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ABSTRACT 

The bacterial enzyme Methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) 

nucleosidase (MTN) is involved in methionine and adenine salvage from the by-products 

of S-adenosylmethionine (SAM, AdoMet) dependent reactions. MTN plays a critical role 

in alleviating product inhibition of SAM dependent reactions, including methylation 

reactions and the synthesis of polyamines, vitamins, and autinducer signals. Due to its 

absence from humans and its importance to bacterial metabolism, MTN is a potential 

target for the development of novel antibiotics to treat microbial infections. In this study, 

a MTN gene knock-out (MTN KO) strain of the pathogen E. coli O157:H7 was created to 

study the impact of MTN activity on bacterial growth, virulence, and autoinducer-

dependent events; and to model the effects that would be expected from complete 

pharmacologic interruption of enzyme activity.  E. coli O157:H7 was chosen as the topic 

of study since it is a serious gram-negative pathogen responsible for severe diarrhea that 

can progress to cause hemolytic uremic syndrome (HUS), and factors influencing its 

virulence are well known.  

The MTN KO strain showed delayed growth, minimal biofilm production, and 

decreased in vitro virulence when compared to the parental wild type (WT) strain. 

Notably, the MTN KO strain showed a reduced ability to adhere to cultured mammalian 

cells. An analysis of virulence factor expression showed that the MTN KO strain secreted 

less Shiga-toxin, type-III secretory proteins, and hemolysin activity than the parental WT 

strain.  Culture supplementation with autoinducer-2 precursor, 4,5-dihydroxy-2,3-
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pentanedione (DPD) did not restore the growth or virulence of the MTN KO strain, 

suggesting that the virulence defect was not the result of a loss of autoinducer-2 

signaling. However, culture supplementation with lipoate, thiamine and biotin partially 

reconstituted the growth and virulence phenotypes of the KO strain to WT levels, 

indicating that altered vitamin-dependent metabolic activity played a role in the defect.  

The lipoate- and thiamine-dependent enzymes in the pyruvate dehydrogenase complex 

were overexpressed in the MTN KO strain, but the enzyme complex showed lower 

specific activity than the WT strain, suggesting that the ability to synthesize these 

vitamins was compromised in the KO strain. Other metabolic enzymes (lactate 

dehydrogenase, alcohol dehydrogenase, glutamate dehydrogenase) were found to have 

specific activities equal to the WT strain, thus providing release points for excess 

metabolites in the KO strain.  

This study provides support for MTN as a target for antibiotic treatment. Our 

results indicate that one mechanism by which MTN specific inhibitors could exert their 

antibiotic effect is by interrupting vitamin dependent processes, particularly in central 

carbon metabolism. While loss of MTN activity was not bactericidal in this case, the 

significant reduction in bacterial growth, biofilm formation and virulence suggests that 

the bacteria treated with MTN inhibitors could have increased susceptibility to traditional 

antibiotics and the host immune system responses. This supports the incorporation of 

MTN inhibitors into combination drug therapies with standard antibiotics.  Finally, the 

creation and analysis of a MTN KO strain provides a valuable tool to explore potential 

mechanisms of antibiotic action that can be used in comparative studies to examine the 

antimicrobial activities of future MTN inhibitors.  
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CHAPTER ONE: INTRODUCTION 

The development of antibiotics in the 19
th 

century revolutionized the field of 

medicine by dramatically improving the ability to treat life-threatening infections. Paul 

Erlich, who would become known as the “Father of Antibiotics,” first hypothesized that 

if a dye was selectively toxic to bacterial cells, but not to mammalian cells, it would cure 

all infections.
1
 After screening hundreds of dyes, Erlich discovered Salvarsan, the first 

synthetic antibiotic used specifically to treat syphilis. In 1929, Sir Alexander Fleming 

discovered that secreted products of the Penicillium mold could lyse Staphylococcus 

cells, which marked the first report of the antibacterial action of a natural fungal product.
2
   

Subsequently, the first widespread introduction of effective sulfonamides by 

Domagk in 1937 was closely followed by reports of the development of bacterial 

resistance.
3
 Resistance to sulfonamides, originally reported in the late 1930s, persists 

today.
2
 Bacterial resistance to penicillin was also reported by two members of the 

discovery team several years before its introduction as a therapeutic.
4
 Once penicillin was 

widely distributed in the 1940s and 1950s, drug-resistant strains expressing penicillinase 

(β-lactamase) activity became prevalent. To combat this, a widespread effort was made to 

develop synthetic penicillinase inhibitors and new generations of penicillin-based drugs 

that were resistant to earlier β lactamases.
3
 Invariably, the development and introduction 

of every antibiotic has been followed by eventual bacterial resistance. 

A more startling trend is that many bacterial pathogens associated with epidemics 

of human disease have evolved multiple drug resistances.
3
 The evolution of drug 
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resistance is encouraged by the misuse of antibiotics and the rapid adaptability of 

bacteria. Hospitals serve as spawning grounds for many of these drug resistant strains. 

The most prevalent example is methicillin-resistant Staphylococcus aureus (MRSA), 

which developed resistance to methicillin only three years after the introduction of this 

drug.
3
 With time, MRSA acquired multiple forms of drug resistance and developed into a 

major community-acquired pathogen. Since then, a variety of other superbugs have 

emerged, including carbenapem resistant Enterobacteriaceae (CRE). As standard forms 

of antibiotics are becoming obsolete, there is a potential for all pathogenic bacteria to 

resist antibiotic treatment. Thus, there exists a dire need for novel forms of antibiotics to 

either replace or revitalize older drugs in order to prevent a reversion to the pre-antibiotic 

age when every infection was potentially life threatening.  

S-adenosylmethionine Reactions 

S-adenosylmethionine (SAM) is an important nucleoside found in all living 

organisms where it serves as an active group donor in a vast array of metabolic and 

biosynthetic reactions.
5
 The main use of SAM is as the primary methyl group donor in 

methylation reactions of macromolecules and small molecules. Other metabolic fates of 

SAM include the synthesis of acylhomoserine lactones (autoinducer-1, AI-1), polyamine 

synthesis (spermidine, spermine, etc), and radical SAM reactions involved in vitamin 

synthesis (Figure 1). SAM is synthesized in the cytosol by methionine adenosyl-

transferase (MAT), which joins L-methionine to ATP and yields SAM, pyrophosphate 

and phosphate ion (Figure 2).
6
 This transfer creates a metastable sulfonium ion, providing 

a target for nucleophilic substitution reactions that allow the transfer of methyl-, 

propylamino-, and other functional groups from SAM. 
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Figure 1. S-adenosylmethionine metabolic reactions. SAM is used as a reagent in 

transmethlyations, polyamine synthesis, autoinducer synthesis, and radical SAM reactions. 

SAH, MTA, and 5‟dADO are toxic side products of these reactions. MTN is responsible for 

the hydrolysis of the glycosidic linkage between the adenine and the ribose sugar. The ultimate 

goal of these reactions is to allow salvage of both methionine and adenine. 
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Figure 2. Synthesis of SAM. SAM is synthesized in the cytosol by methionine 

adenosyltransferase (MAT), which joins L-methionine to ATP and yields SAM, 

pyrophosphate, and phosphate ion. 

 

SAM-dependent methyltranferase reactions are diverse and critical for survival 

(Figure 3). As an example, the methylation of cytosine in DNA regulates a variety of 

mammalian gene activities, somatic inheritance, and cellular differentiation.
7
 In bacteria, 

methylations are responsible for regulation of many processes, including motility, gene 

expression, and the bacterial cell cycle.
5
 SAM is also the major methyl donor for 

proteins, phospholipids, carbohydrates, and various other molecules. While a variety of 

reaction mechanisms are used in transferases, the byproduct of the all the reactions is S-

adenosylhomocystiene (SAH).
5  

 

Figure 3. SAM–dependent methyltransferase reaction. Generic representation of 

SAM acting as a methyl donor. SAH can act as a product inhibitor to these reactions. 

 

Polyamine and autoinducer syntheses are also SAM dependent and essential 

molecules for cell growth and communication. The byproduct in each reaction is 

methylthioadenosine (MTA). Spermidine is produced from the transfer of a 5‟ 

+ + + 

ATP Methionine SAM 

+ + 

SAM SAH 
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propylamine group from decarboxylated SAM to putrescine by spermidine synthase 

(Figure 4).
5,11

 Polyamines are fully protonated under physiological conditions and thus 

carry a positive charge that form ionic interactions with negatively charged nucleic acids, 

specific proteins, and phospholipids.
11

 It is known that the rate of DNA synthesis is 

decreased by polyamine deficiency. Polyamines also confer protective effects against 

apoptosis, and play a major role in protein synthesis.
11   

 

Figure 4. Polyamine synthesis. Spermidine synthase transfers the 5‟ propylamine group 
from decarboxylated SAM to putrescine to produce spermidine. MTA acts as a product 

inhibitor of this reaction.   
 

N-acylhomoserine lactones (AI-1) are synthesized from the donation of an acyl 

group from hexanoyl acyl carrier protein (ACP) to SAM.
5
 In this reaction, a cyclization 

occurs to form the internal lactone ring and MTA as a byproduct (Figure 5). 

 
Figure 5. Autoinducer-1 synthesis. AI-1 is synthesized from the donation of an acyl 

group from hexanoyl ACP to SAM by LasI MTA can act as a product inhibitor to this 

reaction.  

 

+ + 

dcSAM MTA Putrescine Spermidine 

SAM MTA AI-1 

+ + 

Acyl-ACP 
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SAM is also used as an oxidizing agent in radical SAM dependent reactions. The 

general reaction catalyzed by radical SAM enzymes occurs first by the reduction of the 

sulfonium by a coordinated iron-sulfur cluster.
9,10

 The newly formed radical abstracts a 

hydrogen from a substrate C-H bond (Figure 6).
11

 Products of this abstraction vary 

greatly and include anaerobic oxidations, sulfur insertions, isomerizations, ring 

formation, and unusual methylations.
5
 In addition to the formation of the desired product, 

methionine and 5‟-deoxyadenosine (5‟-dADO) are formed as byproducts that can be 

recycled back to form SAM.  

 

Figure 6. Radical SAM reaction. Reduction of the sulfonium occurs through 

coordination to an iron-sulfur cluster. The radical abstracts a hydrogen from a substrate 

C-H bond. Methionine and 5‟-dADO are formed as byproducts. 5‟-dADO can act as a 

product inhibitor to this reaction.   

 

Radical SAM reactions are important to the synthesis of secondary metabolites, 

vitamins, antibiotics, and assist with bacterial DNA repair. Biotin synthase is a radical 

SAM enzyme that catalyzes the substitution of a bridging sulfur atom for hydrogen in 

desthiobiotin to form the essential enzyme cofactor biotin.
12

 Lipoyl synthase is another 

radical SAM enzyme that catalyzes the final step in de novo biosynthesis of the lipoate 

cofactor by inserting two sulfur atoms into an 8-carbon-saturated fatty acyl chain.
14

 

+ + + 

SAM Methionine 5‟-dADO 5‟-dADO 
radical 
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Precursors of the cofactor thiamine are generated in several bacteria by the enzyme 

tyrosine lyase, a radical SAM enzyme.
13

 Overall, the radical SAM super family is 

currently composed of more than 2800 proteins involved in over 40 distinct biochemical 

transformations.
8
  

A regulatory characteristic of all of the above SAM dependent reactions is the 

susceptibility to product inhibition by SAH, MTA, and 5‟-dADO.
5
 SAH has been shown 

in vitro to inhibit a number of bacterial methyltransferases at low micromolar 

concentrations.
15,16

 Several reports have also shown that enzymatic degradation of SAH 

by MTA/SAH nucleosidase alleviates product inhibition of methylation reactions.
17,18

 

The nucleoside MTA has also been shown to be a potent inhibitor of polyamine synthase 

reactions at low micromolar concentrations.
19-21

 In addition, MTA inhibits 50% of 

autoinducer-1 synthase activity at concentrations as low as 5 µM.
21

 Lastly, 5‟-dADO and 

methionine were shown to inhibit biotin synthase, lipoyl synthase, and tyrosine lyase.
10 

In 

order to reduce product inhibition by these nucleosides, all organisms have developed 

efficient nucleosidases to catabolize them and salvage their constituent parts.   

