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OBJECTIVE

Metformin is used as a first-line oral treatment for type 2 diabetes (T2D). How-

ever, the underlying mechanism is not fully understood. Here, we aimed to com-

prehensively investigate the pleiotropic effects of metformin.

RESEARCH DESIGN AND METHODS

We analyzed both metabolomic and genomic data of the population-based KORA

cohort. To evaluate the effect of metformin treatment on metabolite concentra-

tions, we quantified 131metabolites in fasting serum samples and usedmultivari-

able linear regressionmodels in three independent cross-sectional studies (n = 151

patients with T2D treated with metformin [mt-T2D]). Additionally, we used linear

mixed-effect models to study the longitudinal KORA samples (n = 912) and per-

formed mediation analyses to investigate the effects of metformin intake on

blood lipid profiles. We combined genotyping data with the identified metformin-

associated metabolites in KORA individuals (n = 1,809) and explored the underlying

pathways.

RESULTS

We found significantly lower (P < 5.0E-06) concentrations of three metabolites

(acyl-alkyl phosphatidylcholines [PCs]) when comparing mt-T2D with four control

groups whowere not using glucose-lowering oral medication. These findings were

controlled for conventional risk factors of T2D and replicated in two independent

studies. Furthermore, we observed that the levels of thesemetabolites decreased

significantly in patients after they started metformin treatment during 7 years’

follow-up. The reduction of these metabolites was also associated with a lowered

blood level of LDL cholesterol (LDL-C). Variations of these three metabolites were

significantly associated with 17 genes (including FADS1 and FADS2) and controlled

by AMPK, a metformin target.

CONCLUSIONS

Our results indicate that metformin intake activates AMPK and consequently

suppresses FADS, which leads to reduced levels of the three acyl-alkyl PCs and

LDL-C. Our findings suggest potential beneficial effects of metformin in the pre-

vention of cardiovascular disease.

Type 2 diabetes (T2D) is a chronic disease with diminished response to insulin and

relative insulin deficiency (1). Patients with T2D mostly take metformin as first-line

oral treatment to lower their glucose levels and to improve insulin sensitivity (2).

Despite metformin’s use as an antihyperglycemic agent for more than 50 years, its
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primary mode of action is not yet com-

pletely understood (3). Inside a cell,

metformin apparently inhibits complex

I of themitochondrial electron transport

chain and thereby reduces the cellular

energy status and upregulates the cyto-

plasmic 59-AMPK pathway (3). Activated

AMPK stimulates catabolic processes

(glycolysis and fatty acid oxidation) and

inhibits anabolic pathways (gluconeo-

genesis and fatty acid synthesis). So

far, six metformin targets are docu-

mented in the DrugBank (4) database,

including the AMPK complex and five

metformin transporters. Furthermore,

metformin was reported to have several

possible pleiotropic effects, resulting in

reduced risks for both cancer (5) and

cardiovascular disease (CVD) (6), as

well as reduced levels of LDL cholesterol

(LDL-C) (7,8).

Metabolomic studies have detected

metabolite profile changes during the

development of T2D (9–12) and identi-

fied concentration differences caused

by various physiological and environ-

mental factors such as age (13), sex

(14), smoking status (15), and alcohol

consumption (16). Several metabolomic

studies attempted to unravel the physi-

ological effects of metformin (17–21).

However, they either used technologies

covering only small sets of metabolites

or examined relatively few participants

(e.g., 20 healthy volunteers [18], 15 pa-

tients [17,19], 31 patients [20], and 24

patients treated with glipizide and 23

patients with metformin [21]). As inter-

individual genetic variations contribute

to diversemetabolite profiles and different

drug responses, combining metabolomics

and genomics may help to understand the

mechanisms underlying the action of med-

ications (22–25).

In this study, we discovered metfor-

min treatment–associated metabolites

in the Cooperative Health Research in

the Region of Augsburg (KORA) cohort

(26,27). We confirmed our finding in

longitudinal KORA data and replicated

them in two independent studies: the

Erasmus Rucphen Family study (ERF)

(28) and the Netherlands Twin Register

(NTR) (29). The biologically relevant

pathways for the identified metabolites

and their associated genes were fur-

ther analyzed in organ-specific protein-

metabolite interaction networks (30,31).

Additionally, we assessed the effects of

metformin treatment on LDL-C levels.

RESEARCH DESIGN AND METHODS

An overview of the analysis work flow is

shown in Fig. 1.

Ethics Statement

All participants gave written informed

consent. The KORA study was approved

by the ethics committee of the Bavarian

Medical Association, Germany; the ERF

study by the medical ethics board of the

ErasmusMCRotterdam, theNetherlands;

and the NTR study by the Central Ethics

Committee on Research Involving Human

Subjects of the VU University Medical

Center, Amsterdam, the Netherlands.

KORA Cohort

KORA is a population-based cohort

study conducted in Southern Germany

(26). The baseline survey 4 (KORA S4)

consists of 4,261 individuals (aged 25–

74 years) examined between 1999 and

2001. During the years 2006–2008,

3,080 participants took part in the

follow-up survey 4 (KORA F4). Clinical

data for each participant were retrieved

frommedical records. Based onphysician-

validated and self-reported diagnosis

(9,26), fasting glucose and2-h postglucose

load, and information onmedications (Ta-

ble 1), we excluded 1) patients suffer-

ing from type 1 and steroid-induced

diabetes (n = 9), 2) patients with T2D

treated with both metformin and in-

sulin (n = 15), 3) patients taking glucose-

lowering oral medication other than

metformin (n = 25), and 4) patients lack-

ing clear informationon treatment (n = 1).

