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Abstract.—The molecular clock, i.e., constancy of the rate of evolution over time, is commonly as-
sumed in estimating divergence dates. However, this assumption is often violated and has drastic
effects on date estimation. Recently, a number of attempts have been made to relax the clock assump-
tion. One approach is to use maximum likelihood, which assigns rates to branches and allows the
estimation of both rates and times. An alternative is the Bayes approach, which models the change of
the rate over time. A number of models of rate change have been proposed. We have extended and
evaluated models of rate evolution, i.e., the lognormal and its recent variant, along with the gamma,
the exponential, and the Ornstein–Uhlenbeck processes. These models were �rst applied to a small
hominoid data set, where an empirical Bayes approach was used to estimate the hyperparameters
that measure the amount of rate variation. Estimation of divergence times was sensitive to these hy-
perparameters, especially when the assumed model is close to the clock assumption. The rate and
date estimates varied little from model to model, although the posterior Bayes factor indicated the
Ornstein–Uhlenbeck process outperformed the other models. To demonstrate the importance of al-
lowing for rate change across lineages, this general approach was used to analyze a larger data set
consisting of the 18S ribosomal RNA gene of 39 metazoan species. We obtained date estimates con-
sistent with paleontological records, the deepest split within the group being about 560 million years
ago. Estimates of the rates were in accordance with the Cambrian explosion hypothesis and suggested
some more recent lineage-speci�c bursts of evolution. [18S rRNA; local molecular clocks; Markov
chain Monte Carlo; Metazoa; Metropolis–Hastings algorithm; molecular clock; Ornstein–Uhlenbeck
process; phylogeny; posterior Bayes factor; rate of evolution.]

Since it was proposed by Zuckerkandl
and Pauling (1965) almost four decades
ago, the molecular clock hypothesis, i.e., the
constancy of evolutionary rate over time,
has been a matter of debate (e.g., Gillespie,
1991). A number of tests have been devel-
oped to examine its validity, such as the
relative rate test (Sarich and Wilson, 1967;
Wu and Li, 1985) and the likelihood ratio test
(Felsenstein, 1988). These tests often reject
the molecular clock in real data sets (see Nei
and Kumar, 2000:188). When the evolution-
ary rate is not constant across lineages, it is
interesting to know whether it �uctuates at
random or evolves following some speci�c
trends.

Violation of the molecular clock as-
sumption has also caused seriously biased
estimates of divergence dates (Yoder and
Yang, 2000; Soltis et al., 2002). Recently,
several investigators have attempted to
relax the molecular clock assumption when
estimating divergence times. One approach
is to construct local molecular clock models
in the likelihood framework (Rambaut and
Bromham, 1998; Yoder and Yang, 2000),
where independent evolutionary rates are

assigned to some lineages while all the other
branches evolve at the same rate. Dates and
rates are then parameters in the model and
are estimated by maximum likelihood (ML).
This approach is straightforward to apply if
the branches with different rates can easily
be identi�ed a priori. However, when such
information is unavailable, date estimates
might be sensitive to the assumptions about
the rates.

Another approach is to use a stochastic
process to describe evolutionary rate change
over lineages, relying on the observation
that closely related lineages tend to have
similar rates (Sanderson, 1997). A Bayesian
approach is then used to derive the posterior
distributions of rates and dates. One such
model assumes that rates are autocorrelated
across speciation events; the rate of a branch
is sampled from a lognormal distribution
centered on the rate of the ancestral branch
(Thorne et al., 1998). Other models of rate
evolution have also been suggested. Fol-
lowing Gillespie (1991), Bickel (2000) and
Cutler (2000) proposed a model based on
a doubly stochastic Poisson process (Cox
process), which extends the constant-rate
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Poisson process �rst described to model
the accumulation of substitutions since
divergence (Zuckerkandl and Pauling, 1965).
Huelsenbeck et al. (2000) modeled the evo-
lutionary rate as a point process, assuming
that the rate of evolution changes according
to a Poisson process along the tree, and the
rate parameter of the Poisson has a prior
distribution.

There seems to be some arbitrariness in the
choice of the model of rate evolution. Thus, it
is important to know how sensitive the esti-
mates of divergence times are to the choice of
the model of rate change. In this study, we im-
plemented and compared different models
of autocorrelated rate change over time, fo-
cussing on two points: the effect of the model
of rate change and the effect of the parame-
terization of each model to relax the clock. We
also compared these Bayesian methods with
the likelihood-based local clock analysis. We
used the hominoid tRNA gene (Horai et al.,
1992) and the metazoan 18S ribosomal RNA
(rRNA) gene (Bromham et al., 1998) as test
data sets.

