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We address the problem of how the survival of cooperation in a social system depends on the motion of the
individuals. Specifically, we study a model in which prisoner’s dilemma players are allowed to move in a
two-dimensional plane. Our results show that cooperation can survive in such a system provided that both the
temptation to defect and the velocity at which agents move are not too high. Moreover, we show that when
these conditions are fulfilled, the only asymptotic state of the system is that in which all players are coopera-
tors. Our results might have implications for the design of cooperative strategies in motion coordination and
other applications including wireless networks.
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An open question in biology and social sciences is to
understand how cooperation emerges in a population of self-
ish individuals. A theoretical framework that has shed some
light into this long-standing problem is the evolutionary
game theory �1,2�. Through the development and the study
of different social dilemmas, scientists have been able to
elucidate some of the mechanisms that enable cooperative
behavior in populations. In particular, one of the most stud-
ied games is the prisoner’s dilemma �PD�, a two-player game
in which each individual can only adopt one of the two avail-
able strategies: cooperation �C� or defection �D�. While a
population of individuals playing a PD game does not sup-
port cooperation if they are well mixed, the existence of a
spatial structure gives as a result that cooperation survives
under certain conditions as cooperative clusters can emerge
in the system �1,2�.

In the last years, the field has been spurred by new dis-
coveries on the actual structure of the systems to which evo-
lutionary models are applied. It turns out that in the vast
majority of real-world networks of interactions �3�, the prob-
ability that an individual has k contacts follows a power-law
distribution P�k��k−�, being � an exponent that usually lies
between 2 and 3. Examples of these so-called scale-free net-
works can be found in almost every field of science �3�. An
alternative to a power-law distribution is a network of con-
tacts that approaches an exponential tail for k larger than the
average connectivity in the population, being the Erdös-
Renyi �ER� network the benchmark of this kind of distribu-
tion �3�.

Recent works have shown that cooperative behavior is
actually enhanced when individuals play on complex net-
works, particularly, if the network of contacts is scale free
�4–7�. The reason is that cooperators are fixed in the highly
connected nodes, turning also into cooperators their neigh-
borhood and guaranteeing in this way their long-time suc-
cess. Additionally, several works have explored different re-
wiring mechanisms that allow an improvement in the
average level of cooperation in the system �8–11�. In con-

trast, cooperation can also be promoted without invoking dif-
ferent rewiring rules �12,13�. Interestingly, social dilemmas
can also be used to generate highly cooperative networks by
implementing a growth mechanism in which the newcomers
are attracted to already existing nodes with a probability that
depends on the nodes’ benefits �14�.

In spite of the relative large body of work that has been
accumulated in the last few years, there are situations of
practical relevance that remain less explored. This is the case
of models where individuals can move and change their
neighborhood continuously by encountering different game’s
partners as time goes on. Highly changing environments can
be found in a number of social situations and the study of
how cooperative levels are affected by the inherent mobility
of the system’s constituents can shed light on the general
question of how cooperation emerges. Furthermore, the in-
sight gained can be used to design cooperation-based proto-
cols for communication between wireless devices such as
robots �15�. Recently, a few works have dealt with this kind
of situation �16–19�. However, the models were limited to
the case in which individuals are allowed to move on the
sites of a two-dimensional �2D� regular lattice. In this Brief
Report, we consider the less-constrained case in which a set
of Prisoner’s Dilemma players unconditionally move on a
two-dimensional plane. We explore under which conditions
cooperation is sustained. In particular, we inspect the robust-
ness of the average level of cooperation in the population
under variation in the game parameters and of the mobility
rules. Our results show that cooperation is actually promoted
provided that players do not move too fast and that coopera-
tion is not too expensive. Additionally, at variance with other
cases, the dynamics of the system exhibits only two stable
attractors—those in which the whole population plays with
one of the two possible strategies.

In our model, we consider N agents �individuals� moving
in a square plane of size L with periodic boundary conditions
and playing a game on the instantaneous network of con-
tacts. The three main ingredients of the model are the rules of
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the motion, the definition of the graph of interactions, and
the rules of the evolutionary game.

Motion. Each agent moves at time t with a velocity vi�t�
�i=1,2 , . . . ,N�. We assume that individuals can only change
their direction of motion �i�t�, but not their speed which is
constant in time, and equal for all the agents. Hence, we can
write the velocities as vi�t�= �v cos �i�t� ,v sin �i�t��. The in-
dividuals are initially assigned a random position in the
square and a random direction of motion. At each time step,
they update their positions and velocity according to the fol-
lowing dynamical rules:

xi�t + 1� = xi�t� + vi�t� , �1�

�i�t + 1� = �i, �2�

where xi�t� is the position of the ith agent in the plane at time
t and �i are N-independent random variables chosen at each
time with uniform probability in the interval �−� ;��.

