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Abstract

Microsatellite null alleles are found to a varying degree across all taxa. They are problematic as they may inflate measures of
genetic differentiation and create false homozygotes. Although there are several methods for correcting allele frequencies
for null alleles and enable estimations of FST, much less is known about how null alleles affect assignment testing. Data
presented here, based on simulations, show that the percentage of correctly assigned individuals in model-based clustering
and Bayesian assignment methods were slightly, though significantly, reduced in the presence of null alleles (frequency range
from 0.000 to 0.913). The bias in assignment tests caused by null alleles lead to a slight reduction in the power to correctly
assigned individuals (0.2 and 1.0 percent units for STRUCTURE- and 2.4 percent units for GENECLASS-based assignment
tests). Further, the presence of null alleles caused a small, however, significant overestimation of FST. Consequently,
microsatellite loci affected by null alleles would probably not alter the overall outcome of assignment testing and could
therefore be included in these types of studies. Nevertheless, loci prone to null alleles should be used with caution as they
lower the power of assignment tests and alter the accuracy of FST, and loci less prone to null alleles should always be
preferred.

Microsatellites are one of the most extensively used markers
for population genetic studies because they are codominant
and typically have large numbers of alleles. Microsatellites
can be used for traditional population genetic analyses
where the level of genetic differentiation among populations
is the focus (i.e., FST). The statistical approaches associated
with microsatellite analyses have, however, developed
rapidly, and recent applications of microsatellites have
revolutionized the field of population and conservation
genetics by shifting the focus from populations to
individuals. One of the most important applications is
assigning individuals to, or excluding individuals from,
potential source populations. The applications of assign-
ment tests are numerous and include population differen-
tiation (Waples and Gaggiotti 2006), detection of recent
immigrants (Rannala and Mountain 1997), mixed stock
analysis (Hansen et al. 2001), forensic identification of
animal remains (Primmer et al. 2000), and identification of
animals for conservation purposes (Nielsen et al. 2001). The
ability to assign individuals is of great value for conservation
efforts. For instance, assignment testing allows for assessing
mixed stock fisheries and can be used to detect when
individuals from populations of particular conservation
values are present and permits managers to act accordingly
(e.g., Shaklee et al. 1999).

There are, however, several problems associated with
microsatellites including large allele dropout and slip-strand
mispairing during polymerase chain reaction that can cause
stutter (van Oosterhout et al. 2004). Another pervasive
problem is null alleles that are caused by mutations in the
primer binding region and prevent amplification of affected
alleles (Pemberton et al. 1995). Null alleles are found in
most taxa (Dakin and Avise 2004) but seem to be
particularly common in populations with high effective
population sizes (Chapuis and Estoup 2007) including
insects (e.g., Lehmann et al. 1997; Chapuis et al. 2005) and
mollusks (e.g., McGoldrick et al. 2000; Carlsson et al. 2006).

The presence of null alleles can sometimes be detected as
an excess of homozygotes leading to deviations from Hardy–
Weinberg expectations (HWEs). As null alleles create false
homozygotes, they are problematic for parentage analysis
(e.g., Pemberton et al. 1995; Reece et al. 2004). In addition,
because they lower apparent genetic variability, they may
erroneously inflate levels of genetic differentiation and affect
population genetic analyses that rely on HWE (e.g., de Sousa
et al. 2005; Chapuis and Estoup 2007). Although there is
limited data concerning how null alleles affect measures of
genetic differentiation (e.g., Chapuis and Estoup 2007), there
is even less information about the effects on genetic
assignment testing (Cornuet et al. 1999; Hauser et al. 2006).
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There are several statistical approaches that may be used
for correcting allele frequencies to account for null alleles
(cf., van Oosterhout et al. 2004; Chapuis and Estoup 2007).
These corrected allele frequencies can then be used to assess
levels of population differentiation (i.e., FST). However, it is
not as straightforward to account for null alleles when
performing assignment tests as they rely on accurate
information about the multilocus genotype of individuals.
It is not possible through statistical approaches to assess the
true multilocus genotype, and it would be necessary to
sequence the entire microsatellite region (including both
primer binding sites) for all individuals to identify which
individuals are true homozygotes and which are hetero-
zygotes for the null allele (i.e., individuals that have
mutations in the primer binding region that prevents an
allele from amplifying). As sequencing is expensive and time
consuming, it is seldom a viable option for population
genetic studies. Although allele frequencies for potential
source populations used for assignment testing can be
corrected for null alleles, samples containing unassigned
individuals cannot be corrected as 1) corrections for null
alleles rely on HWE (which is not expected to be found in
a mixed sample with individuals from several populations,
e.g., Wahlund effects) and 2) it is impossible to know
(without extensive sequencing) which individuals are true
homozygotes or heterozygotes for the null allele.