Methylthioadenosine/S-adenosylhomocystiene Nucleosidase and the 

Methionine Salvage Pathway 

Methythioadenosine/S-adenosylhomocysteine nucleosidase (MTN) catalyzes the 

irreversible cleavage of MTA, SAH, and 5‟-dADO to adenine and the corresponding 

pentose, 5-methylthioribose (MTR), S-ribosylhomocysteine (SRH), and 5-deoxy-D-

ribose (5-dRIB), respectively.
5,22

 MTN exists as a 25-35 kD homodimer and is found in 

the methionine salvage pathway for the majority of bacteria (Figure 7).
5,22,24

 Specifically 

in 51 bacterial species, including pathogens with reductive genomic evolution, MTN is 
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responsible for metabolism of the three nucleotides.
23,25

 Other bacteria that contain 

relatively large genomes and exhibit complex metabolism use two enzymes to remove 

MTA and SAH independently.
26

 These organisms behave metabolically more like 

humans: a MTA phosphorylase converts MTA to 5-methythioribose-1-phosphate, while 

SAH hydrolase catabolizes SAH.
5
 This more restricted substrate specificity is proposed 

to allow more efficient metabolism to promote better survival in these organisms.
27,28  

 

Figure 7. Structure of the E. coli Methylthioadenosine/S-adenosylhomocysteine 

Nucleosidase. Ribbon representation of the E. coli MTN dimer viewed down the 

noncrystallographic two-fold axis. A molecule of the MTA analogue Formycin-A is 

shown bound in each active site. (adapted from Lee et al., 2001)
23 

 

The ultimate purpose of MTN is to catabolize growth inhibitory MTA, SAH, and 

5‟-dADO; and salvage the methionine and adenine, which are metabolically expensive to 

synthesize.
5
 The adenine is recycled back to purine nucleosides. The thiopentoses MTR 

and SRH require further enzymatic reactions to salvage the sulfur atom back into 

methionine (Figure 8).
5,29,30

 The conversion of MTR to methionine begins with the 

phosphorylation of MTR to MTR-1-phosphate (MTR-1-P) by MTR kinase.
29

 In bacteria 

that contain a complete salvage pathway, an additional four or five enzymatic steps 

(depending on the species) are required to convert MTR-1-P to methionine.
5
 Some 
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organisms such as E. coli, that live in sulfur rich environments do not salvage methionine 

and secrete MTR, instead.
32

   

To salvage methionine from SAH catabolism, the majority of bacteria use the 

enzyme LuxS to cleave the thiopentose S-ribosylhomocysteine (SRH) to produce 

homocysteine and 4,5-dihydroxy-2,3-pentadione, the precursor to autoinducer-2 (AI-2, 

Figure 9).
5
 Homocysteine is remethylated to form methionine using either cobalamin-

dependent (MetH) or cobalamin-independent (MetE) methionine synthases.
33,68

 

 

 

Figure 8. The methionine salvage pathway in bacteria. Dashed lines represent species 

variations.  (adapted from Sekowska et al., 2004).
25 
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Figure 9. Autoinducer-2 synthesis. LuxS cleaves SRH to produce homocysteine and 

4,5-dihydroxy-2,3-pentadione, which can then cyclize to form AI-2.   

 

MTN is a potential novel antibiotic target due to its critical involvement in 

microbial metabolism and its absence in humans. The first description of MTN enzyme 

activity was reported in 1963.
89

 In 1979, a study of MTA analogs was published that 

demonstrated that they were effective competitive inhibitors of MTN, and set the stage 

for further exploration of this enzyme as a chemotherapeutic target.
34

 This initial 

discovery lead to further studies on the development of substrate and transition-state 

analogs.
31,39,40

 Extensive crystallographic studies revealed MTN exists as a homodimer 

and established that enzyme-substrate interactions responsible for recognition and 

catalysis.
35-40

 Importantly, these studies revealed that the active site of each subunit 

contains a hydrophobic pocket involved in recognition of the 5‟ alkyl portion of the 

nucleoside that is partially composed of residues from the second subunit.
22,34-37

 The 

hydrolysis of the substrates is essentially irreversible and the acidic amino acid residues, 

Glu
12

, Glu
174

, and Asp
197

, involved in catalysis are highly conserved across species.
25,36,37

  

While substrates and transition states are similar between bacterial MTN and 

mammalian MTA phosphorylase (MTP), crystallographic studies also reveal distinct 

differences in the enzyme active sites. In MTN, the active site has a larger 5‟alkylthio 

binding pocket, which allows for recognition of SAH and other larger thionucleoside 

analogues than the active site of MTP.
35

 There are also surface charge differences in the 

SRH DPD AI-2 Homocysteine 
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region of the enzymes responsible for recognition of the 2‟hydroxyl-group on the 

nucleoside: MTP is positively charged, while MTN is negatively charged.
35

 Combined, 

these features suggest routes for directed drug design that would yield inhibitors capable 

of discriminating between the two enzymes.
5
 The majority of the work to develop 

specific selective inhibitors of MTN has been performed in Dr. Vern Schramm‟s lab at 

Albert Einstein College.
31,38-40,71

 These inhibitors are based on transition state structures 

for the substrate that would bind the enzyme active site with the highest affinity. Recent 

specific potent late transition stage MTA analogs with bulky 5‟ substitutions (DADMe-

immucillin 54: DADMe-immucillin 57) are selective inhibitors that bind with a thousand-

fold greater affinity (or more) to MTN than to MTP (Figure 10).
38-40

 However, most of 

the studies testing MTN transition state inhibitors as antibiotics in E. coli and other 

bacterial species have reported only modest activity, with IC50 values in the micromolar 

range or higher.
5
 It has been proposed that the transition state analogs failed to exert 

potent antibiotic effects due to poor drug permeability or transport into the cell.
39

 

However, in species that are purine auxotrophs, such as Borrelia burgdorferi, MTN 

inhibitors were more potent.
40

 Probably this is due to the greater need by these organisms 

to salvage methionine and purines, which makes them more sensitive to MTN 

interruption.
40

 

Despite rather poor antibiotic effects in E. coli, MTN transition state analogues 

have been shown to reduce AI-2 synthesis and biofilm formation.
39

 Thus, the inhibitors 

have been proposed to act more as interrupters of microbial autoinducer signaling than as 

direct bactericidal agents. This may be critically important since virulence, pathogenesis, 

and drug resistance are thought to be regulated (at least partially) by intercellular 
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communication. Interruption of bacterial communication represents a new paradigm for 

the development of antibiotics. These drugs could act less directly than traditional 

antibiotics (like penicillin) to kill bacteria. Instead, they could cause attenuation of the 

pathogen so that the host immune system could more effectively combat the infection.   

 

 

 

 

 

 

EARLY TRANSITION STATE ANALOGUES       

 

LATE TRANSITION STATE ANALOGUES 

MT-ImmA 
K

i

 
= 120 ± 5 pM  

5’d-Et-ImmA 
K

i

 
= 130 ± 12 pM  

MT-DADMe-ImmA 
K

i

 
= 86 pM  

BuT-DADMe-ImmA 
K

i

 
= 296 fM  

DADMe-ImmA 54 
K

i

 
= 64 pM  

DADMe-ImmA 57 
K

i

 
= 54 pM  

Figure 10. Early and late transition state analogues for MTN. Inhibitors of MTN 

contain a non-hydrolyzable linkage between the adenine and pentose moieties. The 

selectivity index for bacterial MTN can be up to a 1000 fold higher when compared 

to human MTP. All Ki values reported are for E. coli MTN and were obtained from 

the literature.
31, 37-40, 71 
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Quorum Sensing 

Quorum sensing (QS) is the process of bacterial cell to cell communication that 

involves production, detection, and response to extracellular signaling molecules known 

as autoinducers (AI).
45 

QS was originally discovered over 30 years ago in two 

bioluminescent bacterial species, Vibrio fischeri and Vibrio harveyi. In these species, 

light emission occurred only at high cell population density, when the accumulation of 

secreted AIs stimulated the expression of the structural operon luxCDABE, which 

encodes the light producing luciferase enzyme.
45

 Since this initial discovery, it has been 

reported that QS is responsible for an array of bacterial phenotypes and behaviors 

including sporulation, competence, antibiotic production, biofilm formation, and 

virulence factor secretion.
45 

While the regulatory components and molecular mechanisms of QS differ 

between bacterial species, three basic principles apply. First, all communicating bacteria 

produce AIs. When the population of a bacterial community is low, the AIs are in such 

low concentration that they are unable to stimulate a population-wide response. After the 

population reaches a high density, the additive amount of AIs produces a cumulative 

response. The second principle of QS is that receptors for AIs exist in the membrane or 

the cytoplasm of the responding cells. Lastly, AIs induce varied gene expression and 

stimulate production of additional AIs through a positive feedback loop to sponsor 

synchronous behavior in the cell population (Figure 11).
45 
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The mechanism of QS differs in Gram-positive and Gram-negative bacteria. In 

Gram-positive bacteria, small cyclic peptides (AIP) are used as signaling molecules while 

in Gram-negative bacteria small molecules such as acyl-homoserine lactones are used 

(Table 1). Staphylococcus aureus, a Gram-positive pathogen, utilizes AIPs to regulate the 

agr system that controls over 70 genes. Many of these genes code for known virulence 

factors.
87

 The first class of small molecule AIs (AI-1) is primarily used for intraspecies 

communication in Gram-negative bacteria. AI-1 synthases use SAM as a substrate to 

produce a variety of acylhomoserine lactones (Table 1), with MTA as a byproduct. 

