recent work demonstrated that the inactivation of
the luxS gene of S. aureus increased biofilm formation and
higher polysaccharide intercellular adhesion (PIA) production
(Ma et al., 2017). Another signaling molecule is acylated
homoserine lactone (AHL), mainly found in gram-negative
bacteria. Although E. coli cannot synthesize AHLs due to the lack
of the luxS gene, it has the AHL receptor protein LuxR. The AHLs
produced by P. aeruginosa isolated from the bovine intestine
and produced by Clostridium perfringens in the porcine intestine
modulate the expression of flagella, a virulence factor of F18
E. coli (Yang et al., 2013). Currently, other autoinducers have also
been discovered and most of them affect themselves and other
pathogens. For example, 2-heptyl-3-hydroxy-4(1H)-quinolone
(PQS) is a QS signaling molecule present in P. aeruginosa.
PQS modulates various target genes including those coding for
rhamnolipid, elastase, the PA-IL lectin, and pyocyanin as well as
influencing biofilm formation and cellular fitness (Diggle et al.,
2006). Most of the studies on QS have focused on the effects
and mechanisms of pathogen virulence and the discovery of new
inhibitors of QS. However, the vast majority of gut microbes are
beneficial to the body. Whether QS can be used to enhance the
survival ability of these probiotics and to resist pathogen invasion
is still an unexplored topic in this field.

THE EFFECTS OF METABOLITES FROM
HOSTS ON PATHOGENS

Host-derived metabolites are predominant in the body. They are
mainly synthesized by the host and provided by the diets. Here,
we briefly summarize some of the most common host-derived
metabolites’ regulatorymechanisms and effects on pathogens and
discuss the problems that exist. (Table 3).

Host-Derived Free Fatty Acids
Fatty acids released from host lipids by enzyme action become
free fatty acids (FFAs), which play unique roles in host defenses
against potential pathogenic microorganisms.

It is unclear how FFAs exert their antibacterial effects, but
we know that the central target seems to be the bacterial
cell membrane and the diverse essential processes that occur
within and at the membrane (Desbois and Smith, 2010). For
example, unsaturated FFAs probably bind to the carriers of
the electron transport chain directly or insert into the inner
membrane when they cross the cell wall or outer membrane
of bacteria, leading to the electron carriers moving apart or

being displaced from themembrane. These processes suggest that
FFAs can affect the energy metabolism of bacteria by destroying
the electron transfer chain. More importantly, the insertion of
FFAs into the cell membrane increases the permeability of the
cell membrane, resulting in the leakage of some cytoplasmic
contents and eventually cell death (Galbraith and Miller, 1973;
Peters and Chin, 2003; Desbois and Smith, 2010). In addition,
FFAs suppress the activity of cell membrane enzymes and the
nutrients absorption of bacteria (Galbraith and Miller, 1973;
Shibasaki, 1978; Kurihara et al., 1999; Zheng et al., 2005;
Sado-Kamdem et al., 2009). However, the type VII secretion
system (T7SS) of S. aureus can be triggered by host-specific
cis-fatty acids (Lopez et al., 2017). T7SS is a major secretory
pathway for S. aureus to produce virulence factors during host
infection, contributing to long-term persistence of staphylococcal
survival and the formation of abscesses (Kneuper et al., 2014). A
lipidomics analysis showed that the host-specific cis-unsaturated
fatty acids were linoleic acid (LA) and arachidonic acid. S.
aureus use fatty acid kinase (FAK) to integrate the fatty
acids into their own phospholipids and lipoproteins, thereby
activating EsxA expression, one of the virulence proteins of
T7SS (Burts et al., 2005; Parsons et al., 2014; Lopez et al.,
2017). We do not know why FFAs have different effects on
the same pathogens. We assume that FFAs may be required in
the process of pathogen growth and infection. When bacterial
growth reaches a critical value, pathogens will switch to a state
where a large amount of FFAs in the body is highly toxic for
pathogens.

Immune responses induced by FFAs is another important
regulatory mechanism. Conjugated linoleic acid (CLA) is a
generic term for the position and geometric isomers of linoleic
acid with conjugated double bonds at the 6-8 to 13-15 carbon
positions (Bergamo et al., 2014). The cis-9, trans-11 isomer (c9,
t11-CLA) of CLA inhibits nuclear factor-κB (NF-κB) activation
and IL-12 production in dendritic cells through ERK-mediated
IL-10 induction, suggesting that CLA affects the occurrence
of infectious inflammation in the body by modulating the
immune responses (Loscher et al., 2005). Arachidonic acid also
simultaneously enhances immune responses (both cellular and
humoral immunity). It can modulate macrophages to increase
the free radicals that are critical for antimicrobial or tumor-
killing effect. Macrophages and T cells in the gut can deliver
arachidonic acid to target organs to eliminate pathogen infection
and suppress inflammation (Das, 2018).