Furthermore, participants with over-

night nonfasting blood samples (n = 16)

or isolated impaired fasting glucose

(n = 112) were excluded. We previously

showed that impaired fasting glucose and

impaired glucose tolerance (IGT) should be

considered two different phenotypes (9).

In KORA F4, we focused on five groups:

1) patients with metformin-treated T2D
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(mt-T2D), 2) patients with T2D with in-

sulin treatment (it-T2D), 3) patients

with T2D without glucose-lowering treat-

ment (non–antidiabetes drug treated

[ndt-T2D]), 4) participants with predia-

betes with IGT, and 5) healthy individuals

with normal glucose tolerance (NGT)

(Table 1).

Replication Studies

The ERF includes 3,000 living descen-

dants of 22 couples who had at least

six children baptized in the community

church around 1850–1900. The partici-

pants are not selected based on any dis-

ease or other outcome. Details about

the genealogy of the population have

previously been provided (28).

The NTR recruits twins and their fam-

ily members to study the causes of indi-

vidual differences in health, behavior,

and lifestyle. Participants are followed

longitudinally; details about the cohort

have previously been published (29). A

subsample of unselected twins and their

family members has taken part in the

NTR-Biobank (32) in which biological

samples, including DNA and RNA, were

collected in a standardizedmanner after

overnight fasting.

Duration of diabetes and 2-h postglu-

cose levels were not available in either

the ERF or NTR study. The diagnosis of

patients with diabetes in both ERF and

NTR studies was based on self-report.

Owing to the limited number of it-T2D

patients in these two replication studies

(n = 3 and n = 9, respectively), this group

is not included in the statistical analyses

in these two replication studies.

Initially, we had contacted a third po-

tential replication study, the Estonian

Genome Center of the University of

Tartu (EGCUT). However, only two mt-

T2D participants with available meta-

bolomics data were available in this

cohort; results from the EGCUT study

are therefore not shown.

Figure 1—Flowchart of the study design.
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Blood Sampling

In the KORA cohort study, blood was

drawn into S-Monovette serum tubes

(Sarstedt AG & Co., Nümbrecht, Ger-

many) in the morning between 8:00 A.M.

and 10:30 A.M. after at least 8 h of fasting.

Tubes were gently inverted twice,

followed by 30 min resting at room tem-

perature to obtain complete coagulation.

For serum collection, blood was centri-

fuged at 2,750g at 158C for 10min. Serum

was filled into synthetic straws, which

were stored in liquid nitrogen (21968C)

until the metabolomics analyses (9,23).

In the ERF and NTR, the overnight

fasting serum samples were drawn

for metabolite profiling. Details about

the sampling in these two cohorts were

described in previous publications

(28,32).

Metabolomics Measurement

The serum samples from participants in

the baseline KORA S4 and follow-up

KORA F4 study were measured with the

AbsoluteIDQp180 and AbsoluteIDQp150

kits (Biocrates Life Sciences AG, Innsbruck,

Austria), respectively. The assay procedures

were previously described in detail (27).

For KORA S4 and F4, identical quality-

control procedures (9,13), which are

explained in details in our previous pub-

lications, were used. In KORA F4, 131

metabolites of the initially targeted 163

metabolites passed all quality-control

criteria: hexose (H1), 24 acylcarnitines,

14 amino acids, 13 sphingomyelines, 34

phosphatidylcholines (PCs), diacyl (aa),

37 PCs acyl-alkyl (ae), and 8 lysoPCs. In

total, 124 metabolites overlapped be-

tween KORA S4 and F4, including H1,

21 acylcarnitines, 14 amino acids, 13

sphingomyelines, 33 PC aas, and 34 PC

aes, as well as 8 lysoPCs.

The metabolite measurements for

both replication studies (ERF and NTR)

were performed using the same platform

(AbsoluteIDQp150 kit) as in the KORA F4

study. Additionally, in ERF, PC ae C36:4,

PC ae C38:5, and PC ae C38:6 were mea-

sured in the full set of serum samples by a

targeted liquid chromatography–mass

spectrometry method. The measure-

ment is performed on a UPLC-ESI-Q-TOF

(Agilent 6530; Agilent Technologies, San

Jose, CA) mass spectrometer using

reference mass correction. Chromato-

graphic separation was achieved on an

ACQUITY UPLC HSS T3 column (1.8 mm,

2.1 * 100 mm) with a flow of 0.4 mL/min

over a 16-min gradient. The metabolites

were detected in full scan in the positive-

ion mode. The raw data were processed

using Agilent MassHunter Quantitative

Analysis software (version B.04.00; Agilent

Technologies).

Measured concentration values of all

analyzed metabolites are reported in

micromolar (mM) and were natural-log

transformed, and the distributions were

subsequently standardized with mean

of zero and an SD of 1 for all analyses

unless otherwise indicated.