Pseudomonas aeruginosa utilizes AI-1 to regulate the production of several extracellular 

virulence factors, promote biofilm maturation, and regulate the expression of antibiotic 

efflux pumps.
51  

 

 

Figure 11. General scheme of a quorum sensing system. The signal synthase enzyme 

produces signal molecules, which reach the extracellular environment via diffusion or 

transport. At a critical signal molecule concentration, the signal binds to the receptor, 

which can be located in the cytoplasm (A) or at the cell surface (B). If the receptor is 

located in the cytoplasm, the signal-receptor complex activates or inactivates transcription 

of target genes. If the receptor is located at the cell surface, the signal sets off a 

phosphorylation signal transduction cascade that activates a transcriptional regulator at the 

end modulate target gene transcription. (adapted from Defoirdt et al., 2010).
97
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         Table 1. Bacterial Autoinducers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

The second class of small molecule AIs (AI-2) is considered a “universal” 

signaling molecule that allows inter-species communication.
46-48

 AI-2 is produced by the 

enzyme LuxS, which synthesizes 4,5-dihydroxy-2,3-pentanedione (DPD) that 

spontaneously cyclizes into a pro-AI-2 structure (Figure 9).
48,49

 In marine environments 

where boron is plentiful, pro-AI-2 spontaneously forms a boron diester structure (Table 

1).
 46,47,49

 However, a large number of bacterial species synthesize and respond to AI-2 in 

environments that may not contain boron, other derivatives of DPD exist. For some 

AI-3 

Farnesol 

AIP 

Autoinducer Molecule Autoinducer Type 

AI-2 

AI-2 

AI-1 

AI-1 
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species, the formation of DPD is purely a byproduct of metabolism.
47

 AI-2 has been 

shown to regulate biofilms and virulence factors in E. coli, as well as various other 

species (Table 2).
51, 76

  

Table 2. Autoinducer-2 Induced Effects 

 

There have been extensive investigations on the effects of luxS gene deletions, 

due to its direct connection with quorum sensing. Neisseria meningitidis luxS knockout 

strains were found to have reduced virulence.
44

 In other studies, luxS deficiency was 

found to alter sporulation in Bacillus subtilis, hemolysin secretion in Listeria 

monocytogenes, and twitching motility involved in colonization and biofilms in E. coli 

and Salmonella.
92 

An expanding list of other autoinducers has also been described. This includes 

autoinducer (AI-3), a molecule that is reported to have an epinephrine-like structure and 

may allow the bacteria to respond to host signaling molecules. In E. coli 0157:H7, AI-3 

appears to regulate the formation of attaching and effacing lesions.
67,86

 Lastly, microbial 

intercellular communication is not confined to bacteria, the isoprenoid farnesol is 

reported to act as an AI in the yeast Candida albicans.
88

 
 

Phenotype Bacterium 

Biofilms  E. coli, Helicobacter pylori, Pseudomonas 

gingivalis, Streptococcus gordonii,  

Streptococcus mutans 

 

Virulence Factors 

 

Clostridium perfringens, E. coli,  

Neisseria meningitidis,  

Pseudomonas gingivalis,  

Serratia marcescens,  

Streptococcus pyogenes, Vibrio cholerae   

 

Bioluminescence  

 

Vibrio fischerii, Vibrio harveyi 
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Biofilms 

In nature, the majority of bacteria are found within biofilms. Biofilms are 

composed of communities of bacterial cells that attach and proliferate on living or 

nonliving surfaces using a secreted extracellular polysaccharide matrix.
53

 This adhered 

communal existence allows bacteria to occupy a favorable microenvironment rather than 

simply being randomly dispersed. Thus, the traditional view of bacteria as existing solely 

as planktonic or free-swimming cells has now been replaced by the idea that the 

planktonic phase is simply a mechanism for translocation from one surface to another.
52

 

Many persistent and chronic bacterial infections are attributed to formation of biofilms in 

wound sites or on medical implants that resist antibiotic treatment and evade host 

immune responses.
54

 In addition, bacterial biofilms on food processing equipment and 

surfaces are a leading cause of food-borne illness.
53

  

Biofilm formation is a sequential process (Figure 12). In the first phase, the 

planktonic bacterial cells form a transient association with a new surface or to previously 

adhered microbes. Upon finding a suitable location, the bacteria progress from a transient 

association to form a microcolony. This colony may consist of one species or (more 

commonly) a heterogenous mix of species. At this stage, the cell density reaches levels 

that quorum sensing through AI molecules becomes feasible. The QS signaling pathways 

lead to altered gene transcription that stimulates production of an exopolysaccharide 

matrix that envelopes the micro-colony. Further alteration of gene transcription occurs to 

adapt the individual bacterial cell to communal existence within the biofilm. The 

modulation of biofilm unique genes includes the up-regulation of a wide array of 

enzymes and transporters, such as adaptive surface enzymes used to metabolize the chitin 
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from insects and crustaceans, and the creation of specialized nutrient transport channels 

within the matrix.
52,53

 In multispecies biofilms, bacteria establish micro-communities 

within the matrix that are optimized for both survival and symbiotic relationships 

between the groups of bacteria.
53

 In essence, a biofilm is not a random assortment of 

bacteria, but more akin to a developed city with defined architectures that allow a variety 

of optimal microenvironments to exist. 

Biofilms pose a major concern for the treatment of bacterial infections. The 

extrapolysaccharide matrix provides a shield against bacteriophages and amoebae, 

attenuates responses to antibiotics, and decreases access by the host immune system.
54,55

 

The thickness of the biofilm matrix prevents antimicrobial agent penetration to the full 

 

Figure 12. Biofilm maturation is a complex developmental process involving five 

stages. Stage 1: initial attachment; stage 2: irreversible attachment; stage 3: maturation I; 

stage 4: maturation II; stage 5: dispersion. Each stage of development in the diagram is 

paired with a photomicrograph of a developing P. aeruginosa biofilm. (adapted from 

Monroe, 2007).
84
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depth required to eliminate all of the microbes, and hinders phagocytosis by host 

neutrophils. Ultimately, this allows planktonic cells to escape and form other foci of 

infection 
54,55

 Since traditional antibiotics work to both eradicate pathogens and support 

host immune responses, these are much less effective in the context of biofilms.   

Escherichia coli O157:H7 

Enterohemorrhagic Escherichia coli O157:H7 is a pathogen often associated with 

foodborne illness. Infection can lead to devastating or life-threatening systemic 

manifestations such as hemolytic uremic syndrome (HUS) and hemorrhagic colitis 

(HC).
56

 The main cause of these serious ailments originates from the release of bacterial 

Shiga toxins (Stxs) during the infection, and subsequent damage to cells in the intestines, 

kidneys, brain, and other organs.
56

 While other serogroups of E. coli also produce Stxs, 

and are often more prevalent in humans, E. coli O157:H7 is especially virulent and 

responsible for the majority of HUS cases worldwide.
56,57

  

E. coli O157:H7 was first recognized in 1982 when an outbreak associated with 

contaminated hamburger occurred in the Jack-in-the-Box restaurant chain in Oregon and 

Michigan.
58

 Since then, sporadic outbreaks have occurred throughout the world. In 1998, 

a particularly large outbreak occurred in Japan, when over 9,000 children were infected.
59 

Symptoms of infection begin with severe cramps, initially followed by watery and 

then bloody diarrhea, with little or no fever.
60

 About 10% of cases develop into HUS, 

which carries a mortality rate of 2-10%.
57

 The most susceptible to the development of 

HUS are young children and the elderly.
60

 

The three principal routes of transmission are: fecal-contaminated food and water, 

person-to-person spread, and animal contact.
60

 The major animal carriers are healthy 
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cattle, and to a lesser degree other domesticated ruminants like sheep and goats.
56

 These 

animals act as reservoirs. E. coli O157:H7 is distributed through feces, which can 

contaminate foods when manure is used as a fertilizer or by direct contact during the 

slaughter and preparation of meat. Of these, contaminated meat, unpasteurized milk, and 

fecal-contaminated fruit and vegetables are the most common vehicles of transmission. 

However, undercooked ground beef is the major source of transmission accounting for 75 

out of 183 reported foodborne outbreaks in the US between 1982 and 2002.
57 

 

The production of two antigenically distinct forms of Stx (Stx1 and Stx2) by E. 

coli O157:H7 results in HUS and HC.
61

 Both toxins are compound toxins consisting of a 

catalytic A subunit and a cell targeting pentameric B subunit. 
56,57

 After entering the cell 

through receptor mediated endocytosis, the A subunit is proteolytically cleaved to yield 

the catalytically active RNA N-glycosidase. This enzyme cleaves specific bonds in the 

rRNA, preventing the binding of amino acyl-tRNA to the ribosome. This inhibits the 

elongation of the peptide chain during peptide synthesis and eventually leads to cell death 

(Figure 13).
61

 Ruminants lack the vascular Stx sensor, globotriaosylceramide. This allows 

them to act as E. coli O157:H7 carriers unaffected by Stx toxicity.
56
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The ability of Stx to produce attaching and effacing (A/E) lesions on a variety of 

cell types is one of the most important virulence characteristics found in E. coli O157:H7.
 

The A/E lesions can be described by degeneration and effacement of intestinal epithelial 

cell microvilli, intimate adherence of bacteria to the epithelial cell surface and bacterial 

 

Figure 13: Model for receptor mediated endocytic entry and processing of Shiga 

toxin in a mammalian cell. Shiga toxin enters the cell by receptor-mediated 

endocytosis. The B subunit of the toxin binds to the mammalian cell receptor 

globotriaosylceramide (Gb3). The clathrin-coated pit is pinched off, and the coated 

vesicle is formed. The vesicle is acidified, and may fuse with lysosomes. The A1 

fragment within the cytosol binds the 60S ribosome, leading to inhibition of protein 

synthesis and cell death. (adapted from O‟Brien et al., 1987).61
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directed assembly of highly organized cytoskeletal structures in the host cells.
57

 These 

organized cytoskeletal elements form pedestal-like structures beneath the adhered E. coli 

O157:H7 cells and are a hallmark of this type of infection. Genetic studies have shown 

that the genes responsible for A/E lesions map to a region that is designated the locus of 

enterocyte effacement (LEE), and are considered a chromosomal pathogenicity island.
66

 

LEE is composed of at least 41 different genes, all required for bacterial adherence to the 

host cell.  

The mechanism of adherence to host cells is very complex and a multitude of 

factors play a role in the process. E. coli O157:H7, like many other Gram-negative 

bacteria, has a type III protein secretion system (TTSS), which is a complex surface 

structure used to deliver virulence proteins into the host cell (Figure 14).
62,63

 TTSS 

consists of a needle-like flagella that pierces the host cell to inject proteins that modify 

the membrane. The needle like flagella is comprised of multiple Escherichia secretion 

proteins (Esp) with EspA forming a filamentous structure on the bacterial surface that 

forms a bridge to the host cell; essentially the tip of the needle.
64

 EspB and EspD are 

injected through the needle into the mammalian cell membrane, where they form the end 

of the translocation complex required for other larger virulence factors to be injected 

directly into the host cell cytoplasm.
62, 63
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Adherence of E. coli O157:H7 to a mammalian cell is initiated by transfer of a 

translocated intimin receptor (Tir) into the host cell. Tir, much like EspB, becomes part 

of the mammalian cell membrane and provides a binding site for bacterial intimin. After 

this binding occurs, Tir links host actin fibers to the membrane to form the characteristic 

pedestal structure.
65

 This intimate binding allows other virulence factors to wreak havoc 

on the host cell, eventually leading to A/E lesions. 

The plasmid O157 (pO157) encodes for a myriad of additional virulence factors 

not found in the chromosomal DNA.
66

 The first described virulence factor of pO157 was 

 

Figure 14: A schematic of type III secretion structures in E. coli O157:H7. Type 

III secretion structures are composed of a needle-like complex (pink), which is 

anchored in the bacterial cell wall and a translocation complex (blue) in the host 

membrane. EspA (in green) extends from the tip of the needle and penetrates the host 

mucous barrier and thick glycocalyx reaching the underlying intestinal enterocytes. 

(adapted from He et al., 2004.)
63
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hemolysin, an endotoxin that lyses red blood cells by destroying their cell membrane 

through phospholipase activity. While hemolysin is not essential for producing either 

HUS or HC, the lysis of red blood cells provides iron for the pathogen that stimulates 

growth and production of other toxins.
57

 Other virulence factors encoded on pO157 are 

catalase-peroxidase, type II secretion proteins, serine protease, metalloprotease, and 

putative adhesion genes.
66 

  

Virulence regulation in O157:H7 has been attributed to luxS mediated quorum 

sensing (Table 3).
23,67

 The transcriptional regulation of genes in the LEE initiated through 

quorum sensing is complex since it consists of two regulators and multiple gene operons 

(Figure 15).
75

 The initial belief was that AI-2 controlled all aspects of virulence, but this 

was later disproved when luxS mutants were still able to produce A/E lesions in cultured 

epithelial cells.
67  

 

 

 

 

 

 

 

Further investigation determined that the genes for TTSS were AI-3 dependent, a 

signaling molecule that resembles epinephrine.
67

 Bacterial AI-3 receptors can also bind 

host cell produced epinephrine, thus providing a link between mammalian and bacterial 

communication pathways. It remains unclear whether the other aspects of virulence such 

as toxin production and biofilm formation are AI-2 or AI-3 dependent.  