Even though the presence of null alleles in microsatellite
data sets can be detected through statistical analyses (e.g.,
MICROCHECKER software, van Oosterhout et al. 2004),
it is problematic to study the effect on assignment testing
because the presence/absence of null alleles in specific
individuals is not known. One approach that allows for
quantifying the bias on results of assignment tests that are
caused by null alleles is to simulate populations and
introduce known null alleles. In addition, simulations would
enable analysis of whether higher frequencies of null alleles
lead to more pronounced biases. Such information is
particularly useful for population genetic studies on taxa that
are prone to null alleles. This study aims to increase our
understanding of how null alleles specifically affect
assignment testing by utilizing simulated population data
that represent a range of realistic scenarios.

Materials and Methods

Simulated Populations

The software EASYPOP 1.7 (Balloux 2001) was used to
simulate 3 data sets with varying number of microsatellite
loci (4, 12, or 20). The simulations consisted of 60
population sets, each consisting of 4 populations with 150
individuals in each population and equal sex ratios. The
simulation conditions included a mutation rate of 0.002 with
80% single-step mutations and 20% infinite allele mutations
[mutation rate was based on published data (cf., Weber and
Wong 1993)]. Gene flow followed an island model with
equal zygotic migration rates among sexes. The initial
number of alleles was set to 30 per locus and randomly

assigned across individuals, and the simulations were run for
1000 generations. To achieve different levels of genetic
differentiation among populations, the level of gene flow
was set to 0.100, 0.050, 0.025, or 0.010 (low, low–medium,
high–medium, and high genetic differentiation, respec-
tively). The same simulation settings (including migration
rate) were used 5 times to generate variable FST estimates at
4 different migration rates resulting in a total of 5 population
sets per simulation setting. These 5 population sets are not
replicates as the EASYPOP software uses considerable
amount of randomizations (Balloux 2001) leading to great
variability among runs. Each population set should,
therefore, be considered independent. The specific aim
of the study was to describe how null alleles affected
assignment testing. Hence, no subsampling of populations
was made as subsampling might introduce additional
variation that is not related to null alleles.

Null Alleles

One allele at each locus in each population set was chosen at
random to be a null allele. Consequently, all heterozygotes
including the null allele were transformed to homozygotes
for the alternative allele and all homozygotes for the null
allele were transformed to missing data as this is how their
genotypes would appear when being typed. This procedure
created alternative loci data sets that contained known
frequencies of null alleles. The frequency of null alleles per
locus within populations varied from 0.000 to 0.913,
whereas the average frequency of null alleles within
population sets ranged from 0.021 to 0.202. Although it is
likely that real microsatellite data may contain more than
one null allele at affected loci, the true number of null alleles
is rarely, if ever, known. Thus, the single null allele simulated
here is appropriate because multiple null alleles would have
identical effects as homoplasy, which is commonly observed
in microsatellites where alleles with identical size might have
different descent.

Statistics

ARLEQUIN 3.1 (Excoffier et al. 2005) was used to
calculate expected and observed levels of heterozygosity
and for assessing whether genotype frequencies were
consistent with HWE (exact tests, Guo and Thompson
1992). The GENEPOP 3.4 software package (Raymond and
Rousset 1995) was used to estimate Weir and Cockerhams’s
(1984) unbiased estimator of Wright’s F-statistics (FST)
among populations within each population set. The
Anderson–Darling test (Stephens 1974) was used to test if
the data were normally distributed. Parametric tests were
used when the data were normally distributed, whereas in
case where data were not normally distributed nonparamet-
ric tests were used. The sequential Bonferroni technique
(Rice 1989) was used to adjust significance levels in cases
with multiple tests.