Single Nucleotide Polymorphism

Genotyping, Imputation, and Genes

In KORA F4, we carried out genotyping

using the Affymetrix 6.0 GeneChip array

(Affymetrix, Santa Clara, CA). Imputation

was performed with Impute (http://

mathgen.stats.ox.ac.uk/impute/), version

0.4.2 (referenceHapMap phase 2, release

22). We only used autosomal single nu-

cleotide polymorphisms (SNPs) with a

Table 1—Characteristics of the KORA F4 cross-sectional study population

Clinical parameters NGT IGT ndt-T2D mt-T2D it-T2D

n 2,129 375 169 90 24

Age, years 52.8 (12.6) 63.9 (11.0) 66.3 (9.7) 66.8 (8.7) 69.2 (9.8)

Male 46 49 62 59 54

BMI, kg/m2 26.6 (4.3) 29.7 (4.9) 30.8 (4.4) 31.7 (5.4) 32.2 (5.9)

Waist, cm 90.5 (12.9) 99.7 (14.3) 104.6 (11.4) 106.3 (1.27) 107.2 (12.4)

Physical activity, .1 h per week 58 50 47 33 17

High alcohol intake† 17 17 18 20 8

Smoker 21 8 12 13 8

Systolic BP, mmHg 119.1 (17.4) 127.5 (18.5) 133.7 (18.6) 131.3 (18.9) 135.6 (22.7)

HDL-C, mg/dL 57.6 (14.4) 54.1 (14.0) 47.8 (12.1) 50.6 (10.5) 48.0 (9.6)

LDL-C, mg/dL 134.9 (34.3) 143.7 (35.4) 138.5 (36.5) 122.9 (29.0) 120.0 (31.6)

Triglycerides, mg/dL 110.6 (73.0) 146.0 (86.2) 175.1 (127.0) 174.4 (132.2) 142.1 (73.2)

HbA1c, % 5.4 (0.3) 5.6 (0.3) 6.3 (0.9) 6.9 (1.1) 7.3 (1.1)

HbA1c, mmol/mol 36 (3.3) 38 (3.3) 45 (9.8) 52 (12.0) 56 (12.0)

Fasting glucose, mg/dL 91.7 (7.6) 100.1 (10.6) 125.7 (29.1) 144.1 (37.1) 141.9 (39.0)

2-h postglucose load, mg/dL 97.7 (20.8) 161.7 (17.1) 214.5 (50.7)U d d

Time since diagnosis, years d d 1.0 (3.1)# 7.7 (7.1) 16.7 (7.4)

Insulin, mlU/mL 6.9 (25.9) 13.1 (64.0) 16.6 (30.1) 10.4 (10.4) 32.2 (77.8)

Statin usage 8 16 24 38 33

b-Blocker usage 12 31 43 41 63

ACE inhibitor usage 8 21 31 43 58

ARB usage 6 9 15 13 8

Metformin usage 0 0 0 100 0

Insulin therapy 0 0 0 0 100

Percentages of individuals or means (SD) are shown for each variable and each group (NGT, IGT, ndt-T2D, mt-T2D, and it-T2D). †$20 g/day for

women; $40 g/day for men. Un = 121. #For newly diagnosed T2D patients (n = 112), years since T2D diagnosis was defined as 0.
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minor allele frequency .5%, call rate

.95%, and imputation quality .0.4. For

the phenotype set enrichment analysis

(PSEA), we only mapped those SNPs to a

gene that were either in its transcribed

region or in its flanking region (110 kb

upstream, 40 kb downstream). Gene in-

formation was downloaded from the

UCSC (University of California, Santa

Cruz) genome browser (http://genome

.ucsc.edu). The SNP gene mapping was

described in detail previously (25). In to-

tal, 20,801 genes were analyzed.

Statistical Analysis

To evaluate the effect ofmetformin treat-

ment on metabolites, we used multivari-

able linear regression models with the

metabolite concentration values as out-

come and the grouping variable as pre-

dictor. Each metabolite was assessed

individually. To include potential con-

founders, we adjusted for two sets of co-

variates: 1) age and sex as the crude

model and 2) age, sex, BMI, physical ac-

tivity, alcohol intake, smoking, systolic

blood pressure (BP), levels of HDL choles-

terol (HDL-C), triglycerides, HbA1c, and

fasting glucose as well as the use of sta-

tins, b-blockers, ACE inhibitors, and an-

giotensin receptor blockers (ARBs) as

the full model (Table 1). To account for

multiple testing, we used Bonferroni cor-

rection and considered only thosemetab-

olites with a P, 0.05/131 = 3.8E-04 to be

statistically significantly different in KORA

F4.Meta-analysis of the three studieswas

performed using random effect models,

using a restricted maximum-likelihood

estimator.

In the KORA S4 to F4 longitudinal

study, we used linear mixed-effect mod-

els. We adjusted for the two sets of

covariates as described above while

assigning a random offset to each of

the individual participant in the longitu-

dinal study. Additionally, using linear re-

gression models on the KORA data set,

including two time points (S4 n = 1,335

and F4 n = 2,763) (9), we calculated the

residues of the metabolite concentra-

tions adjusted for age, sex, BMI, physical

activity, alcohol intake, smoking, systolic

BP, HDL-C, triglyceride, fasting glucose,

and HbA1c. The significance of the

changes in the metabolite concentra-

tions between the two time points (S4

and F4) was tested using a linear mixed-

effect model with the covariates at two

time points.

PSEA is a gene-based approach to an-

alyze the associations of genome-wide

SNP data with multiple phenotypes

in a combined way (25). The significance

of enrichment was calculated based on

10,000 permutations (limited by compu-

tational restrictions), while setting the

significance level at P, 1.0E-04 (lowest

possible P value owing to the permuta-

tion number).