Network of interactions. At each time step, we consider
that the neighborhood of a given agent i is made up by all the
individuals j which are within an Euclidean distance dij less
than some threshold r. In what follows, without loss of gen-
erality, we set r=1. Therefore, the instant network of con-
tacts is defined as the graph formed by nodes centered at all
the N circles of radius 1 together with the links between
those agents in the neighborhood of each individual. Note
that as agents move every time step, the network of contacts,
and hence the adjacency matrix of the graph is continuously
changing not only because the number of contacts an indi-
vidual has may change but also due to the fact that the neigh-
bors are not always the same. The topological features of the
graph defined above depend on several parameters. For in-
stance, the mean degree of the graph can be written as
�k�=��r2=�� where �=N /L2 is the density of agents. For
small values of �, the graph is composed by several compo-
nents and there may also exist isolated individuals. On the
contrary, when ���c a unique giant component appears �20�
�for our system, with periodic boundary conditions
�c�1.43�.

Evolutionary dynamics. As the rules governing the evolu-
tionary dynamics, we assume that individuals interact by
playing the PD game. Initially, players adopt one of the two
available strategies, namely, to cooperate or to defect, with
the same probability 1/2. At every round of the game, all the
agents play once with all their corresponding instant neigh-
bors. The results of a game translate into the following pay-
offs: both agents receive R under mutual cooperation and P
under mutual defection, while a cooperator receives S when
confronted to a defector, which in turn receives T. These four
payoffs are ordered as T�R� P�S in the PD game so that
defection is the best choice regardless of the opponent strat-
egy. As usual in recent studies, we choose the PD payoffs as
R=1, P=S=0, and T=b�1. Once the agents have played
with all their neighbors, they accumulate the payoffs ob-
tained in each game and, depending on their total payoffs
and on the payoffs of the first neighbors, they decide whether
or not to keep playing with the same strategy for the next
round robin. In this process, an agent i picks up at random

one of its neighbors, say j, and compare their respective
payoffs Pi and Pj. If Pi� Pj, nothing happens and i keeps
playing with the same strategy. On the contrary, if Pj � Pi,
agent i adopts the strategy of j with a probability propor-
tional to the payoff difference,

�
ij

=
Pj − Pi

max	kj,ki
b
, �3�

where ki and kj are the number of instant neighbors of i and
j, respectively �i.e., the number of agents inside the circles of
radius r centered at i and j, respectively�. This process of
strategy updating is done synchronously for all the agents of
the system and is a finite population analog of replicator
dynamics. When finished, the payoffs are reset to zero so that
repeated games are not considered.

The movement and game dynamics might in general be
correlated, and the influence of the agents’ movement on the
performance of the PD dynamics depends on the ratio be-
tween their corresponding time scales. Here, we consider the
situation in which both movement and evolutionary dynam-
ics have the same time scale. Therefore, at each time step,
the following sequence is performed: �i� the agents perform a
new movement in the two-dimensional space, �ii� establish
the new network of contacts �determined by the radius r of
interaction�, and �iii� they play a round of the PD game,
accumulating the payoffs and finally updating their corre-
sponding strategies accordingly. After this latter step, the
players move again. The process is repeated until a stationary
state is reached. Here, a stationary state is one in which no
further changes in strategies are possible.

We have performed extensive numerical simulations of
the model for various values of the agent density � and ve-
locity v and different values of the game parameter b. Let us
first note that for the limiting case in which v=0, the results
point out that the average level of cooperation is different
from zero, as one might expect from the fact that the under-
lying network of contacts has a Poisson degree distribution.
Indeed, the graph corresponds to a random geometric graph
�20�, a network having the same P�k� as an ER random
graph, but with a higher clustering coefficient. This latter
feature leads to a further increment of the average level of
cooperation, as it has been shown that a network with a high
clustering coefficient promotes cooperation �21,22�.

Let us now focus on the case v�0. The first difference
that arises with respect to the case in which agents do not
move is that the dynamics of the system only has two attrac-
tors. Namely, the asymptotic state �i.e., when the probability
that any player changes its strategy is zero� is either a fully
cooperative network �all-C� or a network in which all the
individuals end up playing as defectors �all-D�. This behav-
ior is illustrated in Fig. 1, where we have reported the aver-
age level of cooperation �c� in a population of N=103 indi-
viduals as a function of time, for v=0.01 and for two
different values of b. Starting from a configuration in which
individuals are cooperators or defectors with the same prob-
ability, the average level of cooperation slowly evolves to
one of the two asymptotic states: all-C or all-D. It is also
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worth stressing that the system reaches those states more
slowly than in static settings �i.e., when v=0�. Specifically, it
appears that the system spends a considerable time in meta-
stable states �flat regions in the figure� that are followed by a
sudden decrease �or increase� in the average level of coop-
eration.