THE BAYESIAN APPROACH

In the framework of ML, the most gen-
eral model assumes that the substitution rate
ri for branch i is allowed to vary among
branches. The branch length is given by the
product of the rate and the time duration
for that branch, bi D ri ti . The likelihood, i.e.,
the probability of observing the data X, de-
pends on the vector of branch lengths B and
is denoted p(X j B). Branch lengths can be
estimated using classical hill-climbing algo-
rithms to maximize the likelihood (see Gill
et al., 1981). Because rate and time are con-
founded, it is not possible to estimate one
without making assumptions regarding the
other. For instance, the molecular clock hy-
pothesis assumes that all rates are equal;
branch lengths are then proportional to di-
vergence times, and the problem reduces to
ML estimation. Models of local clocks are
similar; some prespeci�ed branches are as-
signed independent rate parameters while
all other branches have the same rate.

To relax the molecular clock in a Bayesian
framework, we assign a prior distribution
p(R, T) for rates of evolution R and diver-
gence times T . The Bayes theorem is then
used to derive the (posterior) probability of

times and rates:

p(R, T j X) D
p(X j R, T )p(R, T)

p(X )
: (1)

A sensible way to factorize the joint prior dis-
tribution is p(R, T) D p(R j T)p(T ). We there-
fore assume that speciation events are gener-
ated by a random process independent of the
rates of molecular evolution and that the rate
for a given branch is dependent on the time
duration of thatbranch. Moreover, if theprior
for the rates is independent of divergence
times, we have p(R j T )p(T) D p(R)p(T):

The probability p(X j R, T) is the tradi-
tional likelihood, and its calculation requires
a nucleotide substitution model. Here, we
use the HKY85 model (Hasegawa et al.,
1985) incorporating among-site rate varia-
tion modeled by a gamma distribution (Yang,
1994). The parameters in the substitution
model are Ã D f·, ®, ¼g, where · is the tran-
sition:transversion rate ratio, ® is the shape
parameter of the gamma distribution, and
¼ is the vector of the base frequencies. We
have also extended this model to take into
account heterogeneous site partitions in the
sequence (e.g., the three codon positions of a
gene). Usually Ã is assumed to follow a uni-
form prior distribution with its components
mutually independent and independent of R
and T . The prior distribution of the complete
model is then p(R j T )p(T)p(·)p(®)p(¼ ). In
this paper, we will concentrate on prior mod-
els for times and rates, with Ã set to its ML
estimates (MLEs) obtained without the clock.

PRIOR DISTRIBUTION FOR
DIVERGENCE TIMES

The prior distribution for divergence times
is generated by a process of cladogenesis, the
generalized birth and death process (BDP)
with species sampling, as described by Yang
and Rannala (1997) (see also Kendall, 1948;
Thompson, 1975; Nee et al., 1994). The model
assumes a constant speciation rate ¸ and an
extinction rate ¹ per lineage. Node times are
conditioned on the time of the root, arbitrar-
ily set to 1. Species sampling is modeled as a
mass extinction event occurring at the sam-
pling time with a probability ½. This pro-
cess is �exible and can accommodate more
shapes of trees than the Yule process as used
by Thorne et al. (1998) but seems comparable
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with the generalized Dirichlet distribution of
Kishino et al. (2001). To accommodate the un-
certainty in the hyperparameters (¸, ¹, and
½), they are integrated out of the model by
a standard Bayes averaging method. Inde-
pendent uniform distributions were used as
priors for ¸, ¹, and ½.

Lower and upper bounds on node times
can be discerned from fossil dates. This ap-
proach is expected to improve convergence
of the algorithm, because the times for the
constrained nodes do not have to explore
the whole sample space. This process has
been implemented recently by Kishino et al.
(2001), but as pointed out by those authors,
no closed-form prior under such a con-
straint has been suggested. As a result, we
have not incorporated this feature in our
implementation.

PRIOR DISTRIBUTIONS FOR RATES
OF EVOLUTION

Each branch in the tree has a rate, which is
the mean rate over the time period covered
by the branch. If the time period between two
speciation events is short, we may not expect
the rate of evolution to change dramatically.
However, the longer this period, the more
likely the rate changes. Thus it is natural to
model the rate for a descendent branch as if
it were drawn from a distribution with the
mean as the ancestor’s rate and the variance
increasing as the time along the branch in-
creases. We use ¾ 2 as a measure of how the
variance in the rate increases as a function of
time. The model tends to the clock for small
¾ 2 and represents highly variable rates when
¾ 2 is large. The prior model does not assume
a systematic trend in the rate, either upward
or downward. Several different distributions
are implemented, as described below.