Mediation analysis (33) was con-

ducted to model the identified metabo-

lites as mediators for the association

between metformin treatment and

LDL-C and total cholesterol in the longi-

tudinal KORA data. The mediation ef-

fects of each single metabolite and their

summed concentration were tested with

crude and fully adjusted multivariable

linear regression models.

All statistical analyses were per-

formed in R (version 3.0.1 [http://cran

.r-project.org/]).

Pathway Analysis

With use of a bioinformatical approach, a

network was constructed by retrieving

pairwise connections between candidate

metabolites, PSEA-identified genes, inter-

mediate proteins, and known metformin

target genes (9,31). Information on protein-

protein interactions was extracted from

STITCH (30). Known metformin target

genes were retrieved from the DrugBank

(4). In our network, we only considered

the shortest paths (allowing one interme-

diate protein, confidence score .0.7)

connecting the protein encoded by the

genes identified in PSEAwith themetformin

target genes.

RESULTS

Metabolite Profiles in Three Cohorts

We quantified.130metabolites in fast-

ing serum samples from the KORA S4

and F4, ERF, and NTR studies (Fig. 1).

The discovery study, KORA F4, includes

2,129 NGT, 375 IGT, 169 ndt-T2D, 90

mt-T2D, and 24 it-T2D subjects (charac-

teristics shown in Table 1). In the longi-

tudinal study, we used samples from

912 participants without metformin

treatment at baseline (KORA S4); 43 of

them were treated with metformin at

follow-up (KORA F4 [Supplementary Ta-

ble 1]). In reference to the two replica-

tion cohorts, ERF contained 29 ndt-T2D

and 32 mt-T2D patients (characteristics

shown in Supplementary Table 2), while

NTR included 73 ndt-T2D and 29 mt-T2D

patients (characteristics shown in Sup-

plementary Table 3).

In general, patients with T2D in the

three studies were older and more fre-

quently men, with higher BMI, and took

more nonantihyperglycemic medica-

tions than the participants without di-

abetes. Among the five groups in KORA

F4, people on statin treatment had sig-

nificantly lower LDL-C levels than those

who were not taking statins (Sup-

plementary Fig. 1). When comparing

mt-T2D with ndt-T2D, lower levels of

LDL-C were observed both in the cross-

sectional (KORA F4, ERF, and NTR) and in

the longitudinal KORA studies. Follow-

ing the 43 patients, who started metfor-

min treatment after the baseline, we did

not observe significant changes in the

levels of HbA1c and fasting glucose but

observed significant changes for LDL-C

and total cholesterol (Supplementary

Table 1).

Metabolites Associated With

Metformin Treatment

We found six metabolites including

three acyl-alkyl PCs, two diacyl (aa)

PCs, and one amino acid to have signif-

icantly lower concentrations in the 90

mt-T2D patients compared with the

169 ndt-T2D individuals in KORA F4 (Ta-

ble 2). For example, for the metabolite

PC ae C36:4, we observed that the fully

adjusted effect estimate was 20.66

with P = 4.92E-07; i.e., the PC ae C36:4

level in the mt-T2D group was 0.66 SD

lower than the ndt-T2D group.

We further investigated whether the

observed differences are specifically for

metformin treatment or just reflect the

progress of T2D in general. The concen-

trations of the six metabolites are signif-

icantly lower in mt-T2D than in the NGT

and IGT groups (Supplementary Table

4). In contrast, none of the six metabo-

lites showed a significantly different

concentration in the pairwise compari-

sons among the four groups without

metformin treatment, i.e., NGT, IGT,

ndt-T2D, and it-T2D (Supplementary

Table 4).

For sensitivity analysis, we tested the

associations of the six metabolites after

adding the duration of T2D to the fully

adjusted model. The three acyl-alkyl PCs

(PC ae C36:4, PC ae C38:5, and PC ae

C38:6), which are composed of at least

one polyunsaturated fatty acid (PUFA),

remained significantly different in the
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comparison between mt-T2D and ndt-

T2D (P , 3.8E-04) (Fig. 2A), whereas

the other three metabolites were not

significantly different anymore (Supple-

mentary Table 5). After adjustment of

the full model for 1) waist, 2) LDL-C,

and 3) the combination of LDL-C and

insulin, the effect estimates of the six

metabolites were almost unchanged

(Supplementary Table 5).

Replication and Meta-analysis

For the three acyl-alkyl PCs, we ob-

served consistent results in both repli-

cation studies (ERF and NTR); i.e.,

significantly lower levels were observed

in mt-T2D patients compared with ndt-

T2D individuals (P , 0.05) (Table 2 and

Fig. 2B and C). Additionally, a meta-

analysis of the three studies (KORA F4,

ERF, and NTR) yielded significant results

for the three replicated metabolites

(P , 3.8E-04) (Table 2). We refer to

these three highly intercorrelated me-

tabolites, which are not associated with

fasting glucose or HbA1c, as metformin

associated in the following paragraphs

(Supplementary Fig. 2).

In the longitudinal examination, we

found significantly decreased levels of

the three metformin-associated metab-

olites in patients who underwent met-

formin treatment during the follow-up

(P , 3.8E-04 using the fully adjusted

model) (Supplementary Table 6). Con-

sistent results for the three acyl-alkyl

PCs were observed in a sensitivity anal-

ysis with a subgroup of 55 ndt-T2D pa-

tients at the KORA S4, of whom 19 were

ndt-T2D patients and 36 were mt-T2D

patients in KORA F4 in the fully adjusted

model (P , 0.05) (Fig. 2D and Supple-

mentary Table 6). These prospective

findings confirmed our observations in

the cross-sectional study.