The evolution of the system depends on the density of
players. In Fig. 2, we have represented the dependence of the
fraction of realizations Fc, in which the population ends up in
an all-C configuration as a function of the density � for b
=1.1 and v=0.01. There are two limits for which Fc=0. At
low values of the density, the agents are too spread in the 2D
plane. As a result, cooperators unsuccessfully strive to sur-
vive and get extinguished given the low chance they have to
form clusters—the only mechanism that can enforce their
success. On the contrary, for large values of � the population
is quite dense and, locally, the agents’ neighborhoods re-

semble a well-mixed population in which more or less ev-
erybody interacts with everybody and therefore defection is
the only possible asymptotic state. Values of � between these
two limiting cases confer to cooperators a chance to survive.
Interestingly, there is a region of the density of players,
0.9���3 which is optimal for cooperative behavior. Be-
yond this region, Fc decays exponentially with � reaching
zero at ��7.

Up to now, we have analyzed the behavior of the system
for small values of the velocity of the agents and of the
temptation to defect. Figure 3 summarizes the results ob-
tained for a wider range of model parameters �v and b� in a
population of N=103 agents and �=1.3. The results are av-
erages taken over 100 realizations of the model. The phase
diagram shows a relative wide region of the model param-
eters in which cooperative behavior survives. For a fixed
value of v, this region is bounded by a maximum value of
the temptation to defect close to b=1.3, which decreases as
the velocity at which players move increases. Furthermore,
when b is kept fixed, increasing the value of v is not always
beneficial for the survival of cooperation. In fact, when the
individuals move too fast, they change their environment
quite often and quickly then increasing the likelihood to meet
each time step a completely different set of players. In other
words, when the velocity is increased beyond a certain value,
the well-mixed hypothesis applies to the whole population of
players, thus, leading to the extinction of cooperation in the
long-time limit.

Figure 4 sheds more light on the dependence of the frac-
tion of cooperators with respect to the velocity of the agents.
There we have represented the layer corresponding to
b=1.1 in Fig. 3. As can be seen from the figure, for low
values of v, all the realizations lead the system to a configu-
ration in which all strategists are cooperators. As the PD
players move faster, the probability of achieving such a con-
figuration decreases and gets zero for values of v close to
0.05. From that point on, the all-C asymptotic state is never
realized. This latter point also depends on the specific value
of b. The inset of Fig. 4 represents the smallest values of the
temptation to defect bc, for which in all the realizations per-
formed the system ended up in the all defectors state as a
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FIG. 1. Average level of cooperation �c�, as a function of time
�Monte Carlo steps� for v=0.01 and two different values of
b: b=1.1 and b=1.3, as indicated. Other model parameters have
been fixed to �=1.30 and N=103 agents.
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FIG. 2. Fraction of realizations in which the system ends up in
an all-C configuration Fc, as a function of the density of players �
for a fixed value of b=1.1 and v=0.01. The system is made up of
N=103 agents. The results are averages taken over 100 different
realizations.
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FIG. 3. �Color online� The color code shows the fraction of
realizations in which the whole system is made up of cooperators
Fc, as a function of the velocity at which the agents move �v� and
the temptation to defect �b�. The Y axis is in logarithmic scale for
clarity. The rest of parameters are N=103 agents and �=1.30. Each
point is an average over 100 different realizations
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function of v. The results show that beyond v�0.1, coopera-
tion never survives in a population of moving agents irre-
spective of b.

In short, we have studied the effects of mobility on a

population of prisoner’s dilemma players that are able to
move in a two-dimensional plane. Numerical simulations of
the model show that a fully cooperative system is sustained
when both the temptation to defect and the velocity of the
agents are not too high. Although cooperation is extinguished
for a wide region of the parameter space, our results show
that mobility have a positive effect on the emergence of co-
operation. As a matter of fact, as soon as v�0, the mobility
of the agents provokes the spread of the winning strategy to
the whole population, leading the system to a global attractor
in which all players share the surviving strategy. In other
words, the movement of individuals prevents the coexistence
of different strategies in the long-time limit. Namely, for
small �and fixed� values of b, cooperation prevails at low
velocities, while defection succeeds for larger v. Our results
are relevant for the design of cooperation-based protocols
aimed at motion coordination among wireless devices and
for other communication processes based on game theoreti-
cal models �15�.
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FIG. 4. Fraction of realizations ending up in an all-C configu-
ration as a function of the velocity v of the agents for b=1.1. The
inset shows the smallest value of the temptation to defect bc, for
which the probability of achieving a fully cooperator asymptotic
state is zero, as a function of v. In both cases, N=103 agents,
�=1.30, and results correspond to averages over 100 realizations.
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