Lognormal Prior Distribution and Its
Stationary Variant

We �rst brie�y review two models of rate
change developed by Thorne et al. (1998) and
Kishino et al. (2001). The consideration that
rates are positive motivated the choice of the
lognormal distribution instead of the normal
distribution (Thorne et al., 1998). Let ri be
the rate of branch i , rA the rate of the ances-
tral branch of i , and ’(ri , rA, s2) the Gaussian
density exp[¡(ri ¡ rA)2=(2s2)]=

p
2¼s2: In the

former implementation (Thorne et al., 1998),
the rate ri follows the lognormal distribution

’(ri , rA, s2)=ri and has two parameters: rA
is the rate of the ancestor, and s2 is a vari-
ance parameter that controls how much
the model is constrained by the clock. This
lognormal model is hereafter referred to
as LND. If the time period between two
speciation events is short, it is natural to
think that the rate of evolution of a given
gene may not change dramatically. How-
ever, the longer this period, the more likely
the rate changes. Therefore, s2 was assumed
to be proportional to this time period, 1t,
with s2 D ¾ 21t. Parameter ¾ 2 measures the
departure from the strict clock assumption;
the model tends to the molecular clock for
small ¾ 2 and represents highly variable rates
when ¾ 2 is large. The time duration 1t
was measured by the difference between
the two midpoints of the current and ances-
tral branches by Thorne et al. (1998) and by
the time duration of the current branch by
Kishino et al. (2001). Here, we adopt the im-
plementation of Thorne et al. (1998).

The mean of the lognormal distribution
is not the ancestral rate rA but rA es 2=2 . The
rate of evolution therefore exhibits an up-
ward trend, so the process is time depen-
dent. A remedy to this problem, proposed by
Kishino et al. (2001), is to subtract s2=2 from
the logarithm of the ancestral rate so that the
probability density function (pdf) becomes
’(ri , rA es 2=2 , s2)=ri : We refer to this modi�ed
distribution as the stationary lognormal dis-
tribution (SLD).

To reduce the computational demand,
Thorne et al. (1998) and Kishino et al. (2001)
used MLEs of branch lengths B̂ as pseudo-
data, approximating the likelihood function
by a multivariate normal distribution cen-
tered on B̂. Our implementation of the LND
and SLD models is similar to those of Thorne
et al. (1998) and Kishino et al. (2001), but
we adopted an exact and more expensive
likelihood computation using the sequence
alignment.

Gamma and Exponential Distributions

We also implemented two simple models
of rate change: the gamma and exponential
distributions (GD and ED, respectively). The
rate of a branch is assumed to be drawn from
a GD oran ED, with themean rate equal to the
rate of the ancestral branch. As with the mod-
els discussed above, the variance of the GD
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is set proportional to 1t, the time duration of
the considered branch, whereas with the ED,
the variance is a function of the mean only.
Therefore, these two models are not nested,
and ED implicitly assumes that the larger the
rate, the more variable it is.

Ornstein–Uhlenbeck Process

Another model we implemented allows
the rate to evolve according to the Ornstein–
Uhlenbeck process (OUP), a continuous-
time Gaussian Markov process. OUP was
originally designed to model the speed of
a particle (not just its position, as in the
Brownian process) as a function of time. The
speed of the particle is reduced by frictional
resistance from the medium and altered by
random collisions with neighboring parti-
cles. According to the process, the pdf of rate
ri is ’[ri , rA e¡¯1t, ¾ 2(1 ¡ e¡2¯1t)=(2¯)] (e.g.,
Karlin and Taylor, 1981:170–173). The mean
of the distribution is now rA e¡¯1t , which
tends to the ancestral rate rA as ¯ or 1t
goes to zero. As before, ¾ 2 is the parame-
ter measuring departure from the molecu-
lar clock; the variance of the distribution,
¾ 2(1 ¡ e¡2¯1t)=(2¯), tends to ¾ 21t for small
¯ or 1t.

The simplest model of rate change is when
all the branches of the tree have the same rate.
This model is essentially the Bayesian ver-
sion of the molecular clock hypothesis, the
only difference with the traditional clock be-
ing the prior distribution for the speciation
times.

POSTERIOR DISTRIBUTION AND
ITS APPROXIMATION

In a Bayesian framework, the marginal
posterior distribution of a variable is ob-
tained by integrating out other variables. For
example, the marginal posterior distribution
of the times T is derived from Equation 1 by
integrating p(R, T j X ) over the rates, and the
hyperparameters:

p(T j X) D
Z

p(X j B)p(R jT, ¾ 2)p(T j¸, ¹, ½)

£p(¸)p(¹)p(½)dRd¸d¹d½=p(X):

(2)

Equation 2 can be further simpli�ed for the
ED prior for rates because p(R j T ) D p(R).

Because one of the objectives of this study
is to examine the effect of the molecular
clock assumption on time estimates, ¾ 2 is
not integrated out, but is estimated from the
data.