Relationship Between Metformin

Treatment, the Three Metabolites, and

LDL-C Levels

To investigate a potentially mediating

effect of the three acyl-alkyl PCs on the

associations between metformin treat-

ment and lipid profiles, we explored the

prospective data of 912 KORA partici-

pants (Supplementary Table 1). We

found that metformin treatment ac-

counts for a significant decrease of

LDL-C and total cholesterol levels, while

its influence on HDL-C and triglycerides

was not significant in both crude and
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fully adjusted models (P, 0.05) (Fig. 2E

and Supplementary Table 7). In particu-

lar, metformin was associated with a de-

crease in LDL-C levels of 11.83 mg/dL.

We therefore focused on the analysis

of LDL-C and total cholesterol.

After adding the three metabolites to

the full model, the direct association be-

tween metformin treatment and LDL-C

levels was not significant anymore

(P = 0.25) (Fig. 2F and Supplementary

Table 8A). Based on longitudinal analy-

sis, we found consistent results as

reported above (Table 2); i.e., signifi-

cantly reduced levels of the three me-

tabolites in the metformin-treated

patients were observed (e.g., for the

summed metabolite concentration P =

2.16E-05) (Fig. 2F and Supplementary

Table 8B). Furthermore, we found

significant positive associations be-

tween LDL-C and each of the three me-

tabolites as well as their summed

concentration after adjusting for met-

formin treatment (e.g., for the summed

metabolite concentration P = 6.87E-12)

(Fig. 2F and Supplementary Table 8C).

This means that these associations of

the metformin-associated metabolites

with LDL-C are independent of metfor-

min treatment. Finally, for each of the

three metformin-associated metabo-

lites (and their summed concentra-

tion), the mediation effects on the

association between metformin treat-

ment and the LDL-C levels were signif-

icant in both models (Table 3). For

instance, the summed concentration

of the metabolites mediates 3.43 mg/dL

reduction in LDL-C level, which accounts

for 29% of the total effect of metformin

on LDL-C (Table 3).

To rule out the potential effect of sta-

tin intake, we performed a sensitivity

analysis by excluding individuals tak-

ing statin at baseline KORA S4 and/or

follow-up F4. The mediation effects of

the summed concentration were also

significant for the associations between

metformin and LDL-C level (Supplemen-

tary Table 9A). However, although the

crude and full model showed similarly

significant mediation effects for total

cholesterol (Supplementary Table 8D

and E and Table 3), after excluding statin

users from the analysis, the effects on

total cholesterol were not significant

anymore with respect to the fully ad-

justed model (P, 0.05) (Supplementary

Table 9B).

Seventeen Genes Are Linked to

Metformin-Associated Metabolites

and Pathway Analysis

To identify genes associated with the

three metabolites, we applied PSEA on

these metabolites in a subset of KORA

F4 individuals (n = 1,809) with available

genotyping data and metabolite profiles.

We found 17 geneswith an enrichmentof

SNPs in their transcribed or flanking re-

gion (P, 1.0E-04) (Supplementary Table

10). These genes belong to five clusters,

one of them containing 12 genes located

on chromosome 11. A literature search

revealed disease phenotypes associated

with these 17 genes. Six genes, namely,

FADS1, FADS2, FADS3, MYRF, BEST1 and

RAB3IL1, are associated with T2D or its

comorbidities, including retinopathy and

Figure 2—Differences in metabolite concentrations, mediation effect, and organ-specific path-

ways. Mean residuals of the concentrations (with SEs) of three identified acyl-alkyl PC metab-

olites for the NGT, IGT, ndt-T2D, mt-T2D, and it-T2D groups derived in cross-sectional analysis of

the KORA F4 are shown in A. The mean residuals of the same metabolites in ERF are illustrated

for the NGT, ndt-T2D, and mt-T2D groups in B and in NTR for the non-T2D, ndt-T2D, and mt-T2D

groups in C, respectively. D refers to the longitudinal setting of the KORA study and shows the

mean residuals of the concentrations (with SEs) of the threemetabolites with respect to changes

within the 7 years between baseline and follow-up study when people were treated with

metformin. Residuals were calculated from linear regression model with the full adjustment.

E: The association betweenmetformin and LDL-C without consideration of the threemetformin-

associated metabolites. F: The results of the mediation analysis; the red cross indicates that the

direct association between metformin and LDL-C is not significant anymore. G: An overview of

the involved pathways. The connections indicated by liver, hypothalamus, muscle, and blood

show organ specificity between genes, pathway-related proteins, and metformin drug targets as

well as metformin. The metabolites (ellipses) were connected to metformin treatment (straight

side hexagons) through genes (rounded rectangles), proteins (hexagons), andmetformin targets

(rectangles). The activation or inhibition is indicated. Plus or minus symbol next to the line

indicates positive or negative association. For further information, see Table 3 and Supplemen-

tary Tables 8 and 12.
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coronary artery diseases (for references,

see Supplementary Table 10).

To explore potentially related path-

ways, we used a bioinformatics ap-

proach, integrating the 17 identified

genes with 6 known metformin target

genes (4) into a protein-protein interac-

tion network (9,30,31). For 3 of the 17

genes, there was no record for Homo

sapiens in the STITCH (30); therefore,

we investigated the interaction of the

remaining 14 genes with the 6 metfor-

min targets (Supplementary Table 11).