Virulence Factor                                                                 Ref 

Biofilm production                                                               52 

Motility                                                                                86 

lee operons                                                                           80 

qse transcription                                                                   79 

Type III secretion                                                                 80 

Generation time                                                                    86 

Gene expression (404 genes)                                               86 

Table 3. Virulence factors affected by AI-2 in E. coli Table 3. Virulence factors affected by AI-2 in E. coli 
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Metabolomics and Proteomics of E. coli RK4353 

In recent years, liquid chromatography-tandem mass spectrometry (LCMS) has 

become an invaluable tool for the analysis of bacterial organisms. Extensive metabolic 

and proteomic analysis have been performed on a plethora of bacterial species to 

understand basic metabolism, and the changes to metabolism that occur in response to 

drug treatment, gene deletion, and changes in environment.
69

 This knowledge can be used 

to direct drug design by revealing new or additional targets.   

 

Figure 15. Model for luxS-dependent quorum sensing in enterohemorrhagic 

(EHEC) and enteropathogenic (EPEC) Escherichia coli. Interactions limited to 

EPEC are indicated by dashed lines. The histidine kinase QseC (quorum-sensing E. 

coli regulator C), together with its cognate response regulator QseB, activates the 

flagellar master operon flhDC (green boxes). Regulation of type III secretion (red 

boxes) is mediated through QseA, and indirectly through Ler. Together, the two 

proteins activate expression of five important lee operons that encode components of 

the type III secretion apparatus as well as adhesion proteins (intimin, Eae), the 

translocated intimin receptor (Tir), and other proteins. (adapted from Vendeville et 

al., 2005.)
76

  

 



26 

 

A pfs (MTN) gene knock-out strain was originally created in E. coli RK4353 to 

investigate potential gene polarization effects that occurred when deleting the gene 

encoding the periplasmic cobalamin-binding protein.
68

 While this Δpfs mutant was not 

created for the purpose of analyzing MTN deficiency, it has provided a nonpathogenic 

model system for these studies. A metabolite study of another nonpathogenic pfs knock-

out strain E. coli (MG1655) showed that it displayed up to 50% increases in SAM and 

SAH concentrations.
42

 While these data are interesting, neither of these strains allow the 

analysis of the effect of pfs gene deletion on virulence. However, these strains provide 

tools for proteomic analysis of adaptations to MTN deficiency, such as additional enzyme 

production or expression of enzymes used in potential alternate metabolic pathways.  

As mentioned previously, SAM is involved in radical reactions that produce 

vitamins that are required for enzymes to function properly. Inhibition of MTN would be 

expected to cause accumulation of inhibitory levels of 5‟dADO that in turn act to 

suppress the enzymes responsible for production of these vitamins.  This is a possible 

cause for the growth delays reported in various inhibition studies.
40,41

 Reduced vitamin 

production can be analyzed by comparing the activity of enzymes found in central carbon 

metabolism that require lipoate, thiamine, or biotin cofactors, such as the pyruvate 

dehydrogenase and α-ketoglutarate dehydrogenase complexes, in the MTN KO strain to 

the WT strain. The MTN KO strain could show differences in the activity of alternate 

metabolic pathways, such as lactate dehydrogenase or alcohol dehydrogenase, that are 

adapted due to MTN deficiency (Figure 16).  
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Figure 16. Central carbon metabolism with highlighted aspects affected by 

MTN deficiency. The specific enzymes or enzyme complexes of interest in this 

study are noted in red. Essential enzyme cofactors directly related to SAM radical 

reactions are highlighted in yellow.  
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Summary 

MTN is a critical enzyme required for bacterial metabolism and is a potential 

target of novel antibiotics. Inhibition of MTN causes accumulation of potent feedback 

inhibitory nucleosides that have significant effects on SAM metabolic pathways. The 

effects range from the disruption of quorum sensing to the lack of methionine salvage. 

While MTN inhibitors have shown limited bactericidal activity, they could be combined 

with other treatments to enhance antibiotic responses or improve host immune system 

removal of the bacterial infection.  

To fully understand the complete effects of MTN inhibition, genetic knockouts 

(MTN KO) of the pfs gene have been created in prior work.
42,43

 Removing the pfs gene 

allows for the maximal level of MTN inhibition and provides a standard to validate MTN 

as a drug target, and to use as a comparative tool to predict the effects of drug inhibition. 

All of the MTN KO strains have shown growth deficiencies, probably due to the 

inhibitory feedback effects of the nucleosides MTA, SAH, and 5‟dADO.
5,42,43

 Since 

MTN activity is responsible for directly producing the S-ribosylhomocysteine precursor 

for luxS dependent AI-2 synthesis, it is also probable that MTN deficiency will affect 

quorum sensing dependent events proposed to be involved in biofilm formation and 

virulence. 

In the following chapters, the potential of MTN inhibition as a target for antibiotic 

development have been investigated using a strain of pathogenic E. coli O157:H7. To 

understand how complete drug inhibition of MTN would affect this pathogen, a genetic 

knock-out of the pfs gene was created (MTN KO strain).  The WT and MTN KO strains 

were subject to a variety of analyses to establish the effects on growth, biofilm formation, 
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and virulence. Supplementation studies (with vitamins and autoinducer-2) were designed 

to explore the potential mechanisms of antibiotic action. Further investigations of 

metabolic enzyme activity in central carbon metabolism involved the use of a non-

pathogenic E. coli RK4353 MTN KO strain compared with its isogenic parental WT 

strain. For these studies, a directed investigation was performed on various enzymes that 

were predicted by proteomic data to be affected by MTN deficiency due to their 

dependence on vitamins for activity. Overall, the MTN KO strain showed defects in 

growth and virulence that appeared to be at least partially due to vitamin dependence. 
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CHAPTER TWO: MATERIALS AND METHODS 

Creation of Electrocompetent Cells 

E. coli O157:H7 strain (ATCC 43894) was streaked for isolation on LB plates and 

grown overnight at 37 °C. An isolated colony was used to inoculate 200 mL fresh LB 

media. Cells were grown at 37 °C at 225 RPM until the culture optical density at 600 nm 

(OD600) reached ~ 0.5. Cells were subsequently heat shocked for 10 minutes at 42 °C 

with shaking, followed by 15 minutes on ice with rotation. Cells were harvested by 

centrifuged at 8,000 xg for 15 minutes at 4 °C, and resuspended in 8 mL of ice cold 20% 

glycerol. The culture was split into eight 2 mL centrifuge tubes and centrifuged at 10,000 

xg for 1 minute. The supernatant was removed by aspiration, and the cell pellet washed 

three times with ice cold 20% glycerol. Competent cell pellets were resuspended in 50 l 

ice cold 20% glycerol and stored at -80°C. 

Generation of MTN Knockout (MTN KO) Strain Using the λ-Red System 

Deletion of the pfs gene was accomplished using the λ-red system.
90

 Briefly, the 

recombinase encoding plasmid pKD46 was introduced into competent cells using 

electroporation (2000 V, 200 Ω, and 25 μF). Following electroporation, samples were 

recovered in SOC media and incubated at 37 °C with horizontal shaking for 1.5 hours. 

Transformants were selected on LB plates supplemented with ampicillin (100 g/mL) 

and chloramphenicol (25 g/mL) plates and grown overnight at 37 °C. An isolated 

colony was selected and inoculated into 200 mL of fresh LB ampicillin (100 g/mL) 
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broth and grown at 37 °C until an OD600 of 0.1 was reached. Recombinase activity was 

induced by the addition of arabinose to 10 mM, and continued incubation at 37 °C until 

the culture reached an OD600 of 0.4. pKD46
+
 cells were made electrocompetent as 

described above.  

To create the MTN KO strain, the chloramphenicol resistance (Cm
r
) cassette in 

pKD3 was amplified by polymerase chain reaction (PCR) using primers containing 

flanking pfs homologous sequences: pfsLF-TTAGC CATGT GCCAG TTTCT GCACT 

AGTGA CTCAA CCATC AGTGT AGGCT GGAGC TGCTT CG-3‟; pfsLR-ATGAA 

AATCG GCATC ATTGG TGCAA TGGAA GAAGA AGTTA CGCTC ATATG AATAT 

CCTCC TTA-3‟ (pfs sequences are italicized). The PCR reaction contained 20 ng pKD3 

template, 50 pmol primer (each) and 1 unit One Taq Hot Start DNA polymerase (New 

England BioLabs, Ipswich, MA). Cycling conditions consisted of 95 °C (7 min), 

followed by 35 cycles of 94 °C (15 sec), 50 °C (30 sec), and 72 °C (90 sec).  The 1.1 Kb 

PCR product was purified using a Perfectprep® Gel Cleanup kit (Eppendorf, Hauppauge, 

NY) and quantified by UV spectrophotometry. The purified chloramphenicol cassette 

(100 ng) was introduced into competent E. coli O157:H7 cells containing pKD46 using 

the conditions described above. Successful transformants were selected on LB agar plates 

containing chloramphenicol (25 g/mL). The transformants (pfs, amp
r
, cm

r
) were cured  

(25 g/mL), but lacking ampicillin. Loss of MTN activity in the E. coli 0157:H7 strain 

(pfs, amp
s
, cm

r
) was confirmed by enzyme assay and western blot analysis (see later 

section). 
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Generation of MTN Knock-In (MTN KI) Strain 

A MTN KI strain was created from the E. coli O157:H7 MTN KO strain in order 

to study the effect of gene reconstitution on the cellular phenotype.  The E. coli O157:H7 

(pfs, cm
r
) was made electrocompetent as described above. The plasmid pMTN

29
 was 

introduced using the electroporation conditions described for pKD46 (above), and 

positive transformants selected by growth on LB containing ampicillin (100 g/mL) and 

chloramphenicol (25 g/mL).  

Analysis of MTN Activity: Preparation of Bacterial Lysates  

Fresh 5 mL cultures of E. coli O157:H7 WT, MTN KO, and MTN KI strains were 

prepared in LB broth containing appropriate antibiotics and grown overnight at 37 °C 

with shaking. Cultures were diluted into 100 mLs of fresh LB broth and re-incubated for 

24 hours at 37 °C with shaking. Bacterial cells were harvested by centrifugation (5000 xg 

/ 15 min) and resuspended in 1 mL PBS. Cells were lysed by sonication on ice using a 

Misonix Sonicator 300 (power setting 7, 30 sec pulse, 1 min cooling, 2.5 min total 

sonication). The lysates were centrifuged at 5,000 xg for 15 min at 4 °C to remove debris, 

and the cell lysates transferred to fresh tubes. The protein concentration of the lysates was 

determined using BioRad reagent (BioRad, Hercule, CA). Lysates were stored at -80 °C 

until analyzed for MTN by immunoblot and enzyme assay. 

Analysis of MTN Activity: Immunoblot Assay 

The presence of MTN protein in the WT, MTN KO, and MTN KI strains was 

analyzed by SDS-PAGE and western blot. Samples of cell lysate proteins (20 g/lane) 

were electrophoresed (66 mA/45 min) on 15% acrylamide gels using a BioRad 

Miniprotean system. An EZ-Run Prestained Rec Protein ladder (Thermo Fisher 
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Scientific) was used as a standard to assess molecular weight. Separated proteins were 

transferred to nitrocellulose by electroblotting at 10V for 18 hours. The blot was blocked 

using 10x Superblock (Thermo Fisher Scientific) on a Millipore SNAP i.d. system. The 

presence of MTN in the lysates was detected using a murine monoclonal anti-MTN 

antibody
26

 (1:1000 dilution) and goat-anti-mouse Ig-HRP conjugate antibody (Thermo 

Fisher Scientific). Blots were developed using Pierce ECL Western Blotting substrate and 

Kodak X-Omat x-ray film.  