In general, it is very expensive to calcu-
late the normalizing constant p(X ) or the
integral (Eq. 2) Markov chain Monte Carlo
(MCMC) (e.g., Gilks et al., 1996) is employed
to approximate the (marginal) posterior dis-
tributions. At each step of the chain, a new
state µ¤ D fR¤, T¤, Ã¤g is proposed to change
parameters from a proposal distribution Q,
which is assumed to be a normal distribution
with the mean centered at the current state
µ . The variance of the normal distribution is
a tuning parameter. The new state µ¤ is ac-
cepted with probability h (Metropolis et al.,
1953; Hastings, 1970):

h D min
µ
1,

p(µ ¤ j X) ¢ Q(µ¤ ! µ)
p(µ j X) ¢ Q(µ ! µ ¤)

¶

D min
µ
1,

p(µ ¤ j X)
p(µ j X)

¶

D min
µ
1,

p(X j R¤, T ¤)
p(X j R, T)

£
p(R¤ j T ¤)p(T ¤)p(·¤)p(®¤)p(¼¤)

p(R j T)p(T)p(·)p(®)p(¼ )

¶
: (3)

The simpli�cation is because the proposal
distribution Q is symmetrical. The p(X) term
in p(µ¤ j X ) and p(µ j X ) cancels.

The updating scheme cycles through two
steps. In step 1, a divergence time is chosen at
random to be updated together with param-
eters ¸, ¹, and ½ of the BDP. In step 2, the rate
of a randomly selected branch is updated.
When the proposed value of the parameter is
out of the parameter space, it is re�ected back
into the correct interval. The chain moves to
the proposed state when it is accepted; oth-
erwise, it remains in the current state. The
tuning parameters for rates and times were
adjusted by running preliminary chains to
attain a balance between acceptance rate and
mixing. Depending on the parameterization,
the acceptance rate was between 60% and 5%
(for extreme parameterizations).

Sampling from the posterior distribution
can start when the chain has reached station-
arity. Although there exist heuristic tests to
determine when the MCMC has converged,
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none of them seem infallible (Gilks et al.,
1996). We have monitored convergence by
plotting time series of the studied variables
(times and rates). Multiple chains were run
from very different starting points. Linear re-
gressions were performed on time series of
each variable, testing the signi�cance of the
slope:The P value should be large, indicating
a slope not signi�cantly different from zero,
and the autocorrelation functions should not
detect any structure in the samples. Sampling
starts after a burn-in period de�ned as the
time the chain takes to forget the initial state
and reach stationarity. The chain is sampled
every 100 accepted states, hereby “thinning”
the chain (Raftery and Lewis, 1996) and re-
ducing autocorrelation between successive
samples. The likelihood p(X j R, T ) reached
stationarity quickly, whereas times and rates
typically converged more slowly, especially
for large data sets. We have used the me-
dian of the estimated posterior distribution
as the best point estimate of that parameter.
For most of the analyses reported here, the
MCMC was run multiple times, and the re-
sults were very close.

PRIOR MODEL SELECTION

Our primary interest is to estimate diver-
gence dates. However, different models of
rate change can lead to different date es-
timates, and choosing the model that best
�ts the data can be important. In a Bayesian
framework, inference proceeds usually from
the posterior distribution p(µ j X ), where µ
stands for parameters R, T , and the hyperpa-
rameters of the BDP. However, p(µ j X ) does
not allow us to evaluate the goodness of �t
of the model nor does it permit comparison
between models, which have different sets of
parameters.

The marginal probability p(X ) under a
given model Mk , alsodenoted p(X j Mk ), con-
tains information for assessing model perfor-
mance. One approach is to use the Bayes fac-
tor to compare models M1 and M2:

BF12 D p(X j M1)=p(X j M2): (4)

The p(X) for each model is obtained by av-
eraging (and not maximizing, as for the like-
lihood ratio test) over the parameter space,
with respect to the prior distribution. The

so-called prior mean is de�ned as

p(X j Mk ) D
Z

p(X j R, T)p(R, T j ´)p(´)

£ dR dT d´, (5)

where ´ includes the hyperparameters from
the birth–death process ´ D (¸, ¹, ½): Com-
puting the right side of Equation 5 is dif�-
cult (Raftery, 1996). Instead of computing the
prior mean, Aitkin (1991) proposed using the
posterior mean under each model, which we
use here because it can be calculated easily
by sampling from the MCMC:

Lpost
k D Epost[p(X j R, T)p(R, T j ´)]: (6)

Thus, the posterior Bayes factor comparing
models M1 and M2 is Lpost

1 =Lpost
2 . The poste-

rior Bayes factor is controversial (see Aitkin,
1991), but because it is directly estimable
from the MCMC outputs, we have used it
here.

For the LND, SLD, GD, and OUP models
of rate change, an empirical Bayes approach
is used to estimate the hyperparameter ¾ 2.
Under each model, Lpost

k was evaluated for
different values of ¾ 2. The value that best �ts
the data is chosen as the estimate. The same
approach was used for the hyperparameters
¾ 2 and ¯ under OUP.