AMPK was found to be linked to FADS1

and FADS2 through interacting proteins

(leptin and sterol regulatory element–

binding protein 1c [SREBP1c]). A man-

ual evaluation of these interactions

in a literature research showed organ

specificity, mainly referring to liver and

hypothalamus (Fig. 2G). The AMPK com-

plex is inhibited by leptin and metformin

in the hypothalamus, whereas it is acti-

vated by metformin and leptin in the

liver. (References for each interaction

are provided in the Supplementary

Table 12).

CONCLUSIONS

We found significant concentration dif-

ferences for three metabolites (PC ae

C36:4, PC ae C38:5, and PC ae C38:6) in

the blood of patients with T2D under

metformin treatment and replicated

them in two independent studies. We

identified SNP variations in 17 genes (in-

cluding FADS1 and FADS2) that were as-

sociated with the three metabolites.

Based on these genes, we built an in-

teraction network to investigate the

underlying mechanisms of metformin

treatment and identified the organ-specific

AMPK pathway. We further found that

the reduced LDL-C levels in metformin-

treated patients with T2D were medi-

ated partially by the three acyl-alkyl

PCs. Sensitivity analyses were performed

to consider the duration of diabetes and

statin use.

The levels of metabolites depend on

multiple modifiable factors, such as life-

style and environment (9–11,13–16).

We therefore considered a number of

confounding effects, e.g., physiological

parameters (age, sex, BMI, and systolic

BP), lifestyle (physical activity, alcohol

intake, and smoking), glucose levels

(HbA1c and fasting glucose), lipid levels

(HDL-C and triglycerides), and medi-

cation usage (statins, b-blockers, ACE

inhibitors, and ARBs). Additionally, in-

termediates or end products of metab-

olism are influenced by underlying

genetic factors (23,24). In our study,

phenotypes and genotypes are available

for each person (n = 1,809); we thus

used phenotype set enrichment analysis

(25). Our combined analysis of genetic

and metabolomic data enabled us to

identify genes associated with the three

metabolites and supported the identifi-

cation of an organ-specific pathway. The

observation of significantly lower levels

of the three metformin-associated me-

tabolites (polyunsaturated acyl-alkyl

PCs) in the mt-T2D patients can be ex-

plained by metformin’s effects on AMPK

in the liver (Fig. 2G and Supplementary

Table 12). In the hepatocyte, metformin

increases the AMP-to-ATP ratio and thus

leads to the activation of AMPK. Acti-

vated AMPK blocks SREBP1c, a tran-

scription factor controlling enzymes

involved in the fatty acid synthesis and

inhibiting the synthesis of FADS1 and

FADS2 (22). This results in a reduced

synthesis of unsaturated fatty acids

and consequently lower acyl-alkyl PC

concentrations. Leptin occupies a cen-

tral position in the network (Fig. 2G)

and affects the FADS complex via three

different interactions. In the liver, leptin

not only activates AMPK, thereby sup-

pressing SREBP1c and downregulating

FADS1 and FADS2, but can also directly

inhibit both SREBP1c and FADS2 (34).

Metformin and leptin exert opposite ef-

fects in the hypothalamus and in the

liver (for references, see Supplementary

Table 12), but further studies are re-

quired to better understand the organ-

specific metformin effects in humans.

Recently, clinical practice guidelines

have recommended the usage of met-

formin as first-line therapy in T2D pa-

tients with heart failure (1,2). Our

observation of lower blood levels of

LDL-C in metformin-treated patients

points toward a beneficial effect of met-

formin for the prevention of CVD. A

meta-analysis of randomized clinical tri-

als shows that metformin treatment re-

sults in lowered LDL-C levels in newly

diagnosed T2D patients (8). Similar re-

sults were also reported in patients

without T2D in an epidemiological study

(7). Here, we observed that metformin

treatment leads to lowered LDL-C levels,

an effect mediated most likely through

metformin-mediated reduction of FADS

Table 3—Mediation effects of the three metabolites for the association between metformin treatment and reduction of LDL-C

and total cholesterol

Crude model Full model

Effect estimate

(95% CI) P Explained effect (%)

Effect estimate

(95% CI) P Explained effect (%)

LDL-C

PC ae C36:4 23.05 (24.38, 21.71) 2.21E-04 25.74 22.51 (23.71, 21.31) 1.33E-03 21.22

PC ae C38:5 22.94 (24.21, 21.67) 2.65E-04 24.82 22.36 (23.50, 21.22) 1.94E-03 19.97

PC ae C38:6 25.25 (28.11, 22.40) 1.34E-05 44.40 24.02 (26.59, 21.44) 4.55E-04 33.95

Summed concentration† 24.37 (26.37, 22.37) 1.52E-05 36.92 23.43 (25.19, 21.67) 2.95E-04 28.99

Total cholesterol

PC ae C36:4 25.00 (27.77, 22.23) 2.63E-05 26.1 23.08 (24.72, 21.45) 7.42E-04 26.5

PC ae C38:5 24.99 (27.71, 22.26) 2.33E-05 26.0 22.77 (24.25, 21.30) 1.38E-03 23.8

PC ae C38:6 26.99 (211.86, 22.13) 8.96E-06 36.4 24.16 (26.98, 21.35) 5.11E-04 35.8