The objective of this study was not to compare different
software for assignment testing. However, 2 of the most
commonly used approaches, as applied in STRUCTURE
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and GENECLASS, were used to study how null alleles
affect assignment testing. Two different approaches were
used that employ the model-based clustering assignment
method as implemented in the STRUCTURE 2.2 software
(Pritchard et al. 2000; Falush et al. 2003, 2007). In the first
approach, no correction was done to the raw data to
account for null alleles, and homozygotes for null alleles
were consequently coded as missing data (hereafter
STRnull). The second approach utilized the feature of the
latest version of STRUCTURE (ver. 2.2) that can take into
account null alleles by utilizing the feature of the software to
handle recessive data. Homozygotes for null alleles were
accordingly coded as homozygotes for a recessive allele (as
suggested by the authors of the software), and STRUCTURE
was instructed that the data contained recessive alleles
(STRrec).

It is somewhat problematic to perform ‘‘self-assignment’’
tests with STRUCTURE because the software does not give
information about which clusters to compare when
evaluating the assignment success in data sets unaffected
and affected by null alleles. For instance, individuals from
say population A would be assigned to cluster 1 when using
populations sets unaffected by null alleles. However, when
using population A and data affected by null alleles (the
same data set, but now with null alleles), individuals might
assign to cluster 2. Cluster 1 from the unaffected population
set should therefore be compared with cluster 2 from the,
by null allele, affected population set. However, as
STRUCTURE will not give you any information about which
clusters to compare (in this case, cluster 1 and cluster 2),
it is not possible to compare assignment success between
data sets affected and unaffected by null alleles. To
overcome this problem, the first 50 individuals were
removed from each population. These 50 individuals were
then moved into a separate group of unassigned individuals.
The remaining 100 individuals per population were used as
potential source populations, making 4 potential source
populations and 4 samples of unassigned individuals. The
first 4 source populations were made up of 100 individuals
and the following 4 populations contained 4 sets of
unassigned individuals.

The accuracy at which STRUCTURE was able to assign
individuals to the correct source population was estimated
by using the option ‘‘USEPOPINFO’’ for the potential
source populations, whereas this option was turned off for
individuals who were being assigned. This means that
STRUCTURE took into account prior population in-
formation for the potential source populations, whereas
no prior information was provided for the unassigned
individuals. Except for the USEPOPINFO option (and
‘‘row of recessive alleles’’ in the STRrec tests), all parameters
were set to default and K was set to 4, and each
STRUCTURE analysis consisted of a burn-in period of
10 000 followed by 100 000 replicates. A longer burn-in period
of 100 000 and a larger number of replicates, 1 000 000,
were initially used to assess when parameters such as
likelihood, FST, and alpha stabilized (data not shown). The
initial analyses showed that a burn-in of 10 000 and 100 000

replicates would be adequate for these assignment tests (data
not shown). The data reported from the STRUCTURE analyses
are the average proportions of individuals per population set
that were correctly assigned to their original population.

Assignment testing was also performed by using the
software package GENECLASS 2.0.g (Piry et al. 2004). The
Bayesian method of Rannala and Mountain (1997) as
implemented in GENECLASS was selected for performing
self-assignment tests (leave one out procedure) to assess the
assignment accuracy. This means that each individual was
excluded from the population set of potential source
populations and then assigned to one of the source
populations. The results reported here are the proportions
of correctly assigned individuals within population sets. The
Bayesian assignment method was chosen as most studies use
this statistical approach, and it has been shown to perform
better than frequency or distance-based methods (Cornuet
et al. 1999; Hansen et al. 2001).

Results

Genetic Variability and Levels of Differentiation

The number of alleles per locus in the absence of null alleles
within populations ranged from 3 to 17, observed within-
population heterozygosity ranged from 0.107 to 0.927, and
the expected heterozygosity ranged from 0.115 to 0.904.
The percentage of loci within population sets that showed
deviations from HWE expectations ranged from 0.0% to
18.8%, whereas the range was from 0.0% to 12.5% after
sequential Bonferroni corrections (k 5 4, 12, and 20 for the
4, 12, and 20 loci data sets, data not shown). The number of
alleles per locus, after introducing null alleles, within
populations ranged from 2 to 16, and the observed
heterozygosity ranged from 0.016 to 0.920, whereas the
expected heterozygosity within populations varied from
0.072 to 0.899. The proportion of loci within population
sets after introducing null alleles that deviated from HWE
ranged from 16.7% to 87.5% before corrections for multiple
tests. After sequential Bonferroni corrections (k 5 4, 12,
and 20 for the 4, 12, and 20 loci data sets), the number of
loci deviating from HWE ranged from 21.3% to 81.3%
(data not shown).