PERFORMANCE OF THE DIFFERENT MODELS
ON A SMALL DATA SET

Comparison of the Different Bayesian Models
of Rate Change

We analyzed a small data set that consists
of the tRNA-coding genes of the mito-
chondrial genome of six hominoid species:
common chimpanzee, pygmy chimpanzee,
human, gorilla, orangutan, and siamang
(Horai et al., 1992). Alignment gaps were
removed, leaving 762 nucleotides in the
sequences. The phylogenetic relationship
of these species seems well established,
and the tree shown in Figure 1 will be
assumed throughout. The data set was
analyzed under the HKY85 C 0 model of
nucleotide substitution (Hasegawa et al.,
1985; Yang, 1994). The orangutan diver-
gence was set at 13 million years ago
(MYA) and was used as a calibration point
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FIGURE 1. ML tree for six species of hominoids. The
branch lengths of the unrooted tree were estimated un-
der the HKY85 C 0 model of nucleotide substitution.
The root of the tree is placed on the siamang branch.

(Horai et al., 1992). The molecular clock
assumption was not rejected by the like-
lihood ratio test (LRT); the LRT statistic
is 21` D 2[¡1785:96 ¡ (¡1789:65)] D 7:38,
with P D 0:12 and df D 4. MLEs of sub-
stitution parameters without the clock are
·̂ D 45:20 and ®̂ D 0:187. These values were
used in the MCMC runs in the Bayes analy-
sis. The hyperparameters of the BDP prior
for times are from the uniform distributions
¸ » U(0, 15), ¹ » U(0, 5), and ½ » U(0, 0.01).
Each chain was run with a burn-in of 104

steps, after which 104 samples were collected
every 100 steps.

When the variance for the rate (¾ 2) is very
small, all the models essentially make the
clock assumption and produced similar es-
timates for the divergence times (Table 1).
SLD has the largest Lpost

k , but the posterior

TABLE 1. Bayes estimates (posterior medians § SE) of the divergence times in clocklike and nonclocklike
analyses.

Analysis Chimpanzees Human Gorilla Siamang logL
post
k

Clocklike
Clock 2.14 § 0.70 4.79 § 1.09 7.03 § 1.38 18.33 § 2.01 ¡1792.34
LND (¾ 2 D 10¡4) 2.09 § 0.65 4.69 § 1.01 6.89 § 1.29 19.03 § 1.98 ¡1791.95
SLD (¾ 2 D 10¡4) 2.08 § 0.65 4.71 § 1.02 6.92 § 1.26 18.87 § 1.95 ¡1791.90
GD (¾ 2 D 10¡4) 2.11 § 0.81 4.76 § 1.21 7.00 § 1.46 19.40 § 2.12 ¡1792.43
OUP (¯ D 100, ¾ 2 D 10¡4) 2.17 § 0.87 4.79 § 1.28 7.02 § 1.54 19.22 § 2.16 ¡1792.29

Nonclocklikea

LND (¾ 2 D 10) 5.66 § 2.63 8.82 § 2.63 10.96 § 2.60 17.07 § 2.50 ¡1790.17
SLD (¾ 2 D 1) 5.51 § 1.92 8.64 § 2.04 10.49 § 2.10 16.57 § 2.14 ¡1790.73
GD (¾ 2 D 9) 5.02 § 2.84 7.99 § 2.82 10.38 § 2.77 16.92 § 2.58 ¡1790.08
OUP (¯ D 100, ¾ 2 D 1) 4.54 § 1.95 7.89 § 2.08 10.21 § 2.09 15.09 § 1.79 ¡1788.75
ED 5.89 § 2.21 9.11 § 2.20 11.02 § 2.13 15.01 § 1.91 ¡1789.72

aHyperparameters ¯ and ¾ 2 are chosen to maximize the posterior mean L
post
k .

Bayes factor is always <0.53 when this model
is compared with any other model, so that the
differences are not signi�cant (see Kass and
Raftery, 1995:777).

The exponential model does not have any
hyperparameter to control its variance. In all
other models, increasing the variance for the
rate (¾ 2) relaxes the clock assumption. The
same ¾ 2 in the different models means differ-
ent levels of rate variation. Figure 2 shows the
in�uence of ¾ 2 on the estimates of two rates:
r5 for the branch ancestral to orangutan and
r7 for the branch ancestral to the two chim-
panzee species (see Fig. 1). Rates and diver-
gence times are sensitive to the hyperparam-
eter ¾ 2 for all models when ¾ 2 is small. When
¾ 2 is large, LND (not shown) and GD reach
a plateau, and the estimates are not sensitive
to ¾ 2.