Analysis of MTN Activity: Enzyme Assay 

Activity of MTN in lysates of E. coli O157:H7 WT, MTN KO, and MTN KI 

strains was determined by monitoring loss of absorbance at 275 nm accompanying the 

cleavage of MTA into MTR and adenine using the extinction coefficient 1.6 mM
-1 

cm
-1

.
31

 

The enzyme reactions contained 50 mM potassium phosphate (pH 7) and 100 µM MTA 

in a final volume of 990 µL, and were initiated by the addition of 10 µL (40 g) of lysate. 

The absorbance at 275 nm was measured using a Varian Cary 50 spectrophotometer. 

Specific activities were calculated in U/mg (1U = 1 mol/min MTA degradation).  

Cell Growth Assays 

To determine the effect of MTN status on growth, fresh overnight cultures of E. 

coli O157:H7 WT, MTN KO, and MTN KI strains were prepared in 5 mL Davis Minimal 

Media (per liter: 7 g KH2PO4, 2 g K2HPO4, 1 g (NH4)2SO4, 0.5 g Na citrate 2H2O, 0.025 

g MgSO4) supplemented with 0.2% glucose (DMMG). The overnight cultures were 

diluted 1:10,000 and 200 µL used to inoculate triplicate wells in a 96-well plate. The 

plate was incubated in a Synergy HT plate reader (BioTek, Winooski, VT) at 37 °C with 

shaking, and absorbance readings at 600 nm were taken every 15 minutes for 72 hours. 



34 

 

The assay was repeated with WT and KO strains with the DMMG medium supplemented 

with either lipoate, thiamine, biotin, dihydroxypentane dione (DPD), or a mix of all four 

supplements (1-100 µM).  

Biofilm Assays 

Cultures of the E. coli O157:H7 WT, MTN KO, and MTN KI strains were 

established in the 96-well plates as described for the cell growth assays above. Cultures 

were grown for 48 hours at 30 °C, which was optimal for biofilm formation. The media 

was then removed and the wells washed three times with PBS (250 µL) to remove 

loosely bound cells. Biofilms were fixed using 250 μL of a 1% paraformaldehyde 

solution in PBS for 1 hour at 4 °C. Subsequently, wells were washed three times with 

water, and the adhered biofilms stained with 250 L 0.1% crystal violet in PBS for 15 

min.
93

 Plates were washed three to five times with water, and the bound crystal violet 

solubilized in 250 L of an ethanol:acetone (80:20) solution for 15 min. Solubilized 

material (200 L) was transferred to a fresh 96-well plate and an absorbance reading at 

590 nm measured using a BioTek Synergy HT plate reader. The assay was repeated with 

WT and KO strains grown in DMMG supplemented with DPD, a vitamin mix (1 M 

each biotin, lipoate, thiamine), or DPD and a vitamin mix.  

A second assay was performed to more readily visualize biofilm production. 

Overnight cultures of the three strains were prepared as described above and diluted 

(1:10,000) into 3 mL of fresh DMMG in a 5mL polystyrene culture tube. Cultures were 

incubated for 48 hr at 30 °C. Biofilms were stained as describe above, with the 

modification that the volumes for all washing, fixing, and staining steps were adjusted to 

3.2 mL. Stained biofilms were photographed using a digital camera. The assay was 
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repeated with WT and KO strains grown in DMMG media supplemented with either 

DPD, vitamin mix, or DPD and vitamin mix as previously described.  

The qualitative appearance of biofilms formed by the three strains was also 

examined by confocal microscopy. Biofilms were grown on plastic coverslips partially 

submerged in 5 mL cultures in DMMG media. Biofilms on coverslips were washed and 

fixed as described above, but the volumes of solutions were adjusted to 5.5 mL for each 

step. After the final wash, the coverslips were stained with 1 mL 0.1% (w/v) acridine 

orange in PBS for 1 hour in the dark. Coverslips were rinsed lightly with PBS and the 

biofilms visualized at 600x magnification using a Zeiss LSM Meta 510 confocal 

microscope set to an excitation wavelength of 476 nm. Standard and Z-stack (20 slices) 

images were analyzed using Zen 2012 digital imaging software (Carl Zeiss Microscopy, 

Oberkochen, Germany).  

Adherence Assays 

The adherence of E. coli O157:H7 WT, MTN KO, and MTN KI strains to 

mammalian epithelial cells was studied using a previously established protocol.
94

 Briefly, 

bovine Mac-T epithelial cells were cultured in DMEM supplemented with 5% FBS, 

penicillin (100 U/mg), and streptomycin (100 g/mL) at 37 °C with 5% CO2. When cells 

were approximately 70% confluent, they were harvested and seeded in triplicate (~1 x 

10
5
 cells) onto coverslips in a 6-well plate. When cells on the coverslips were 

approximately 70% confluent, the coverslips were washed with antibiotic-free DMEM 

with 5% FBS. For adherence assays, E. coli O157:H7 WT, MTN KO, or MTN KI 

cultures were grown overnight in LB broth at 37 °C with shaking, and diluted (1:10,000) 

into DMEM. Cells were stained by addition of Syto-9 (10 g/mL) for 15 min, followed 
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by three washes with DMEM. Infections were initiated by addition of 1 mL bacterial 

cells (~1 x 10
6
 cells) to the surface of the mammalian cells. Co-incubation of bacterial 

and mammalian cells occurred for 3 hours at 37 °C with 5% CO2. The wells were then 

washed with PBS and the cover slips fixed with 4% paraformaldehyde in PBS for 10 min 

at room temperature. Coverslips were washed twice with PBS, permeabilized with 0.1% 

Triton X-100 in PBS for 5 min, and non-specific binding sites blocked with 1% BSA in 

PBS for 20 min. Cellular actin was stained with TRITC conjugated phalloidin dye (5 

μg/mL in PBS) for 40 min. Coverslips were washed twice with PBS, dried, treated with 

ProLong Gold antifade reagent (InVitrogen, Carlsbad, CA) and mounted on glass slides 

with clear nail polish. Adherent bacterial cells were visualized at 1000x magnification 

using a LSM Meta 510 confocal microscope with excitation wavelengths set to 348 nm 

(DAPI), 476 nm (Syto-9), and 557 nm (TRITC). Images were analyzed using Zen 2012 

digital imaging software (Carl Zeiss Microscopy, Oberkochen, Germany). 

To quantify bacterial adherence, bovine Mac-T cells were prepared as described 

above in a 6-well plate. Cultures were grown until they reached approximately 70% 

confluence, and then infected with WT, MTN KO, or MTN KI strain cells grown 

overnight in DMMG, DMMG supplemented with DPD (25 M), DMMG with vitamin 

mix (100 µM each lipoate, biotin, and thiamine), or DMMG with DPD (25 M) and 

vitamin mix (100 µM each). Co-incubation continued for 3 hours at 37 °C in 5% CO2 

atmosphere. Subsequently, bacterial cultures were aspirated, the wells washed three times 

with PBS, and the mammalian cells lysed by treatment with 0.1% Triton X-100 in PBS 

for 15 min. Dilutions of detergent lysates were plated onto LB agar, incubated overnight 
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at 37 °C, and the adhered cells enumerated by colony counting. Colony forming units 

(CFU) were expressed as a percentage relative to the adhered WT CFU (set at 100%). 

Vero Cell Cytotoxicity Assay 

Shiga toxin production was measured using a Vero cell cytotoxicity assay, 

essentially as described.
85

 To compare E. coli O157:H7 WT and MTN KO strain Shiga 

toxin production, cells were cultured overnight at 37 °C with shaking in 2 mL DMMG 

containing either: 1) no supplement; 2) 25 M DPD; 3) vitamin mix (100 M each 

lipoate, biotin and thiamine); or 4) a mixture of DPD and vitamin mix. To prepare 

secreted Shiga toxin samples, cultures were centrifuged at 15,000 xg for 5 minutes, and 

the supernatants filter sterilized and stored at -20 °C. The periplasmic Shiga toxin 

samples were prepared by resuspending the cell pellets in 250 L of polymyxin B (10 

mg/mL) in PBS.
95

 After shaking for 15 min at 37 °C, the samples were recentrifuged at 

15,000 xg for 10 min, and the supernatant (containing the periplasmic proteins) was 

removed, filter sterilized, and stored at -20 °C until assayed.  

Vero cells were cultured in DMEM supplemented with 5% FBS, penicillin (100 

U/mg) and streptomycin (100 g/mL) at 37 °C in 5% CO2 atmosphere. For cytotoxicity 

assays, Vero cells were seeded into 96-well plates at a cell density of 1 x 10
5
 cells per 

well 24 hr prior to exposure to toxin.  The media in each well was then replaced with 160 

µL antibiotic-free DMEM and 40 L of supernatant or periplasmic extract. All samples 

were tested in replicates of five. A positive control consisted of Vero cells exposed to 40 

L of ethanol. Negative controls (for cytotoxicity) consisted of untreated Vero cells, 

Vero cells treated with 40 L of sterile DMMG, or Vero cells exposed to 40 L of 

polymyxin B (10 mg/mL) in PBS. The plate was incubated for 48 hr at 37 °C in 5% CO2 



38 

 

atmosphere. The media was then removed, and cells stained for 30 min with 100 L of 

0.4% crystal violet in methanol. Excess dye was removed by rinsing the plate three times 

with distilled water. Bound dye was solubilized in ethanol:acetone (80:20) solution for 15 

min and the absorbance at 590 nm quantified using a BioTek Synergy HT plate reader. 

The percent cytotoxicity was calculated using the equation:  

                (      )      

where ODs is the difference in optical density at 590 nm between the sample and the  

negative controls, and ODt is the difference in optical density at 620 nm between the 

ethanol positive control and negative controls.  

Type III Secretion System Protein Assay 

The ability of WT, MTN KO, and MTN KI strains to secrete the type III secretion 

system proteins EspB and Tir was measured by the enzyme-linked immunoabsorbent 

assay (ELISA).
64

 Briefly, bacterial cultures were grown overnight in 10 mL M-9 minimal 

medium supplemented with 44 mM NaHCO2, 8 mM MgSO4, 0.4% glucose, and 0.1% 

casamino acids at 37 °C in 5% CO2 atmosphere.
64

 Cell culture supernatants were 

collected by centrifugation (10,000 x g/10 min) and concentrated 100-fold by 

ultrafiltration (Amicon Ultra 3K) according to the manufacturers specification. Samples 

were stored at -20 °C until assayed. 

ELISA plates were coated with 100 L concentrated cell culture supernatant in 

binding buffer (20 mM Tris, pH 7.4, 150 mM NaCl, 1 mM CaCl2, 1 mM MgCl2, 1 mM 

MnCl2,) overnight at 4 °C. Wells were washed twice with PBS and blocked with 0.5% 

BSA in PBS for 1 hr at 37°C. EspB or Tir proteins were detected using monoclonal anti-

EspB or anti-Tir antibodies (kind gift of Dr. Brett Finlay at the University of British 
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Columbia) diluted 1:1000 in PBS + 0.05% Tween 20. After 1 hr in primary antibody, the 

ELISA plates were washed three times with PBS and incubated for an additional 1 hr 

with a horseradish peroxidase-conjugated goat anti-mouse IgG secondary antibody 

(Thermo Fisher Scientific) diluted 1:1000 in PBS + 0.05% BSA. Plates were washed 

three times with PBS and developed using horseradish peroxidase substrate (0.2 mg o-

phenylene diamine in an 50 mL 80 mM citrate–phosphate buffer, pH 5.0). Absorbance 

readings (490 nm) were collected for 30 min using a Biotek Synergy HT plate reader.         