The degree of genetic differentiation, FST, for evaluation
of the effect of null alleles on the STRUCTURE analysis
was based on sets of 100 individuals (FST-100), whereas FST
for the GENECLASS analysis was based on sets of 150
individuals (FST-150). Population sets affected by null alleles
significantly overestimated FST-100 [average of 0.003 units in
the 4 and 12 loci data sets and with 0.004 in the 20 loci data
sets, Wilcoxon matched-pairs signed-ranks test (WMPSRT)
P , 0.05 for all tests] and FST-150 (average of 0.004 for all
loci data sets, WMPSRT P , 0.05 for all tests). The degree
of overestimation of FST-100 and FST-150 increased with
higher FST in all data sets (P , 0.05 for all tests, excluding
the 4 loci FST-150 data set). The FST-100 and FST-150 estimates
from the null-allele free population sets and the population
sets affected by null alleles were highly correlated in all data
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sets [Spearman rank-order correlations (SROC) P , 0.05,
for all FST-100 and FST-150 data sets]. Higher null-allele
frequencies averaged within population sets did not lead to
significant larger discrepancies in FST-100 or FST-150 estimates
in any of the data sets (SROC P , 0.05, for all tests, data
not shown).

Assignment Tests

The proportion of correctly assigned individuals within
population sets when using STRUCTURE (STR) ranged
from 0.252 to 0.956. Although the proportion of correctly
assigned individuals, when treating null alleles as missing
data (STRnull), ranged from 0.262 to 0.954 and when null
homozygotes were coded as recessive alleles (STRrec), it
varied from 0.255 to 0.954 (Figure 1a–c).

Null alleles significantly lowered the proportion of
correctly assigned individuals in all but the STRnull 4 loci
data set (�0.4, 0.6, and 0.5 percent units lower in STRnull
compared with STR in the 4, 12, and 20 loci data sets,
WMPSRT P 5 0.452, 0.033, and 0.002, respectively, Figure
1a–c). Similarly, a reduction in the proportion of correctly

assigned individuals was noted in all STRrec data sets
compared with when null alleles were absent (1.3, 1.2, and
0.6 percent units lower in STRrec compared with STR for
the 4, 12, and 20 loci, WMPSRT P 5 0.004, 0.001, and
0.003, respectively, Figure 1a–c). The 4 loci STRrec data
sets showed significantly lower assignment success than did
the corresponding STRnull data, whereas no differences
were found among the 12 and 20 loci data sets (1.8, 0.5,
and 0.1 percent units lower for STRrec than the corre-
sponding data from the 4, 12, and 20 STRnull loci data
sets, WMPSRT P 5 0.009, 0.210, and 0.799, respectively,
Figure 1a–c).

On average, the proportion of correctly assigned
individuals was reduced by 0.2 percent units [standard error
of the mean (SEM) 5 0.003] in the presence of null alleles
(STRnull) and with 1.0 percent units (SEM 5 0.002) when
null homozygotes were coded as recessive alleles (STRrec).
Increased, average intrapopulation set, null-allele frequen-
cies (note that the frequency of null alleles were estimated
on the entire population set containing 600 individuals) lead
to a significant regression between the proportion of
correctly assigned individuals within in the 12 STRnull loci

Figure 1. Plot of the proportion of correctly assigned individuals based on STRUCTURE (graphs a–c) and GENECLASS

(graphs d–f) in data sets unaffected (No nulls assign.) and affected by null alleles (With nulls assign.). Filled diamonds represent

data affected by null alleles, whereas gray diamonds represent results of null homozygotes being coded as recessive alleles, based on