We maximize Lpost
k toestimate the hyperpa-

rameter ¾ 2 in the LND, SLD, and GD models
and ¯ and ¾ 2 in the OUP model. Figure 3a
shows that the models behave differently.
Under LND and GD, the posterior mean
Lpost

k reaches a plateau for large values of ¾ 2

and does not decrease until ¾ 2 is very large;
date and rate estimates are insensitive to ¾ 2

when ¾ 2 is large in these two distributions
(Fig. 2). Under SLD and OUP, Lpost

k is sensi-
tive to ¾ 2. The optimum value under SLD
is about ¾ 2 D 1 (Fig. 3a), whereas the opti-
mum values for OUP are about ¯ D 100 and
¾ 2 D 1 (Fig. 3b); estimates of dates and rates
are somewhat sensitive to these hyperparam-
eters under SLD and OUP. When optimum
parameters are used, the date estimates are
similar among the different models.
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FIGURE 2. Posterior medians of evolutionary rates for branches 5 and 7 in Figure 1 under different models of
rate change: SLD (¥), OUP (N), GD (¦), and ED (£). Rates are measured by the expected number of substitutions
per site per 109 years. The hyperparameter ¯ of OUP is set to 100.

We also used Lpost
k to compare models of

rate change (Fig. 3a). For OUP, the hyperpa-
rameter ¯ has been set to 100, which is close
to the optimal value. OUP outperformed the
other models, probably because it has more
hyperparameters. The posterior Bayes factor,
computed from those probabilities, ranges
from 1.0 to 2.0 on the log scale for comparison
between OUP and the other models (Table 1),
indicating a strong preference for OUP (Kass
and Raftery, 1995).

Comparison with ML Analysis under Local
Clock Models

Comparison of the Bayesian approach
(Table 1) with ML (Table 2) is a good means
of testing the MCMC implementation.
Under the molecular clock assumption, both
approaches should give similar estimates,
with larger SEs from the Bayes models. The
ML date estimates for nodes younger than
the calibration point are slightly younger
(say 4.3 MYA for the human–chimpanzee
divergence) than the Bayes estimates
(4.7–4.8 MYA). For nodes older than the

calibration point, the difference is also small
but in the opposite direction. The observed
discrepancy appears to be due to the BDP
prior for divergence times used in the Bayes
approach. The use of a small sampling
fraction, ½ » U(0, 0.01), has the effect of
shortening the internal branches (Yang and
Rannala, 1997).

When the molecular clock is relaxed, the
MLEs of dates are very different from and
much older than those under the clock
(Table 2). For example, the date for
human–chimpanzee divergence changed
from 4.3 MYA under the clock to 8.8 MYA
under a two-rate local-clock model, although
both estimates involve large sampling errors.
Thus, the date estimates are sensitive to the
clock assumption, although the molecular
clock was not rejected by the LRT. In the
Bayes approach, relaxing the clock assump-
tion also had considerable effect on date es-
timates, but the effect is somewhat different.
The chimpanzee, human, and gorilla diver-
gences become much older than those under
the clock, and the siamang divergence be-
comes slightly younger. Although the Bayes
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TABLE 2. Maximum likelihooda estimates of divergence times (§SE) under the clock and local-clockb models.

Clock (one rate) Two rates Three rates Four rates

Chimpanzees 1.77 § 0.54 3.74 § 1.13 3.76 § 1.16 5.88 § 1.82
Human 4.28 § 0.91 8.85 § 1.86 7.59 § 2.61 10.68 § 3.80
Gorilla 6.50 § 1.18 13.00 § 2.32 13.00 § 2.54 12.64 § 6.13
Orangutan 13 13 13 13
Siamang 19.56 § 3.49 35.86 § 6.35 37.61 § 7.08 57.57 § 11.51
` ¡1773.21 ¡1770.90 ¡1770.52 ¡1769.42
r̂1 1 3.41 3.60 6.23
r̂2 1 1 1.51 1.84
r̂3 1 1 1 2.45

aML analyses were performed under the HKY85 C 0 model (· D 45:20, ® D 0:187). The calibration point was set at 13 MYA for
the orangutan.

bLocal clock settings: r1 for orangutan; r2 for human; r3 for gorilla; r0 D 1 for all other branches.

FIGURE 3. (a) Approximate posterior means L
post
k as a function of the hyperparameter ¾ 2 under different models

of rate change: LND (¤), SLD (¥), OUP (N), GD (¦), and ED (£). Under OUP, ¯ D 100 is �xed. (b) Approximate
surface of the posterior mean L

post
OUP as a function of the hyperparameters ¯ and ¾ 2.
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date estimates for the recent nodes are sim-
ilar to the MLEs, either with or without the
clock, the Bayes estimates of the siamang di-
vergence date (15–17 MYA) are younger than
the MLEs (about 36–37 MYA). Those MLEs
appear too old, but they involve very large
sampling errors.

APPLICATION TO THE 18S RRNA DATA SET

To test the different Bayes models of rate
evolution and demonstrate the important ef-
fect of rate change on date estimation, we
reanalyzed the nuclear-encoded 18S rRNA
genes from 39 metazoan species (Bromham
et al., 1998), rooted by a fern, Polypodium. As
reviewed by Cooper and Fortey (1998), the
time of origin of the animal phyla has been
controversial. A common view, based on the
fossil records, holds that the early Cambrian
(ca. 545 MYA) was characterized by acceler-
ated evolution, marking an “explosion” of
the metazoan phyla (e.g., Valentine et al.,
1996). In particular, the divergence between
protostomes and deuterostomes is thought
to have occurred between 530 and 600 MYA.
However, molecular studies such as that of
Bromham et al. (1998) produced estimates as
far back as about 1,200 MYA, almost twice as
old.