Hemolysin Assays 

The amount of hemolysin produced by the WT, MTN KO and MTN KI strains 

was determined using a sheep red blood cell (SRBC) lysis assay.
91 

Briefly, bacterial 

cultures and cell culture supernatants were prepared as described above for secreted 

Shiga toxin. Serial dilutions of the cell culture supernatants were prepared in PBS and 

100 L added   to triplicate wells in a 96-well plate containing an equal volume of 3% 

SRBCs in PBS. The positive and negative controls consisted of SRBC lysis buffer (150 

mM NH4Cl, 10 mM KHCO3, 0.1 mM EDTA), and PBS, respectively. Plates were 

incubated at 37°C with shaking for 30 min. Absorbance readings at 620 nm were 

collected in a BioTek Synergy HT plate reader. Hemolysin activity was calculated using 

the following equation: 

             (        )      

where ODs is the difference in optical density at 620 nm between the sample and the 

SRBC lysis buffer positive control, and ODt is the difference in optical density at 620 nm 

between the PBS negative control and RBC lysis buffer positive control.  
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Metabolic Enzyme Analysis 

To analyze the effect of MTN deficiency on enzyme activities in central carbon 

metabolism, fresh 5 mL overnight cultures of the nonpathogenic E. coli RK4353 WT, 

MTN KO, and MTN KI strains were grown in DMMG at 37 °C with shaking. Overnight 

cultures were diluted into 500 mL of fresh DMMG for a total of six cultures per strain 

and incubated at 37 °C with shaking.  The cultures were monitored 

spectrophotometrically until the absorbance at 600 nm reached 0.5 (mid-log phase). At 

this point, three 500 mL cultures from each strain were centrifuged at 5000 xg for 10 min 

to pellet the cells. The supernatant was removed and the cell pellet was stored at -80 ºC. 

The remaining three cultures of each strain were cultured for 4 hours after reaching an 

absorbance (600 nm) of ~1.0 (stationary phase) and the cell pellets recovered by 

centrifugation at 5000 xg for 10 min. Cell pellets were extracted by vortexing in 5 mLs of 

B-PER bacterial protein extraction reagent (Pierce) for 15 minutes, and insoluble debris 

removed by centrifugation at 15,000 x g for 15 min. Lysate supernatants were removed 

and the protein concentration determined using a BioRad assay as described by the 

manufacturer Pyruvate dehydrogenase (PDH), lactate dehydrogenase (LDH), alcohol 

dehydrogenase (ADH), glutamate dehydrogenase (GDH), and  ketoglutarate 

dehydrogenase (KDH) activities in mid-log and stationary phase enzyme samples from 

the RK4353 WT, KO, and KI strains were measured using a colorimetric coupled assay 

and following the absorbance change at 570 nm.
96

 Enzyme reactions were assembled in a 

96-well plate, with each well containing 20 µL of a detection reagent (1 mM MTT, 150 

mM NAD
+
, 50 µM PES) and 170 µL of a substrate buffer (500 mM KPhos, pH 8.0, 10 
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mM MgCl2, 3 mM DTT) that contained either 50mM pyruvate, 1mM CoA (for PDHC); 

50 mM lactic acid (for LDH); 50 mM ethanol (for ADH); 50 mM glutamate (for GDH); 

or 50 mM α-ketoglutarate, 1 mM CoA (for KDH). Enzyme reactions were initiated by the 

addition of 10 µL of lysate. The increase in absorbance at 570 nm was measured every 30 

sec for 30 min using a BioTek Synergy HT plate reader. Average specific activities were 

calculated using the Beer-Lambert law (A=lc) using an extinction coefficient of 13 mM
-

1 
cm

-1
. All reactions were run at least three times. The results were expressed in U/mg, 

where 1 U = 1 mol NADH created per min of mg of lysate protein.  
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CHAPTER FOUR: RESULTS AND DISCUSION 

Creation and Analysis of a Genetic MTN Knock-out in E. coli O157:H7 

Creation of the MTN gene knock-out strain of E. coli O157:H7 was achieved 

using the λ-red recombination system. The coding region for pfs (MTN) was replaced 

with a chloramphenicol resistance cassette (Figure 17). Successful transformation was 

difficult to obtain. Multiple attempts (> 10) to create the MTN KO failed. Probably this 

was due to the severe effect on growth caused by the MTN deletion. Eventually, an 

experiment resulted in two very small colonies surviving selection on chloramphenicol 

plates. Both colonies were repeatedly propagated under chloramphenicol selection to 

ensure gene deletion. Gene deletion was further confirmed by PCR (data not shown). The 

creation of a MTN knock-in strain was achieved by transforming the pMTN plasmid into 

MTN KO cells and selecting for ampicillin resistance. The resulting KI strain was MTN
+
 

Cm
r
 Amp

r
, and expressed MTN under the control of an IPTG inducible promoter.    

To ensure that the MTN KO strain had completely lost the ability to produce 

MTN, western blot and nucleosidase assays were performed (Figure 17). A monoclonal 

α-MTN antibody readily detected the 24.5 KD nucleosidase in western blots of cell 

lysates of the WT and MTN KI strains, but not in lysates of the MTN KO strain (Figure 

17 B). Similarly, MTA nucleosidase activity was detected in lysates of the WT and MTN 

KI strains. The MTN KO strain showed significant loss of nucleosidase activity relative 

to the WT strain (p<0.05). The residual enzyme activity in the MTN KO strain was at the 

limit of detection in the assay (Figure 17 C). While theoretically no MTN activity should 
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be present in the MTN KO strain, the small amount of substrate conversion in the assay 

could be due to solvent hydrolysis or the activity of nonspecific nucleosidases present in 

the lysate (e.g., AMP nucleosidase or purine nucleoside phosphorylase). 

 

 

 

 

 

   

 

 

 

     C  

 
 
 
 
 
 
 
 
 

Figure 17. Analysis of the E. coli O157:H7 MTN knock-out strain. (A) Representation 
of the dgt-pfs-butF-yadS region of the E. coli O157:H7 chromosome map. The Δpfs:Cm 
knockout strain was created by a 599 bp in-frame deletion of the pfs gene and insertion of 
the 1034 bp Cmr cassette. (B) Western blot analysis of MTN in WT, MTN KO, and MTn 
KI strains. MTN in cell lysates (20 μg protein/lane) was detected using a monoclonal 
mouse α-MTN antibody followed by staining with a goat α-mouse Ig-HRP conjugate.  
(C) Specific activities of cell lysates (40 μg protein /assay) were analyzed by UV enzyme 
assay (275 nm) using 100 μM MTA substrate. (1 U = 1 μmol/minute, n = 3, ± SEM) * 
denotes p<0.05 by 1way ANOVA.  
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Effect of MTN Deficiency on Growth 

MTN deficiency severely decreased growth rates in the MTN KO strain. This was 

initially evident in the small colony size of the MTN KO strain, and intermittent 

difficulty in growing overnight stock cultures in minimal media. In 96-well plate growth 

assays, an 18 hour delay in achieving mid-logarithmic phase growth was typically 

observed for the KO strain when compared to the WT (Figure 18 A). However, the MTN 

KO strain did eventually reach the same cell density as the WT culture. The MTN KI 

strain growth closely matched the WT strain. This indicates that the growth delay in the 

MTN KO strain can be attributed to the loss of MTN activity.  

Similar growth defects have been observed in other MTN KO strains constructed 

in the nonpathogenic E. coli RK4353
68

 and Neisseria meningitidis.
43

 In the initial report 

on the E. coli RK4353 MTN KO strain, investigators found a very strong reduction in 

growth in minimal media supplemented with methionine, and no growth in the absence of 

supplementation. These authors also reported that growth was restored in the MTN KO 

strain when it was transformed with a plasmid containing MTN.
68

 This finding is similar 

to the results we show in Figure 18 A (KI black dashed line). The Neisseria meningitidis 

MTN KO strain also showed similar growth deficiencies, even in nutrient rich medium. 

Growth was restored in the Neisseria MTN KO strain when the MTN gene was 

reintroduced on a plasmid.
43
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A                 D  

  
B          E 

 

C       F 

 

Figure 18. Comparison of growth of E. coli O157:H7 WT, MTN KO and MTN KI in 
Davis minimal media (A). Media was also supplemented with lipoate (B), thiamine, 
(C), biotin (D), DPD (E) and a mix of all the previous (F). Data shown is the average of 
three experiments with n = 3 replicates. 
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How loss of MTN activity caused growth delay in E. coli O157:H7 was probed by 

the addition of various vitamin supplements to the culture medium. Since MTN 

deficiency could result in an increase in 5‟dADO concentration that would subsequently 

cause feedback inhibition of radical SAM reactions involved in vitamin synthesis
10,82

, the 

effect of lipoate, thiamine and biotin supplementation on cell growth was explored 

(Figure 18  B, C, D). Of the three vitamins, lipoate supplementation showed the greatest 

effect on MTN KO strain growth. When MTN KO strain cultures were supplemented 

with 1 µM or 100 µM lipoate (Figure 18 B, gray dashed lines), the growth rate was 

dramatically improved and the time to achieve mid-log phase growth was shifted to 

within roughly 6 hours of the WT culture. Thiamine supplementation (1 µM or 100 µM) 

showed a less extreme effect on MTN KO strain growth with mid-log phase achieved at 

approximately 25 hours, or within 12 hours of WT growth (Figure 18 C, gray dashed 

lines). Lastly, biotin supplementation (1 µM or 100 µM) had the least effect on vitamin 

stimulated growth recovery in the MTN KO strain. Biotin supplemented cultures reached 

mid-log phase only 8 hours sooner than the unsupplemented MTN KO culture (Figure 18 

D, gray dashed lines).     

MTN gene deletion disrupts the primary pathway to AI-2 production by 

preventing hydrolysis of SAH to S-ribosylhomocysteine (SRH) that would block 

subsequent luxS mediated synthesis of DPD. While a second potential path to DPD 

synthesis has been reported, it was not found to be a significant source of AI-2 in E. 

coli.
81

 In addition, prior work in Neisseria and a nonpathogenic E. coli strain (RK4353) 

showed that MTN gene deletion abolished AI-2 production.
43,71

 To examine the potential 

role of AI-2 on E. coli O157:H7 growth, cultures of WT and MTN KO strains were 
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supplemented with DPD, the precursor to AI-2. DPD did not appear to improve growth 

rates in either the WT or MTN KO strain (Figure 18 E). These results are similar to those 

reported for N. meningitidis,
43

 and support the assertion that the observed growth defects 

are not autoinducer-2 dependent.  

In summary, the defects in planktonic cell growth due to MTN deficiency could 

largely be attributed to inhibition of radical SAM reactions that resulted in decreased 

LipA, BioB, and ThiH synthesis of lipoate, biotin and thiamine, respectively.
10

 However, 

culture supplementation with a mixture of all three vitamins and DPD failed to 

completely restore growth, suggesting that other deficiencies were also present in the 

MTN KO strain (Figure 18 F). Overall, the results of these growth studies suggest that 

MTN inhibitors could exert their antibiotic effect due to interruption of radical SAM 

reactions because of feedback inhibition by 5‟dADO. In addition, the observation that the 

MTN KO strain did eventually reach a culture density similar to the WT strain suggests 

that MTN inhibitors will behave in a bacteriostatic rather than bactericidal manner.  

Effects of MTN Deficiency on Biofilms 

When biofilm production was examined in a polystyrene-tube growth assay, 

obvious culture differences were observed by crystal violet staining (Figure 19 A).  The 

WT strain showed heavy biofilm growth, particularly at the liquid-air interface. The 

MTN KO strain showed little crystal violet staining. Culture supplementation with DPD 

failed to restore biofilm growth. Similar to the planktonic growth studies, vitamin 

supplementation (100 µM lipoate, thiamine, biotin) restored MTN KO biofilms to 

approximately WT levels. The reduction in biofilm due to MTN KO was further 

quantified in a 96-well plate assay. Wells containing 48 hour cultures of WT and MTN 
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KO cells (+/- supplementation) were stained with crystal violet and the biofilms 

quantified by measuring the spectrophotometric absorbance at 595 nm. The results 

showed that biofilms were reduced by greater than 80% in the MTN KO strain when 

compared to the WT strain (Figure 19 B). Again, vitamin supplementation restored MTN 

KO biofilms, whereas the addition of DPD did not.  