4 (graphs a and d), 12 (graphs b and e), and 20 (graphs c and f) microsatellite loci. The diagonal lines represent 1:1 ratios. Data

points below the diagonal line indicate incidents when null alleles reduced the proportion of individuals correctly assigned.
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data set (regression P 5 0.004, adjusted R2 5 0.34), whereas
no significant correlations were found in the 4 or 20 data
sets (SROC P . 0.05 for the 4 and 20 loci data sets,
Figure 2a–c) or in the STRrec data sets (regression P . 0.05
for the 4 and 12 loci data sets and SROC P . 0.05 for the
20 loci data sets, Figure 2a–c). The proportion of correctly
assigned individuals at different FST values from the
alternative populations sets (STR, STRnull, and STRrec)
were highly correlated in all data sets (regression P , 0.001,
for the 4 and 12 loci data sets, SROC P , 0.001 for the 20
loci data sets, Figure 3a–c).

The GENECLASS-based assignment tests showed that
the proportion of correctly self-assigned individuals in the
absence of null alleles within population sets ranged from
0.422 to 0.988, and after introduction of null alleles, the
corresponding proportion of correctly assigned individuals
varied from 0.418 to 0.990 (Figure 1d–f). Null alleles
significantly lowered the proportion of correctly assigned
individuals in all loci data sets (WMPSRT P , 0.001 for all
tests, Figure 1d–f).

The proportion of correctly assigned individuals was on
average, across loci data sets, reduced by 2.4 percent units
(SEM 5 0.006) in the presence of null alleles. Higher
average intrapopulation set null-allele frequencies lead to
increased differences in the proportion of correctly assigned
individuals within the 4 loci data set (regression P 5 0.013,
adjusted R2 5 0.26), whereas no significant correlations
were found in the 12 or 20 loci data sets (SROC P . 0.05
for all tests, Figure 2d–f). The proportion of correctly
assigned individuals at different FST levels from the
alternative population sets were highly correlated in all data
sets (regression P , 0.001 for the 4 loci data set and SROC
P , 0.001, for the 12 and 20 loci data sets, Figure 3d–f).

The proportion of correctly assigned individuals was
tightly associated with the level of genetic differentiation in
both STRUCTURE- and GENECLASS-based assignments
tests (SROC P , 0.001, for all tests). Moreover, both data
sets with and without null alleles (Figure 3a–f) showed
a strong logarithmic regression (R2 values were higher for
a logarithmic model than for a linear model in all data sets,

Figure 2. Differences in the proportion of correctly assigned individuals (Diff. in assign) based on STRUCTURE (graphs a–c)

and GENECLASS (graphs d–f) caused by average frequency of null alleles within population sets (Mean null. freq.) based on 4

(graphs a and d), 12 (graphs b and e), and 20 (graphs c and f) microsatellite loci. Filled diamonds represent data affected by null

alleles, and gray diamonds in graphs (a–c) represent data where null homozygotes were coded as recessive alleles. The solid lines

indicate trendlines for data unaffected by null alleles, and the dotted lines represent data where null homozygotes are coded as

recessive alleles.
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note that FST-100 and FST-150 estimates were transformed,
natural logarithm, prior to regression analysis, data not
shown) between the level of genetic differentiation and the
proportion of correctly assigned individuals. The proportion
of correctly assigned individuals increased with the level of
genetic differentiation and seemed to asymptote at FST
levels of 0.1 and higher when maximum assignment
efficiency was reached (Figure 3a–f).

Discussion

The level of genetic differentiation (i.e., FST), number of
alleles, heterozygosity, sample sizes, and the number of loci
used in the present simulation study are within the range
that is commonly encountered in empirical studies. Under
these conditions, the data suggest that null alleles will

slightly reduce the proportion of correctly assigned
individuals in both STRUCTURE- and GENECLASS-
based assignment tests. However, the low magnitude of the
effects suggests that microsatellites with null alleles can still
be used for assignment testing. Even though, some
populations had very high null-allele frequencies (up to
0.913 at a single locus), the effects on assignment success
were moderate.