The sequences consist of 1,710 nucleotides.
Gaps were removed from the alignment,
and the data set was analyzed under the
HKY85 C 0 model of nucleotide substitu-
tion, with the transition: transversion rate
ratio and the shape parameter of the 0 dis-
tribution set to their MLEs obtained with-
out the clock (·̂ D 3:46 and ®̂ D 0:373). The
tree topology was �xed (Fig. 4), according to
Nielsen (1995).

The molecular clock assumption was re-
jected by the LRT; the test statistic is 21` D
2[¡13948:10 ¡ (¡14,381:85)] D 867:50, P <
0:01. The shape of the ML tree under no
clock (not shown) indicated very variable
rates among lineages, which may preclude
traditional analyses either by ML local clocks
(Yoder and Yang, 2000) or by linearizing the
tree (Takezaki et al., 1995).

The Bayes analysis was conducted by
drawing the hyperparameters of the BDP
prior for times from uniform distributions,
¸ » U(0, 15), ¹ » U(0, 5), and ½ » U(0, 0.001).
We used the ED, SLN, and OUP models of
rate change. MCMC runs included a burn-in

period of 105 steps, after which 105 samples
were collected every 100 accepted states.
We averaged the posterior estimates over
eight calibration points given by Bromham
et al. (1998): Collembola–Pterygota, 390
MYA (1); Aranaea–Scorpionida, 405 MYA
(2); Arachnida–Merostomata, 520 MYA (7);
Cephalochordata–Chordata, 530 MYA (8);
Coelacanth–Dipnoi/Tetrapoda, 418 MYA
(3); Osteichthyes–Dipnoi/Tetrapoda, 428
MYA (4); Agnata–Gnathostoma, 510 MYA
(6); Asteroidea–Echinoidea, 500 MYA (5)
(numbers 1–8 refer to Fig. 4).

Dates estimated with a Bayesian clocklike
model, with a small variance for the prior
on the rates, place the echinoderm–chordate
and protostome–deuterostome divergences
at 1,205 MYA (95% credible set: 1,062–1,341
MYA) and 1,450 MYA (95% credible set:
1,321–1,567 MYA), respectively. These esti-
mates are slightly smaller than but very sim-
ilar to the ones found by the original authors
(cf. Bromham et al., 1998: Fig. 2).

To relax the molecular clock hypothesis,
the ED, SLN, and OUP models of rate change
have been evaluated with an empirical Bayes
phase to estimate the hyperparameters. The
results are summarized in Table 3. The pos-
terior mean Lpost

k under each model and pa-
rameterization is provided only for the val-
ues around the maximum Lpost

k , although an
extensive search was carried out to make sure
there were no other optima. Again, OUP ex-
plains the data better than does any other
model. The maximum Lpost

k is around ¯ D 1
and ¾ 2 D 10, but the probability surface in
this region is almost �at (Table 3). The esti-
mated ¾ 2 for SLN is around 10. This large
value is consistent with the large statistic in
the LRT of the clock and indicates that rates
are more variable than in the small hominoid
data set.

The estimates of the divergence times
under the ED model, summarized in
Figure 4, are very similar to those under
SLN and OUP (not shown). The time esti-
mates are consistent with the fossil records
(e.g., Conway Morris, 1998), or with lin-
earized analyses performed on many genes
(Ayala et al., 1998). This latter analysis,
of 18 protein-coding genes, produced esti-
mated divergence dates at 628 § 76 MYA for
the echinoderm–chordate split and at 736 §
65 MYA for the protostomes–deuterostome
separation. Our estimates, for a single gene,
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FIGURE 4. The posterior estimates of divergence times for 39 metazoan species under the ED model of rate
change. Calibration points from fossil dates are indicated by circled numbers (1–8). Estimates were obtained under
the HKY85 C 0 model of nucleotide substitution. Branch lengths are scaled to time, and the thickness of a branch
indicates the evolutionary rate (expected number of substitutions per site per 109 years). Numbers at internal nodes
represent, from top to bottom, the lower limit of the 95% credible set, the time estimate, and the upper limit of the
95% credible set.

are respectively 550 MYA (95% credible set:
510–574 MYA) and 560 MYA (95% credible
set: 522–581 MYA) under ED and 579 MYA
(498–608 MYA) and 595 MYA (519–616 MYA)
under OUP (¯ D 0:1 and ¾ 2 D 10). Because
there is no need to eliminate outlying taxa,
all the available information in the gene is
taken into account in the Bayesian approach.