 

The effect of MTN KO on E. coli O157:H7 biofilm formation was also examined 

by confocal microscopy (Figure 20). In these studies, biofilms were grown directly on 

plastic cover slips and visualized by staining with acridine orange. As the figure shows, 

the WT and MTN KI strains formed heavy biofilms (Figure 20 A). By comparison, the 

MTN KO strain formed only a weak disperse biofilm. Three dimensional pictures created 

from serial images through the depth of the biofilm further show the mature architecture 

       A    WT                       KO                       _     
          No Tx    No Tx     DPD        Vit     DPD+Vit 

 
              B 

 
Figure 19. Comparison of biofilm production by E. coli O157:H7 WT and 

MTN KO strains. (A) Crystal violet staining in 48 hour biofilms grown in minimal 

media. MTN KO cultures were supplemented with 25 µM DPD, 100 µM vitamin 

mix (Vit), or DPD and vitamin mix (DPD + Vit). (B) Quantitative data of crystal 

violet stained biofilms (± SEM, n = 3).* denotes p < 0.05 by One-way ANOVA 

* 
* 
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of the WT and MTN KI strain biofilms (Figure 20 B). Biofilm formation in the MTN KO 

was too weak to assemble a three dimensional image.     

 

Previous work has demonstrated the disruption of E. coli O157:H7 biofilms using 

MTN inhibitors.
71

 However, biofilm formation was only reduced by 18% when compared 

to the untreated control. Potentially this modest effect on biofilms could be attributed to 

poor drug permeability into the E. coli cells. On the other hand, the same drug treatment 

caused a 70% reduction in Vibrio cholera biofilms.
71

 Overall, our studies indicate that 

biofilm formation in E. coli O157:H7 is dependent on the availability of vitamins used by 

metabolic enzymes, rather than AI-2 signaling. In this regard, the reports in the literature 

                         WT                           KO                      KI 

 

Figure 20. Confocal microscopy of biofilms produced by E. coli O157:H7 WT, MTN 

KO, and MTN KI strains. Biofilms were grown for 48 hours on plastic coverslips and 

stained with acridine orange. (A) Images taken at 630x magnification. (B) 3-D images 

created from Z-stacks at 630x magnification. Biofilms were insufficient in the MTN KO 

strain to create a 3-D image. 

A 

B 
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of the effects of AI-2 on biofilm formation are not consistent. For the majority of these 

studies, luxS KO strains were examined since they are unable to make DPD, the precursor 

to AI-2.
 72-75 

The loss of biofilm formation seen in the luxS KO strains was attributed to 

lack of AI-2 signaling, but nutrient supplementation was not investigated. In one study, 

supplementation of WT E. coli O157:H7 with DPD increased biofilm formation by 30-

fold.
72

 In our studies, DPD treatment did not cause an increase in WT biofilms (not 

shown). However, the abundant biofilms formed by the WT strain we studied may have 

masked any overt influence by DPD, and we did not examine early stages of biofilm 

formation. 

Effect of MTN Deficiency on Virulence Factors 

Adherence 

The effect of MTN deficiency on virulence was initially examined by comparing 

the ability of the WT and MTN KO strains to adhere to mammalian cells. Cows are the 

main reservoirs for E. coli O157:H7, thus the ability of the bacteria to adhere to cultured 

bovine epithelial cells was measured. Using confocal microscopy, the adherence of the 

WT strain to the surface of bovine Mac-T cells was readily apparent (Figure 21 A). To 

find adherent MTN KO cells was difficult, as these events were visible on fewer than 1 in 

50 microscopic fields (Figure 21 B).  

Microbial adherence was also measured by counting colony forming units (CFUs) 

after bacteria were incubated with bovine Mac-T cell cultures. In these experiments, 

bacterial cells were added to the mammalian cell culture at an MOI of ~100. Adhered 

bacterial cells were liberated following detergent lysis of the mammalian cell culture and 

enumerated by counting the colonies that appeared on LB agar plates. As the graph in 
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Figure 14 C shows, the MTN KO strain exhibited an 85% decrease in adherence to 

bovine Mac-T cells relative to the WT strain. Similar results were obtained when the 

experiment was performed with the human HeLa cell line (not shown). There are no 

other reports of adherence studies using MTN KO strains. However, the adherence and 

infectivity of luxS mutants has been studied.
43,77

 Epithelial cell adherence was reported to 

be reduced by two orders of magnitude in a luxS mutant strain of enteropathogenic E. coli 

(EPEC).
77 

In the pathogen N. meningitidis, luxS mutants were attenuated for the ability to 

cause  bacteremia in mice.
43

 These studies established that loss of AI-2 synthesis 

decreased bacterial virulence. They suggest that interruption of MTN activity could 

similarly be expected to reduce virulence since AI-2 is also not made in the MTN KO 

strain.  

Since nutrient supplementation caused profound effects on bacterial growth and 

biofilm production, the effect of similar supplementation was studied in the mammalian 

cell adherence assay. Overnight culture of the bacterial cells with either DPD (25 µM), 

vitamin mix (100 µM each lipoate, thiamine, biotin), or both (DPD + Vit) failed to 

improve adherence of the MTN KO strain to Mac-T cells (Figure 21 C). This data 

indicates that adherence is not due to AI-2 signaling or vitamin dependent metabolism. 

Other studies suggest that E. coli O157:H7 adherence is influenced by AI-3 rather than 

AI-2 signaling.
67

 In general, the conflicting reports of the effect of AI-2 signaling on 

bacterial adherence and virulence underscores the complexity of these processes. The 

failure of culture supplementation with DPD and vitamins to reverse the loss of 

adherence to mammalian cells by the MTN KO strain suggests that other factors (e.g., 

specific methylations, polyamines, etc.) are required for this event.  
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A 

 
B 

 
C 

 
Figure 21. Analysis of E. coli O157:H7 WT and MTN KO strain adherence to 

bovine Mac-T cells. Confocal microscopy images of WT (A) and MTN KO (B) 

adherence to Mac-T cells. Bacteria were stained for nucleic acid (green). Mac-T cells 

were stained for actin (red) and nuclei (green). Bacterial adherence to Mac-T cells 

were determined as the CFU recovery compared to WT 3 hours post infection. MTN 

KO cultures were supplemented during growth with DPD, vitamin mix, or DPD and 

vitamin mix (* denotes p <0.05 when compared to WT, ± SEM, n = 3) 
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Shiga Toxin 

One of the most deadly aspects of an E. coli O157:H7 infection is the high risk of 

developing HUS due to Shiga toxin-mediated damage to kidney endothelial cells. To 

better understand how MTN inhibitors may influence this type of virulence, the 

production of Shiga toxins in WT and MTN KO strains were compared using an African 

green monkey kidney epithelial (Vero) cell assay. Shiga toxin 1 (Stx1) is primarily found 

in the periplasmic space, whereas Shiga toxin 2 (Stx2) is secreted into the media.
70

 Shiga 

toxin levels in cell culture supernatants and periplasmic extracts were compared for each 

strain. A significant decrease in cytotoxicity (~60%) was observed for culture 

supernatants derived from the MTN KO strain when compared to the WT strain (Figure 

22 A). Culture supplementation with DPD (25 µM) alone was insufficient to reverse the 

loss of cytotoxicity. When the MTN KO strain culture was supplemented with either 

vitamin mix (100 µM each lipoate, thiamine, biotin) or DPD and vitamin mix (DPD + 

Vit), Shiga toxin mediated cytotoxicity was restored to WT levels. No significant 

difference was seen for Vero cell cytotoxicity in the periplasmic extracts from each strain 

(Figure 22 B). To ensure that differences in cytotoxicity in the assay were not masked by 

saturating levels of toxin, the assay was performed using a series of periplasmic extract 

dilutions. In general, the MTN KO strain retained more Shiga toxin activity in the 

periplasm than the WT strain (Figure 22 C).  Culture supplementation did not result in 

more Shiga toxin release from the periplasm. Our results show that the MTN KO strain is 

still producing both Stx1 and Stx2. The increased level of periplasmic Stx in the MTN 

KO strain could be the result of increased expression of Stx-1 or decreased secretion of 

Stx-2. The effect of MTN interruption on Stx expression appears to be connected to the 
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nutrient status of the cells, rather than AI-2 signaling. Overall, our results suggest that 

MTN inhibitors could exert their antibiotic effect through decreased Shiga toxin release 

as one mechanism of action.  

 

 

      

Figure 22. Effect of MTN deficiency on Shiga toxin production in E. coli O157:H7. 
Comparison of Vero cell cytotoxicity when treated with (A) culture supernatants and (B) 

periplasmic extracts of WT and MTN KO strains. Cultures were supplemented during 

growth with DPD, vitamin mix, or DPD and vitamin mix. (C) Vero cell cytotoxicity 

measurements using a dilution series of periplasmic extract. (* denotes p <0.05 when 

compared to WT, ± SEM, n = 3). 
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There have been no prior reports of Stx production in MTN KO strains. However, 

a luxS deficient strain of E. coli O157:H7 was reported to secrete approximately two-fold 

less Stx.
85

 Despite this, the virulence of the strain in mice was not altered. Similarly, a 

luxS mutant of Clostridium perfringens produced reduced amounts of alpha-, kappa-, 

theta-toxins when compared to the WT strain.
78

 Unfortunately, in these reports, the effect 

of AI-2 or nutrient supplementation was not explored so it is difficult to assess if the 

results were due to loss of AI-2 signaling or nutrient salvage. In any case, luxS deficiency 

would not result in the same accumulation of inhibitory nucleosides like the MTN KO 

strain. Thus, the effects of luxS deficiency do not necessarily predict the same responses 

that would be encountered with loss of MTN activity. 

Type III Secretion System Proteins 

E. coli O157:H7 produces a multitude of other virulence factors that contribute to 

its pathogenicity. The LEE pathogenicity island encodes many of these virulence factors, 

including those that are required to assemble the type III secretory system (TTSS).
76

 

Secretion of two specific TTSS proteins, EspB and Tir, by WT, MTN KO and MTN KI 

strains was analyzed by ELISA (Figure 23 A, B). EspB is a major constituent of the 

TTSS pore, while Tir is translocated through the pore into the host cell where it mediates 

subsequent bacterial adherence and pedestal formation. The MTN KO strain showed a 

significant decrease (20%) in EspB secretion when compared to the WT strain. EspB 

production was recovered to WT levels in the MTN KI strain. No significant difference 

was seen for the secretion of Tir. The decreased production of EspB in the MTN KO 

strain could result in decreased pore formation that would reduce Tir delivery to the host 

cell. This could be responsible for the decreased host cell adherence displayed by the 



56 

 

MTN KO strain (Figure 23). However, the modest decrease in EspB is likely not 

sufficient to account for all of the loss in adherence shown by the MTN KO strain. The 

TTSS contains numerous other proteins required for host cell adherence. A 

comprehensive investigation of the entire system is required before the effect of MTN 

deficiency on TTSS can be fully understood.  

The TTSS has not been previously studied in MTN KO strains.  The effects on 

TTSS proteins have been studied extensively in luxS mutants of E. coli 

O157:H7.
66,76,78,79,80,83

 In these studies, LEE transcription was decreased in the luxS 

mutants. Similar to our observations on the MTN KO strain, the luxS mutants showed a 

minimal ability to adhere to mammalian cells.
76

 Western blot analysis of the luxS mutants 

revealed decreased expression of TTSS proteins, including EspA, EspB, and Tir 

responsible for the loss of mammalian cell adherence.
66,76,78

 It is unclear why there are 

differences in expression of Tir between the MTN KO and luxS mutant strains. However, 

the results suggest that additional factors beyond AI-2 signaling are involved in gene 

expression from the LEE. 
 