It is evident that FFAs can influence pathogen infection
through different pathways. Therefore, they have potential
value as an antimicrobial agent. FFAs are able to selectively
improve the growth of beneficial bacteria and possibly prevent
the proliferation of harmful microbiota; furthermore, dietary
supplementation does not lead to any deleterious effect on gut
microbiota (Das, 2018).

Host-Derived Amino Acids
Host-derived amino acids are one of the most common
metabolites in the gut and the main oxidative fuel in the
intestinal mucosa, as well as the structures that synthesize
tissue proteins, nitrogen sources, enzymes, and other biological
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TABLE 3 | The pathogens are regulated by host-derived metabolites and their mechanisms and effects.

Metabolites Pathogens by regulated Mechanisms and effects

FFA Potential pathogenic or

opportunistic bacteria

Bind to the carriers of the electron transport chain or insert into the inner membrane, increase

the permeability of the cell membrane. Cell death. ↓

Inhibit the activity of cell membrane enzymes and the absorption of nutrients to kill bacteria. ↓

Linoleic acid,

Arachidonic acid

S. aureus Activate EsxA expression, one of the virulence proteins of T7SS. ↑

C9, T11-CLA Inhibit NF-κB activation and IL-12 production. ↑

Arachidonic acid Enhance immune response (both cellular and humoral immunity) and modulate macrophages

to increase the free radicals. ↓

Amino acids L-glutamine Reduce the production of s-IgA and enhance the mucosal immune system. ↓

Activate NF-κB pathway. ↓

L. monocytogenes Indicate environmental change and virulence gene induction. ↑

Vitamins Vitamin A Regulate immune response, such as lymphocyte proliferation, cytokine expression, and

antibody production. ↓

Maintain the normal proportion of gut microbiota. ↓

S. aureus and Mycobacteria Destruct bacterial biofilm formation by inhibiting EPS production and QS. ↓

Vitamin C Citrobacter Enhance pathogenicity of harmful bacteria. ↑

Vitamin D Increase defensins. ↓

↓, Inhibit pathogens, ↑, Promote pathogens.

products. Recent studies have shown that specific amino acids
(glutamine, glutamic acid, arginine, glycine, lysine, threonine,
and sulfur-containing amino acids) can be used to prevent and
treat gut-related diseases in humans and mammals (Wang et al.,
2009; Ridler, 2016). For example, L-glutamine is a conditionally
essential amino acid in mammalian plasma and an important
donor of biosynthetic nucleic acids and other amino acids.
It plays a major role in promoting the repair of a damaged
gut, preventing pathogen infection, and maintaining the local
immune function (Souba et al., 1990; Scheppach et al., 1996).
L-glutamine is predominantly present in the small intestine
whose intestinal epithelial barrier can protect the internal
environment from the invasion of pathogens (Ménard et al.,
2010; Veldhoen and Brucklacher-Waldert, 2012). The normal
intestinal barrier against pathogen infection primarily depends
on the specific IgA antibodies secreted by the gut-associated
lymphoid tissue (GALT), which includes lymph nodes, plasma
cells, and mucosal intraepithelial lymphocytes (Ruth and Field,
2013). In normal physiological conditions, IgAs are released into
the intestine and can be employed as an inhibitor of bacterial
adhesion. However, an abnormal regulation of secretory IgA (s-
IgA) production leads to bacterial translocation and defective
barrier integrity through the weakening the mucosal immune
system (Mestecky et al., 1986; Artis, 2008). The addition of L-
glutamine reduces the production of s-IgA, helping the intestinal
immune system to resist pathogen adhesion and colonization
(Alverdy, 1990; Wang et al., 2009). Besides, L-glutamine can
activate NF-κB signaling pathway when pathogens invade into
the host. This pathway is an essential transcription factors family
in the intestinal cells and produces a variety of cytokines to
regulate the immune response (Haynes et al., 2009; Pasparakis,
2009; Mondello et al., 2010).

However, amino acids act as a double-edged sword for gut
health that not only contribute to disease prevention but also
induce the expression of pathogenic virulence genes. L-glutamine

can serve as an indicator of environmental change and
expression of virulence genes in L. monocytogenes. The intestinal
exogenous L-glutamine crosses the bacterial membrane through
ABC transporters and accumulates in the cytoplasm when
L. monocytogenes invade into hosts, then, the bacteria would
know that they have successfully entered host environments
by sensing the concentration of exogenous L-glutamine and
ultimatly release the endogenous virulence (Haber et al., 2017).
Similarly, glutathione, which consists of glutamic acid, glycine,
and cysteine, also acts as a signaling molecule to activate the
expression of the virulence regulator PrfA in L. monocytogenes
(Reniere et al., 2015).