Summed concentration† 26.63 (210.55, 22.71) 2.76E-06 34.6 23.87 (26.05, 21.69) 2.41E-04 33.3

The estimates of the mediation effects and P values were calculated using the longitudinal (KORA S4→F4) mediation analysis adjusted for the crude

and full model. The mediation effects for the three metformin-associated metabolites and the summed concentration are shown. †The summed

concentration refers to the overall concentration of the three metabolites (PC ae C36:4, PC ae C38:5, and PC ae C38:6).
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activity and consequently reduction of

the levels of PUFA, namely, arachidonic

acid (35). It has been suggested that

lower levels of arachidonic acid leads

to an increased membrane fluidity,

thus increasing LDL-C receptor recycling

(35). This hypothesis is especially strong,

given that genetic variants assigned to

lower activity of FADS1 and -2 were sig-

nificantly associated with lower LDL-C

levels (36). While certain PCs can indeed

exert antidiabetic effects (37), further

mechanistic studies are required to

test whether lowering of these circulating

lipids contributes directly to the preven-

tion of CVDs or merely by its antidiabetic

effect (1).

Beyond its common antihyperglycemic

action and its effect in lowering LDL-C,

metformin can potentially reduce the

risk of cancer mortality and diminish the

progression of cancer (38). In the current

study,wehave found the threemetformin-

associated metabolites significantly as-

sociated with two genes, FEN1 and

C20orf94, which are involved in DNA re-

pair (39,40). This may partly explain that

metformin has been shown to influence

the prevalence of different types of car-

cinoma, such as gastrointestinal cancers

(39) and leukemia (40).

The strength of our study is that we

used three independent cohort studies

to discover and replicate our observa-

tions. Importantly, all results presented

in this study were independent of phys-

iological parameters, lifestyle, glucose

levels, lipid levels, and medication. We

combined metabolomics and genomics

data, broad literature research, and organ-

specific information from animal studies to

deepen the insight into the underlying

mechanisms.

Our findings are limited by the obser-

vational nature of cohort studies, and

the applied methods, such as the medi-

ation analysis, are of purely statistical

character, but they offer the opportu-

nity to raise new questions for experi-

mental confirmation studies, such as

randomized controlled clinical trials to

investigate, for instance, the effect of

metformin on blood lipid levels of pa-

tients without diabetes.

In the present studies (KORA, ERF, NTR),

the duration of T2D is based on self-

reported information. Moreover, neither

data on the dosage nor data on duration

and compliance of the metformin treat-

ment were available. Furthermore, it has

to be mentioned that the degree of dia-

betes severity presumably discriminates

the different groups of patients (ndt-T2D,

mt-T2D, and it-T2D), which is reflected by

their HbA1c and fasting glucose values

(Table 1). Although the investigated me-

tabolite panel does not represent the

whole human metabolome, the compre-

hensive analysis of .130 metabolites

from different classes represents a con-

siderable improvement compared with

previous technologies.

We found threemetformin-associated

metabolites, which showed no overlap

with the findings of previous studies

(17–21). This is likely to result from the use

of different sampling matrices (plasma

vs. serum), unmeasured metabolites

(asymmetric dimethylarginine), or study

design (glipizide treatment). Additional,

our study considered considerably more

potential cofounding effects in a compa-

rably larger number of individuals than

previous studies (17–21).

In conclusion, we observed thatmetfor-

min treatment reduced levels of the three

acyl-alkyl PC metabolites in patients with

T2D. This change in the metabolic profiles

may mediate lowered blood levels of LDL-C.

The underlying mechanism is most likely

the metformin-induced activation of

AMPK and the consequent suppression

of SREBP1c and FADS, which leads to re-

duced levels of PUFA and LDL-C. Our find-

ings suggest a pharmaco-epidemiologic

mechanismbywhichmetforminmayexert

beneficial effects to prevent CVD. More

importantly, our study suggests a novel

approach to identify pleiotropic effects of

medication using multilevel omics data.

Acknowledgments. The authors express their

appreciation to all KORA study participants for

donating their blood and time. The authors

thank the field staff in Augsburg conducting the

KORA studies. The authors thank the staff from

the Institute of Epidemiology at the Helmholtz

Zentrum München and the Genome Analysis

Center Metabolomics Platform, who helped in

the sample logistics, data and straw collection,

and metabolomic measurements, and especially

J. Scarpa, K. Faschinger, F. Scharl, N. Lindemann,

H. Chavez, A. Sabunchi, A. Schneider, A. Ludolph,

S. Jelic, and B. Langer. The authors are grateful to

all general practitioners involved in ERF for their

contributions. The authors thank all participants

in the NTR.

Funding. The KORA study was initiated and

financed by the Helmholtz Zentrum München–

German Research Center for Environmental

Health, which is funded by the German Federal

Ministry of Education and Research (BMBF) and

by the Free State of Bavaria. Furthermore,

KORA research was supported within the Mu-

nich Center of Health Sciences (MC-Health),

Ludwig-Maximilians-Universität, as part of

LMUinnovativ. Part of this project was sup-

ported by the European Community’s Seventh

Framework Programme grants HEALTH-2009-

2.2.1-3/242114 (Project OPTiMiS) and HEALTH-

2013-2.4.2-1/602936 (Project CarTarDis). The Ger-

man Diabetes Center is funded by the German

Federal Ministry of Health (Berlin, Germany)

and the Ministry of Innovation, Science and Re-

search of the State of North Rhine-Westphalia

(Düsseldorf, Germany). The diabetes part of the

KORA F4 study was funded by a grant from the

German Research Foundation (DFG) RA 459/3-1.