Hemolysin 

The final virulence factor that was investigated in this study was hemolysin. The 

function of hemolysin is to lyse red blood cells, which allows the bacteria to harvest the 

liberated iron. Hemolysin secretion by WT, MTN KO, and MTN KI strains was 

measured by examining the ability of cell culture supernatants to lyse sheep red blood 

cells. The results are expressed as a percentage of the control detergent lysis (100% 

control). The MTN KO strain showed a significant decrease (33%) in hemolysin activity 

relative to the WT and MTN KI strains (Figure 23 C). A similar finding was reported in a 
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luxS mutant strain of Serratia marcescens, where production of secreted hemolysin was 

reduced when compared to the WT strain. In addition, the investigators were able to fully 

restore hemolysin production by expression of luxS in trans.
73 
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Figure 23. Comparison of virulence factor production in E. coli O157:H7 WT, MTN 

KO, and MTN KI strains. (A) ELISA analysis of secreted EspB. (B) ELISA analysis of 

secreted Tir. (C) Analysis of secreted hemolysin activity. (* denotes p <0.05 by one-way 

ANOVA, ± SEM, n = 3). 
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Overall, the MTN KO strain showed a significant decrease in virulence when 

compared to the parental WT strain. This provides support to the hypothesis that MTN 

inhibitors could act as to regulate virulence rather than directly kill bacterial cells. In 

reducing the ability of the pathogen to produce virulence factors, MTN inhibitors could 

improve the ability of the host immune system to clear infections.  

Metabolic and Proteomic Analysis of E. coli RK4353 

Prior work in our lab used nuclear magnetic resonance to examine the profiles of 

excreted metabolites in cell culture supernatants of the nonpathogenic E. coli RK4353 

WT, MTN KO, and MTN KI strains.  Metabolite differences were observed at mid-log 

and stationary phases of growth. The most notable differences were the accumulation of 

pyruvate (4.8 mM), lactate (0.5 mM) and glutamate (3.6 mM) in the culture supernatants 

of the MTN KO strain, while these compounds are scarcely detectible (<0.1 mM) in the 

WT and MTN KI strains.  In addition, the WT and MTN KI strain cultures accumulated 

ethanol (0.4-0.5 mM) and acetate (4-5 mM), which are both products of vitamin 

(thiamine, lipoate) dependent fermentation of pyruvate. The MTN KO strain did not 

accumulate these compounds to the same degree (<0.1 mM ethanol; 2 mM acetate).  

These results suggested that there are defects in vitamin dependent central carbon 

metabolism in the MTN KO strain.  Specifically, the pyruvate dehydrogenase complex 

(PDHC, lipoate-, thiamine-dependent) at the end of glycolysis and the -ketoglutarate 

dehydrogenase complex (-KDHC, lipoate-, thiamine-dependent) in the tricarboxylic 

acid cycle both appear to be attenuated in their activity. Thus, pyruvate accumulates in 

the MTN KO strain culture, or is converted through the non-vitamin dependent lactate 

dehydrogenase (LDH) to yield lactate. Reduced metabolic flux through -KDHC would 
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lead to -ketoglutarate being converted to 2-oxoglutarate and finally to glutamate 

through the non-vitamin dependent glutamate dehydrogenase pathway. The results of 

these studies served as the basis for our hypothesis that altered metabolism in the MTN 

KO strain is attributable to decreased radical SAM dependent vitamin synthesis.  Since 

central carbon metabolism ultimately controls the ability to produce energy through 

oxidative phosphorylation, altered metabolism would impact growth. 

Cell culture supernatants of the MTN KO strain also accumulated MTA (3-6M), 

indicating that the nucleoside was getting secreted as a mechanism to prevent 

intracellular accumulation of this growth inhibitory nucleoside. As expected, MTA was 

absent from the WT and MTN KI strain culture supernatants, since the nucleosidase 

would function to efficiently catabolize the compound in these strains.  

Proteomic analysis of the three nonpathogenic E. coli strains (WT, MTN KO, and 

MTN KI) was conducted at Pacific Northwest National Labs using Liquid 

Chromatography-Tandem Mass Spectrometry (LCMS).  While not directly part of the 

thesis work, some of the results are presented here since they provide the rationale to 

support our subsequent comparison of enzyme activities in the WT, MTN KO, and MTN 

KI strains. The results of proteomic analysis are presented in Table 4. The MTN KO 

strain appears to express more PDHC and LDH proteins than the WT strain. The WT 

strain produced more -KDHC and glutamate dehydrogenase than the MTN KO strain. 

However, a direct correlation between the protein expression and the results of the NMR 

analysis was not supported. It is possible that the vitamin dependent enzymes were 

overexpressed in the MTN KO strain, but not functionally active due to decreased 

vitamin synthesis in this strain.  
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To further investigate the results of the metabolic and proteomic experiments, 

multiple enzyme assays were performed.  The PDHC specific activity of the cell lysate 

supernatants from the MTN KO strain was greatly diminished when compared to the WT 

strain (Figure 24 A). This would explain the accumulation of pyruvate in the MTN KO 

cell culture supernatants. When enzyme assays containing MTN KO cell lysates were 

supplemented with lipoate and thiamine, the PDHC activity was fully recovered. This 

supports our earlier findings that radical SAM-dependent vitamin synthesis was deficient 

in the MTN KO strain. Theoretically, the same situation should arise in α-KDHC as in 

PDHC, but we were unable to detect α-KDHC activity. 

Table 4. Proteomic Differences in the WT and KO strains of E. coli RK4353  

Protein Identification and Purpose Fold Change*    p-value   

ADH-Alcohol Dehydrogenase      Mid-Log  Stationary  Mid- Log  Stationary 

mhpF [acetaldehyde-CoA dehydrogenase II] -3.8 -2.7 0.013 0.012 

adhE [acetaldehyde: alcohol dehydrogenase] 1.1 1.3 0.642 0.337 

PDHC-Pyruvate Dehydrogenase Complex     
aceE [pyruvate dehydrogenase, decarboxylase  
          component E1] -1.8 -1.7 0.054 0.061 
aceF [pyruvate dehydrogenase, dihydrolipoyltransacetylase                
c        component E2] -2 -1.9 0.022 0.037 

lpd [lipoamide dehydrogenase] -1.6 -1.7 0.004 0.023 

LDH- Lactate Dehydrogenase     

ldhA [fermentative D-lactate dehydrogenase] -3.3 -3.4 0.05 0.291 

αKDHC-α-Ketoglutarate Dehydrogenase Complex     
sucB [dihydrolipoyltranssuccinase\ subunit of α-ketoglutarate 
DH] 1.4 -1.2 0.045 0.608 

GDH-Glutamate Dehydrogenase     

gdhA [glutamate dehydrogenase] 1.2 1.2 0.478 0.565 

* Negative values denote expression is higher in the KO strain than in the WT strain. Positive values denote 
a lower expression in the KO strain than the WT strain. 

The MTN KO strain appears to adapt to decreased PDHC and α-KDHC by 

directing pyruvate and α-ketoglutarate down alternate metabolic paths. Pyruvate 

conversion to lactate is increased since LDH activity does not require vitamins. However, 

the increased flux through LDH did not require additional enzyme activity (Figure 17 B). 

Similarly, glutamate production was increased in the MTN KO strain, but increased GDH 

activity was not seen (Figure 24 D).  
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Lastly, while ethanol excretion was increased in the WT strain, this was not the 

result of increased ADH expression (Figure 24 C). Probably, the increased metabolic flux 

through ADH was the result of increased vitamin dependent pyruvate decarboxylase in 

the WT strain that subsequently increased the concentration of acetaldehyde substrate for 

ADH. In summary, the results of our analyses of metabolic enzymes indicate that loss of 

radical SAM-dependent vitamin synthesis plays a major role in metabolic adaptations in 

the MTN KO strain.  

 

 

C 

 

 

 

 

 

Figure 24. Analyses of the specific activities of enzymes affected by MTN deficiency in 
E. coli RK3453. (A) Pyruvate dehydrogenase complex, (B) lactate dehydrogenase, (C) 

alcohol dehydrogenase and  (D) glutamate dehydrogenase specific activities were measured 

by a colorimetric assay using cell lysates from the WT, MTN KO, MTN KI strains. The 

specific activity of the KO strain was supplemented with lipoate and thiamine was also 

measured for the pyruvate dehydrogenase complex. (* denotes p <0.05 when compared to 

WT, ± SEM, n = 3) 
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Future Work 

The work following this thesis will consist of metabolomic and proteomic 

analyses of the WT and MTN KO strains of E. coli O157:H7. Initial studies will compare 

this pathogenic strain to the data obtained from the nonpathogenic RK4353 strain. 

Analysis of various virulence factors will also be performed. Another goal is to discover 

other adaptations to MTN deficiency that can be identified as drug targets. The WT and 

KO strain of E. coli O157:H7 will be subjected to an array of enzyme assays to further 

support data found in the proteomic studies. In tandem with the LCMS analysis of 

virulence factors, real-time PCR investigations will be performed to understand MTN 

deficiency on mRNA expression. This will ultimately provide a complete understanding 

of MTN deficiency in a pathogenic strain of bacteria and serve as a standard comparison 

for MTN inhibitors. 

Once the profile of MTN deficiency is established, the work will shift to testing 

various MTN inhibitors against the WT E. coli O157:H7 strain and on other bacterial 

species. In addition to sole inhibitor analysis, co-treatment studies with traditional 

antibiotics and MTN inhibitors will be performed to examine potential drug synergy. 

Various bacterial species that have developed resistance to most antibiotics, such as 

MRSA, will be treated with MTN inhibitors to determine if drug resistance can be 

reversed. The ultimate goal will be to test MTN inhibitors as antibiotics to treat infections 

in mammals (i.e., mice). This testing would provide the results needed to further pursue 

MTN inhibitors as antibiotic treatments in humans.  
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CHAPTER FOUR: CONCLUSION 

Antibiotic resistance is a serious problem and eventually all forms of bacteria may 

become resistant to traditional antibiotics, thus making every infection potentially deadly. 

Due to this threat, there is a dire need for novel forms of antibiotics. A promising 

antibiotic target is the bacterial-specific MTN enzyme. Loss of this critical enzyme in a 

MTN KO strain of the pathogenic E. coli O157:H7 has been shown in this work to result 

in a significant delay in growth and reduce multiple aspects of virulence. Specifically, 

adherence to bovine epithelial cells was reduced by over 85% compared to the WT strain. 

The MTN KO strain also displayed a 60% reduction in Shiga toxin mediated cytotoxicity. 

Furthermore, the reduction in adherence could be partially attributed to the diminished 

production of TTSS proteins, in particular EspB.  

Supplementation studies with DPD indicated that the alterations to growth and 

virulence were not due to loss of AI-2 signaling. When the MTN KO strain culture was 

supplemented with vitamins (lipoate, thiamine, and biotin) growth and biofilm formation 

was partially restored to WT levels. This suggests that the antibiotic mechanism of action 

for MTN inhibitors partially occurs through altered central carbon metabolism or 

decreases in other vitamin dependent enzyme activity. Further metabolomic and 

proteomic investigation of a nonpathogenic E. coli RK4353 strain revealed adaptations to 

MTN deficiency. Specific analyses of enzymes key to central carbon metabolism found 

an overproduction of a defective PDHC, whereas specific activity for LDH, ADH, and 

GDH were unchanged. The activity of the defective PDHC was restored with the addition 
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of lipoate and thiamine, further supporting that MTN deficiency disrupts vitamin 

synthesis. This study as a whole serves as the foundation for future investigations of 

MTN inhibitors as potential antibiotics.   
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