Host-Derived Vitamins
Host-derived vitamins are the main source of most vitamins
in the intestines, hence their roles in the body are more
pronounced. Vitamin A is obtained directly from the diets
or in the form of retinyl esters and carotenoids. According
to studies in animal models, it can be considered as an
anti-infective vitamin owing to its important role in the
immune system, such as for regulating lymphocyte proliferation,
cytokine expression, and antibody production. The role of
vitamin A is mainly associated with intestinal epithelial cells
(Semba, 1999). A lack of vitamin A impairs the integrity of
the intestinal mucosal barrier, changing the gut microbiota
and mucus protein expression and components, reducing the
immunity, increasing the risk of susceptibility to pathogens, and
spontaneously inducing the death of thymocytes and mature
T cells. In addition, all-trans retinoic acid, a metabolite of
vitamin A in the intestinal mucosal dendritic cells, shapes
the intestinal immune responses and establishes the tolerance
of intestinal immunity, thereby affecting the body’s specific
immune function (Amit-Romach et al., 2009; Litwack and
Litwack, 2011; Cassani et al., 2012). Clinical trials have also
shown that supplementation of vitamin A increase the cure

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8 September 2018 | Volume 8 | Article 314

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Li et al. Intestinal Metabolites Affect Pathogens

rate of infectious diseases (Green and Mellanby, 1928; Semba,
1999). For example, diarrhea is a common disease caused by
pathogens in the intestine. Vitamin supplementation reduces
the incidence and mortality of diarrheal diseases in children.
Though the detailed mechanism of action is not entirely clear,
it is certain that the regulation of vitamin A for the mucosal
immune system may depend on the type of enteric pathogens
(Long et al., 2006). Another reason perhaps is that the diversity
of intestinal microbiota will decrease in the absence of vitamins.
For example, there is a significant reduction in butyric acid-
producing bacteria in children’s gut microbiota when vitamin
A is deficient, whereas the proportion of Enterococcus is
significantly increased (including Clostridium and Clostridium
butyricum). An appropriate level of vitamin A inhibits the
overgrowth of pathogens and strengthens the defense barrier of
the intestine. Enterococci increase the expression of inflammatory
cells and destroy the mucosa of the gastrointestinal tract (Lv et al.,
2016; Wang et al., 2016).

Vitamin C is a major dietary nutrient that can kill or
inhibit the growth of pathogens. For example, 5mM vitamin
C completely inhibits the growth of S. aureus (Kallio et al.,
2012; Vilchèze et al., 2013). Recently, one of the antibacterial
mechanisms of vitamin C revealed that the bacterial biofilm
formation was effectively destructed by inhibiting the production
of extracellular polymeric substances (EPS). Vitamin C inhibits
QS and other stationary phase control mechanisms that support
biofilm development and specifically lead to inhibition of
polysaccharide biosynthesis (Pandit et al., 2017).

Other vitamins, such as vitamin E and vitamin D, are also
linked to the homeostasis of the intestinal environments. For
example, in the absence of vitamin E, the pathogenicity of
Citrobacter in the intestinal tract ofmice is enhanced (Smith et al.,
2011). VitaminD deficiency reduces the number of defensins that
are necessary antimicrobial molecules required to maintain the
intestinal microbiota in the body (Su et al., 2016). In summary,
vitamin deficiency can affect the structure of the gut microbiota.
The mechanism of the action of vitamins on pathogens is no
different from that of other metabolites that have been described
above, mainly inhibiting the developments of pathogens and
activating the immune system.

CONCLUSION AND DIRECTION

Intestinal microbiota and their metabolites, as a whole, are
now considered an important and versatile “organ” that
maintains the body’s physiological homeostasis. Application
of the metabonomics technology, isotope tracer method, and
fluorescent probe technology has led to numerous evidences
suggesting that metabolites play a vital role in regulating the

infection of pathogens. On the one hand, these metabolites
prevent the invasion of pathogens by killing the pathogens

directly, resisting the colonization and internalization, and
inducing the immune responses indirectly. On the other hand,
metabolites are also involved in the process that contributes
to the pathogen infection. Some metabolites serve as signaling
molecules to activate bacterial quorum sensing that allows
bacteria to produce toxins and form biofilms, and to promote
the invasion of pathogens by activating the expression of
virulence factors. More importantly, we found that these
mechanisms also share common characteristics. The interaction
between metabolites and the membrane of pathogens is of great
significance. Secondly, metabolites also activate a large number
of immune factors to defend against pathogens. These two
common characteristics may provide ideas for further exploring
the regulation of metabolites on pathogens. Moreover, we also
found some problems in these studies. The reasons for the diverse
effects of some metabolites on pathogens are still unclear, and
we speculate that this is related to the different growth stages of
pathogens.

Therefore, we provide some possible directions for future
research. First, we should further explore the regulation
mechanisms of various metabolites on pathogens, especially the
interaction with bacterial membranes and the induced immune
response in the intestines. Changes in the levels of genes
involved in regulation of pathogens by metabolites should also
be noted (Qin et al., 2018). Second, metabolomics should be
used to quantitatively analyze the amounts of various metabolites
in animal models, while developing novel specific fluorescent
probes for different metabolites to track and localize metabolites
from different sources in the gut. Finally, we hope that we will
relieve or eliminate pathogens by inducing specific metabolites
from specific gut bacteria and hosts in the future.
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