This study was supported in part by a grant from

the BMBF to the German Center for Diabetes

Research (DZD e. V.). W.R.-M. is funded by the

German Federal Ministry of Education and Re-

search grant 03IS2061B (project Gani_Med).

K.Su. is supported by Biomedical Research Pro-

gram funds at Weill Cornell Medical College in

Qatar, a program funded by theQatar Foundation.

The EGCUT received support from the European

Community’s Seventh Framework Programme

grant BBMRI-LPC 313010, targeted financing

from Estonian Government IUT20-60 and IUT24-

6, Estonian Research Roadmap through the Esto-

nian Ministry of Education and Research

(3.2.0304.11-0312), theCenter of Excellence inGe-

nomics (EXCEGEN), and Development Fund from

the University of Tartu (SP1GVARENG), and from

an EFSD New Horizons grant. This work was also

supported by the U.S. National Institutes of

Health (R01DK075787). The ERF was supported

by grants from the Netherlands Organisation for

Scientific Research (NWO) and Erasmus MC and

the Centre for Medical Systems Biology (CMSB).

Telomere length assessment was supported

through funds fromtheEuropeanCommunity’sSev-

enth Framework Programme (FP7/2007-2013),

grant agreement HEALTH-F4-2007-201413

(ENGAGE). Research for the NTR was funded

by the Netherlands Organisation for Scientific

Research (NWO) (MagW/ZonMW grants 904-

61-090, 985-10-002, 904-61-1, 480-04-004,

400-05-717; Addiction-31160008 Middelgroot-

911-09-032; and Spinozapremie 56-464-14192),

the Center for Medical Systems Biology (CSMB,

NWO Genomics), NBIC/BioAssist/RK(2008.024),

Biobanking and Biomolecular Resources Re-

search Infrastructure (BBMRI –NL) (184z021z007),

the VU University’s Institute for Health and Care

Research (EMGO+), and the European Com-

munity’s Seventh Framework Program (FP7/

2007-2013), grant HEALTH-F4-2007- 201413

(ENGAGE).

Duality of Interest. No potential conflicts of

interest relevant to this article were reported.

Author Contributions. T.X., S.B., A.C.M.,

C.He., H.H.M.D., A.D., Z.Y., J.S.R., and T.Hal.

analyzed the data and interpreted the results.

T.X., S.B., A.C.M., C.He., M.Rod., T.M., and R.W.-S.

wrote the manuscript. M.H., R.S., C.Ho., J.Adam,

S.C., M.Rot., T.P., Y.H., G.K., C.M., B.T., A.R.,

M.H.d.A., Y.L., H.-E.W., B.S., A.M., C.G., K.St.,

and W.R. assisted in manuscript generation and

revision. M.C., G.F., A.S.Q., G.W., R.P., K.K., and

K.W.v.D. interpreted the results. C.P., W.R.-M.,

K.Su., T.Han., J.Adams., and T.I. performed the

metabolic profiling. T.I., A.P., C.M.v.D., D.I.B.,

1866 Metformin, Metabolic Profiles, and LDL-C Diabetes Care Volume 38, October 2015

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ia
b
e
te

s
jo

u
rn

a
ls

.o
rg

/c
a
re

/a
rtic

le
-p

d
f/3

8
/1

0
/1

8
5
8
/6

2
2
1
1
9
/d

c
1
5
0
6
5
8
.p

d
f b

y
 g

u
e
s
t o

n
 2

4
 A

u
g

u
s
t 2

0
2
2



T.M., and R.W.-S. conceived and designed the

study. R.W.-S. is the guarantor of thiswork and, as

such, had full access to all the data in the study

and takes responsibility for the integrity of the

data and the accuracy of the data analysis.

References

1. Foretz M, Guigas B, Bertrand L, Pollak M,

Viollet B. Metformin: from mechanisms of ac-

tion to therapies. Cell Metab 2014;20:953–966

2. ADA. Executive summary: Standards of med-

ical care in diabetes–2013. Diabetes Care 2013;

36(Suppl. 1):S4–S10

3. Madiraju AK, Erion DM, Rahimi Y, et al. Met-

formin suppresses gluconeogenesis by inhibiting

mitochondrial glycerophosphate dehydrogenase.

Nature 2014;510:542–546

4. Law V, Knox C, Djoumbou Y, et al. DrugBank

4.0: shedding new light on drug metabolism.

Nucleic Acids Res 2014;42:D1091–D1097

5. Decensi A, Puntoni M, Goodwin P, et al. Met-

formin and cancer risk in diabetic patients: a sys-

tematic review and meta-analysis. Cancer Prev

Res (Phila) 2010;3:1451–1461

6. Norwood DK, Chilipko AA, Amin SM, Macharia

D, Still KL. Evaluating the potential benefits ofmet-

formin in patients with cardiovascular disease and

heart failure. Consult Pharm 2013;28:579–583

7. Glueck CJ, Fontaine RN, Wang P, et al. Met-

formin reducesweight, centripetal obesity, insulin,

leptin, and low-density lipoprotein cholesterol in

nondiabetic, morbidly obese subjects with body

mass index greater than 30. Metabolism 2001;

50:856–861
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