Cornuet et al. (1999) showed that likelihood-based
assignment testing was robust even after introducing low
frequencies (0.01) of null alleles and still outperformed
distance-based methods. Hauser et al. (2006) using an
empirical approach suggested that modest abuse of the
assumption of absence of null alleles had only a small effect
on the accuracy of assignment testing. The data presented in
the current study indicate that the accuracy of assignment
testing is slightly, though significantly, reduced by the

Figure 3. Regression between FST estimates (FST-100 and FST-150) and proportion of correctly assigned individuals based on

STRUCTURE (graphs a–c) and GENECLASS (graphs d–f) in data sets unaffected (filled diamonds) and affected by null alleles

(open diamonds), and in graphs (a–c), the gray diamonds represent results from STRUCTURE when null homozygotes were

treated as recessive alleles, based on 4 (graphs a and d), 12 (graphs b and e), and 20 (graphs c and f) microsatellite loci. Regressions

of FST on the proportion of correctly assigned individuals. Solid lines indicate null-allele unaffected data, dotted lines data affected

by null alleles, and the broken lines when null homozygotes were treated as recessive alleles.
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presence of null alleles (except in the STRnull 4 loci data set,
cf., Figure 1a–f).

No significant relationship between the average fre-
quency of null alleles within population sets and the
difference in proportion correctly assigned individuals in
STRUCTURE or GENECLASS could be detected (cf.,
Figure 2a–f), except for in the case of the STRrec 12 loci
and the GENECLASS 4 loci data sets. As the effect of
single loci are expected to impact the outcome of
assignment testing more when the total numbers of loci is
low, it may be that the effect will be reduced as additional
loci are included. This does not, however, explain why there
was a significant increase of differences in assignment tests
when 12 loci were analyzed (STRrec). Though the effect of
null alleles was rather moderate in all assignment tests as the
proportion of correctly assigned individuals were on average
only reduced by 0.2 and 1.0 percent units when analyzed
with STRUCTURE- and the GENECLASS-based assign-
ment by 2.4 percent units.

On the whole, the number of loci and level of genetic
differentiation seem to have greater effects on the accuracy
of assignment testing than does the presence/absence of null
alleles (cf., Figure 3a–f ). Assignment accuracy seems to
asymptote at FST values close to 0.1 when 12 loci or more are
used even in the presence of null alleles (Figure 3a–f ), and it
is unlikely that simulations including higher FST than used
here would improve assignment success. The STRUCTURE
software can take into account that some or all missing data
are caused by null alleles. However, under the conditions
simulated here, there was no advantage in treating null alleles
as recessive alleles. In fact, in some cases (when using 12 or 20
loci), the effect of treating null alleles as recessive alleles
lowered the proportion of correctly assigned individuals
slightly (though significantly) compared with when null-allele
homozygotes were treated as missing data.

Chapuis and Estoup (2007) documented larger bias in FST
with increasing FST in the presence of null alleles. The results
from the present simulation show similar results with
amoderate overestimation of FST which wasmost pronounced
when population structure was the greatest. The present study
suggests that even though FST was slightly overestimated (FST
increased between 0.003 and 0.004), loci affected by null alleles
are still useful for population genetic studies. Nevertheless, as
the effect of null alleles on estimates of effective population
size, gene flow, or any other statistics that rely on the accuracy
of FST estimates has not been evaluated, markers prone to null
alleles should be used with caution.

Conclusions

Null alleles had a moderate effect on the accuracy of
assignment testing under the simulated conditions in this
study. These effects are not detrimental for assignment
testing as long as limitations and caveats are taken into
account. Similarly, FST was only slightly overestimated in the
presence of null alleles, and it is unlikely that null alleles will
have major impacts on conclusions regarding presence or

absence of genetic differentiation. It seems evident that
increased number of loci and degree of genetic differenti-
ation has more significant effect on the accuracy of
assignment testing than the presence of null alleles. This
information is valuable for population genetic studies of
taxa that are prone to null alleles as it may enable geneticists
to utilize loci affected by null alleles. Microsatellite
development for these species is often very time consuming
and expensive because large numbers of markers have to be
developed and optimized before a set of markers with low
frequencies of null alleles can be achieved. This is not,
however, to say that efforts should not be made to use loci
that show low frequency of null alleles. On the contrary,
microsatellites that are not prone to null alleles should
always be preferred as they are less ambiguous and more
powerful for assignment tests.
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