Possible biases must be taken into account
when we interpret the results of the Bayesian
analysis. First, we used a �xed tree topol-
ogy, although uncertainty exists regarding
the evolutionary history of the metazoan
phyla. The effect of the uncertain phylogeny

on date estimation deserves consideration,
although Yoder and Yang (2000) suggested
that plausible topologies gave similar speci-
ation date estimates. Second, in the hominoid
data set Bayesian inference may be sensitive
to the hyperparameter ¾ 2 of the prior model
of rate change. Similar effects were found
in the metazoan data set. For example, date
estimates under the clock assumption were
drastically different from those presented in
Figure 4. In this regard, estimates of dates un-
der different models were similar when op-
timum values of ¾ 2 were used in each model
of rate change. Third, the results presented
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TABLE 3. Fit of different models of rate change to the
metazoan 18S rRNA sequences.

Model ¯ ¾ 2 logL
post
k

ED n.a.a n.a. ¡13992.64
SLD n.a. 1 ¡14020.02

10 ¡14000.03
20 ¡14001.52
40 ¡14009.06

OUP 0.01 1 ¡13984.80
10 ¡13976.05
20 ¡13978.62
40 ¡13976.80

0.1 1 ¡13984.86
10 ¡13975.52
20 ¡13976.97
40 ¡13977.77

1 1 ¡13991.27
10 ¡13976.32
20 ¡13975.22
40 ¡13975.87

an.a. D not applicable.

here were obtained from a single gene and
should be taken with caution.

The rate estimates (Fig. 4) suggest that the
metazoan 18S rRNA gene has a complex his-
tory, with high evolutionary rates during the
Cambrian (between 550 and 500 MYA) for
triploblastic animals and much lower rates,
for diploblastic animals, which seem to be
conserved to date. The episode of high evolu-
tionary rate in the Cambrian was followed by
asteep decline toa more or less steady rate for
protostomes, whereas the pro-chordates un-
derwent another burst at approximately late
Ordovician/Silurian. Subsequent rate accel-
erations were detected for the branches lead-
ing to the Myxiniformes and the Diptera,
with a burst for the Nematocera. The his-
tory of the 18S rRNA gene might therefore
not be characterized as a mere decline of
rates as suggested recently (see Bromham
and Hendy, 2000), although the reasons for
this episodic evolution (Gillespie, 1991) are
not yet understood.

DISCUSSION

Analyses of both the hominoid and meta-
zoan data sets suggest that date estimates
are sensitive to the molecular clock hypoth-
esis. Most molecular date estimates have
been based on the simplifying assumption
of the molecular clock, although some meth-
ods have been proposed to constrain a data
set to conform to this hypothesis, for exam-

ple by the relative rate test (Wu and Li, 1985)
or tree linearization (Takezaki et al., 1995).
Bromham et al. (2000) pointed out that the
power to detect rate variation might not be
very high, and as a result use of such tests to
�lter data might still lead to systematically
biased date estimates. As demonstrated by
our analysis of the metazoan data set, the
Bayes approach offers a promising alterna-
tive to the problem, estimating divergence
dates while detecting and accommodating
possible rate variation.

The likelihood-based local-clock models
(Yoder and Yang, 2000) are useful if prior in-
formation is available about which lineages
might have different rates. For example, such
models can be used for testing whether cer-
tain groups of species (e.g., primates versus
rodents) have different evolutionary rates.
When such information is unavailable, it is
more natural to use a Bayes model of ran-
dom rate change, although there is a greater
computational cost. The hyperparameter ¾ 2

of the rate distribution controls the amount
of rate variation. Although the approach ap-
pears most appropriate when rates change
slowly over time or across branches, it can ac-
commodate rapid rate changes with the use
of large values of ¾ 2, as in the metazoan data
set. Our results suggest that beyond a certain
value, the hyperparameter ¾ 2 has little in�u-
ence on the date estimates.

Our approach of estimating the hyper-
parameter ¾ 2 (or ¯ and ¾ 2 in OUP) does
not properly account for the uncertainty
concerning those hyperparameters because
the optimum values were treated as known
when divergence dates were estimated. A
full Bayes approach should integrate over
¯ and ¾ 2. We attempted to apply such an
approach to both data sets analyzed in this
paper, averaging over uniform priors for ¯

and ¾ 2 in the MCMC. However, the chain
did not converge well, in particular regard-
ing the marginal distributions of ¯ and ¾ 2,
and the probability surface was relatively �at
for large values of ¾ 2. Simultaneous use of
multiple calibration points might provide in-
formation about rates and thus help with the
convergence of the MCMC in a full Bayes
analysis.

A C program implementing methods dis-
cussed here is available at http://abacus.
gene.ucl. ac.uk/stephane/

http://abacus.gene.ucl.ac.uk/stephane/
http://abacus.gene.ucl.ac.uk/stephane/
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